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Neuromorphic computing is a broad category of non–von Neumann architectures that mimic biological ner-
vous systems using hardware. Current research shows that this class of computing can execute data classifi-
cation algorithms using only a tiny fraction of the power conventional CPUs require. This raises the larger
research question: How might neuromorphic computing be used to improve application performance, power

consumption, and overall system reliability of future supercomputers? To address this question, an open-source
neuromorphic processor architecture simulator called NeMo is being developed. This effort will enable the
design space exploration of potential heterogeneous compute systems that combine traditional CPUs, GPUs,
and neuromorphic hardware. This article examines the design, implementation, and performance of NeMo.
Demonstration of NeMo’s efficient execution using 2,048 nodes of an IBM Blue Gene/Q system, modeling
8,388,608 neuromorphic processing cores is reported. The peak performance of NeMo is just over ten billion
events-per-second when operating at this scale.
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1 INTRODUCTION

In recent years, a new type of processor technology, called neuromorphic computing, has emerged.
This new class of processor provides a brain-like computational model that enables complex neu-
ral network computations (e.g., data classification) to be done using significantly less power than
von Neumann processors (Indiveri et al. 2011). For example, IBM has designed and created a neu-
romorphic processor, TrueNorth (Akopyan et al. 2015; Amir et al. 2013; Cassidy et al. 2013, 2014)
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that has 5.4 billion transistors arranged into 4,096 neurosynaptic cores with a total of 1 million
spiking neurons and 256 million reconfigurable synapses. This architecture consumes only 65mW
of power when executing a multi-object detection and classification program using real-time video
input (30fps) for 400 × 240 pixel images. TrueNorth could run for over one week on a single charge
inside today’s smartphones. For a list of TrueNorth-capable algorithms and applications, see Esser
et al. 2013.

This extremely low-power data analytics capability is particularly interesting as next genera-
tion High Performance Computing (HPC) systems are about to experience a radical shift in design
and implementation. The current configuration of leadership class supercomputers provides much
greater off-node parallelism than on-node parallelism. For example, the 20PF (petaFLOP) “Sequoia”
Blue Gene/Q supercomputer located at Lawrence Livermore National Laboratory (LLNL) has over
98,000 compute nodes with each compute node providing at most 64 threads of execution. To
reach exascale compute capabilities, a next generation system must be 50 times more power effi-
cient. This dominating demand for power efficiency is resulting in future designs that dramatically
decrease the number of compute nodes while increasing the computational power and number of
processing cores. Case in point, a recent NASA vision report (Slotnick et al. 2014) predicts that
exascale class supercomputers in the 2030 time frame will have only 20,000 compute nodes and
the number of parallel processing streams per node will rise to nearly 16,000.

To meet the computational demands of these future designs, it has become a widely held view
that on-node accelerator processors, in close coordination with multi-core CPUs, will play an im-
portant role in compute-node designs (Slotnick et al. 2014). These accelerators are currently used in
two forms. The first are Graphical Processing Units (GPUs) that offer a single-instruction/multiple-
data approach to parallelism, which matches the execution paradigm of graphics applications.
GPUs offer a massive amount of numerical compute power at a very affordable price. The second
form of compute-node accelerators is a mesh processor architecture such as the Intel Phi (Chrysos
2014). Here, a collection of lower clock-rate x86 cores are interconnected over an on-chip mesh
network.

Given the advent of neuromorphic computing, future research will need to address how a neu-
romorphic processor can be used as an accelerator to improve the application performance, power
consumption, and overall system reliability of future exascale systems. This system design is driven
by the recent DOE SEAB report on HPC (Jackson et al. 2014). This report highlights the neuro-
morphic architecture as a key technology (especially in the next generation of supercomputing
systems) for large-scale data processing.

To address this larger research question, an open-source processor architecture simulation
framework is being developed as part of the Super-Neuro research project.1 This effort will com-
bine a number of modeling and simulation components to enable the design space exploration of
potential hybrid CPU, GPU, and neuromorphic supercomputer systems. The key focus of this arti-
cle is on the design, implementation, and performance of the neuromorphic architecture modeling
component called NeMo. In particular, the key contributions of this article are:

—The design and implementation of an event-driven neuromorphic processor architecture
model, NeMo, that is able to execute in parallel using optimistic event scheduling (Jefferson
1985) and reverse computation (Carothers et al. 1999).

—A discussion of two versions of this event-driven neuromorphic processor architec-
ture model, one with fine-grained simulation components using explicitly defined in-
stances of synapses (NeMo-ES) and one with a higher-performance Logical Process (LP)

1https://sites.google.com/site/superneuromorphic/.
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implementation notably using a single “super-synapse” playing the role of all synapses for
each core (NeMo-SS).

—An initial demonstration of NeMo-ES’s neuron model against the well-known Izhikevich
model (Cassidy et al. 2013; Izhikevich 2003). The Izhikevich model exhibits well-known fea-
tures of biological spiking neurons. In particular, phasic spiking and tonic bursting models
are validated.

—A demonstration of NeMo-SS’s efficient execution on up to 2,048 Blue Gene/Q nodes for a
8,388,608 core neuromorphic processor model performing an “identity matrix” type neuron
computation that generates a significant amount of neuron firing traffic. The peak perfor-
mance of NeMo-SS is over ten billion events per second when operating at this scale.

—A weak scaling performance comparison between NeMo-ES and NeMo-SS on up to 1,024
Blue Gene/Q nodes, showing the increased performance of the new simulator design.

NeMo provides a framework to explore the neuromorphic hardware design space. While the
work presented here simulated a specific neuromorphic hardware model, it is possible to extend
and change the neuron, synapse, or axon models simulated. NeMo is able to show the behavior, ac-
curacy, and activity of a neuromorphic hardware model. NeMo is able to scale to massively parallel
execution, providing a tool that will enable the exploration of heterogeneous supercomputer de-
signs containing neuromorphic hardware. Inspired by optimistic simulations of large-scale circuits
in Gonsiorowski et al. (2012), NeMo implements optimistic simulation techniques.

The design, implementation, and integration of CPU, GPU, and network modeling components
as part of the Super-Neuro project will be presented in other papers and is beyond the scope of the
research presented here. The remainder of this article is organized as follows. Section 2 presents
NeMo’s neuron model, which is derived from the model used in the TrueNorth processor (Cassidy
et al. 2013), followed by the discrete-event implementation in Section 3. The validation and per-
formance results are then presented in Sections 3.3 and 4. Last, related work and conclusions are
presented in Sections 5 and 6, respectively.

2 BACKGROUND

Parallel Discrete-Event Simulations (PDES) consist of Logical Process (LP) objects, which commu-
nicate through messages or events. The LPs both encapsulate state and any computation within
the simulation. However, for an LP to perform a computation or change its state, it must first be
triggered by an event. Thus, changes throughout the simulation system occur via events flowing
from one LP to another. When performing a parallel simulation, LP objects are placed on separate
nodes connected across a network. While it is easy to ensure that events local to a node are in
serial order, hiccups occur when events are arriving from the network.

PDES synchronization algorithms are used to keep simulation progress in sync across parallel
nodes. Optimistic synchronization algorithms, such as Time Warp (Jefferson 1985), do not keep
each of the parallel nodes in lock step but instead allow them to process events as they arrive.
Nevertheless, there are still periods of global synchronization, called Global Virtual Time (GVT)
calculation phases. The GVT calculations find the lowest timestamp on any unprocessed event.
This allows the simulation system to reclaim memory from processed events.

Since there are no guarantees of global in-order execution of events, an LP may process a se-
quence of events out of serial order. To remedy this, the Time Warp algorithm keeps track of
inter-event causality and requires LPs to have a “recovery mechanism” (Lin and Lazowska 1991).

One method of LP recovery is called reverse computation (Carothers et al. 1999). This method
uses a function to “un-process” a given event. This allows LPs to reverse the effects of a series of
events and begin forward event processing with a currently correct ordering.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 4, Article 30. Publication date: September 2018.



30:4 M. Plagge et al.

When an LP detects an out-of-order event, the event is said to cause the LP to rollback. This
rollback may require that certain messages be canceled. This cancellation process is done through
anti-messages. These are messages with the sole purpose of undoing previously sent messages.
Fujimoto 1999 defines two categories of rollbacks within Time Warp systems. The first, referred
to as a primary rollback, is triggered by receiving a late message. These are triggered when a LP
receives an event that was scheduled to arrive at a time less than the current simulated time. The
second is referred to as a secondary rollback. These are triggered by an anti-message corresponding
to a message that has already been processed by an LP.

2.1 ROSS

Rensselaer’s Optimistic Simulation System, ROSS, is a prominent PDES engine (Carothers et al.
1999, 2000; Bauer et al. 2009; Holder and Carothers 2008). This ANSI C engine includes a reversible
random number generator and is designed for fast and efficient performance. ROSS performs opti-
mistic simulation using the Time Warp algorithm with reverse computation. ROSS also implements
many other PDES scheduling algorithms, including the conservative YAWNS protocol (Nicol 1993;
Nicol and Heidelberger 1996) and the real-time GVT protocol (Fujimoto and Hybinette 1997; Bauer
et al. 2005). Overall, ROSS has been shown to be remarkably scalable (Barnes et al. 2013).

2.2 Neuromorphic Computing Models

NeMo’s neuromorphic processor architecture model is derived from the general neuron-synapse-
axon behavior used in the IBM TrueNorth processor (Akopyan et al. 2015; Cassidy et al. 2014). The
TrueNorth Leaky Integrate and Fire (TNLIF) model is further derived from the Leaky Integrate and
Fire (LIF) model (Cassidy et al. 2013). We begin with an overview of hardware-based neuromorphic
processor systems. We then present the LIF model, followed with details on the TNLIF model.

NeMo acts as a neuromorphic processor simulation model. It is designed not as a complete, cycle-
accurate, hardware simulation, but as a generic neuromorphic hardware simulator that implements
the TNLIF neuron model described. The NeMo model can simulate neuromorphic processors of
arbitrary dimensions, allowing for novel processor performance benchmarking. NeMo also has
the ability to add message processing inside the axons and synapses, potentially simulating more
powerful or energy efficient neuromorphic processors, as described in Hasler and Marr (2013).
This is in contrast to the Compass simulator, presented in Preissl et al. (2012), which is designed
for spike accurate TrueNorth hardware simulations.

The TNLIF neuron model is a significantly enhanced version of the simple LIF model, described
in detail in Izhikevich (2001). NeMo fully implements this neuron model. In Algorithm 1, the set of
equations forming the TrueNorth neuron model is presented. Functions used in this model include
signum:

sдn(x ) =
⎧⎪⎪⎨⎪⎪⎩
−1, x < 0
0, x = 0
1, x > 0

,

a comparison function for stochastic operations:

F (s,p) =

{
1, |s | ≥ p
0, |s | < p

,

and the single value Kroneker delta function:

δ (x ) =

{
0, if x � 0
1, if x = 0

.
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The TNLIF neuron model features a fully connected “neurosynaptic crossbar.” This crossbar
connects each input axon with all neurons. When an axon receives a spike, it sends signals to all
connected synapses. The neuron integration equation is presented in Equation (1). At time t , if axon
i is active, then the synaptic activity, Ai (t ), is 1; otherwise, it is 0. In the equation, wi, j represents
connectivity between axons and neurons. If wi, j = 1, then there is a connection between axon i
and neuron j. If the value is 0, then there is no connection.

Each neuron assigns a type, represented byGi , to each axon. Weights are then assigned to each
axon type. Gi is limited to four types, therefore each axon may be assigned one of four different
weights by each neuron. Neuron weights are stored as signed integers, shown in the equation as
sGi

j . The variable bGi

j represents the integration mode: deterministic or stochastic. If the value is 0,
then neurons update their membrane potential by taking the sum of each axon multiplied by each
axon’s weight:

∑n−1
i=0 [sGi

j ](Ai (t )wi, j ).

Neurons can be configured to use stochastic synaptic and leak integration. Setting bGi

j = 1 en-

ables stochastic synaptic integration and setting cλ
j = 1 enables stochastic leak integration. Sto-

chastic integration functions similarly for both leak and synaptic weight. For each integration
event (either a synaptic weight or a leak computation), a random number is drawn and stored as
pj . If the drawn random number is higher than the relevant weight (synaptic weight sGi

j or leak

weight λj ), then the neuron adds sдn(λ) or sдn(sGi

j ) to its membrane potential. Synapse integration
is shown in Equation (1), and leak integration is shown in Equations (3) and (2).

The TNLIF neuron model enhances the leak functionality of the LIF model by adding positive or
negative leak values, and a “leak-reversal” ability. Normal leak operation calculates the sign of the
leak value, λj , stores this value as Ω, and then integrates this value into the neuron’s membrane
potential. Leak sign calculation is shown in Equation (2), and integration is shown in Equation (3).
Leak-reversal mode changes the behavior of the leak function such that if the neuron has a positive
membrane potential, λj is integrated directly, but if the neuron has a negative membrane potential,
−λj is integrated. In addition, if the membrane potential of a neuron is 0, then no leak is applied.

In addition to the deterministic threshold modes available, the TNLIF neuron model provides a
stochastic threshold mode. To enable this mode, Mj (a bitmask used to choose a random value) is
set to a non-zero value. Then, ηj is calculated every cycle by first generating a random number
value, pT

j , then taking the bitwise AND of Mj and pT
j , as seen in Equation (4). In Equations (7)

and (5), ηj is added to the threshold values before they are checked against the neuron membrane
potentials.

The TNLIF model adds two new reset models to the LIF model. These modes are the normal
reset mode that behaves similarly to the LIF model, a linear reset mode, and a non-reset mode.
These values are chosen through the variable γj , and used in Equations (7) and (6). Linear reset
mode subtracts the threshold value from the membrane potential. In non-reset mode, the mem-
brane potential is not changed after a spike. These reset modes add additional functionality to the
standard LIF neuron model.

TNLIF adds a negative threshold feature to the LIF. This negative threshold value is represented
by βj , an unsigned integer. This gives neurons the ability to have a membrane potential floor or
a “bounce” feature. In the case of a floor setting, neurons with membrane potentials below −βj

will set their values at −βj . If the setting is set to a “bounce” value, then the neuron’s membrane
potential is reset to −βj . The mode is set by changing the value of κj . Equation (7) shows the
negative threshold check, and Equation (8) shows negative threshold reset and saturation.

The enhancements to the LIF model provided by TNLIF improves its flexibility and power. The
additional stochastic integration and threshold features allow the TNLIF model to emulate contin-
uous weight functions. Furthermore, the stochastic features allow neural networks trained with
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ALGORITHM 1: TrueNorth leaky integrate and fire neuron model (TNLIF). j refers to the jth neuron and i

refers to the ith input axon.

Integration:

Vj (t ) = Vj (t − 1) +
n−1∑
i=0

[
Ai (t )wi, j

[(
1 − bGi

j

)
sGi

j
+ bGi

j
F
(
sGi

j
,pi, j

)
sgn
(
sGi

j

)] ]
(1)

Leak Integration:

Ω = (1 − ϵj ) + ϵj sgn(Vj (t )) (2)

Vj (t ) = Vj (t ) + Ω
[(

1 − cλ
j

)
λ + cλ

j F
(
λj ,p

λ
j

)
sgn
(
λj

)]
(3)

Threshold, Fire, Reset:

ηj = p
T
t &Mj (4)

if Vj (t ) ≥ α + ηj (5)

Spike

Vj (t ) = δ (γj )Rj + δ (γj − 1) (Vj (t ) − (α + ηj )) + δ (γj − 2)Vj (t ) (6)

elseif Vj (t ) < −[βjκj + (βj + ηj ) (1 − κj )] (7)

Vj (t ) = −βj κj + [−δ (γj ) Rj + δ (γj − 1) (Vj (t ) + (βj + ηj )) + δ (γj − 2)Vj (t )] (1 − κj ) (8)

endif

traditional back propagation techniques to run directly on the hardware (Esser et al. 2015). This
neuron model’s power and flexibility has been demonstrated in Cassidy et al. (2013) and was im-
plemented on hardware in Akopyan et al. (2015).

The TNLIF model was originally developed through a software simulation tool called Compass

(Preissl et al. 2012). Compass is a software tool provided by IBM to allow developers of neuromor-
phic software the ability to run code on a simulated TrueNorth processor. Compass is closed-source
and proprietary, but there are some benchmark results available in Preissl et al. (2012) and Cassidy
et al. (2014).

3 NeMo DISCRETE-EVENT IMPLEMENTATIONS

Based on the TNLIF model presented in the previous section, NeMo implements a neuromorphic
architecture model using ROSS (Barnes et al. 2013; Bauer et al. 2009; Carothers et al. 2000). NeMo

is a discrete event simulation based model of neuromorphic architecture. In this article, we look at
two implementations within the discrete event simulation base: a simulation where every logical
component is simulated as a distinct LP, and a super-synapse implementation where the synapse
grid is implemented as a single LP. In this article, NeMo refers to both the explicit-synapse NeMo-ES

and the “super-synapse” NeMo-SS versions.
NeMo simulates neuromorphic hardware using speculative simulation techniques. The prop-

erties of neuromorphic hardware are such that discrete event simulation may provide excellent
performance. Spiking neural networks, as implemented in hardware, generally have a low rate of
neuron activity at any given time. Furthermore, spikes do not carry more than a binary piece of
information, making all spikes homogeneous across the network. This discrete output from the
neurons, coupled with the low average network activity, produces a connection dense network
with relatively low message activity. Based on promising results published by Lobb et al. (2005),
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NeMo implements a discrete-event simulation of neuromorphic hardware, using optimistic event
scheduling.

Given the properties of neuromorphic hardware activity rates, we chose a parallel discrete event
simulation that uses the Time Warp optimistic synchronization algorithm. Using an optimistic
algorithm can lead to performance gains over a conservative time-stepped simulation when syn-
chronization does not need to occur at every time-step. When simulating neuromorphic hardware,
this speedup will be limited by how active the neurons are over time. The worst case scenario for
this type of simulation would be a model where all neurons are actively sending spikes to each
other. In this situation, the optimistic synchronization method will fall behind the performance of a
conservative algorithm, due to the overhead induced by the optimistic synchronization algorithm.

The TNLIF model has specific limitations due to its implementation in hardware. NeMo, how-
ever, is not designed as a simulation of solely the TrueNorth processor hardware, rather it is a more
generic neuromorphic processor simulation model. Given the constraints of the TNLIF model,
NeMo implements all documented features of the hardware. In addition, NeMo supports signifi-
cantly more features than the TrueNorth hardware. NeMo does not have the bit length constraints
that are part of TrueNorth. NeMo may have a 64-bit signed integer value for weights, thresholds,
and pseudo-random numbers. Furthermore, while NeMo operates with the same conceptual neu-
rosynaptic crossbar that TrueNorth uses, the crossbar can be set to an arbitrary size, constrained
only by memory of the system. This allows NeMo to simulate neurosynaptic cores of any size,
across one or more MPI ranks. NeMo adds to these features by allowing the removal of the neurosy-
naptic crossbar completely, collapsing the model into a more traditional spiking neural network.

NeMo is also capable of simulating compute-on-synapse and compute-on-axon event models.
This features give NeMo the ability to execute operations at the synapse or axon level, allowing
for more complex neurosynaptic chip designs to be simulated.

NeMo partitions the model of a neuromorphic processor into individual components. By sepa-
rating axon, synapse, and neuron objects into different LPs, NeMo is able to add processing features
to the synapses and axons, a feature not found in current neuromorphic hardware. NeMo-ES sim-
ulates each axon, synapse, and neuron as individual LP types. This allows for flexibility in the
simulation at the cost of increased numbers of LPs. In contrast, NeMo-SS’s implementation con-
solidates the synapse LPs in each core into a single synapse LP, providing a significant reduction
in memory usage and event overhead.

The flexibility of NeMo’s simulation model allows for advanced axon→ synapse→ neuron con-
nections to be modeled. A collection of axons, synapses, and neurons are grouped within a log-
ical container, referred to as a synaptic core. NeMo can model thousands of neurosynaptic cores
with each core containing hundreds of neurons and tens of thousands of logical synapses on one
ore more physical processors. More details on NeMo-ES and NeMo-SS’s simulation performance is
given in Section 4.

The remainder of this section discusses the implementations of NeMo-ES and NeMo-SS. This in-
cludes forward and reverse event functions for ROSS as well as a discussion on techniques used to
prevent excessive message generation using a fanout technique, which maintains a stable message
population. We first discuss NeMo-ES’s implementation details, followed by NeMo-SS’s enhance-
ments and changes. We then briefly discuss the differences in implementation, simulation goals,
and concepts between NeMo and the IBM TrueNorth hardware simulation software.

3.1 NeMo-ES Discrete-Event Implementation

For the benchmarking and testing of NeMo, we implement a model with similar capabilities as the
TNLIF model. Therefore, we do not add any computation to the axon and synapse LPs. Table 1
shows the logical layout of neurons, axons, and synapses on a neurosynaptic core. When an axon
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Fig. 1. The NeMo-ES neuron event flow. Details of each

block, numbered 1 through 18, are discussed in Section 3.1.

Table 1. A Matrix Representation

of a Neurosynaptic Core

Axons Synapses

0 0,0 0,1 . . . 0, n

1 1,0 1,1 . . . 1, n

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

n n, 1 n, 2 n, 3 n, n

Neurons 0 1 . . . n

receives a message it relays the message to each synapse in its row. In this model, the synapses
simply relay any received message to the neuron in their column. Like the TNLIF model, there
are no computations that occur when axons and synapses receive events; they simply relay their
messages to the next element in the model.

In Figure 1, Blocks 1–18, we show the NeMo neuron model control flow for the forward event
handler. The flow starts at the current simulation time, t , where t is measured in microseconds. If
t > 1, then there has been at least one neurosynaptic tick since the simulation has started. There
are two event types that neurons receive: synapse messages and heartbeat messages. Synapse
messages are set at a nanosecond resolution, with events occurring at t + 0.0001 + ϵ , where ϵ is an
extremely small random “jitter” value used to prevent ties in the scheduling of events to ensure a
deterministic ordering of events.
ϵ is a small random value chosen to prevent event timestamp collisions. While the TimeWarp al-

gorithm can theoretically return correct results when events occur simultaneously, the TimeWarp
implementation in ROSS does not guarantee that multiple runs of the same model will produce the
same output when event collisions occur. When ROSS manages rollback messages, these messages
are organized in a priority queue. If two events have the same timestamp, then there is no way
to guarantee what order they will appear in the queue of events. Despite this, NeMo may produce
correct results even with event collisions, however, making NeMo deterministic and forcing NeMo

to generate exactly reproducible output with every run required adding a random jitter factor to
each event.

To wit, we use a random number generator that provides enough entropy to prevent event col-
lision. Since the primary goal of NeMo is to simulate a neurosynaptic tick, we store the current tick
value as the whole number in a 64 bit floating point number. Jitter is added as a small component
of the floating point number. We assign 8 digits to the jitter value in the time variable, using the
integrated ROSS random number generator. ROSS provides warnings that alert model developers
to event collisions, allowing us to determine if any collisions have occurred. When combined with
the incrementing values in the time-step, we found that this technique prevents event collisions
during our tests.
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Heartbeat messages are sent at a larger time-slice, t + 0.1 + ϵ . In Figure 1, the synapse message
processing is represented on the left column, and heartbeat messages are shown on the right.

The synapse message process begins in Block 1, when the neuron receives a synapse message.
The neuron first saves the current voltage value, Block 2, a double precision floating point value
Vj , in the synapse message, Block 3. This is to facilitate reverse computation, by saving Vj in the
message, when rolling back messages neurons are able to revert changes made during forward
computation.

The neuron then performs the integration function, shown in Figure 1 as Block 4. This updates
Vj with a new value, computed by the integration function defined in Equation (1).

Neuron heartbeat messages are NeMo’s technique to synchronize neuron firing. In a LIF model,
neurons integrate, leak, fire, and reset at specific intervals. We use heartbeat messages as way to
ensure that neurons will perform the leak,fire, and reset functions only after receiving a spike
event. This technique was chosen as a way to ensure that a neuron will leak and fire only after
receiving a spike in a time-stepped method, while still providing performance gains that come
from inactive neurons not computing at every time-step, as in a synchronized parallel model.

To increase performance, a heartbeat message is sent only when a neuron activates. In Block
5, the neuron checks if it has already sent a heartbeat message. If it has not, then it schedules a
heartbeat message at t + 0.1 + ϵ , in Block 6. This action completes the neuron’s integration func-
tion for a particular axon. By executing this flow every time an axon message is received, NeMo

re-creates the integration formula in Algorithm 1, Equation (1).
When a heartbeat message is received, as shown in Block 7, the neuron begins its leak, fire,

and reset function. The neuron also saves its current membrane potential in the received message
(Blocks 8 and 9).

The neuron then finds the current neurosynaptic time in Block 10. This is computed as �t�.
In Block 11, the neuron calculates a time differential, td . This value represents how many neu-
rosynaptic clock cycles have passed since this neuron has been active. By taking the last ac-
tive time value, Block 12, and subtracting the current time, the neuron is able to determine how
many times it needs to run the leak calculation, shown in Block 13. The neuron uses this time
differential value to compute leak. By using a loop, the neuron is able to run the leak function,
shown in Equations (2) and (3), td times, bringing its voltage to where it would have been if the
neuron had been calculating the leak function in a synchronous fashion. This loop is shown in
Block 14.

Once the neuron has computed the leak function, it proceeds to check the positive threshold
(Block 15), and either fires and resets or moves on to the negative threshold check. If vj is greater
than the threshold, then the neuron will fire (Block 16) and reset (Block 17). A fire operation sched-
ules a new message with ROSS at the next neurosynaptic clock time. Since the neurosynaptic clock
operates at the integer scale, simply adding 1 + ε to the current time will schedule the fire event
at the proper future time.

After the neuron completes the fire/reset functions, it then checks for negative threshold over-
flows (Block 18). If the neuron’s voltage is beyond the negative threshold, then the neuron per-
forms the negative threshold integration functions specified in Equation (8). With some neuron
configurations, the reset voltage may be configured to subtract a value from the current membrane
potential, rather than resetting the value to zero. As a final check after both reset functions have
completed, if there is a remainder voltage that is past the threshold, then the neuron will schedule
a heartbeat message for the next neurosynaptic tick.

The neuron has now completed one neurosynaptic tick. This example is that of a neuron as it
receives spike events from connected axons. Here, the event flow assumes that the neuron is not
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self-firing. Certain configurations of neurons can create a situation where neurons are able to self-
fire; setting the leak to a negative value, for example, will result in a neuron that spikes without
receiving any axon inputs. In NeMo, this situation is handled by first detecting the presence of a
self-firing neuron and then managing the neuron.

If a neuron has a positive leak (a leak that increases the membrane potential of the neuron) or
a negative leak value with a corresponding negative reset value above the threshold value, then
NeMo will detect this and apply a self-firing tag. This tag may be manually set when implementing
neurons, allowing for other, non-detected self-firing neurons to be handled properly.

If the self-firing flag is set, then NeMo will detect this at the beginning of the simulation and
schedule a heartbeat message for the next neurosynaptic tick. For all new ticks, this neuron will
schedule heartbeat messages at each neurosynaptic tick to ensure that all self-firing events are
simulated.

Reverse computation is handled through swapping states at key points in the neuron process
and using bitfields to manage secondary state changes. The primary state change that occurs is
Vj , the neuron’s voltage. Neurons also contain a flag, marking when a neuron has sent itself a
heartbeat message. When performing reverse computation, neurons must revert changes to both
of these state elements.

Whenever a neuron receives a message from a synapse or receives a heartbeat message, be-
fore any changes are made to Vj , it saves the current current voltage in the incoming message.
During reverse computation, neurons restore the saved voltage from the message. This reverts all
integration, leak, and reset functions that changed Vj .

When a neuron receives a synapse message for the first time, it checks to see if it has sent
a heartbeat message. If it has not, then it changes an internal flag, and sends the message. The
neuron also changes the flag when receiving a heartbeat message. Neurons record boolean flag
changes in a bitfield in the incoming message. If there is a non-zero entry in the bitfield during
reverse computation, then the flag state is toggled.

Since NeMo-ES has individual LPs configured for each component, simulations have a large
number of LPs running simultaneously. There are 2,164,260,864 LPs in our largest simulation ex-
periment. If NeMo-ES sent messages at every time stamp, then it would send 66,048 messages per
neurosynaptic core per tick. This large event population quickly becomes unmanageable due to
memory constraints. To counter this, NeMo-ES implements a fanout technique for message trans-
mission based on work done in LaPre et al. (2012).

In Figure 2, an example of the fanout message technique is shown. Here we see a neurosy-
naptic core with three axons, nine synapses, and three neurons. When a message is received
by an axon, it sends an axon message to the first synapse in the neurosynaptic core at time
T + 0.0001 + ϵ . The synapse then sends two messages: first to the neuron attached to it, second
to the next synapse in the row at T + 0.0002 + ϵ . The next synapse does the same, until the final
synapse has been reached. This technique generates far fewer messages, preventing memory usage
issues.

3.2 NeMo-SS Discrete-Event Implementation

NeMo-SS builds on NeMo-ES, implementing all of the features of the original, while making some
significant changes to the simulation design. The biggest change implemented is the introduction
of a super-synapse, a single LP that manages axon→ neuron communication. This design reduces
the number of LPs by n2, where n is the number of neurons in a neurosynaptic core. For example,
using the standard TrueNorth core size of 256 neurons, NeMo-ES creates 65,536 synapse LPs per
core, while NeMo-SS creates 1 synapse LP per core. This reduction in the number of LPs reduces
memory constraints and allows for larger simulations, as demonstrated in Section 4.
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Fig. 2. Example event chain in NeMo-SS with three neurons per neurosynaptic core. In this diagram, an

event is received at Axon 0 within a core at time t . At t + 0.0001 + ϵ Axon 0 sends a message to Synapse

0,0. Synapse 0,0 then sends a message at t + 0.0002 + ϵ to Neuron 0 and Synapse 0,1. Synapse 0,1 sends

messages to Neuron 1 and Synapse 0,2 at t + 0.0003 + ϵ . Synapse 0,2 then sends a message to Neuron 2 at

t + 0.0004 + ϵ . If no messages are received on Axon 1 and 2, then no messages are sent. Neurons will send

outgoing spike messages, if applicable, at t + 1.0 + ϵ .

Fig. 3. Figure (a) shows the NeMo-SS core layout with the super synapse virtual synaptic grid. Figure (b)

shows a trivial neurosynaptic core with two neurons. Input spikes arrive at the start of the current big tick,

t1 with a jitter value added. Jitter, represented by ϵ , is added to every communication to prevent message

collision. Some messages have both a counter and jitter applied to the time stamp, represented by ν .

Further enhancements were made to the implementation of NeMo-ES, including optimizing
of the in-memory representation of neurons and providing enhanced I/O options for simulation
results.

The major design change in NeMo-SS versus NeMo-ES is the synapse grid design. NeMo-SS

replaces individual synapse LPs with a single LP, here called a super-synapse. In Figure 3(a),
NeMo-SS’s super-synapse layout is shown. The super-synapse represents the grid of synapse LPs
used in NeMo-ES.
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This super-synapse folds the synapse event fanout in NeMo-SS into a series of “heartbeat” mes-
sages. Compared with the event flow of NeMo-ES, shown in Figure 1, NeMo-SS’s event flow uses
a heartbeat style message to manage events sent to the neurons. Figure 3(b) shows an example
event chain in a trivial neurosynaptic core. For the purposes of illustration, Figure 3(b) shows a
two neuron core receiving two outside messages.

To manage the “super-synapse’s” heartbeat and neuron messages, we designed two time-steps:
ν , the internal clock time of a neurosynaptic core, and t , the simulated hardware time. As with
NeMo’s fanout messages, ϵ is a small value added to scheduled event times that prevents collisions.
These values are defined as

tn is the current simulated neurosynaptic hardware tickn. Each complete cycle of the hardware
is considered one tick. Within ROSS, each event has a simulation time value, represented
by a floating point number, associated with it. NeMo-ES and NeMo-SS use this to define the
hardware time as

tn = �t� .

ϵ represents a small “jitter” value. This is a similar value to the one described in the imple-
mentation of NeMo-ES.

ν is a small value that represents simulation steps that must be done within each hardware
tick, tn . This value is based on the number of neurons in each core. NeMo-SS calculates ν as

ν =
1

2 ∗ Neurons Per Core
+ ϵ .

Section 3.2 shows the event flow of a two neuron core inside NeMo-SS. For illustration, the core
receives two spike events, both occurring at t1 + ϵ . We define our jitter value, ϵ , such that ϵ � ν .
Upon receiving the first axon message, the synapse LP sends a message to neuron 1 at time t1 + ν
and a heartbeat message at time t1 + ν . When the synapse receives this heartbeat message, it sends
a message to neuron 2, scheduled for time t1 + 2ν . At this point, axon 2’s message is received by the
synapse, generating a new neuron message at t1 + 3ν and a new heartbeat message at t1 + 3ν . When
the synapse receives this second heartbeat message, a new neuron event is scheduled at t1 + 4ν .
In this example, we assume that neuron 1 has a high enough voltage to spike, so it schedules an
outbound neuron message at t2 + ϵ .

By separating the timestamps used by the synapse in this way, we observe that the order in
which events are processed by the super-synapse do not affect the outcome of the simulation.
Neuron integration can occur in any order in between the simulation ticks without changing the
determinism of the model.

With NeMo-SS, we implemented a reverse computation technique for managing rollback events
that affect neuron state. When a neuron in NeMo-SS receives a reverse message, the neuron ap-
plies a reverse integration function, along with a reverse leak function. These reverse computation
methods were developed for both the LIF and TNLIF models, even though only the TNLIF model
was used for benchmarking purposes. In general, spiking neuron integration, leak, and reset func-
tions tend to be good candidates for reverse computation. Integration and leak functions are gen-
erally linear, and reset functions are almost always deterministic. NeMo-SS maintains the ability
to perform incremental state swaps as well. Using state swapping will allow the quick addition of
new models without devising reverse computation methods, as well as the addition of non-linear
or other complex neuron functions.

An important feature of NeMo is the ability to not only simulate the TNLIF neuron model but
virtually any neuromorphic model. This could be complex compute-on-synapse or compute-on-
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Fig. 4. Two Izhikevich Validation Run TNLIF Neuron Parameters and Results.

axon models where synapse and axon LPs act as more than just message carriers but also play
parts on computation. It can also be as simple as a basic feed forward ANN.

To show this feature, the more simple Leaky Integrate and Fire (LIF) model described in
Izhikevich (2004) was implemented to run on NeMo. The implementation of this model, while
rudimentary, shows the capability of NeMo: that it is general and flexible.

The model is generally simpler than the TNLIF model in most respects but it has distinctive
differences and flexibility. The TNLIF model’s behavior is defined and restricted by hardware that
the general LIF model (or any other conceivable model) is not bound to. For example, the data types
that define the synaptic weights can be 64-bit signed floating point values instead of integers. In
addition, there is no specified limit on the number of unique axon types that each neuron can store
as potential inputs whereas the TNLIF model is limited to four types.

The significance of these differences is that NeMo is able to show scalable performance of differ-
ent models ranging from simple to complex on arbitrary neuromorphic systems—including those
that have not yet been implemented in hardware.

3.3 Accuracy Tests

Izhikevich implemented and reviewed 20 prominent features of biological neurons using a
resonate-and-fire model (Izhikevich 2001). The TNLIF model was used to re-create many of these
behaviors, demonstrating the utility and validity of the TNLIF model (Cassidy et al. 2013). NeMo,
unlike Izhikevich’s model and the Compass simulator used in the IBM reference paper, simulates
TNLIF neurons using discrete events. Due to this difference, the discrete model can only approxi-
mate, although with a high degree of accuracy, Izhikevich’s models. Neurons only update internal
state when an input message is received or if they are a self-firing neuron (i.e., a neuron that can
fire without first requiring input). However, we do re-create the neuron behavior observed in the
TrueNorth neuron model. The result of this experimental run shows that while the inter-spike
state of a simulated neuron may not be accurate, the spike times match what is observed when
running these biological models using the Compass simulator.

To validate NeMo, we implemented two of the Izhikevich models Cassidy et al. implemented
using the TNLIF model. Our goal was to match the behavior of these models, showing that NeMo

correctly simulates the TNLIF model. To do this, we used the same parameters for each neuron
as were used to generate the original results. A Phasic spiking neuron was configured this way,
with a single axon input set to send spikes out every 200 ticks. The results of this run are shown
in Figure 4(a).

We then implemented a tonic bursting neuron, again following the parameters used to re-create
this behavior using the TNLIF model in COMPASS. In this configuration, we used two neurons
and three axons. One axon was configured to send input spikes every 300 ticks. The neuron
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Table 2. Neuron Validation Parameters

Parameter Neuron 0 Value

Synaptic Weights
(
sGi

j

)
0,20,0,0

Leak Value (λ) 2

Positive Threshold (α ) 2

Negative Threshold (β ) −10

Reset Voltage (Rj ) −15

Reset Mode
Normal Negative

Saturation

(a) Phasic Spiking Parameters

Neuron 0 Value Neuron 1 Value

1, −100, 0, 0 1, 0, 0, 0

1 0

18 6

20 0

1 0

Normal Negative
Saturation

Normal Negative
Saturation

(b) Tonic Bursting Neuron Parameters

parameters used for this run are shown in Table 2(b), and the membrane potential results are
shown in Figure 4(b).

The information shown in Figure 4(a) and 4(b) visually presents neuron behavior that is nearly
identical to the behavior observed using COMPASS. Slight differences in the values are a result of
neurons updating state only when events warrant. We also do not record the membrane potential
of the input axons. Despite this, we do see qualitatively similar neuron behaviors. Thus, the NeMo

simulation model is able to re-create the simulation results produced by the IBM simulation tool,
COMPASS.

4 EXPERIMENTAL PERFORMANCE

Understanding the performance of NeMo-SS within a massively parallel environment is important.
The purpose of NeMo-SS is to allow for simulations of novel neuromorphic hardware and designs,
for both exploration of novel neuromorphic hardware as well as simulation of neuromorphic hard-
ware within a simulated heterogeneous HPC system. Providing the ability to simulate extremely
large neuromorphic hardware networks will provide insights into massively connected hardware
networks. To show that NeMo-SS will be able to simulate large structures of neuromorphic hard-
ware, we ran NeMo-SS with extremely large networks in a massively parallel environment.

To accomplish this, we first examine a weak scaling experiment done on an IBM Blue Gene/Q,
where we simulate up to 8,388,608 neurosynaptic cores with a total of 4,269,367,296 neurons. We
then examine the strong scaling performance of a 65,536 neurosynaptic core simulation. We also
compare these results with the first version of NeMo. A smaller run on an Intel based cluster is
also examined, showing performance results that compare with the Blue Gene/Q architecture.

4.1 Experimental Setup

For each of the following experiments, we simulate TrueNorth-like neurosynaptic cores using the
ROSS framework. In the weak scaling experiments, we compare a simulation containing neurosy-
naptic cores with 256 axon LPs, 1 synapse LP, and 256 neuron LPs, and a simulation containing
neurosynaptic cores with 512 axon LPs, 1 synapse LP, and 512 neuron LPs. The largest NeMo-SS

simulation contains a total of 8,598,323,200 LPs.
To test the performance of our model, we used a neurosynaptic core design that generates over

1,500 events per neurosynaptic core per tick. The neurons are configured such that they will fire
a spike if they receive an input spike from an axon with the same ID. Each neurosynaptic core in
this benchmark has weights such that an input from axon i will trigger neuron i to send one spike.

We have also implemented a “neuron connection pool” benchmark. In this network, every neu-
ron is connected to 20 randomly selected axons (a pool of connections). All connected axons have
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Table 3. Experimental Run Configurations

Parameter
Neurons Per Core 256 256 256 512 512
Synchronization Mode GVT Real-Time GVT Real-Time GVT
NeMo Version 1 2 2 2 2

Fig. 5. Neuron activity in the identity matrix benchmark simulation. This chart represents the number of

spikes sent by each neruon in a 4,096 neuron simulation across 512 ticks, demonstrating the workload gener-

ated by the benchmark model run. We observed an even distribution of neuron activity across the simulation

running this benchmark.

a weight value of 1, and neurons have a threshold value of 5. As in the other benchmark model,
neurons are connected to a pseudo-random output, with a probability of 0.9 of a connection to a
different core.

The output destination of each neuron is set randomly with a 90% chance that it will output to
a different neurosynaptic core. When the benchmark starts, each axon fires once. This benchmark
setup generates an extremely large number of events, resulting in a larger workload than would
be expected in a real-world application.

These simulations were performed on both an IBM Blue Gene/Q machine, and an Intel based
cluster. Each node of the Blue Gene/Q features eighteen 1.6GHz processor cores, 16 of which are
dedicated to application use (Haring et al. 2012). For the two remaining cores, one conducts op-
erating system functions while the other series as spare. All nodes are connected by an effective,
high-speed communication network (Chen et al. 2011).

The 16GB of DDR3 memory on each Blue Gene/Q node can be a limiting factor in memory
intensive simulations. To allow for maximum utilization, each node is highly configurable in terms
of parallelism. Each of the 16 processors can run up to 4 hardware threads (for a total of 64 MPI
ranks per node) or the processor cores can be under-subscribed (with a minimum of 1 MPI rank
per node). Our experiments test several parallel configurations.

Each node of the Intel cluster the simulations were ran on consists of two four-core 3.3GHz Intel
Xeon E5-2643 processors. The nodes are connected by a 56Gb FDR Infiniband network, providing
high speed communication. Each node has 256GB of system memory available.

4.2 Blue Gene/Q Weak Scaling Experiments

Our first set of experiments tested several configurations. For each NeMo-SS experiment, we con-
figured the simulation with 16 neurosynaptic cores per MPI rank, for a total of 64 neurosynaptic
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Fig. 6. Blue Gene/Q weak scaling performance experiments. Figure (a) shows the results of running NeMo-

ES with 256 neurons per core with 16 cores per rank. Figure (b) shows the results of running NeMo-SS with

512 neurons per core with 64 cores per rank. Figure (c) shows the results of NeMo-SS with 256 neurons per

core with 64 cores per rank. Figure (d) shows the wall clock time taken for each run.

cores per Blue Gene/Q node. In this weak scaling model, we ran NeMo-SS with 64 MPI ranks per
Blue Gene/Q node. We ran two different neurosynaptic core configurations with NeMo-SS: one
with 256 neurons per core, and the other with 512 neurons per core. The TrueNorth architecture
has 256 neurons per neurosynaptic core. By adding a configuration with 512 neurons per core, we
were able to simulate a theoretical hardware configuration. We ran the simulation for a total of
1,000 neurosynaptic core ticks. This is equivalent to running the TrueNorth hardware for 1s, as
the hardware runs at 1,000Hz. The results of these runs are shown in Figure 6.

In Figure 6(a), we also show the results of a weak scaling experiment running NeMo-ES. In these
runs, NeMo-ES was configured to simulate 256 neurons per neurosynaptic core, running the same
benchmark configuration as NeMo-SS. Due to memory limitations, the NeMo-ES simulation was
run with 16 neurosynaptic cores per MPI rank. This run was limited to 1,024 Blue Gene/Q nodes.

The NeMo-ES experiment achieved a peak performance of over 2 billion events per second
when simulating 65,536 neurosynaptic cores on 1,024 Blue Gene/Q nodes with 64 MPI ranks
per node. In Figure 6(d), NeMo-ES shows a near linear performance across the weak scaling
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Fig. 7. NeMo-SS BG/Q weak scaling time detail.

simulation. Towards the upper end of the simulation, the wall-clock time increased. This is due
to a slight load imbalance, caused by excessive GVT calculations. Every time a neuron fires,
it has a 90% chance to send a signal to a neuron within a different neurosynaptic core. As the
simulation encounters more network latency, the effects of rollbacks become more apparent in
the simulation time. This long event chain (seen in Figure 2), coupled with the large number of
random remote messages, results in an expected load imbalance. Generally, NeMo-ES shows near
linear performance in weak scaling experiments.

For a more detailed analysis of NeMo-ES’s performance, see Plagge et al. (2016).
We ran NeMo-SS using two synchronization modes: GVT calculated based on the number of

events processed and real-time GVT. In Figures 6(b) and 6(c), we show the performance of NeMo-

SS using these two different synchronization modes. Interestingly, real-time GVT provides signif-
icantly better performance, especially when simulating 512 neurons per neurosynaptic core.

In Figure 6(d), the wall-clock time for these runs is shown. We found that both implementations
of NeMo showed near linear wall-clock time across all identity matrix benchmark runs. NeMo-SS,
running with 512 neurons per core, showed a slight increase in wall-clock time as the simulation
size increased. This is likely due to the increased amount of time spent in GVT, as it can be seen
in Figure 7.

The results of the neuron pool benchmark show the impact on NeMo of the significant increase
in neuron activity within this benchmark network. The wall-clock time of the 512 neuron per core
pool benchmark illustrates the potential limits of optimistic simulation in this scope. Switching
from the standard GVT synchronization technique to the real-time technique improved scaling
results as well.

Figure 7 shows the wall clock time spent in each phase of simulation during these runs. We
observed that real-time GVT significantly reduced the amount of time spent processing GVT.
NeMo-SS benefits greatly from the real-time GVT, showing reduced time spent waiting for
synchronization.

Optimistic synchronization in ROSS creates MPI barriers at each MPI rank after a specific num-
ber of events have been processed. Real-time synchronization creates these barriers after a set
period of time. Real-time synchronization can provide performance increases over standard opti-
mistic methods if many MPI ranks are waiting for a GVT to occur, while few MPI ranks are still
processing events. This algorithm is based on the real time algorithm proposed by Fujimoto and
Hybinette (1997), but adapted from a shared memory system to a fully distributed system.

In NeMo, we observed a significant burst effect of messages. Some MPI ranks will generate
large numbers of messages quickly, while others are waiting to process new events. Given the
burst-like nature of the simulation, the real-time synchronization protocol will generally provide
better performance in this case. This performance increase is specific to the neurosynaptic model,
as there are many bursts of high message activity followed by slower periods of message activity.
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Table 4. Breakdown of Time Spent During the Simulations on 2048 Blue

Gene/Q Nodes Each with 64 MPI Ranks

512 Cores
512 Cores

Real-Time GVT
256 Cores

256 Cores
Real-Time GVT

Priority Queue (enq/deq) 130,615ms 134,795ms 49,065ms 49,778ms
AVL Tree (insert/delete) 1,316ms 1,239ms 764ms 666ms
Event Processing 2,005,299ms 2,079,298ms 697,964ms 713,461ms
Event Cancel 4,577ms 2,808ms 1,027ms 1,002ms
GVT 1,023,165ms 333,997ms 321,908ms 167,047ms
Fossil Collect 428,499ms 497,998ms 169,134ms 200,164ms
Primary Rollback 2,379ms 2,308ms 881ms 45ms
Network Read 187,937ms 195,584ms 74,874ms 78,527ms

The columns labeled with “Real-Time” text indicate the NeMo-SS runs that use the real-time GVT synchronization pro-
tocol, in contrast to the event count-based GVT method.

Fig. 8. NeMo-SS Blue Gene/Q strong scaling experiment results.

Figure 6(d) also shows the wall clock time taken for the NeMo-SS weak scaling simulation runs.
For most of the NeMo-SS runs, a near linear wall-clock time is observed. The exception occurs
when running the simulation with 512 neurons and standard GVT synchronization. This increase
in execution time is most likely due to increased network communication overhead, along with
the significantly higher time spent on event processing, as seen in Table 4.

4.3 Blue Gene/Q Strong Scaling Experiments

To understand the ways in which the NeMo-SS model scales as parallelism increases, we ran a
series of strong scaling experiments. Figure 8 shows performance results for a simulation of 65,536
neurosynaptic cores using 16 to 1,024 Blue Gene/Q nodes and the number of rollbacks observed.
These experiments were run for 1,000 ticks resulting in over 9 billion net events. We achieved
a peak performance of 5,834,092,242 events per second when we used 1,024 Blue Gene/Q nodes.
This benchmark was run with the same randomly generated neuron model as the weak scaling
experiments.

One thing to note is that NeMo-ES and NeMo-SS do not place a neurosynaptic core across multi-
ple MPI ranks. This limits the maximum parallelization possible during strong scaling experiments.
In this experiment, running 65,536 neurosynaptic cores gives a maximum of 65,534 MPI ranks.
Figure 8(a) shows the simulation performance increase at a near linear rate until the number
of neurosynaptic cores starts to equal the number of available MPI ranks. Eventually, the Blue
Gene/Q’s individual node compute power eclipses the available network bandwidth, slowing
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Fig. 9. NeMo-SS Intel cluster experiment results.

strong scaling performance gains. Figure 8(b) shows the increase in primary and secondary
rollbacks as the communication overheads surpass the time spent during local event processing.

A major factor in the increase in overhead as the simulation reaches maximum parallelism is
the time spent rolling back events. In Figure 8(b), the number of rollbacks dramatically increases
as the number of nodes increases. When run at 1,024 Blue Gene/Q nodes, the number of rollbacks
approaches the number of events computed.

The largest simulation done on the Blue Gene/Q used two racks, 2,048 nodes, to simulate
4,294,967,296 neurons in 8,388,608 neuromorphic cores. This simulation achieved a maximum
event rate of 9,524,353,605 events per second when run with real-time synchronization. When
the number of neurons per core was reduced to 256, the event rate increased to 10,589,662,119
events per second across 2,147,483,649 neurons.

4.4 Intel Cluster Experimental Results

Runs on the Intel cluster were done with an identical model configuration, but at a smaller scale.
We ran both a weak scaling experiment as well as a strong scaling experiment on this cluster. The
weak scaling experiment was configured with 512 neuromorphic cores per rank, each with 512
neurons per core. The neural network simulated was the same identity benchmark as was done in
the Blue Gene/Q experiments. Each node of the Intel cluster ran with 8 MPI ranks, for a maximum
of 192 ranks in the largest Intel cluster based experiment.

Figure 9(b) shows the results of the weak scaling experiment run on the Intel cluster.
In Figure 9(a), we show the results of a strong scaling experiment. This experiment was config-

ured to simulate 4,096 neurosynaptic cores with 512 neurons per core. Each node in the cluster was
configured with 16 MPI ranks, making the largest run 128 ranks. NeMo-SS initially shows excellent
strong scaling performance, but as the size of the simulation increases the reduction in wall clock
time reduces to sub-linear levels.

The sub-linear results using the Intel cluster are due to network bandwidth limitations compared
with the individual node performance. The Intel cluster has a significantly slower network to
compute power ratio than the Blue Gene/Q system. Each node of the Blue Gene/Q has a peak
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performance of 204.8 Giga FLOPS (GFLOPS) connected to a high speed network. In contrast, each
node of the Intel cluster has two 4-core Intel Xeon E5-2643 processors running at 3.3GHz. Each
processor has a peak theoretical performance of 105.6 GFLOPS for a total of 211.2 GFLOPS (Intel
2012). While each node of the Intel cluster has more power than the compute power of a Blue
Gene/Q node, the network interconnect is slower than the 4-D torus implemented in the Blue
Gene/Q system.

In Figure 9(c), the increase in time spent processing and waiting for the network is clearly visible.
This chart shows the breakdown in wall-clock time taken for each component of the Intel cluster
weak scaling experiments. As the time spent waiting on network communication increases, the
amount of time spent handling GVT computations and waiting on GVT also increases. Compared
to the Blue Gene/Q time breakdown shown in Figure 7, the difference in network performance of
the systems becomes very apparent.

5 RELATED WORK

NeMo consists of a neuromorphic hardware simulation model, along with spiking neuron models.
As indicated previously, the neurosynaptic core model of NeMo is based on the IBM TrueNorth
chip, which has a “spike” accurate simulator called Compass (Cassidy et al. 2014).

A similar hardware specific neuromorphic system is the SpiNNaker Project (Furber et al. 2014).
SpiNNaker is a specialized machine that is designed to optimally transmit a very large number
of very small packets to enable models of how the brain performs communication operations as
part of an overall neuron/brain modeling capability. Here, 40 byte packets are efficiently trans-
mitted across to 1 million processing cores. The machine is organized into “nodes” similar to a
Blue Gene/Q except that the core processing engine of each node is 18 ARM968 processor cores.
Each ARM core has 96KB of local memory and 128MB of shared memory across all the processors.
SpiNNaker reports being able to model on a single core several hundred point neurons performing
calculations on par with Izhikevich’s model with about 1,000 input synapses to each neuron. This
fanout is about four times as big as currently supported in TrueNorth. However, the power con-
sumed by SpiNNaker is much greater by several orders of magnitude. A 1,200 board system where
each board support 48 nodes, which can model on the order of 10 to 20 million neurons consumes
75,000W of power whereas TrueNorth only consumes 65mW (or 0.065W) for 256,000 neurons.

Future neuromorphic hardware predictions where recently made by Hasler and Marr (Hasler
and Marr 2013). Here, they present a road map for the construction of large-scale neuromorphic
hardware systems. The metric used in this road map is called a MMAC, which is a unit of neuro-
morphic computation in the “millions” of neural multiple and accumulate operations. Hasler and
Marr argue that if computation were done not only in the neurons but in the dendrites, which sit
between the neuron cell (e.g., soma) and synapses, then it is possible to perform one million MAC
operations per picowatt of power. This scale of computational power in equivalent to performing
an exa-MAC or 260 MAC operations per watt of power, which is on par with the computational
power efficiency of the human brain.

In the computational neuroscience community, there are a number of spiking neuron simula-
tors available that are using various modeling approaches to understand the biological function
of neurons, dendrites, synapses, and axons. The most well known is NEURON (Brette et al. 2007),
which is a simulation framework for creating and investigating empirically-based models of bi-
ological neurons and neural circuits. NEURON offers users the ability to select which numerical
integration method to apply in solving the model equations. The default approach is an implicit
Euler method. In Migliore et al. (2006), NEURON was extended to enable parallel neuron network
simulations where each processor performs its own local equation integration over a subset of the
neuron network. On the Blue Gene/P supercomputer it exhibited nearly linear speedup on 2,000
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processing cores. Recently, Lin et al. (2015), constructed a multithreaded version of NEURON for
reaction diffusion models that are implemented using a Time Warp with state-saving approach.

There has been work on simulating spiking neural networks using GPU acceleration as
well. The “nemo” project, Fidjeland et al. (2009), uses GPU acceleration to simulate over 40,000
Izhikevich neurons in a biologically plausible network. The “nemo” project is designed to
accelerate simulation of biologically accurate neural networks, whereas our NeMo project is tuned
to simulate neuromorphic hardware design. GPU acceleration for simulation of spiking neural
networks is promising (Carlson et al. 2014), and further work might be considered in simulating
neuromorphic hardware using PDES techniques in tandem with GPU acceleration.

The Blue Brain Project2 has attained world wide attention for its goals to construct high-fidelity,
supercomputer-powered models of the human brain. This software is based on NEURON and uses
the same numerical integration approaches. However, their brain models models can require very
large data sets, because each neuron and synapse is distinct (Schürmann et al. 2014), which results
in the cellular model for a human brain requiring 100PB of storage. This amount of data could be
considered each and every time-step by the equation solvers in the Blue Brain simulator.

Finally, the only other optimistic neuron model with reverse computation is Lobb et al. (2005).
In this 2005 PADS Best Paper work, a Hodgkin-Huxley (HH) neuron model is implemented, which
demonstrates the performance viability of this approach. Speedups are demonstrated on an 8-node
PIII cluster ranging from 1.5× to 3.5× for HH networks sizes of 25 to 400 neurons.

6 CONCLUSIONS & FUTURE WORK

We have presented NeMo, an open source3 discrete event simulation model implemented using the
ROSS simulation framework that allows for large-scale, flexible, simulation of neuromorphic pro-
cessors. This simulation model allows for the creation of arbitrarily sized neuromorphic processors
based on the TNLIF neuron model. It will also allow for experimentation with new neuromorphic
processor designs and novel problem domains.

The results of this work show that discrete event simulation is a viable option for simulation of
massive neuromorphic systems. Near linear scaling was achieved running NeMo on a Blue Gene/Q
system with weak scaling. Our largest run of NeMo simulated 4,294,967,296 neurons contained in
8,388,608 neurosynaptic cores. This simulation generated over 9 billion events per second. When
run with a similar neuron configuration as TrueNorth (256 neurons per neurosynaptic core), NeMo

achieved over 10 billion events per second.
NeMo is also capable of simulating new configurations of neuromorphic hardware. The number

of neurons per neurosynaptic core can be set to any value within the limits of 64 bit computer
hardware. Furthermore, experiments can be done simulating neuromorphic processors that pro-
cess messages upon receipt, allowing for “what-if” hardware designs. Since NeMo is built with the
ROSS discrete event simulation framework, integration between NeMo and supercomputer simu-
lation systems is possible. Combining the NeMo simulation model with a supercomputer design
simulator will allow for experimentation with hybrid neuromorphic supercomputer designs.

One of the goals of NeMo is the ability to simulate different neuron models and hardware
configurations. With this future goal in mind, NeMo has been designed to allow for the addition
of other neuron models. The first model implemented is the TNLIF neuron model (Cassidy et al.
2013). However, NeMo’s neuron simulation is modular, allowing for new models to be “plugged-in”
to the simulation. NeMo is capable of simulating any spiking neuron model, and is even capable

2Source: http://bluebrain.epfl.ch. Accessed on: Jan 4, 2016.
3Available At: https://github.com/markplagge/NeMo.
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of having multiple neuron types per neurosynaptic core. The next steps for NeMo include the
addition of Izhikevich’s simple spiking neuron models, as defined in Izhikevich (2003) also.

We observed an increase in performance when using real-time GVT as opposed to an event
based GVT. If an MPI rank running a neuromorphic core has to roll back messages, then the chain
of messages can be long. For example, if a neuron output message has to be rolled back, then there
is a potential for all of the neuron messages sent by the MPI rank’s synapse to be rolled back.
Using the real-time GVT reduced the time waiting for rollbacks, giving a significant performance
increase.

Additionally, there is room for performance improvements in the design of NeMo. The super-
synapse design used in NeMo-SS provides a significant reduction in the number of events gener-
ated per neurosynaptic operation when compared to the original NeMo implementation. Further
enhancements could be made to this design. Currently, the synapse in a neurosynaptic core for-
wards messages to all neurons in the core regardless of the weights and connection in the desti-
nation neuron. If we sent neuron configuration to the synapse before the simulation started, then
we could have a smarter synapse—one that would only send messages to neurons if the synaptic
message will cause a change to the neuron’s state.

When designing NeMo, we went with an optimistic event scheduler. While this has provided
excellent results to date, we are interested in optimizing and testing a conservative scheduler. A
conservative scheduler may outperform an optimistic scheduler depending on the neurosynaptic
network configuration and activity. We would also like to examine the performance of a time-
stepped simulation technique. While NeMo outperforms COMPASS, a time-stepped neuromorphic
hardware simulation tool, we would like to see if a time-stepped discrete event simulation method
would provide benefits.

The use of jitter as a technique to prevent event collision is another interesting area of future
work. While we found no event collisions when using a random value, there may be situations
where the entropy could be exhausted. We wish to investigate using a deterministic, iterative
technique to guarantee no event collisions. We also wish to investigate the possibility of not using
jitter at all in the simulation. As previously mentioned, the TimeWarp algorithm should be accurate
even when events are scheduled at the same time. There may be a way to generate deterministic
results within our simulation even without a jitter value.

Finally, the other major goal of NeMo is to present it as a stand-alone simulation framework.
Eventually, NeMo should give users the ability to design and simulate custom neuromorphic hard-
ware designs in an accessible way. We plan to add support for a high-level API, such as PyNN
(Davison et al. 2009), or potentially a custom built API. We are also implementing other neu-
ron model support in NeMo, with the intention of creating a versatile neuromorphic hardware
design simulation tool. Further work includes the integration of NeMo and ROSS’s new visu-
alization tools (Ross et al. 2016) to provide more detailed views into the behavior of simulated
neuromorphic hardware. Adding these features will be a major focus in the future work for this
project.
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