
The Slowdown or Race-to-idle Question: Workload-Aware Energy
Optimization of SMT Multicore Platforms under Process Variation

Anup Das, Geoff V. Merrett and Bashir M. AI-Hashimi
School of ECS, University of Southampton, United Kingdom

Email: {a.k.das.gvm.bmah}@ecs.soton.ac.uk

Abstract-Two widely used approaches for reducing energy
consumption in multithreaded workloads are slowdown (using
DVFS) and race-to-idle. In this paper, we first demonstrate
that most energy-efficient choice is dependent on (1) workload
(memory bound, CPU bound etc.), (2) process variation and
(3) support for Simultaneous Multithreading (SMT). We then
propose an approach for mapping application threads on SMT
multicore systems at run-time, to minimize energy consumption.
The proposed approach interfaces with the OS and hardware
performance counters to characterize application threads. This
characterization captures the effect of process variation on
execution time and identifies the break-even operating point,
where one strategy (slowdown or race-to-idle) outperforms the
other. Thread mapping is performed using these characterized
data by iteratively collapsing application threads (SMT) followed
by binary programming-based thread mapping. Finally, perfor­
mance slack is exploited at run-time to select between slowdown
and race-to-idle, based upon the break-even operating point
calculated for each individual thread. This end-to-end approach
is implemented as a run-time manager for the Linux OS and is
validated across a range of high performance applications. Results
demonstrate up to 13% energy reduction over all state-of-the-art
approaches, with an average of 18% improvement over Linux.

I. INTRODUCTION

SMT-based multi core systems are emerging as the de facto
platforms for achieving many core performance with power
efficiency using a limited number of multicore CPUs [1] .
Earlier works on these platforms have focused primarily on
thread mapping to improve performance [2] . These approaches
are implemented as an OS kernel module with information
from hardware performance counters. With strict thermal and
power budgets, the focus is shifting towards power-aware
thread mapping on multicore platforms (e.g. [3]). Most of these
approaches use linear programming or heuristics to generate an
energy minimum thread mapping considering single thread ex­
ecution on a core at any given time (i.e. , no SMT). As a result,
there exists significant scope for further energy optimization
if these approaches are used in SMT-based multicore systems.
To address this, the technique presented in [4] uses a thread
consolidation heuristic, replacing the OS default scheduler, for
power-aware thread placement on chip multiprocessors.

As transistor geometry shrinks to sub-32nm scales, non­
uniform gate-oxide thickness, random doping fluctuations and
non-precise lithography cause large variability in processor
microarchitecture, specifically affecting the threshold voltage
V t h and the effective length L ef f of transistors. Process
variation has substantial impact on two major parameters of a
processor - the frequency it can attain and the leakage power it
consumes. As multiple CPU cores are integrated on the same
SoC, these cores can be expected to have variations both in
frequency and power consumption [5] . Recently, studies have
been conducted for process-variation aware thread mapping
on multi-/many-core systems, to improve system performance
and energy consumption (e.g. [6]). None of these approaches
consider SMT-based multicore platforms, and additionally,

978-3-9815370-7-9/DATE161 © 2016 EDAA

all these variation-tolerant approaches scale down processor
voltage and frequency to reduce energy consumption. As we
demonstrate in this work, processor slowdown is not optimum
to minimize energy consumption under all circumstances. For
certain workload variations, it is beneficial to adopt a race-to­
idle strategy i.e., executing the workload at the highest voltage­
frequency, switching to an idle state upon completion [7] .

To address this, we introduce an end-to-end approach
for mapping application threads on SMT multicore systems
at run-time, addressing process variation-aware energy op­
timization. The proposed run-time approach interfaces with
the OS and hardware performance counters, to characterize
an application 's threads, storing these statistics in a charac­
terization table. This table is exploited to generate thread
mapping decision using binary integer programming (BIP)
and thread collapsing (SMT), iteratively. Finally, execution
slack is exploited to select between slowdown and race-to-idle,
utilizing the workload statistics. The remainder of this paper is
organized as follows . Selection between slowdown and race­
to-idle is discussed in Section II. The optimization problem is
formulated in Section III. The iterative run-time approach is
discussed in Section IV. Results are discussed in Section V
and the conclusion in Section VI.

II . SLOWDOWN VS RACE-TO-IDLE

Figure l(a) shows the energy ratio of slowdown vs race­
to-idle for five single-threaded applications at four different
frequencies. The break-even margin (energy ratio = 1) is shown
in the figure as a red solid line. Results in this figure are
interpreted as follows. If the energy ratio is < 1 at a particular
frequency, it means it is energy-efficient to use slowdown;
otherwise, it is more energy efficient to use race-to-idle. As
seen in the figure, the race-to-idle strategy is more energy
efficient than slowdown for all applications at 1.53 GHz.
However, at 2.12 GHz, slowdown is more efficient. In most
existing run-time approaches, the decision for slowdown or
race-to-idle is typically taken before loading an application.
Once selected, a control algorithm performs the desired action
whenever there is slack in the application.

In our proposed approach we characterize an application
to determine this break-even operating point. Based on the
available slack we begin with scaling down the frequency
until the break-even point. Upon reaching this point, we
switch to race-to-idle. The scenario however, becomes more
complicated when considering multithreaded workloads, in
which case different threads can potentially have different
break-even frequencies, and an overall selection has to be made
for the application as a whole (see Algorithm 2). A second
consideration is process variation, which influences the leakage
power consumption, increasing or decreasing the energy ratio.
The windows around these applications in Figure l(a) highlight
the maximum to minimum variation of the energy ratio.
Figure 1 (b) shows this variation for the whetstone application
plotting the results with the nominal values for the parameters

535

(a) Break-even frequency for different application

~blowfiSh
~adpcm
-o- CRC32
~parops
~wIletstone
- break-even margin

0'9s~:e:::~~
°l';-s --7:,.6:-----:':;:-----:';;----:-7---;;---------:'-:------:'2.2

(b) Shilt in bfeak-even frequency
1.2S ,------,------,----'--'-------,----,--~'-----r---r------,

1.2 Bfeak-even points at nominal
and 3a parameter variations

~ 1.0S .,.'.'.'.'.\~.-.-.-.-.-.-.- .-.-.-._ ._ ._ ._._
W l~~~~~ 09sf

°l'o-s --7:1.6=-----,':'::.7:----:-' '::-.8--~1.9=-------:-----c2~. '---,J2.2
Frequency (GHz)

Fig. I . Slowdown vs race-to-idle choice for different applications.

(lith and L eI I) and the 3(1 variations. As can be seen, process
variation causes the break-even frequency to change (from
no break-even point to one at 1.73 GHz). We determine the
process variation-aware break-even frequency through thread
characterization.

III. PROBLEM FORMULATION

A. Energy Improvement: Slowdown vs Race-to-Idle

Table I shows the notation used in this work. Process
variation is incorporated by distinguishing between a thread's
execution time (and the power consumption) for different
cores. It is easy to relate the execution time of thread i on

t j -71 j-72 j-7 N t fi . core Cj as i 2: t i 2: . .. t i . We de ne the followmg:

Slowdown: A strategy where voltage and frequency are
scaled down to reduce energy.

Race-to-Idle: A strategy where a thread is executed at
the highest operating condition i.e., (VNl> I Nt) , switching to
idle state upon completion.

The energy consumption of tbread i on core Cj at reduced
operating point (vl, Il) is ESD(i , j , l) = PI-+ ' . t{-+l . The total
time taken by this thread to complete execution is t{-7 l.
During this time, the energy consumption using race-to-idle
strategy is ER2 I (i , j, l) = p /-+Nt . t{-+Nt + (t{-+l - t I-+Nt). Pi- In
computing the energy consumption of race-to-idle strategy, the
idle power consumption of the core is also taken into account
for the extra time duration (second term in the equation). To
evaluate the improvement of one strategy over the other, we
define the thread-centric energy-ratio of thread i on core Cj

at operating point (VI , It) as Ts(i, j , l) = ESD(i , j , l)/ER2J(i,j, l) .

(Vt , It) = Voltage-frequency p air of the platform I 1 ::; 1 ::; Nt.
CI, - .. I CNc = Cores of the platform

t;~t = Execution time o f thread i on core Cj @ (Vt , ft)

p!~t = Average power consumption of thread i on core Cj @ (Vt,ft)

pj = Idle power consumption of core Cj

TABLE 1. NOTATIONS AN D L EGEN DS USED IN THIS PAPER

Approach (61 Approach (81 Proposed

Fig. 2. Traditional and iterative run-time thread mapping approaches.

This equation simplifies to

(I)

where ai-+ ' = p /-+ l / p f is the spread of dynamic and idle
power for thread i on core Cj operating at (VI, ft) and s{-+l =

ti -+' / t I-+Nt is its execution time slowdown factor.

B. Energy Improvement: Expanded vs Collapsed Thread

Expanded Mode: Two threads are executed in expanded
mode if they are executed one after another.

Collapsed Mode: Two threads are executed in collapsed
mode if they are executed simultaneously on a core.

We consider two threads i and i f executed on core Cj

operating at (VI, II)' We are interested in finding the break­
even point (if one exists) where one of the above modes of
operation is better than the other. The total energy consumed
in executing these threads in expanded mode is E ex (i, i', j , l) =
PI-+ ' . t I-+ l + p J,-+l . tJ,-+l . Let the power consumption and exe­
cution time of 'the t~o threads in collapsed mode of operation
be indicated by the subscript i _i f. The energy consumption in
the collapsed mode of operation is given by Eco(i , i f, j , l) =
P j-+l .j-+l ~j-+l j-+ t j-+ l) J h h I i. i' . ti• i , + ti + t i ' - t i i' . PJ ' were we ave a so
accounteCi for e idle power for the extra duration (the second
part). To define the break-even point, we introduce the cross­
thread energy-ratio of threads i and i f on core Cj operating
at (VI.ft), defined as Tc(i,i ' j, l) = E ex (i , i ' ,j, l)/Eco(i , i',j, l). The
above equation simplifies to:

(2)

where m{-+l = ti-+l/e-;'l is the SMT slowdown of execution
time. Equation 2 can fJe generalized to any number of threads.
However, for the proposed approach we restrict it to two
threads at a time. This simplifies the energy improvement
equation and provides fine control over thread collapsing.

IV. AN ITERATIVE RUN-TIME ApPROACH

Figure 2 shows the proposed iterative approach for pro­
cess variation-aware thread mapping, compared to existing
approaches [6] and [8] . There are three steps involved -
thread characterization, iterative SMT mapping, and energy
optimization. The thread characterization step collects im­
portant performance statistics (including execution time) of

536 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Algorithm 1 Thread Collapsing
Input: Thread mapping
Output: Threads a and b that will be collapsed
1: Cj = A core where threads are expanded
2: ThdArr = Set of expanded threads on Cj

3: Initialize r=a x = 0, a = b = 0
4: for all i , i ' E T hdArr do
5: t j . , = Predict collapsed execution time using [10]
6: Co;"puter = rc(i , i ' , j , NI)
7: if r > rrna x then rrna x = r, a = i and b = j
8: end for
9: Return a , b

every thread on every core. The thread mapping step uses
the characterization data to determine a mapping using binary
integer programming (BIP). Two threads are identified in the
mapping which results in the highest energy savings (using
Equation 2) by running them together on a core (SMT). This
step is identified as "Thread Collapsing". The collapsed thread
is considered as a single thread and is executed on all cores to
characterize it. Once this is completed, the BIP is re-executed
with this new data and the process is repeated. The iterative
approach continues as long as thread collapsing reduces energy
consumption. Details of these steps are provided next.

A. Variation-Aware Thread Characterization

The average power consumption of thread i on core Cj can
be written as Pl -> t = g(vt,ft, pmuli, pmu2i, .. · ,pmuMll, where
(Vi , ii) is the voltage and frequency of operation of thread
i and pmuAi is the reading of performance monitoring unit
(PMU) registers A [9]. Thread characterization is performed
by executing these threads on all cores at highest frequency,
collecting all necessary statistics. A two-dimensional charac­
terization table is populated with these data.

B. BIP-Based Thread Mapping

We define a mapping variable Xi ,j, where

X' . = {I if thread Ti is mapped on core Cj (3)
',J 0 otherwise

with the following constraints

• A thread can only be mapped to a single core i.e., L:j Xi,j = 1 \/i

• The total execution time of all the threads mapped on a core must
satisfy the deadline requirement i.e., L:i Xi,j . ti ::; D \/ j

The objective is to minimize energy consumption i.e.,

min E = L X i,j . pi . ti (4)

i,j

C. Energy-Aware Thread Collapsing

To identify two threads that result in the highest energy
improvement upon collapsing, we predict the execution time
of the collapsed thread using the approach proposed in [11].
Algorithm 1 provides the pseudo-code for the proposed thread
collapsing approach. A core is identified with the highest
number of expanded threads (line 1). The expanded threads
on this core are put in an array ThdArr (line 2). For every
pair of threads of this array, the collapsed-mode execution time
is calculated using [10] and the cross-thread energy ratio using
Equation 2. If the energy ratio is greater than the maximum
ratio computed thus far, the maximum value is updated. The
algorithm terminates when all thread pairs are explored.

Algorithm 2 Slowdown vs Race-to-Idle
Input: Thread allocation , deadline D
Output: Core frequency selection

1: for all (V" f I) I 1 ::; i ::; N, do
2: Set (V" f I) on all cores
3: Execute an iteration of the application using the thread allocation
4: Record execution lime for each thread in ThdT i meAr r
5: end for
6: for all Cj I 1 ::; j ::; N c do
7: TArr (j) = threads on core Cj
8: (V" f I) = argmin D - L: . . ThdTimeArr(i, k)

(v k,fk) ll 5: k 5: N I v thd tETArr(J)

9: Initialize r = 1
10: for all V thd i E TArr (j) do
11: r=r x r s (i, j , i)
12: end for
13: if r< l select(v" f I) else select (vN" f N,)
14: end for

D. Collapsed Thread Characterization

Once the threads to be collapsed are identified, the next
step is to update the characterization table by replacing these
threads with the collapsed ones. The collapsed thread is now
considered as a single thread and is executed on all cores to
collect the necessary statistics.

E. Energy Optimization: Slowdown vs Race-to-Idle

Algorithm 2 provides the pseudo-code, considering the
generic case where frequency of the cores can be altered
independently. The algorithm has two sections - frequency
characterization (lines 1-5) followed by operating point selec­
tion (lines 6-14). For frequency characterization, the operating
points of all cores are varied in lock-step from their mini­
mum to maximum value. For every setting, the application is
executed for an iteration, recording the execution time of all
threads (including the collapsed ones). These data are stored
in a two dimensional array ThdTimeArr corresponding to
each thread-operating point pairs. After the characterization
step, the operating point of each core is determined. For this,
threads mapped to a core (Cj) are first stored in an array
TArr (j) . The operating point (Vi , it) which results in the
least positive slack is selected (line 8). The overall thread­
centric energy improvement is determined (lines 10-12). If this
is < 1 (implying slowdown has a lower energy consumption
than race-to-idle), (Vi, ii) is selected as the frequency of the
core; else (v N" i NJ is selected. At the end of this step, a
voltage-frequency pair is selected for each core.

V. RESULTS AND VALIDATION

We validate our approach on an Nvidia Tegra multicore
platform running Linux Kernel 3.10.24 with process variation
modeled using [12] . A range of high performance applications
are considered from the PARSEC and the SPLASH2 suites.

A. Slowdown and Race-to-Idle

Figure 3(a) plots the frequency selection for the proposed
approach for five applications over 15 iterations. For dijk­
stra, basicmaths and sha applications, the proposed approach
switches to the highest frequency of 2.33 GHz after scaling
down to a certain frequency (the break-even frequency) . For
other applications such as gsm and stringsearch, the proposed
approach uses slowdown as this is more energy efficient
than race-to-idle. The energy results (Figure 3(b)) confirm
this frequency selection, showing that the proposed approach
always selects the energy minimum strategy.

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 537

(a) Frequency selection
2.5,----------,----------,--------------,

- basicmaths
- sha
- stringsearch
- dijkstra

~~~~gs~m~==~--~------~~------~ 
0.50 10 15 

Iterations 

(b) Slowdown vs race-to-idle results 
40 ,---._-------,-------,----~~.---~~7I~~ 

t;;' 30 
~ 
o 
~ 20 
e> 
<1> 

tf] 10 

basicmaths sha stringsearch 

Fig. 3. Slowdown vs race-to-idle comparison. 

dijkstra gsm 

4,---~--~--~--~----~--~==~==~ 
--Proposed 

~ 
Q; 

~ 

--Linux 

3.5 

Cl. 3 

2.5 
OL---5~O---10~O--1~5-0--2~OO--2~5~O--3~OO---35~O-~400 

Time(s) 

Fig. 4. Power comparison of Linux and proposed approach. 

B. Energy and Execution Time Results 

Figure 4 plots the real power traces obtained from an 
Agilent n6705b DC power analyzer while executing the ray­
trace application. Results are compared for one iteration of the 
application comparing the thread mapping generated using the 
proposed approach with that obtained using Linux's default 
mapping. As can be seen from the figure, the proposed ap­
proach uses race-to-idle strategy for this application, resulting 
in higher power consumption than Linux but much lower 
execution time. Overall, the energy consumption (measured by 
the area in the plot) is much lower (510 1) as compared to the 
slowdown strategy (800 J) implemented by Linux (ondemand 
governor). On average for all applications, the improvement 
using the proposed approach is 18% as compared to Linux. 

Figure 5 plots the energy and execution time results for five 
applications, comparing the results of the proposed approach 
with those obtained using existing techniques of [6] and [4] . 
There are a few trends to observe from this figure . First 
the technique of [6] has both a higher execution time and 
a higher energy consumption compared to the other two 
approaches. This is because the technique of [6] does not 
consider SMT, and therefore leaves a significant scope for 
energy optimization. The execution time of [4] and the 
proposed approach are similar. However, in terms of energy 
consumption, the proposed approach consumes less energy. For 
some applications, such as streamcluster, the improvement is 
l3%. On average, the improvement is 7%. 

1 
>-
~08 
c 
~ 06 
<D 

~ 0.4 
E 
~ 02 

o 

<D 
E 1 
;:: 
.§ 0.8 
:5 
hl 0.6 
rlj 
u 0.4 
<D 
N 

~ 0.2 
E 
~ 0 

-

L-. '---- -,---
freqmlne ray trace 

-
f-

~ '---- -
freqmine ray trace 

--,-----
-r-

,-,.,) 
c::J Ref [41 
_ Proposed 

-----; . L- '----
fluldanlmate streamcluster swaptlons 

--,-----

l- --

-- ~ '---- - -- -
fluidanimate streamcluster swaptions 

Fig. 5. Energy and execution time results. 

VI. CONCLUSION 

An end-to-end approach is proposed for energy-aware 
mapping of application threads on a multicore platform, taking 
into account SMT and process variation. Application slack is 
exploited by selecting between race-to-idle and slowdown. The 
choice is guided by (1) application workload (CPU intensive, 
memory intensive, etc), (2) process variation and (3) SMT. 
Experiments with high performance applications on a real plat­
form, and using proven process variation models, demonstrate 
that the proposed approach improves energy consumption by 
up to 13%, while achieving similar performance as state­
of-the-art approaches. Our continuing work considers energy 
optimization with multiple simultaneous applications. 

ACKNOWLEDGMENT 

This work was supported in parts by the EPSRC 
Grant EP/L00056311 and the PRiME Programme Grant 
EP/K03444811 (www.prime-project.org). 

REFERENCES 

[I] B. Sinharoy, J. Van Norstrand et aI. , "IBM POWER8 processor core 
microarchiteclUre," IBM Journal of Research and Development, 2015 . 

[2] L. Porter et aI., "Making the most of SMT in HPC: System-and 
application-level perspectives," ACM TACO, 2015 . 

[3] V. Petrucci et aI., "Energy-efficient thread assignment optimization for 
heterogeneous multicore systems," ACM TECS, 2015. 

[4] A. Vega et al., "SMT-centric power-aware thread placement in chip 
multiprocessors," in PACT, 2013. 

[5] K. AgarwaJ et aI., "Characterizing process variation in nanometer 
CMOS," in DAC, 2007. 

[6] F. Fraternali et aI., "Quantifying the impact of variability on the e nergy 
efficiency for a next-generation ultra-green supercomputer," in ISLPED, 
2014. 

[7] S. Albers and A. Antoniadis, "Race to idle: new algorithms for speed 
scaling with a sleep state," ACM Transactions on Algorithms, 2014. 

[8] M. Kandemir et aI., "Dynamic thread and data mapping for noc based 
cmps," in DAC, 2009. 

[9] M. J. WaJker et al., "Run-time power estimation for mobile ad embed­
ded asymmetric multi-core cpus." HiPEAC EEHCO, 2015. 

[10] R. Garibotti et aI., "Simultaneous multithreading support in embedded 
di stributed memory mpsocs," in DAC, 2013. 

[11] Y. Zhang, M. A. Laurenzano et aI., "SMiTe: Precise QoS prediction on 
real-system SMT processors to improve utilization in warehouse scaJe 
computers," in International Symposium on Microarchitecture, 2014. 

[12] B. Raghunathan et al., "Cherry-picking: exploiting process variations 
in dark-silicon homogeneous chip multi-processors," in DATE, 2013. 

538 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 


