
On the Nature of Progress

Maurice Herlihy

Brown University
and

Nir Shavit

Tel-Aviv University

We identify a simple relationship that unifies seemingly unrelated progress conditions ranging from
the deadlock-free and starvation-free properties common to lock-based systems, to non-blocking
conditions such as obstruction-freedom, lock-freedom, and wait-freedom.

Properties can be classified along two dimensions based on the demands they make on the oper-
ating system scheduler. A gap in the classification reveals a new non-blocking progress condition,
weaker than obstruction-freedom, which we call clash-freedom.

The classification provides an intuitively-appealing explanation why programmers continue to
devise data structures that mix both blocking and non-blocking progress conditions. It also
explains why the wait-free property is a natural basis for the consensus hierarchy: a theory of
shared-memory computation requires an independent progress condition, not one that makes
demands of the operating system scheduler.

1. INTRODUCTION

The advent of multicore architectures has provoked a renewed interest in concurrent
data structures and algorithms. The literature encompasses a bewildering array of
progress conditions. Some (“non-blocking”) conditions guarantee progress even if
one or more threads halt, while others do not. Some blocking conditions guarantee
that threads will not deadlock, and some go further and rule out starvation.

On modern multiprocessor machines, programmers often use a variety of lock-
based and non-blocking algorithms, sometimes mixing and matching progress con-
ditions within a single system. (For example, consider lock-free, obstruction-free,
and lock-based software transactional memory systems [13]). How can these data
structures and algorithms work well together when they make incomparable and
incompatible progress guarantees?

This paper proposes a novel grand unified explanation that ties together these
seemingly unrelated progress conditions, ranging from the deadlock-free and starvation-
free properties common to lock-based data structures, to the obstruction-free, lock-
free, and wait-free properties that have been the focus of so much recent research.
We are deliberately not presenting a “grand unified theory”, (even though our ex-
planation is not difficult to formalize), because our primary goal is to provide a
clear, simple, and intuitively-appealing explanation how these dissimilar properties
actually fit together. These ideas may seem straightforward, perhaps even obvious,
but we have never seen this formulation in any published work.

We show that progress conditions can be classified as shown in Figure 1. The
horizontal line separates properties that ensure maximal progress, that is, progress
for all threads, from properties that ensure minimal progress, progress for only
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Fig. 1. The “Periodic Table” of Progress Conditions.

some threads. The vertical lines separate properties that depend on different kinds
of guarantees provided by the operating system (OS) scheduler.

It is important to distinguish between dependent and independent progress con-
ditions. At one extreme, the wait-free and lock-free properties are independent of
the OS scheduler: they guarantee progress as long as threads are scheduled, but no
matter how they are scheduled. The other properties are dependent : they rely on
the OS scheduler to satisfy certain properties. The deadlock-free and starvation-
free properties guarantee progress only if each thread eventually leaves each critical
section, and the obstruction-free property [7] requires the scheduler to allow each
thread to run in isolation for a sufficient duration.

If we further restrict our attention to schedulers that satisfy a benevolent property
defined below, then the distinction between minimal and maximal progress along
the horizontal axis vanishes: any algorithm that provides minimal progress provides
maximal progress as long as the scheduler is benevolent. This is why algorithms
that (in principle) permit starvation are so widely used in practice: programmers
implicitly (and reasonably) assume that OS schedulers are benevolent in practice.

Here is how to unify the disparate progress conditions in the literature. Instead
of analyzing each algorithm and its progress properties in isolation, focus on the
interaction between the algorithm and the guarantees provided by the OS sched-
uler. Implicitly, programmers, whether they design starvation-free, deadlock-free,
obstruction-free, lock-free, or wait-free data structures, all want the same thing:
maximal progress1. They differ only in the assumptions they make about the OS
scheduler.

One way to test an ambitious hypothesis is by its predictive power. Figure 1
contains a hole: the obstruction-free property has no minimal counterpart. We
define a new clash-free property to fill this gap, and show it is strictly weaker
than the obstruction-free property (addressing an open question due to Herlihy,
Luchangco, and Moir [7]).

Finally, we observe that our classification explains why the wait-free property is

1“Purity of heart is to will one thing” – Sören Kierkegaard
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a natural basis for the consensus hierarchy [6]: a theory of shared-memory compu-
tation requires an independent progress condition, not one that makes demands of
the OS scheduler.

The remainder of this paper expands these observations. It builds on many
papers, and a comprehensive survey of relevant literature would take up too much
space. Instead, we refer the reader to books by Attiya and Welch [4], Lynch [14],
and Taubenfeld [19], and to references cited in the paper body.

2. CONVENTIONAL EXPLANATION PROGRESS CONDITIONS

We start with a review of the conventional view of progress conditions taken from
the literature. We then reformulate these notions in our unified model.

An object is a container for data. Each object provides a set of methods which
are the only way to manipulate that object. Each object has a class, which defines
the object’s methods and how they behave. An object has a well-defined state (for
example, the FIFO queue’s current sequence of items).

The simplest way to synchronize concurrent access to an object is to associate
a mutual exclusion lock with the object. Each method acquires the lock when it
is called, and releases the lock when it returns. (We postpone consideration of
methods that need to block, waiting until a condition is satisfied.)

Perhaps the weakest progress condition one could demand of a method that em-
ploys locks is that the method be deadlock-free, meaning that some thread trying to
acquire the lock eventually succeeds. This condition guarantees that the system as
a whole makes progress, but does not guarantee progress to individual threads. For
example, a test-and-set spin lock is deadlock-free, because some thread will acquire
a free lock. Here is an important point that we will explore later on: a deadlock-
free lock guarantees progress only if every thread that acquires the lock eventually
releases it. This requirement constrains both the scheduler, which cannot halt a
thread in a critical section, and the software, which must use the lock correctly.

Sometimes we would like locks to have an even stronger property. A lock is
starvation-free if every attempt to acquire the lock eventually succeeds. For exam-
ple, a test-and-set spin lock is not starvation-free, because it is possible (though
unlikely) that some thread’s attempts to acquire the lock repeatedly fail. By con-
trast, queue locks [16] are typically starvation-free because threads acquire locks in
the order they are requested. Like deadlock-free locks, starvation-free locks make
sense only if every thread that acquires a lock eventually releases it.

We described the deadlock and starvation-free properties directly in terms of
classical mechanisms such as locks and critical sections because that is usually how
these properties are used in the literature [3]. Later on, when we make these notions
precise, we will see that this approach is unsatisfactory for several reasons. First,
it is relatively easy to devise obfuscated object implementations where it is difficult
to identify a particular field as a lock and particular statements as critical sections.
Second, it is unclear how to compare such a property to non-blocking properties
that, by definition, do not use locks and critical sections. Finally, progress should
not be defined in terms of locks, which are low-level mechanisms, but in a more
general way in terms of completed method calls.

While operating system schedulers rarely, if ever, halt threads holding locks, it
is possible that preemption might well delay a thread holding a lock, effectively
blocking progress by other threads. To address such issues, a number of non-
blocking progress conditions have emerged. A non-blocking condition ensures that
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an arbitrary and unexpected delay by any thread (say, one holding a lock) does not
prevent other threads from making progress.

A method is lock-free if some thread that calls that method eventually returns.
A method is wait-free if every thread that calls that method eventually returns.

There is another non-blocking progress condition. We say that a method call
executes in isolation for a duration if no other threads take steps during that time.
A method is obstruction-free if every thread that calls that method returns if that
thread executes in isolation for long enough. This condition is non-blocking, and
is strictly weaker than the lock-free condition. It rules out the use of locks and
mutual exclusion, but does not guarantee progress when multiple threads execute
concurrently. Obstruction-free algorithms typically rely on a contention manager
[8] module to delay threads so that a given thread can make progress. For example,
a contention manager might employ a backoff delay policy: a thread that is about
to conflict with another pauses to give the earlier thread time to finish.

This concludes our brief, high-level overview of the conventional view of progress
conditions. We will revisit these defintions in the context of our simpler, unifying
model. For lack of space the more standard parts of the definitions are omitted.

3. MODELING PROGRESS

Our model is adapted from Herlihy and Wing [10] and can be readily recast using
the IO-automata model [15]. We assume linearizability [10] as our basic correctness
condition.

We are interested in progress conditions for methods of abstract objects. A given
object has a set of different methods, each of which can be invoked many times
during an execution.

An execution of a concurrent object is modeled by a history, a finite sequence of
method invocation and response events. A subhistory of a history H is a subsequence
of the events of H. An interval is a subhistory consisting of contiguous events.

We model method invocations and responses using the standard terminology,
which for lack of space we provide in Appendix A. We focus on two-level implemen-
tations that include an abstract object (the one being implemented) and concrete
ones (the ones used in the implementation). Informally, each abstract method call
is implemented by the sequence of concrete method calls it encompasses. We use
this two-level approach because we care about the number of concrete steps needed
to implement an abstract method call.

An abstract method call that never returns could happen in two ways: if it
encompasses an infinite number of concrete steps, then the thread starved, but if it
encompasses only a finite number of concrete steps, then the thread halted in the
middle of the call. These situations are different, and must be distinguished.

A thread is active if it takes an infinite number of concrete steps (and is suspended
if not), and an invocation is active if it is made by an active thread. To avoid
clutter, we focus on implementation histories of a single abstract object with a
single method, which is repeatedly called by all threads. It is easy to generalize
these definitions to encompass multiple objects and methods, and to allow threads
to shut down gracefully.

3.1 Minimal and Maximal Progress

In some sense, the weakest interesting notion of progress requires that the system as
a whole continues to advance. Consider a fixed history H. An abstract method pro-
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vides minimal progress in H if, in every suffix of H, some pending active invocation
has a matching response. In other words, there is no point in the history where all
threads that called the abstract method take an infinite number of concrete steps
without returning. This condition might, for example, be useful for a thread pool,
where we care about advancing the overall computation, but do not care whether
individual threads are underutilized.

The strongest notion of progress, and arguably the one most programmers actu-
ally want, requires that each individual thread continues to advance. An abstract
method provides maximal progress in a history H if in every suffix of H, every
pending active invocation has a matching response. In other words, there is no
point in the history where a thread that calls the abstract method takes an infinite
number of concrete steps without returning. This condition might be useful for a
web server, where each thread represents a customer request, and we care about
advancing each individual computation.

3.2 The Scheduler’s Role in Guaranteeing Progress

A history is fair if each thread takes an infinite number of concrete steps. A history
is uniformly isolating if, for every k > 0, any thread that takes an infinite number
of steps has an interval where it takes at least k concrete contiguous steps (that
is, not interleaved with any other thread). Exponential back-off [1] is one possible
mechanism to make schedules uniformly isolating (with high probability). Threads
back off until all but one are inactive. Backoff durations can be controlled by the
programmer.

We are now ready to reformulate the definitions of the progress properties sur-
veyed in Section 2.

Definition 3.1. A method implementation is deadlock-free if it guarantees min-
imal progress in every fair history, and maximal progress in some fair history.

The restriction to fair histories captures the informal requirement that each thread
eventually leaves its critical section. The definition does not mention locks or criti-
cal sections because progress should be defined in terms of completed method calls,
not low-level mechanisms. Moreover, as noted, not all deadlock-free object imple-
mentations will have easily recognizable locks and critical sections.

The requirement that the implementation will provide maximal progress in some
fair history is intended to rule out certain pathological cases. For example, the
first thread to access an object might lock it and never release the lock. Such
an implementation guarantees minimal progress (for the thread holding the lock)
in every fair execution, but does not provide maximal progress in any execution.
Clearly, such an implementation would not be considered acceptable in practice and
is of no interest to us.

The starvation-free property is now straightforward:

Definition 3.2. A method implementation is starvation-free if it guarantees
maximal progress in every fair history.

These properties are dependent : they are restricted to the subset of fair histories.
Informally, these properties depend on a well-behaved operating system scheduler.
We can capture the notion of dependency as follows:

Definition 3.3. A progress condition is dependent if it does not guarantee min-
imal progress in every history, and is independent if it does.
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Here are the non-blocking properties.

Definition 3.4. A method implementation is lock-free if it guarantees minimal
progress in every history, and maximal progress in some history.

Definition 3.5. A method implementation is wait-free if it guarantees maximal
progress in every history.

The two properties above are independent: they apply to all histories. There is
however a dependent non-blocking property:

Definition 3.6. A method implementation is obstruction-free if it guarantees
maximal progress in every uniformly isolating history.

4. A PERIODIC TABLE OF PROGRESS CONDITIONS

Although these progress conditions may have seemed quite different, each provides
either minimal or maximal progress with respect to some set of histories. The result
is a simple and regular structure illustrated in the “periodic table” shown in Figure 1
(and its more complete counterpart in Figure 2). These observations may appear
so simple as to be obvious in retrospect, but we have never seen them described in
this way.

There are three dividing lines, two vertical and one horizontal, that split the five
conditions. The leftmost vertical line separates dependent conditions from the rest.
The lock-free and wait-free properties apply to any histories, while obstruction-
freedom, starvation-freedom, and deadlock-freedom require some kind of external
scheduler support to guarantee progress.

The rightmost vertical line separates the blocking and non-blocking conditions.
The lock-free, wait-free, and obstruction-free conditions are non-blocking: if a sus-
pended thread stops at an arbitrary point in a method call, at least some active
threads can make progress. The deadlock-free and starvation-free conditions do not
have this property.

Finally, the horizontal line separates the minimal and maximal progress condi-
tions. The minimal conditions guarantee the system as a whole makes progress while
the maximal conditions guarantee that each thread makes progress. For brevity,
minimal progress properties encompass the lock-free and deadlock-free properties,
while maximal properties encompass the wait-free, starvation-free, and obstruction-
free properties. In the coming sections we will see several ways to cross this line:
“helping” (Section ) and benevolent schedulers (Section 8). Helping [6] is an algo-
rithmic mechanism which has threads avoid being delayed by others by completing
the delayed threads’ work in their place. Benevolence is an assumption on the sched-
uler behavior that allows one to avoid the high communication costs associated with
helping.

There is a hole in Figure 1: a conspicuous empty slot occupied by a depen-
dent, non-blocking progress property that guarantees minimal progress in uniformly-
isolating histories.

Definition 4.1. A method implementation is clash-free if it guarantees minimal
progress in every uniformly isolating history, and maximal progress in some such
history.

In the next two sections we show that being clash-free is strictly weaker than
being obstruction-free, answering the open question raised by Herlihy, Luchangco,
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1 public interface Consensus<T> {
2 T decide(T value);
3 }

Fig. 3. Consensus Object Interface

and Moir [7], whether obstruction-freedom is the weakest interesting non-blocking
progress condition2.

5. MINIMAL AND MAXIMAL-PROGRESS UNIVERSAL CONSTRUCTIONS

In this section we define two universal constructions. They are adapted from the
standard lock-free and wait-free universal constructions in [9]. For lack of space
we provide the code and explanations on how they operate in the appendix. The
minimal-progress universal construction provides a linearizable implementation of
any sequential object. The construction relies on a supply of one-time consensus
objects (see Figure 3), ones in which each thread can call the decide() method at
most once in any execution history.

It can be shown (The proofs follow easily from the proofs in [9] and we do not
show them for lack of space.) that the minimal progress universal construction (a

2Clash-freedom is arguably the Einsteinium of progress conditions. Like Einsteinium, symbol Es,
atomic number 99, it fills a vacant table slot, yet does not occur naturally in any measurable
quantities and has no commercial value.

1 public interface SeqObject {
2 public abstract Response apply(Invocation invoc );
3 }

Fig. 4. A Generic Sequential Object: the apply() method applies the invocation and returns a
response.
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variation of the lock-free construction in [9]) provides the minimal form of whatever
progress guarantee is provided by the consensus objects it uses: it is lock-free if
the consensus objects are lock-free or wait-free, clash-free if they are clash-free or
obstruction-free, and deadlock-free if they are deadlock-free or starvation-free.

The maximal-progress universal construction (a variation of the wait-free con-
struction in [9]) does the same, except that it provides the maximal form of the
consensus objects’ progress guarantee: it is wait-free if the consensus objects are
lock-free or wait-free, obstruction-free if they are clash-free or obstruction-free, and
starvation-free if they are deadlock-free or starvation-free (notice that for one-time
objects the minimal progress conditions are by definition equal to the maximal
progress conditions).

We use these constructions to demonstrate our separation result, that there exists
a clash-free object implementation that is not obstruction-free.

Figure 4 shows a generic definition for a sequential object. Each object is cre-
ated in a fixed initial state. The apply() method takes as argument an invocation
which describes the method being called and its arguments, and returns a response,
containing the call’s termination condition (normal or exceptional) and the return
value, if any. For example, a stack invocation might be push() with an argument,
and the corresponding response would be normal and void.

Figures 6 and 7 show a universal construction that transforms any sequential
object into a linearizable concurrent object satisfying the same minimal progress
condition as its consensus objects.

For simplicity, this construction assumes that sequential objects are deterministic:
if we apply a method to an object in a particular state, then there is only one
possible response and one possible new object state. We can represent any object
as a combination of a sequential object in its initial state and a log : a linked list of
nodes representing the sequence of method calls applied to the object (and hence
the object’s sequence of state transitions). A thread executes a method call by
scanning the log, starting at the oldest node (the tail ), until it finds the newest
node (the head). It then uses the node’s consensus object to append its own node
to the list. It then retraverses the log, applying the method calls to a private copy
of the object. The thread finally returns the result of applying its own operation.
It is important to understand that only the head of the log is mutable: the initial
state and nodes following the head never change.

This algorithm works even when apply() calls are concurrent because the prefix of
the log up to the thread’s own node never changes. The losing threads, who failed
to append their own nodes, must start over.

We can now make an interesting observation about Table 2: by adding the
“helping” mechanism, one can implement any maximal (wait-free, obstruction-
free, or deadlock-free) linearizable object from a minimal (lock-free, clash-free, or
starvation-free) one-time consensus object. In other words, with an added imple-
mentation cost one can go from minimal to maximal progress.

6. SEPARATION RESULTS

Theorem 6.1. There exists a clash-free object implementation that is not obstruction-
free.

Proof. Herlihy, Luchangco, and Moir [7] observe that one can implement an
obstruction-free (and hence clash-free) one-time consensus object by derandomizing
the randomized consensus protocol of Aspnes and Herlihy [2] (replacing the random
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1 public class Queue<T> {
2 T items [];
3 int head, size ;
4 int capacity ;
5 public Queue(int capacity) {
6 items = (T[]) new Object[capacity ];
7 head = size = 0;
8 }
9 public synchronized T deq() {

10 while ( size == 0) {
11 wait ();
12 }
13 notifyAll ();
14 size−−;
15 return items[head++];
16 }
17 public synchronized void enq(T x) {
18 while ( size == capacity) {
19 wait ();
20 }
21 notifyAll ();
22 items [(head + size) % capacity] = x;
23 size++;
24 }
25 }

Fig. 5. A FIFO queue with partial methods.

coin by a deterministic one). Similarly, it is easy to implement a deadlock-free
consensus object using a mutual exclusion lock.

We now give an example of a history in which the minimal-progress construction
using an obstruction-free consensus object is clash-free but not obstruction-free.

Pick one favored thread A. Run each thread until it reaches Line 12. When all
n threads have arrived, run each one through the entire loop between Lines 12 and
14. After all the threads have executed the loop, allow A to call and return from
the consensus object, completing its own call. The others call the consensus object
after A’s call has returned, so A succeeds while the others fail.

If we repeat this interleaving, the result is a uniformly-isolating history, because
each thread scans the log in isolation, and each time the log is longer.

It follows that being clash-free is a weaker condition than being obstruction-
free.

This closes the open question raised by Herlihy, Luchangco, and Moir, [7].

7. PARTIAL METHODS

So far we have considered only total methods, methods that are always capable of
returning a response. Much of concurrent programming, however, makes use of
partial methods that block when called in certain states. For example, Figure 5
shows how one might implement a partial FIFO queue in the JavaTM programming
language. The deq() method is synchronized : it acquires an implicit lock when it
is called and releases it when it returns. If it encounters an empty queue (Line 10)
the method temporarily releases the lock and suspends itself. Later, if an enq() call
adds an item to the queue, it calls notifyAll () to wake up any suspended dequeuers.
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These threads reacquire the lock and retest whether the queue is empty. We say
that an invocation is enabled if there is a response it could return.

It is not obvious how to define minimal and maximal progress for partial methods.
For example, one might be tempted to say that a method provides maximal progress
in a history if no pending invocation is infinitely often enabled. (In other words,
any invocation enabled often enough will return.) The following example illustrates
why this definition is problematic. Consider an empty FIFO queue, where thread
A calls a blocking deq(). Because the queue is empty, the method cannot return,
so A’s invocation is disabled, and A blocks. Thread B then enqueues an item,
enabling A’s invocation, but then immediately dequeues that item, again disabling
A’s invocation. If B repeats this sequence forever, then A’s invocation is infinitely
often enabled, yet A never returns. Should we deem this history as not providing
maximal progress?

The problem with rejecting such a history is that it is permitted by all threads
packages of which we are aware. For example, in the Queue implementation of
Figure 5, A’s deq() call releases the lock and waits. B’s enq() call notifies A asyn-
chronously, but before the operating system reschedules A, B’s deq() removes the
item. (Similar behavior can occur also with the Pthreads and .Net threads libraries.)
We should avoid any definition of maximal progress that cannot be implemented.

A pending invocation is continually enabled in H if it is enabled at every step in
some suffix of H. Once an invocation becomes continually enabled, then when its
thread is awakened and resumed, however asynchronously, it is certain to discover
a response.

We are ready to propose another definition. A method provides minimal progress
in H if, in every suffix of H where some active invocation is continually enabled,
some pending active invocation has a matching response. In other words, at no
point in H does the method have continually-enabled active invocations, none of
which ever returns.

Similarly, a method provides maximal progress in H if it has no continually-
enabled active invocations ever.

The condition we rejected is essentially strong fairness, while one we adapted is
weak fairness [12; 15].

8. BENEVOLENT SCHEDULERS

In practice, programmers often use implementations that guarantee only minimal
progress, not because they do not care about lack of progress by individual threads,
but because such lack of progress almost never happens under normal circumstances.
For example, while programs that use spin locks are deadlock free, they are not
starvation-free because the scheduler might schedule one particular thread only
when the lock is held by another thread. In practice, few programmers worry about
this prospect because they do not expect schedulers to persecute individual threads.

Let us make this notion more precise. Consider an algorithm that guarantees
a minimal progress condition. A scheduler is benevolent for that algorithm if it
guarantees maximal progress for that algorithm in every history it permits. Such a
guarantee can also be probabilistic in nature.

For example, an oblivious scheduler is a fair scheduler that chooses the next
thread to take a step uniformly at random. Now consider a deadlock-free spin lock
algorithm where each thread repeatedly acquires the lock (by spinning), executes
an operation, and releases the lock.
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Theorem 8.1. An oblivious scheduler is benevolent (with probability one) for
any deadlock-free spin-lock algorithm.

Proof. Because the scheduler is fair, the lock must become free an infinite num-
ber of times. Each time the lock becomes free, that thread is chosen with probability
at least 1/n, implying that the thread starves with probability measure zero.

Along the same lines, we can use exponential backoff [1] to make lock-free algorithms
wait-free.

We have barely scratched the surface with these theorems, and we leave it as an
open question to derive more theorems of this nature. In particular, this approach
provides a new way to think about contention managers [8], application-specific
modules that modify the behavior of schedulers.

9. FOUNDATIONS OF SHARED-MEMORY COMPUTABILITY

Our classification of dependent progress conditions has implications for the foun-
dations of shared-memory computability. Lamport’s register-based approach [11]
to read-write memory computability is based on wait-free implementations of one
register type from another. Similarly, Herlihy’s consensus hierarchy [6] applies to
wait-free or lock-free object implementations. Combined, these structures form the
basis of a theory of concurrent shared-memory computability [9] that explains what
objects can be used to implement other objects in an asynchronous shared memory
multiprocessor environment.

One might ask, however, why such a theory should rest on non-blocking progress
conditions (that is, wait-free or lock-free) and not on locks. After all, locking im-
plementations are common in practice. Moreover, the obstruction-free condition
is a non-blocking progress condition where read-write registers are universal [7],
effectively leveling the consensus hierarchy.

We are now in a position to address this question. Perhaps surprisingly, Fig-
ure 2 suggests that the reason to use the lock-free and wait-free conditions as a
basis for a computability theory is not because they are non-blocking. Rather, it is
because they are independent progress conditions that do not rely on the good be-
havior of the operating system scheduler. A theory based on a dependent condition
would require strong assumptions about the environment in which programs were
executed.

By analogy with sequential Church-Turing computability, using a dependent con-
dition is like relying on an oracle to recognize languages. One could easily devise a
finite automaton that together with a sufficiently powerful oracle could identify any
context-free language. Such an automaton would by construction be weaker than a
Turing machine, and so its real computing power would be masked by the oracle.

By analogy, when studying the computational power of synchronization primi-
tives, it is unsatisfactory to rely on the operating system to ensure progress, both
because it obscures the inherent synchronization power of the primitives, and be-
cause we might want to use such primitives in the construction of the operating sys-
tem itself. For these reasons, a satisfactory theory of shared-memory computability
should rely on independent progress conditions such as the wait-free or lock-free
properties, and not on the other, dependent properties.

We have discussed progress properties of individual methods, not of entire ob-
jects, because it is often useful for objects to provide different methods that satisfy
different progress properties. For example, Heller et al. [18]) describe a linked-list
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that supports starvation-free lock-based insertion and removal, but with a wait-free
search.

Our definitions are easily generalized to collections of methods ranging from a
single method to all of an object’s methods. For example, the Harris-Michael lock-
free list [5; 17] provides add(), remove(), and contains() methods. Each method
on its own is obstruction-free, but the collection of all methods taken together is
lock-free.

10. CONCLUSIONS AND FURTHER RESEARCH

This paper proposes a novel way to impose order on the previously unstructured
world of progress conditions for algorithms on multicore machines. Much, however,
remains to be done.

For example, it would be of great interest to identify new classes of benevolent
schedulers. It could be of practical importance to understand how contention man-
agers [8], application-specific modules that modify the behavior of schedulers, serve
in making them benevolent. It would be interesting to better understand the role of
“helping” in overcoming scheduler limitations, possibly finding lower bounds on the
cost of universal helping, a cost that perhaps captures the value of the benevolence
scheduling property.

Finally, our approach implies that real-world operating system designers should
be aware of the progress guarantees that their systems and services provide. Perhaps
it is time that these criteria be formally stated and made available to the user in a
manner similar to how memory models are defined with respect to correctness.
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APPENDIX

A. BASIC DEFINITIONS

This section provides the missing standard definitions used by our model. An
execution of a concurrent system is modeled by a history, a finite sequence of method
invocation and response events. A subhistory of a history H is a subsequence of the
events of H. An interval is a subhistory consisting of contiguous events. We model
method invocations and responses using the standard terminology, which for lack
of space we provide in Appendix A.

A method invocation is labeled with an object, an method, its arguments, and
the calling thread’s ID. A response is labeled with an object, a condition (either Ok
or an exception), a result value, and the calling thread’s ID. Sometimes we refer to
an event labeled with thread A as a step of A.

A response matches an invocation if they have the same object and thread. A
method call in a history H is a pair consisting of an invocation and the next matching
response in H. We need to distinguish calls that have returned from those that have
not: an invocation is pending in H if no matching response follows. An extension
of H is a history constructed by appending responses to zero or more pending
invocations of H. Sometimes we ignore all pending invocations: complete(H ) is the
subsequence of H consisting of all matching invocations and responses.

In some histories, method calls do not overlap: A history H is sequential if the
first event of H is an invocation, and each invocation, except possibly the last, is
immediately followed by a matching response.

Sometimes we focus on a single thread or object: a thread subhistory, H|P (“H
at P”), of a history H is the subsequence of all events in H whose thread names
are P . An object subhistory H|x is similarly defined for an object x. In the end,
all that matters is how each thread views what happened: two histories H and H ′

are equivalent if for every thread A, H|A = H ′|A. Finally, we need to rule out
histories that make no sense: A history H is well-formed if each thread subhistory
is sequential. All histories we consider here are well-formed. Notice that thread
subhistories of a well-formed history are always sequential, but object subhistories
need not be.

We assume linearizability [10] as our basic correctness condition. For brevity, we
omit the technical definition, but informally linearizability states that any concur-
rent history is equivalent to a sequential history in which each method call “takes
effect” instantaneously in sometime between the method’s invocation and its re-
sponse. Linearizability does not imply any notion of progress.

An object implementation is a set of histories in which events of two objects, a
concrete object c and an abstract object a are interleaved in a constrained way: for
each history H in the implementation, (1) the subhistories H|c and H|a satisfy the
usual well-formedness conditions; and (2) for each thread A, each concrete method
call H|A lies within an abstract method call in H|A. Informally, each abstract
method call of is implemented by the sequence of concrete method calls it encom-
passes. An implementation is correct if for every history H in the implementation,
H|a is linearizable.

B. UNIVERSAL CONSTRUCTION CODE

The maximal-progress universal construction appears in Figure 8. We must guar-
antee that every thread completes an apply() call within a finite number of steps,
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1 public class Node {
2 public Invoc invoc ; // method name and args
3 public Consensus<Node> decideNext; // decide next Node in list
4 public Node next; // the next node
5 public int seq; // sequence number
6 public Node(Invoc invoc) {
7 invoc = invoc;
8 decideNext = new Consensus<Node>()
9 seq = 0;

10 }
11 public static Node max(Node[] array) {
12 Node max = array[0];
13 for ( int i = 1; i < array. length ; i++)
14 if (max.seq < array[ i ]. seq)
15 max = array[i ];
16 return max;
17 }
18 }

Fig. 6. The Node class

1 public class MinUniversal {
2 private Node tail ;
3 public MinUniversal() {
4 tail = new Node();
5 tail .seq = 1;
6 }
7 public Response apply(Invoc invoc) {
8 int i = ThreadID.get();
9 Node prefer = new Node(invoc);

10 Node head = tail;
11 while ( prefer .seq == 0) {
12 while (head.next != null ) {
13 head = head.next;
14 }
15 Node after = head.decideNext.decide( prefer );
16 head.next = after ;
17 after .seq = head.seq + 1;
18 }
19 SeqObject myObject = new SeqObject();
20 current = tail .next;
21 while (current != prefer ){
22 myObject.apply(current. invoc );
23 current = current.next;
24 }
25 return myObject.apply(current. invoc );
26 }
27 }

Fig. 7. The minimal-progress universal construction

that is, no thread starves. To guarantee this property, threads making progress
must help less fortunate threads to complete their calls.

To allow helping, each thread shares with other threads the apply() call that it
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1 public class MaxUniversal {
2 private Node[] announce; // array added to coordinate helping
3 private Node[] head;
4 private Node tail = new node(); tail .seq = 1;
5 for ( int j=0; j < n; j++){head[j] = tail ; announce[j] = tail };
6 public Response apply(Invoc invoc) {
7 int i = ThreadID.get();
8 announce[i ] = new Node(invoc);
9 head[ i ] = Node.max(head);

10 while (announce[i ]. seq == 0) {
11 Node before = head[i ];
12 Node help = announce[(before.seq + 1 % n)];
13 if (help .seq == 0)
14 prefer = help;
15 else
16 prefer = announce[i];
17 after = before.decideNext.decide( prefer );
18 before .next = after ;
19 after .seq = before.seq + 1;
20 head[ i ] = after ;
21 }
22 SeqObject MyObject = new SeqObject();
23 current = tail .next;
24 while (current != announce[i]){
25 MyObject.apply(current. invoc );
26 current = current.next;
27 }
28 head[ i ] = announce[i];
29 return MyObject.apply(current. invoc );
30 }
31 }

Fig. 8. The maximal-progress universal construction.

is trying to complete. We add an n-element announce[] array, where announce[i] is
the node thread i is currently trying to append to the list. Initially all entries refer
to the sentinel node, which has a sequence number 1. A thread i announces a node
when it stores the node in announce[i].

To execute apply(), a thread first announces its new node. This step ensures that
if the thread itself does not succeed in appending its node onto the list, some other
thread will append that node on it’s behalf. It then proceeds as before, attempting
to append the node into the log.


