
The Slowdown or Race-to-idle Question: Workload-Aware Energy 
Optimization of SMT Multicore Platforms under Process Variation 

Anup Das, Geoff V. Merrett and Bashir M. AI-Hashimi 
School of ECS, University of Southampton, United Kingdom 

Email: {a.k.das.gvm.bmah}@ecs.soton.ac.uk 

Abstract-Two widely used approaches for reducing energy 
consumption in multithreaded workloads are slowdown (using 
DVFS) and race-to-idle. In this paper, we first demonstrate 
that most energy-efficient choice is dependent on (1) workload 
(memory bound, CPU bound etc.), (2) process variation and 
(3) support for Simultaneous Multithreading (SMT). We then 
propose an approach for mapping application threads on SMT 
multicore systems at run-time, to minimize energy consumption. 
The proposed approach interfaces with the OS and hardware 
performance counters to characterize application threads. This 
characterization captures the effect of process variation on 
execution time and identifies the break-even operating point, 
where one strategy (slowdown or race-to-idle) outperforms the 
other. Thread mapping is performed using these characterized 
data by iteratively collapsing application threads (SMT) followed 
by binary programming-based thread mapping. Finally, perfor­
mance slack is exploited at run-time to select between slowdown 
and race-to-idle, based upon the break-even operating point 
calculated for each individual thread. This end-to-end approach 
is implemented as a run-time manager for the Linux OS and is 
validated across a range of high performance applications. Results 
demonstrate up to 13% energy reduction over all state-of-the-art 
approaches, with an average of 18% improvement over Linux. 

I. INTRODUCTION 

SMT-based multi core systems are emerging as the de facto 
platforms for achieving many core performance with power 
efficiency using a limited number of multicore CPUs [1] . 
Earlier works on these platforms have focused primarily on 
thread mapping to improve performance [2] . These approaches 
are implemented as an OS kernel module with information 
from hardware performance counters. With strict thermal and 
power budgets, the focus is shifting towards power-aware 
thread mapping on multicore platforms (e.g. [3]). Most of these 
approaches use linear programming or heuristics to generate an 
energy minimum thread mapping considering single thread ex­
ecution on a core at any given time (i.e. , no SMT). As a result, 
there exists significant scope for further energy optimization 
if these approaches are used in SMT-based multicore systems. 
To address this, the technique presented in [4] uses a thread 
consolidation heuristic, replacing the OS default scheduler, for 
power-aware thread placement on chip multiprocessors. 

As transistor geometry shrinks to sub-32nm scales, non­
uniform gate-oxide thickness, random doping fluctuations and 
non-precise lithography cause large variability in processor 
microarchitecture, specifically affecting the threshold voltage 
V t h and the effective length L ef f of transistors. Process 
variation has substantial impact on two major parameters of a 
processor - the frequency it can attain and the leakage power it 
consumes. As multiple CPU cores are integrated on the same 
SoC, these cores can be expected to have variations both in 
frequency and power consumption [5] . Recently, studies have 
been conducted for process-variation aware thread mapping 
on multi-/many-core systems, to improve system performance 
and energy consumption (e.g. [6]). None of these approaches 
consider SMT-based multicore platforms, and additionally, 
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all these variation-tolerant approaches scale down processor 
voltage and frequency to reduce energy consumption. As we 
demonstrate in this work, processor slowdown is not optimum 
to minimize energy consumption under all circumstances. For 
certain workload variations, it is beneficial to adopt a race-to­
idle strategy i.e., executing the workload at the highest voltage­
frequency, switching to an idle state upon completion [7] . 

To address this, we introduce an end-to-end approach 
for mapping application threads on SMT multicore systems 
at run-time, addressing process variation-aware energy op­
timization. The proposed run-time approach interfaces with 
the OS and hardware performance counters, to characterize 
an application 's threads, storing these statistics in a charac­
terization table. This table is exploited to generate thread 
mapping decision using binary integer programming (BIP) 
and thread collapsing (SMT), iteratively. Finally, execution 
slack is exploited to select between slowdown and race-to-idle, 
utilizing the workload statistics. The remainder of this paper is 
organized as follows . Selection between slowdown and race­
to-idle is discussed in Section II. The optimization problem is 
formulated in Section III. The iterative run-time approach is 
discussed in Section IV. Results are discussed in Section V 
and the conclusion in Section VI. 

II . SLOWDOWN VS RACE-TO-IDLE 

Figure l(a) shows the energy ratio of slowdown vs race­
to-idle for five single-threaded applications at four different 
frequencies. The break-even margin (energy ratio = 1) is shown 
in the figure as a red solid line. Results in this figure are 
interpreted as follows. If the energy ratio is < 1 at a particular 
frequency, it means it is energy-efficient to use slowdown; 
otherwise, it is more energy efficient to use race-to-idle. As 
seen in the figure, the race-to-idle strategy is more energy 
efficient than slowdown for all applications at 1.53 GHz. 
However, at 2.12 GHz, slowdown is more efficient. In most 
existing run-time approaches, the decision for slowdown or 
race-to-idle is typically taken before loading an application. 
Once selected, a control algorithm performs the desired action 
whenever there is slack in the application. 

In our proposed approach we characterize an application 
to determine this break-even operating point. Based on the 
available slack we begin with scaling down the frequency 
until the break-even point. Upon reaching this point, we 
switch to race-to-idle. The scenario however, becomes more 
complicated when considering multithreaded workloads, in 
which case different threads can potentially have different 
break-even frequencies, and an overall selection has to be made 
for the application as a whole (see Algorithm 2). A second 
consideration is process variation, which influences the leakage 
power consumption, increasing or decreasing the energy ratio. 
The windows around these applications in Figure l(a) highlight 
the maximum to minimum variation of the energy ratio. 
Figure 1 (b) shows this variation for the whetstone application 
plotting the results with the nominal values for the parameters 
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Fig. I . Slowdown vs race-to-idle choice for different applications. 

(lith and L eI I) and the 3(1 variations. As can be seen, process 
variation causes the break-even frequency to change (from 
no break-even point to one at 1.73 GHz). We determine the 
process variation-aware break-even frequency through thread 
characterization. 

III. PROBLEM FORMULATION 

A. Energy Improvement: Slowdown vs Race-to-Idle 

Table I shows the notation used in this work. Process 
variation is incorporated by distinguishing between a thread's 
execution time (and the power consumption) for different 
cores. It is easy to relate the execution time of thread i on 

t j -71 j-72 j-7 N t fi . core Cj as i 2: t i 2: . .. t i . We de ne the followmg: 

Slowdown: A strategy where voltage and frequency are 
scaled down to reduce energy. 

Race-to-Idle: A strategy where a thread is executed at 
the highest operating condition i.e., (VNl> I Nt) , switching to 
idle state upon completion. 

The energy consumption of tbread i on core Cj at reduced 
operating point (vl, Il ) is ESD(i , j , l ) = PI-+ ' . t{-+l . The total 
time taken by this thread to complete execution is t{-7 l. 
During this time, the energy consumption using race-to-idle 
strategy is ER2 I (i , j, l ) = p /-+Nt . t{-+Nt + (t{-+l - t I-+Nt ). Pi- In 
computing the energy consumption of race-to-idle strategy, the 
idle power consumption of the core is also taken into account 
for the extra time duration (second term in the equation). To 
evaluate the improvement of one strategy over the other, we 
define the thread-centric energy-ratio of thread i on core Cj 

at operating point (VI , It) as Ts(i, j , l ) = ESD(i , j , l)/ER2J(i,j, l) . 

( Vt , It) = Voltage-frequency p air of the platform I 1 ::; 1 ::; Nt. 
CI, - .. I CNc = Cores of the platform 

t;~t = Execution time o f thread i on core Cj @ (Vt , ft) 

p!~t = Average power consumption of thread i on core Cj @ (Vt,ft) 

pj = Idle power consumption of core Cj 

TABLE 1. NOTATIONS AN D L EGEN DS USED IN THIS PAPER 

Approach (61 Approach (81 Proposed 

Fig. 2. Traditional and iterative run-time thread mapping approaches. 

This equation simplifies to 

( I ) 

where ai-+ ' = p /-+ l / p f is the spread of dynamic and idle 
power for thread i on core Cj operating at (VI, ft ) and s{-+l = 

ti -+' / t I-+Nt is its execution time slowdown factor. 

B. Energy Improvement: Expanded vs Collapsed Thread 

Expanded Mode: Two threads are executed in expanded 
mode if they are executed one after another. 

Collapsed Mode: Two threads are executed in collapsed 
mode if they are executed simultaneously on a core. 

We consider two threads i and i f executed on core Cj 

operating at (VI, II )' We are interested in finding the break­
even point (if one exists) where one of the above modes of 
operation is better than the other. The total energy consumed 
in executing these threads in expanded mode is E ex (i, i', j , l ) = 
PI-+ ' . t I-+ l + p J,-+l . tJ,-+l . Let the power consumption and exe­
cution time of 'the t~o threads in collapsed mode of operation 
be indicated by the subscript i _i f. The energy consumption in 
the collapsed mode of operation is given by Eco(i , i f, j , l ) = 
P j-+l .j-+l ~j-+l j-+ t j-+ l) J h h I i. i' . ti• i , + ti + t i ' - t i i' . PJ ' were we ave a so 
accounteCi for e idle power for the extra duration (the second 
part). To define the break-even point, we introduce the cross­
thread energy-ratio of threads i and i f on core Cj operating 
at (VI.ft ), defined as Tc(i,i ' j, l ) = E ex (i , i ' ,j, l )/Eco(i , i',j, l ). The 
above equation simplifies to: 

(2) 

where m{-+l = ti-+l/e-;'l is the SMT slowdown of execution 
time. Equation 2 can fJe generalized to any number of threads. 
However, for the proposed approach we restrict it to two 
threads at a time. This simplifies the energy improvement 
equation and provides fine control over thread collapsing. 

IV. AN ITERATIVE RUN-TIME ApPROACH 

Figure 2 shows the proposed iterative approach for pro­
cess variation-aware thread mapping, compared to existing 
approaches [6] and [8] . There are three steps involved -
thread characterization, iterative SMT mapping, and energy 
optimization. The thread characterization step collects im­
portant performance statistics (including execution time) of 
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Algorithm 1 Thread Collapsing 
Input: Thread mapping 
Output: Threads a and b that will be collapsed 
1: Cj = A core where threads are expanded 
2: ThdArr = Set of expanded threads on Cj 

3: Initialize r=a x = 0, a = b = 0 
4: for all i , i ' E T hdArr do 
5: t j . , = Predict collapsed execution time using [10] 
6: Co;"puter = rc(i , i ' , j , NI) 
7: if r > rrna x then rrna x = r, a = i and b = j 
8: end for 
9: Return a , b 

every thread on every core. The thread mapping step uses 
the characterization data to determine a mapping using binary 
integer programming (BIP). Two threads are identified in the 
mapping which results in the highest energy savings (using 
Equation 2) by running them together on a core (SMT). This 
step is identified as "Thread Collapsing". The collapsed thread 
is considered as a single thread and is executed on all cores to 
characterize it. Once this is completed, the BIP is re-executed 
with this new data and the process is repeated. The iterative 
approach continues as long as thread collapsing reduces energy 
consumption. Details of these steps are provided next. 

A. Variation-Aware Thread Characterization 

The average power consumption of thread i on core Cj can 
be written as Pl -> t = g(vt,ft, pmuli, pmu2i, .. · ,pmuMll, where 
(Vi , ii) is the voltage and frequency of operation of thread 
i and pmuAi is the reading of performance monitoring unit 
(PMU) registers A [9]. Thread characterization is performed 
by executing these threads on all cores at highest frequency, 
collecting all necessary statistics. A two-dimensional charac­
terization table is populated with these data. 

B. BIP-Based Thread Mapping 

We define a mapping variable Xi ,j, where 

X' . = {I if thread Ti is mapped on core Cj (3) 
',J 0 otherwise 

with the following constraints 

• A thread can only be mapped to a single core i.e., L:j Xi,j = 1 \/i 

• The total execution time of all the threads mapped on a core must 
satisfy the deadline requirement i.e., L:i Xi,j . ti ::; D \/ j 

The objective is to minimize energy consumption i.e., 

min E = L X i,j . pi . ti (4) 

i,j 

C. Energy-Aware Thread Collapsing 

To identify two threads that result in the highest energy 
improvement upon collapsing, we predict the execution time 
of the collapsed thread using the approach proposed in [11]. 
Algorithm 1 provides the pseudo-code for the proposed thread 
collapsing approach. A core is identified with the highest 
number of expanded threads (line 1). The expanded threads 
on this core are put in an array ThdArr (line 2). For every 
pair of threads of this array, the collapsed-mode execution time 
is calculated using [10] and the cross-thread energy ratio using 
Equation 2. If the energy ratio is greater than the maximum 
ratio computed thus far, the maximum value is updated. The 
algorithm terminates when all thread pairs are explored. 

Algorithm 2 Slowdown vs Race-to-Idle 
Input: Thread allocation , deadline D 
Output: Core frequency selection 

1: for all (V" f I) I 1 ::; i ::; N, do 
2: Set (V" f I) on all cores 
3: Execute an iteration of the application using the thread allocation 
4: Record execution lime for each thread in ThdT i meAr r 
5: end for 
6: for all Cj I 1 ::; j ::; N c do 
7: TArr (j ) = threads on core Cj 
8: (V" f I) = argmin D - L: . . ThdTimeArr(i, k ) 

( v k,fk) ll 5: k 5: N I v thd tETArr(J) 

9: Initialize r = 1 
10: for all V thd i E TArr (j ) do 
11: r=r x r s (i, j , i ) 
12: end for 
13: if r< l select(v" f I) else select (vN" f N,) 
14: end for 

D. Collapsed Thread Characterization 

Once the threads to be collapsed are identified, the next 
step is to update the characterization table by replacing these 
threads with the collapsed ones. The collapsed thread is now 
considered as a single thread and is executed on all cores to 
collect the necessary statistics. 

E. Energy Optimization: Slowdown vs Race-to-Idle 

Algorithm 2 provides the pseudo-code, considering the 
generic case where frequency of the cores can be altered 
independently. The algorithm has two sections - frequency 
characterization (lines 1-5) followed by operating point selec­
tion (lines 6-14). For frequency characterization, the operating 
points of all cores are varied in lock-step from their mini­
mum to maximum value. For every setting, the application is 
executed for an iteration, recording the execution time of all 
threads (including the collapsed ones). These data are stored 
in a two dimensional array ThdTimeArr corresponding to 
each thread-operating point pairs. After the characterization 
step, the operating point of each core is determined. For this, 
threads mapped to a core (Cj) are first stored in an array 
TArr (j) . The operating point (Vi , it) which results in the 
least positive slack is selected (line 8). The overall thread­
centric energy improvement is determined (lines 10-12). If this 
is < 1 (implying slowdown has a lower energy consumption 
than race-to-idle), (Vi, ii) is selected as the frequency of the 
core; else (v N" i NJ is selected. At the end of this step, a 
voltage-frequency pair is selected for each core. 

V. RESULTS AND VALIDATION 

We validate our approach on an Nvidia Tegra multicore 
platform running Linux Kernel 3.10.24 with process variation 
modeled using [12] . A range of high performance applications 
are considered from the PARSEC and the SPLASH2 suites. 

A. Slowdown and Race-to-Idle 

Figure 3(a) plots the frequency selection for the proposed 
approach for five applications over 15 iterations. For dijk­
stra, basicmaths and sha applications, the proposed approach 
switches to the highest frequency of 2.33 GHz after scaling 
down to a certain frequency (the break-even frequency) . For 
other applications such as gsm and stringsearch, the proposed 
approach uses slowdown as this is more energy efficient 
than race-to-idle. The energy results (Figure 3(b)) confirm 
this frequency selection, showing that the proposed approach 
always selects the energy minimum strategy. 
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B. Energy and Execution Time Results 

Figure 4 plots the real power traces obtained from an 
Agilent n6705b DC power analyzer while executing the ray­
trace application. Results are compared for one iteration of the 
application comparing the thread mapping generated using the 
proposed approach with that obtained using Linux's default 
mapping. As can be seen from the figure, the proposed ap­
proach uses race-to-idle strategy for this application, resulting 
in higher power consumption than Linux but much lower 
execution time. Overall, the energy consumption (measured by 
the area in the plot) is much lower (510 1) as compared to the 
slowdown strategy (800 J) implemented by Linux (ondemand 
governor). On average for all applications, the improvement 
using the proposed approach is 18% as compared to Linux. 

Figure 5 plots the energy and execution time results for five 
applications, comparing the results of the proposed approach 
with those obtained using existing techniques of [6] and [4] . 
There are a few trends to observe from this figure . First 
the technique of [6] has both a higher execution time and 
a higher energy consumption compared to the other two 
approaches. This is because the technique of [6] does not 
consider SMT, and therefore leaves a significant scope for 
energy optimization. The execution time of [4] and the 
proposed approach are similar. However, in terms of energy 
consumption, the proposed approach consumes less energy. For 
some applications, such as streamcluster, the improvement is 
l3%. On average, the improvement is 7%. 
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Fig. 5. Energy and execution time results. 

VI. CONCLUSION 

An end-to-end approach is proposed for energy-aware 
mapping of application threads on a multicore platform, taking 
into account SMT and process variation. Application slack is 
exploited by selecting between race-to-idle and slowdown. The 
choice is guided by (1) application workload (CPU intensive, 
memory intensive, etc), (2) process variation and (3) SMT. 
Experiments with high performance applications on a real plat­
form, and using proven process variation models, demonstrate 
that the proposed approach improves energy consumption by 
up to 13%, while achieving similar performance as state­
of-the-art approaches. Our continuing work considers energy 
optimization with multiple simultaneous applications. 
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