SAPIENZA

UNIVERSITA DI ROMA

FacuLTy OF INFORMATION ENGINEERING, INFORMATICS AND STATISTICS

Master’s degree thesis in

ENGINEERING IN COMPUTER SCIENCE

ORCHESTRA

An Asynchronous Wait-Free Distributed
GVT Algorithm

TommAaso Toccr

Academic Year

2016/2017

ii

SUPERVISOR

Prof. Ciciani Bruno

ADVISOR

Ing. Pellegrini Alessandro

CoO-ADVISOR

Prof. Salza Silvio

v

Contents

I Optimistic synchronization strategy

1 Commitment horizon
1.1 Fossilcollection
1.2 Global Virtual Time
1.3 GVT computation algorithms
1.3.1 The transient message problem
1.3.2 Simultaneous reporting problem
1.3.3 Samadi’salgorithm00
1.34 Mattern’s algorithmo 0L
1.3.5 GVTin shared memory systems.

I The ORCHESTRA algorithm

2 Simulation platform
2.1 Simulation entities hierarchy
2.2 Applicationlevel
23 Startup
24 Main simulationloop
2.5 Journeyofanevent
251 Eventcreation.,
2.5.2 Message forwarding
253 Messagedelivery
254 Bottomhalveso 0L

255 Incomingqueue.

NN R W W

10
11
13
16

23
23
26
29
30
32
32
33
36
38
39

CONTENTS

3 Asynchronous wait-free GVT algorithm

5

vi

3.1
3.2

Baseline description Lo L
The Algorithm o
3.21 Kernelvirtual time
3.22 Global Virtual Time

3.2.3 Inmitialization

Experimental results

4.1

4.2 Communication framework

43 Benchmark

4.4 In-depth analysis with Paraver
44.1 Communication pattern
4.4.2 Superlinear speedup investigation

conclusions

Cluster architecture

41
41
44
45
48
51

53
54
54
55
59
60
63

69

Abstract

Taking advantage of computing capabilities offered by modern parallel and dis-
tributed architectures is fundamental to run large-scale simulation models based
on the Parallel Discrete Event Simulation (PDES) paradigm. By relying on this
computing organization, it is possible to effectively overcome both the power and
the memory wall, which are core limiting aspects to deliver high-performance
simulations. This is even more the case when relying on the speculative Time
Warp synchronization protocol, which could be particularly memory greedy. At
the same time, some form of coordination, such as the computation of the Global
Virtual Time (GVT), is required by Time Warp Systems. These coordination points
could easily become the bottleneck of large-scale simulations, hindering an effi-
cient exploitation of the computing power offered by large supercomputing fa-
cilities. In this dissertation is presented ORCHESTRA, a coordination algorithm
which is both wait-free and asynchronous. The nature of this algorithm allows
any computing node to carry on simulation activities while the global agreement
is reached, thus offering an effective building block to achieve scalable PDES.
The general organization of ORCHESTRA could be adopted by different high-
performance computing applications, thus paving the way to a more effective us-

age of modern computing infrastructures.

vii

viil

Partl

Optimistic synchronization

strategy

Chapter 1

Commitment horizon

1.1 Fossil collection

One of the main issues with speculative/simulation software turns to be mem-
ory management [5], in fact these platforms are usually characterized by a very
high memory demand. During the actual simulation, a lot of data is produced and
tons of intermediate states are reached. Given that the memory capacity offered
by the underlying hardware machine is limited, it is crucial to keep only the es-
sential data that are useful to support the speculative part of the simulation and
discard the committed states, which are no longer necessary. In most cases a cer-
tain data will be of interest just for a definite period of time. This is the time in
which this specific piece of information needs to be accessed in order to produce
other future simulation states. Now, it should be clear, that the memory reclaim of
obsolete objects residing in main memory will play an important role in the simu-
lation and will have a big impact on the overall performance of the platform. The
production rate of intermediate data should be balanced by the deletion rate of the
obsolete data, in fact, if the fossil collection is too slow compared to the generation
of new data, we’ll have a constant increment of the residing memory set, that on
long running simulations, will lead to an out of memory condition. On the other
hand if the fossil collection procedure is invoked too frequently with respect to the
advancement of the LP, most of the computing power will be spent in searching
fossil objects instead of producing useful data for the simulation, producing the
well known thrashing phenomena [6].

Memory management get even more challenging when dealing with simula-

CHAPTER 1. COMMITMENT HORIZON

tion platform that follow the Time Warp approach. Indeed, the fact that the sim-
ulation trajectory is divided into a speculative part (which can be subject to roll-
backs) and a committed part (??) make it difficult to define which of the events
and states have became obsolete, i.e. they cannot be involved in a rollback op-
eration. Every LP, in reaction to an out-of-order event, will perform a roll-back
to an earlier state in order to reprocess the last events in the correct time order.
This demands for the availability of previously-executed events and intermediate
simulation states (in case of rollback operations supported by checkpointing). The
challenging question related to the memory management of Time Warp systems
is: How many already processed events do I need to keep in memory?. From a practi-
cal point of view, this question can be reformulated and is equivalent to: How far

an LP can roll-back?.

1.2 Global Virtual Time

It is always possible to define a commitment horizon, that is a virtual time instant
in the simulation’s trajectory, for which we are sure that none of the LPs will roll-
back prior to this specific time. Assuming this, all the states and event that are
associated with a time stamp less than the commitment horizon won’t ever been
accessed again, and can be considered fossilized. This commitment horizon has
been named by Jefferson as the Global Virtual Time (GVT) [11].

Definition 1. At a specific real time 7, the GVT can be defined as the minimum

between:
« all virtual times in all virtual clocks at time ¢.

« timestamps of all sent but not yet processed events at time ¢.

In figure 1.1 is depicted a 3-LPs simulation snapshot at a specific time 7. The
time-lines of the three LPs are populated with the events, represented by rectan-
gles. The grayed events residing on the left part of the picture have been already
executed, the black ones on the right are still pending, while the orange ones are
the last executed event of each LP. The 3"? logical process (LP3) is the one with
the smallest virtual clock among all, thus, following the Jefferson definition is the

one marking the current Global Virtual Time (purple line). In order to give an

1.2. GLOBAL VIRTUAL TIME

LP, —iH—

\/

LP, l

LP; i—ii i

Figure 1.1: Global Virtual Time definition

\/

intuition about why an LP cannot ever rollback prior to the GVT, without loose
of generality, we will focus just on the first clause of the definition; The second
clause is intended to cover a special case known as the transient message that will

be analyzed in section 1.3.1. Let’s consider the worst case scenario depicted in fig-

rollback

/N
LP, B

\/

LP, l

LP; L] i3 i3

Figure 1.2: GVT definition: Rollback worst case scenario

\/

ure 1.2; The first logical process LP; receives an event from the furthest one LP3,
with the smallest possible time stamp. Since an LP can only schedule events with
a time stamp that is greater or equal to its own virtual time, the time stamp for the
orange event coincides with the current virtual time of LP3 that is also the current
GVT. Thus the orange event is the event with the smallest possible time stamp

that can be generate at the moment. When the logical process LP; will receive

CHAPTER 1. COMMITMENT HORIZON

the orange event, it will notice that is out of order and will perform a rollback to
the Global Virtual Time and will re-execute all the events starting from the orange
one. Thus in the worst case an LP can rollback at most to the current Global Virtual
Time.

Now it should be clear that none of the objects residing further back then the
GVT would never be accessed and they can be deleted on the next fossil collection
schedule. Actually, as explained in section ??, due to performance issue, in the
worst case the LP will rollback to the last saved checkpoint before to the current
GVT and will re-process all the subsequent events. Thus, being more precise, we

can assume that:

Statment 1. None of the events with a time stamp less or equal to the last saved

checkpoint before the current GVT will be ever accessed again.

Regarding the GVT definition, we report now an alternative formulation pro-

posed later by Fujimoto [8]:

Definition 2. Global Virtual Time at time r is defined as the minimum time stamp

of any unprocessed events in the system at real time r.

Since the virtual times of the LPs are directly related to their last processed
events, Fujimoto decided to just focus on events’ time stamp, thus ending up with
a compact definition that includes both the two clauses of Jefferson (Definition 1).

In the last sections it has been explained the importance of the GVT, that is one
of the fundamental pieces of the Time Warp synchronization protocol, because it
allows to contrast and overcome the huge memory requirements of this optimistic
approach. In general the Global Virtual Time can be see as a global information
that tracks the evolution of the simulation, it is the commitment horizon that marks
the boundary between the unsteady work that is temporary and can be potentially
rolled back and the certain work that has been definitely committed and cannot
be modified anymore. Thus the GVT can be taken as reference point for a wide
range of tasks, for instance, non-reversible operations such as the interaction with
external output devices [1] (like log, display and so on) should be perform only on
the basis of definitive data. Moreover the termination detection routine aimed at
verifying that specific termination condition have been reach is another operation

that can be carried on only on committed data.

1.3. GVT COMPUTATION ALGORITHMS

1.3 GVT computation algorithms

Calculating the GVT is all but an easy task. Especially on distributed environment
it often requires to put in place cooperation and consensus algorithms. In fact
this operation is the only global one required by the Time Warp synchronization
protocol. All others, such as rollbacks, state saving, and sending and handling of
anti-messages, can be carried out locally. Therefore, GVT computation is known
to be the least scalable component of Time Warp and it is no surprise that the accu-
racy and overhead of the GVT computation may dominate the overall performance
of Time Warp-based simulations.

Following its definition, in order to compute the exact Global Virtual Time, it
would be necessary to collect the virtual times of all the LPs and the time stamps of
all transient messages at a specific real time r, this would require to freeze the en-
tire simulation during the GVT calculation. It is obvious that this kind of approach
would make the Time Warp optimistic methodology useless from a performance
point of view.

Fortunately it is not mandatory to compute the exact Global Virtual Time, in
fact a lower bound of it, would be good enough to carry on fossil collection and
all the others GVT related routine. During fossil collection all the events residing
between the estimated GVT and the exact one, would not be discarded, but this
indeed won’t have a significant impact on the memory usage, as long as the lower
bound is tight enough.

A lot of algorithms aimed at calculating the Global Virtual Time in Time Warp
based simulator have been proposed by the scientific community along the past
years; while reviewing some of the most interesting solutions among those, we will
analyze two very common problem related to the GVT calculation, that are known
under the name of Transient message and Simultaneous reporting [18]. Anyway,
for a brief review and a well done comparison of GVT algorithms the reader is

suggested to read the 2"¢ section of [4].

1.3.1 The transient message problem

Starting from the Jefferson’s GVT formulation (Definition 1), it is possible to build
a very simple and inefficient GVT algorithm that will help us to understand the

problem of the transient messages and the importance of the second clause. Re-

CHAPTER 1. COMMITMENT HORIZON

Coordinator GVT_START GVT_ACK COLLECT LVTs

. XX N >
20 35
LP, o —
4
27
30
LP, & i —1 >

Figure 1.3: Example of transient message problem that justify the second clause of
the Jefferson’s definition

capping, we would like to stop all the LPs from processing events, reports their

current virtual time, calculate the minimum among those values and restart the

simulation activity. Let’s suppose that an external coordinator is in charge of or-

chestrating the GVT routine and the collective procedure by communicating with

all the LPs. The algorithm at each invocation will follow the next steps:

The coordinator starts the GVT routine by broadcasting a START_GVT mes-

sage.

An LP that receive the START_GVT message, stops processing new events,
enters into the GVT phase and send a GVT_ACK to the coordinator.

As soon as the coordinator collects all the acknowledgments from the LPs it

broadcast a COLLECT message.

The LP receiving a COLLECT message, sends to the coordinator its local vir-
tual time (LVT), will exit from the GVT phase and will restart processing

events.

The coordinator computes the new GVT value by calculating the minimum

among all LVT's received and broadcasts the new global value to all the LPs.

As we can see in the example run depicted in Figure 1.3, the two LPs, after they

get notified by the coordinator, and they both suspend their execution, they send

their current LVT, that is the virtual time of their last correctly executed events.

1.3. GVT COMPUTATION ALGORITHMS

The two logical processes LP; and LP9, send respectively, 35 and 30, thus making
the coordinator choosing the lower one as the new GVT. The problem here is that
LP; during the execution of the past event with virtual time 20, has scheduled an
event to the second LP at time 27; due to the latency of the underlying communi-
cation network this transient message will arrive at LPy only after the GVT round
has been terminated, thus making impossible to account it in the calculation of the
Global Virtual Time.

The second clause of the Jefferson’s GVT definition (1), refers exactly to this
scenario, in fact it remarks the importance of including the virtual time of ongoing
messages, while calculating the lower bound of the new commitment horizon. The
transient message problem is related to concept of message non-observable Time
Warp systems [8], that are those systems in which messages could possibly “disap-
pear” while they are in transit. Indeed, after a message is created at the sender and
it is passed to the underlying communication network for the delivery, it enters
into a “black window" in which it became non-observable, until it will be actually
delivered at the destination LP. The key solution to this problem is not to loose
metadata of messages while they are passing through this black window; two op-
tions arise, either the sender or the receiver will be in charge of keeping track of
time stamps of in-transit messages, in such a way that they can be accounted while

reporting the local minimum (LVT).

Since the message is created at the sender, a very simple schema based on mes-
sage acknowledgments can be used to overcome the transient message problem [3,
7, 18]. Each message or anti-message is accounted by the sender until the match-
ing acknowledgment will arrive from the receiver. The problem of this approach
is that introducing acknowledgments, has the huge drawback of duplicating the
number of overall exchanged messages between the LPs, with the possibility of
overloading the communication channels. Even if the underlying network proto-
col actually make use of message acknowledgments (e.g. TCP), they are usually
invisible from the application level. Some optimizations have been proposed in
order to reduce the network overhead, such as piggy-backing [2] the acknoledg-
ments or the implementation of sequence numbers [14]. Another drawback of the
message acknowledgment scheme is quite subtle. It is not a trivial task to find out
the earliest time stamp among unacknowledged messages. Such an operation is

not constant time and may require the use of a priority queue.

CHAPTER 1. COMMITMENT HORIZON

1.3.2 Simultaneous reporting problem

COLLECT LP, LVT LP, LVT
Coordinator o- ¥ =

§§ @-6

35

LP,

27

40

LP, 3 | i—

Figure 1.4: Simultaneous reporting problem

The algorithm presented in the previous section has the main drawback of re-
quiring logical processing to stop processing events while they are participating
to the GVT computation (red line section of figure 1.3). The length of this strike is
usually correlated with both the total number of LPs participating into the simu-
lation and the performance of the communication channel between them and the
coordinator. In fact, a lot of LPs on a slow communication network, will delay the
arrival of all the GVT_ACK messages, with the consequence of shifting forward as
well the start of the LVTs collection step. It should be clear that this algorithm
on distributed platforms that cannot relay on fast communication channel such as
shared memory, will have a disastrous performance impact.

Let’s try to analyze another a very simple algorithm in which the LPs do not

need to wait each other in order to report their own local minimum:

+ The coordinator starts the GVT routine by broadcasting a START_GVT mes-

sage.

« An LP that receives the START_GVT message, calculates and sends to the

coordinator its own local minimum.

+ As soon as the coordinator collects all the LVT's from the logical processes,

it chooses the lower one and it broadcasts it as the new GVT.

10

1.3. GVT COMPUTATION ALGORITHMS

The avoidance of global synchronization points introduces another issue known
as the Simultaneous Reporting Problem, that occurs when a message exchanged be-
tween two LVT's report of two different LPs it is not accounted by either of them.
In Figure 1.4 an example run characterized by this flaw is depicted. The first pro-
cess LP; execute the event at 35 and as soon as it receive the COLLECT message
from the coordinator it replies with its local minimum that it happens to be ex-
actly 35. Later on LPy will also participate with its own LVT that is equal to 40.
The problem here is represented by the orange message that has been sent by LP»
to LP; after the latter has reported its minimum but before the former has sent
its own. It should be clear from the Figure 1.4 that the time stamp of the orange
message 27, won't be accounted for the calculation of the new GVT even if at
the moment (freezing wall-clock time of the picture) results to be the unprocessed

event with the lowest time stamp.

1.3.3 Samadi’s algorithm

GVT_START A LVT A, LVT GVT_END
X 7 % < >

Coordinator

38 27 %

33

LP,

oh

LP, é — B a

Figure 1.5: Samadi’s GVT algorithm

The algorithm proposed by Samadi [18] stands as one of the first GVT cal-
culation approaches that manage to solve both the Transient message (1.3.1) and
Simultaneous reporting (1.3.2) problems, moreover it is the reference for a larger
group of algorithms known as "Overlapping Intervals® [4]. The algorithm obeys
to the following steps:

11

CHAPTER 1. COMMITMENT HORIZON

+ The coordinator starts the GVT routine by broadcasting a START_GVT mes-

sage

« When a process receives the START_GVT message, it enters into the red

phase and calculates the minimum time stamp among:

— unprocessed events in his incoming queue
— unacknowledged sent messages

- sent messages that were red acknowledged after the end of the previous
GVT round

And it immediately reports this value to the coordinator.

+ As soon as the controller receives LVT's from all the processes, it computes
the minimum of all these values as the new GVT and broadcasts the new

GVT to all the processes.

+ When a process get informed about the new GVT value, it leaves the red

phase.

The algorithm encompasses that acknowledgments are sent for all received
messages, moreover the acks need to be red marked if the process that is sending
them is in red phase, otherwise the acks would be unmarked. By implementing the
acknowledgment schema, Samadi managed to solve the transient message problem.
In Figure 1.5 it is depicted an example run of this algorithm. The green message
sent by LP; is a transient message because is still in transit while both the processes
are calculating and sending their LVT's; At the time process LP; calculates its local
minimum, the green message has not been delivered yet and, of course, neither the
acknowledgment for it have been received, thus LP; needs to account it, making
him electing 33 as its current LVT.

On the other hand, the differentiation of marked and unmarked acknowledg-
ments, make it possible to solve the simultaneous reporting problem. Messages
sent and acknowledged between two LVT's reporting will be correctly accounted
in the calculation of the new GVT. Let’s suppose, as depicted in Figure 1.5 that the
first process acknowledges the orange message after it has been reported his local
minimum to the coordinator, since it is still into red phase, the acknowledgment

that it will send will be red marked. Process LPs receive the ack for the orange

12

1.3. GVT COMPUTATION ALGORITHMS

message before to start calculating its minimum,; since the ack it received is red
marked, it is in charge for accounting it in the current GVT computation. In fact
even if the message has been acknowledged it would be impossible for the receiver
LP; to include it in its LVT report, because it has already sent the report back to
the coordinator.

Samadi has demonstrated [18] that his algorithm computes a new GVT value
that is no larger than the true GVT value at the instant the controller broadcast
the START_GVT message.

1.3.4 Mattern’s algorithm

Friedemann Mattern in 1993 has revolutionized the Time Warp based simulation
ecosystem, by proposing an asynchronous algorithm [15] that does not requires
message acknowledgment, it opened a way to a completely new family of algo-
rithms based on the two cuts approach. The Orchestra GVT algorithm presented

in this dissertation actually belong to this family too.

LP, LP,
C C
LP, LP, - I
LP, LP, A |
LP, LP,
(a) Consisten cut (b) Inconsisten cut

Figure 1.6: cut definition

The notion of cut is the key point of Mattern’s idea. Referring at Figure 1.6,
a cut can be thought as a broken line that separates the time diagram into two
parts, the past side at the left and the future side at the right of the line. A cut
is said to be consistent if no message arrow starts in the future and ends into the
past. Figure 1.6a shows a consistent cut while an inconsistent one is depicted in
Figure 1.6b.

The important property of a consistent cut C is that the events around it can

be arranged in such a way that it is possible to draw another straight line C” at

13

CHAPTER 1. COMMITMENT HORIZON

wall-clock time T that equivalent to C in the way that it separates both the send
and arrival events in the exact same past and future sets. This transformation can
be performed because it is not relevant the wall-clock time of the events, rather
are the relation between them from a virtual time point of view. For a more formal
argumentation the reader is invited to read the Mattern’s original paper [15]. Since
a consistent cut C is equivalent to its straight version C” at time 7', can be easily use
to calculate a global characteristic of the system such as the GVT, without freezing

the simulation.

Definition 3. Given a consistent cut C and its straight version C’ at wall-clock
time 7', a lower bound of the real GVT at time T can be calculated as the minimum

among;:
« virtual times of all the processes at the cut point of C
« time stamp of all messages crossing C from past to future

Starting from this definition, it is possible to construct an algorithm to cal-
culate a GVT approximation in Time Warp based system. The first problem that
arises is the necessity for the cut to be consistent, as a matter of fact, we cannot
ensure that there will be no messages crossing the cut from the future to the past.
Fortunately as demonstrated by Mattern [15], since the Global Virtual Time is a
monotonic function over the wall-clock time of the simulation, we can simply dis-
card all messages that make C inconsistent. Indeed, these messages are sent from
the future (the right side of the cut) to the past (the left side), meaning that some
process has sent them after its cut point. Given that, after its cut point a process
can only roll-back to a value grater then the GVT calculated over C, it implies that
those messages can only have a value grater then the GVT and won’t influence the
calculation at all, thus they can be discarded. Thus is possible to construct a GVT
algorithm based on the definition 3 with the relaxation that the cut needs not to be
a consistent one. The only implementation obstacle is finding a way of determining
the set of transient messages of the cut without using acknowledgments. The idea
is based on the construction of two consecutive cuts C; and Cs as depicted in Fig-
ure 1.7; after the processes participate to the first cut C; they will enter into a red
phase (region on the diagram between C; and Cz) and they will start keeping track

of all sent messages. This set is composed by all those messages that have been

14

1.3. GVT COMPUTATION ALGORITHMS

LP, "
\ o 7
A ke A
-\. /./ , /
LP ——
T \ /
i \, /
I N /
| ‘.\ 7
LP, : 4 - >
! / 2
1 /7)
. \
1 / .
LP, : |
C C

Figure 1.7: GVT algorithm based on the two cuts approach

sent across LPs between their two cut points, that in Figure 1.7 are characterized
by a red arrow starting from the intermediate red zone. The second cut Cy will
be constructed in such a way that there would not be messages crossing both the
cuts, that graphically means that we are trying to avoid that there would be arrows
starting before the first cut and ending after the second cut. Thus C; can be taken
after that all transient messages crossing C; have been successfully delivered at
the destination process. With the help of the first cut, is thus possible to construct
the set of red messages, that is actually a superset of the red messages crossing Ca
from the past to the future. The minimum time stamp among all red messages is a
lower bound on the minimum time stamp of all transient messages crossing C2.

Practically every process LP; needs to keep track of the following variables:
« TU;: minimum time stamp among all unprocessed events at i’ process

« TR;: minimum time stamp among all red messages sent by LP;

WS;: vector holding at n'" position the number of white messages sent from

LP; to LP, before the first cut

WR;: number of white messages received by LP;

To construct the first cut C1, a control message is exchanged among all the pro-
cesses in a ring fashion; the control message carries a vector V used to accumulate
the total number of white messages that have been sent to each process before Cy;
when a process receives the control message during the construction of the first
cut, it first enters into the red phase, updates the vector V by summing to it its

local vector WS; and then it passes it to next process in the ring. Therefore at the

15

CHAPTER 1. COMMITMENT HORIZON

end of the first complete communication across the ring the vector V will contain
at n'" position the total number of white messages sent by all others to process
LP, before C.

As already mentioned, in order to construct the second cut Cs it is necessary
that all the in-transit white messages have been delivered. The second round can
actually start immediately, but this time a process LP, will pass the control message
to the next one in the ring, only after it is sure that it has correctly received all
white messages destined to it; formally this condition will be reached as soon as
WR, = V[n]. Indeed, every LP will move again to the white phase when passing
the control message. Moreover, along with the vector V, during the second round
the control message will carry also a time stamp value T that the processes will
use to perform a minimum reduction over their LVT. Therefore every process LP,,

will update T as follows:
T = min{T, TU,, TRy} (1.1)

At the end of the second complete communication across the ring, when also the
second cut Cy is closed, T will store the minimum time stamp among all unpro-
cessed event (TU) and all red messages (TR) in the system, that by definition 3 is

exactly the new GVT value over the second cut Cs.

1.3.5 GVT in shared memory systems

Almost twelve years ago, around 2003, the IT world has experienced a very big
turn due to the power-wall phenomenon [19]; the processors manufacture indus-
try stopped pursuing a higher driving clock speed and instead they started fo-
cusing and developing massive hyperthreading and multicore architectures. Sim-
ilarly to all IT fields, also the simulation ecosystem have tried to adapt to this
change by developing innovative techniques to exploit the new possibilities offered
by these new promising architectures. In particular, shared memory capabilities
provided by all modern platforms can be used to implement very efficient inter-
process/inter-thread synchronization strategies and more generally to drastically
reduce the communication cost. In this specific context the actions of each LP are
usually carried out by a specific thread bounded to a specific processing unit of the

underlying hardware platform.

16

1.3. GVT COMPUTATION ALGORITHMS

Fujimoto’s algorithm

Fujimoto [8] has been the first one to take advantage of these new features, using
them to achieve better performance into Time Warp based simulation frameworks.
He demonstrated how, by exploiting shared memory communication primitives,
it is possible to build an observable systems [8] in which there cannot ever be tran-
sient messages. In fact, since the send operation is implemented through a write
operation on the memory portion visible to both the sender and the receiver, the
in-transit time of the message is actually zero, because, as soon as the sender has
written the message into shared memory, it becomes immediately visible to the

receiver. We report here the original Fujimoto definition of the GVT computation:

Definition 4. A Time Warp system is said to be message observable if at any
instant in time, each unprocessed message in the system can be observed by at
least one processor, and the observability of a message by a processor does not

change without some explicit action by some processor in the system.

Given that observable shared memory Time Warp systems does not suffer form
the Transient message problem (Section 1.3.1) by design, Fujimoto was able to de-
sign a much easier and optimized GVT algorithm. A global shared counter is used
to notify all the threads about the start of the new GVT round; instead of sending
a broadcast message, the coordinator simply sets the counter to the total number
of threads. As soon as a thread becomes aware that a new GVT round has been
started (the counter is greater then zero), it reports his current LVT into a shared
array and decrements the counter by one. The last thread that updates the LVTs
is in charge of calculating the global minimum and storing it in another shared
variable.

Even if the update of the shared counter is visible to all the processes imme-
diately (without any network delay), and they check it at every simulation loop,
still every thread would reach the test instruction at different wall-clock time in-
stants from the others, because their execution of the main simulation loop it is
not synchronized. Indeed, the Simultaneous reporting problem (Section 1.3.2) could
potentially occur. Let’s imagine that, after the counter is set, a thread process an
event and send some messages before to actually check the counter, moreover let’s
suppose that one of these messages are destined to a thread that have already re-

ported his LVT into the shared array. In this case the sender is the only one that can

17

CHAPTER 1. COMMITMENT HORIZON

account for that message. Fujimoto solved the issue by ensuring that the shared
counter check is performed at the end of the main loop, after any send operation
and that the time stamp of the last executed event its accounted by every thread
in its local minimum.

Fujimoto’s GVT algorithm [8], still has some scalability issues, due to the usage
of a big critical section; the instructions responsible for the update of the shared
array and the decrement operation of the shared counter, are executed into a crit-
ical section to ensure exclusivity access of those variable residing into the shared
memory portion. The mutual exclusion code snippet could really affect negatively
the performance of the simulation, by having the threads stop processing events

while waiting their turn to contribute to the current GVT round.

Pellegrini’s algorithm

Trying to achieve a very high degree of parallelism and reducing as much as possi-
ble blocking synchronization code ,Pellegrini and Quaglia, come up with another
GVT algorithm [16] targeting tightly coupled shared memory systems.

Their idea was to use Compare and Swap (CAS) primitive [10] in order to pre-
vent the critical section of the previous algorithm. In particular, they used a wait-
free implementation of the atomic counter used to synchronize the threads on the
GVT round, and manage to remove the critical section around the code in charge
of updating the shared array holding the LVTs. Indeed, their proposal still targets
message observable systems, but their implementation of the data structures used
to store incoming messages make actually possible to temporary lose visibility of
some of those messages. Thus from a software point of view they cannot actually
rely on this property to ensure correctness of their algorithm, this is the cost paid
to have a non-blocking implementation of the receive operation (Section 2.5.4).

The impossibility to count on message visibility properties in conjunction to
the necessity of avoiding the simultaneous reporting problem (Section 1.3.2), led
them to construct an algorithm based on multiple phases, in a very similar way to
the one proposed by Mattern (Section 1.3.4).

As depicted in Figure 1.8, all the threads participating to the GVT computation
pass trough three different phases (phase A, phase Send, phase B). The start
of the round, at wall-clock time 71, is made instantaneously visible to all the threads

by atomically setting a special GVT_flag to true. On the other hand, the con-

18

1.3. GVT COMPUTATION ALGORITHMS

t, t, ts
phase Send phase B
WTl [[>
WT,
WT; & &

GVT _flag = true

Figure 1.8: Wait-free GVT algorithm on shared memory systems

clusion of the different phases on different threads can occur at different instants
of wall-clock time as explicitly shown in Figure 1.8 (blue lines). No successive
phase can be entered by any thread unless all the other worker-threads have left
the previous phase, thus the actual system- wide end of a phase is defined by the
time at which the last thread leaves from that phase, depicted in the picture as

dotted orange vertical lines.

Each worker-thread W7; computes its local minimum two times, hence de-

B
i

termining two values minl’.4 and min’, respectively on phase A and phase B.
During the intermediate phase Send, every thread is requested to process at
least one pending event, if any, and to send newly scheduled events produced dur-
ing such processing phase towards the destination worker threads. phase Send
starts right after all the worker threads ended their tasks related to phase A, for
the example in Figure 1.8 this occurs at wall-clock-time #3. Given the intrinsic se-
quential nature of the activities carried by each thread and system observability, at
the end of phase Send (at time #4) it is guaranteed that every message sent dur-
ing phase A has been already incorporated into the destination data structure
(namely the incoming message queue of the destination worker-thread). Thus the
second local minimum calculated on phase B has the goal of accounting for all
those messages sent before phase A that have not accounted by during the cal-
culation of the first local minimum, hence, minf represents the lower bound on

the logical time value that can be affected by WT; when also considering incoming

19

CHAPTER 1. COMMITMENT HORIZON

information after phase Send is over.

For example consider again Figure 1.8, in which the message m is sent at wall-
clock time #o from WT5 to WT; after WT already computed min‘f, but before WT5
computes min?. The timestamp of this message would therefore be missing in the
global reduction. However this timestamp will be accounted by having the worker-
threads computing second minimum min? when it is guaranteed that any message
sent by some worker thread up to the end of phase A have become observable.

Therefore, min(miniA, minl'.B) is the absolute lower bound (LVT;) on the logical
time value that can be affected by the generic worker thread WT; after phase Send
is over. The algorithm terminates by having each worker-thread writing its LVT;
into a shared array and then computing the absolute minimum across all these

values to determine the new GVT.

20

Part 11

The ORCHESTRA algorithm

21

Chapter 2
Simulation platform

The ORCHESTRA distributed GVT algorithm has been implemented and tested
into the ROme OpTimistic Simulator (ROOT-Sim), a general purpose platform
oriented to Discrete Event Simulation DES) and based on optimistic synchroniza-
tion. ROOT-Sim’s development started as a research project late back in 1987, and
is currently run by the High Performance and Dependable Computing Systems group
at the Dipartimento di Ingegneria Informatica, Automatica e Gestionale, Sapienza,
University of Rome. The platform is completely Open Source ! and it is developed
using C/POSIX technology.

The simulator comes as a static library which can be linked to executables
implementing simulation models using the ANSI-C programming standard [13], in
particular the compilation process produces a binary, namely rootsim-cc, thatis
a wrapper of the GNU Compiler Collection (GCC) ? that can be used by the model
developer to compile the model source code, link it to the simulation library and

produce the final executable model binary.

2.1 Simulation entities hierarchy

Computing clusters have become bigger and bigger, often composed by heteroge-
neous architecture, they can reach thousand of teraflop per second through the

cooperation of millions of processing unit. Exploiting in the most fruitful way

'ROOT-Sim source code @ Github - https://github.com/HPDCS/ROOT-Sim
2GNU Compiler Collection (GCC) - https://gcc.gnu.org/

23

https://github.com/HPDCS/ROOT-Sim
https://gcc.gnu.org/

CHAPTER 2. SIMULATION PLATFORM

Kernel

@

Figure 2.1: Hierarchical tree structure organization of the simulation entities

the computation capacity of the underlying hardware platform is one of the main
goals that has been pursued during the development of ROOT-Sim. In order to
support modern supercomputers’ architecture, the simulation platform has been
logically divided into simulation entities organized according to a hierarchical tree

structure composed by 3 different levels.

Logical process As depicted in Figure 2.1, at the bottom of the tree there are the
logical processes. These are the direct representation of the entities described by
application model, the actual ones to be simulated. Each of them have its own event
queue and it is characterized by a Logical process IDentifier (LID). The events can
be sent from one LP to another and always they will be executed on behalf of a

logical process.

Thread LPs are grouped together under a common simulation thread. From the
point of view of the operating system, a simulation thread is actually a process
running on a specific physical core unit. It acts as a scheduler for the LPs it is
managing and it is in charge of dividing the computing power of the physical core
among them. At each instant of wall-clock time one simulation thread will execute
on one core the simulation activities specific to one LPs in its group. Every thread
is characterized by a Thread IDentifier (TID) and will manage a group of LPs
denoted as LPSet; where t is the thread ID.

24

2.1. SIMULATION ENTITIES HIERARCHY

Kernel Multiple threads can be grouped under the same simulation kernel that
represents one physical machine. The threads residing on the same kernel are de-
noted by T'Set; where k is the Kernel IDentifier (KID). A kernel is in charge of
managing common data structure of its threads and logically act as an intermedi-
ate orchestrator of all the inter-kernel communications. The threads that belongs
to the same 7'Set are physically running on the same machine and thus they can

interact by means of share-memory communication.

The flexibility of the structure according to which the simulation entities have
been organized allows the simulation framework to adapt to the underlying hard-
ware and gives a wide range of deploying possibility by supporting very different
clusters’ architectures. It is in fact possible to scale horizontally each individual

level:

Scaling LPs: The total number of LPs represent the total number of entities that
we want to simulate, thus modifying this number allows to change the over-

all size of the simulation.

Scaling threads: Since each thread is bounded to a specific core units, changing
the number of threads permits to choose how many physical cores we are

going to use on a specific machine.

Scaling kernels: The number of kernels reflects the total number of machine that

will participate to the simulation.

As already pointed out, the LPs are the lowest simulation objects of the hierar-
chy, however, it is common practice that the model group different agents under
the same LP. For instance, let’s suppose that we want to simulate migration of
a population over the surface of a planet, it will came natural to make every LP
representing a single individual of the population. A more optimized approach
would be to divide the planet into several geographic regions and to assign each
of them to one LP; every LP will then be in charge of simulating the individuals

that currently are in its geographical region.

25

CHAPTER 2. SIMULATION PLATFORM

2.2 Application level

The application level is logically the higher software layer of the platform, it is
the most abstract one in the way it hides all the complex implementation aspects
of the underlying simulation engine. The models’ code resides in this layer and
that usually implements a mathematical model, defining the rules according to
which the simulation will evolve. Thanks to this abstraction layer, the application
developer needs only to write simple sequential code, that the simulation platform,
in a completely transparent way, will distribute and execute in parallel, exploiting
all the processing units available on the running machines.

In this context, the developer has the full control over the events, that became
the fundamental tool to control the simulation; they can be used to both move
informations between the different simulation entities, thus acting as a communi-
cation channel, as well as to schedule new simulation activities. The application
model can be implement by means of a very simple Application Public Interface

(API) exposed by the simulation engine.

o void ProcessEvent(int me, time_type now, int event_type, void
— * event_content, void *state)

This is the main callback used by the kernel to give control to the applica-
tion layer. Every time a new event need to be processed the engine call this
function passing all the proper parameters that will allow the application
code accessing the events’ data and metadata. The first parameter me is
the the ID of the LP to which the event belongs. The second one, now is
the current value for the local clock that indeed coincides with the times-
tamp of the current event being scheduled. The type of the event is stored
in the event_type parameter, and can be used by the model developer to
differentiate the different events among them, making possible to implement
a switch-case approach to split this main execution entry point into several
specialized ones. During the startup procedure, the platform generates a spe-
cial event for each LP, with the reserved type INIT and timestamp equal to
zero. These special events can be capture by means of the ProcessEvent
callback in order to perform all the necessary startup actions at each LP,
such as the setup of application-level data structure that will be use during

the simulation.

26

2.2. APPLICATION LEVEL

The payload of the event containing the actual data exposed through the
event_content pointer. The platform does not impose any constraints on
the structure of the event payload, giving complete freedom to the devel-
oper among the kind of data that can be passed by means of event exchange.
However the developer needs to keep in mind that does not make any sense
to pass memory references inside the event payload, in fact events can be
potentially sent by LP residing on different kernels and thus on different
physical machines with complete separate memory layout, making impossi-

ble for the receiving LP to perform a proper indirection over those pointers.

During the event execution, it is allowed to apply changes to the state of the
LP to which the event belongs. The platform does not impose any particular
schema neither on the state of the LPs that are presented to the model devel-
oper as a plain memory area in which wherever data structure can be stored.
The access to this area is exposed at each event execution through the last

functions’ parameter state, that is actually a general memory pointer.

As already discussed the simulation engine has been developed to efficiently
support models based on the discrete event approach, in which the time
needed for processing a single event is considered relatively small. Thus,
it is developer’s responsibility to distribute the computations of the model
fairly among the different events of the simulation in order to keep the av-

erage execution time of the single event small enough.

As already mention, the execution of ProcessEvent() code is completely
speculative, in fact the events that are executed might be potentially undone.
Nevertheless the model developer is completely unaware of this aspect and
he is allowed to implement state transition within this callback. Transpar-
ently, the underlying ROOT-Sim engine will take care of performing the
roll-back procedures in the case a inconsistency has been detected and will
commit the definitive events according to the advancement of the commit-

ment horizon

Complete implementation freedom has been given to the model developer
allowing to implement this callback using standard ANSI-C code, however,
given the uncertainty of the event committing introduced by the specula-

tive approach, the developer is advised to not perform any non-rollbackable

27

CHAPTER 2. SIMULATION PLATFORM

actions in this context. For instance if the programmer perform some text
printing on the output stream using standard functions during the execution
of an event that will eventually rolled-back, the simulation engine will not

be able to revert such output.

o void ScheduleNewEvent(int receiver, time_type timestamp, int

- event_type, void *event_content, int event_size)

This function can be used during the execution of a generic event, to pro-
gram new simulation activities. In fact it allows to schedule events for any
LP that is participating to the simulation. The new scheduled event will be
inserted into the pending queue of the targeting LP. In the case the event is
scheduled from an LP to different one, meaning that the destination LP does
not coincide with the LP scheduling the event, the underlying engine will
deliver the event in the form of a message. Indeed the destination LP could
reside on a completely different kernel, requiring the message to navigate
from one machine to the other through the supporting communication net-
work. Given that the events are actually delivered as messages, and that they
embed a payload, they can be actually used to make the LPs communicate

between each others.

The ID of the destination LP need to be specified through the parameter

receiver while the scheduled time of the new event through timestamp .
The developer has also the possibility to label the event with a specific type
through the event_type parameter.

The payload need to be passed by means of alocal memory pointer event_content ,

specifying the actual size of the data through the event_type parameter.

More then one events can be scheduled during the execution of one single
events but they will buffered and delivered asynchronously as soon as the
execution of the current event will terminates. This allows to perform vari-
ous optimization such as packing end delivering together events destined to
the same LP.

Given the speculative nature of the platform, the execution order consis-
tency it will be guaranteed, even in the case that some events have been

scheduled out of order.

28

2.3. STARTUP

e bool OnGVT(void *snapshot, int gid)

Through this function the plaftform communicate to the application model
that a committed state has been successfully reached among all the LPs be-
longing to the current kernel, i.e. that could not ever be reverted. This call-
back has a very important role, because gives the possibility to the program-
mer to check if the simulation has reached a final configuration. In fact
various termination condition can be checked in the context of this function

implementation.

More generally, all sort of global predicates over the simulation state can be

evaluate in the scope of this callback.

The developer can access the last simulation state snapshot of the current

kernel (gid), by means of the memory pointer snapshot .

2.3 Startup

In this section we are going to give an overview of the main steps that characterize
a simulation run. For the sake of generality we assume that the simulation has been
configured to use more then one kernels, thus involving several interconnected
machines.

Once the model has been correctly linked and compiled Section 2.2, it is possi-
ble to run the simulation in a distributed fashion through the mpirun command
utility. As already mentioned, the three runtime configuration parameters (num-
ber of kernels, threads and LPs) can be adjust to scale the simulation according to
the available underlying hardware.

The control machine is the one that will handle the very first phases of sim-
ulation startup, this is the machine on which the simulation start command has
been issued. According to the number of kernels specified, the control machine
will instantiate a number of main processes by placing each of them in a different
computing node of the cluster. Once the kernels have been spawn, all of them
will start to setup and prepare their local environment. In the very first place, the
configuration parameters need to be parsed and stored in the relative data struc-
ture, then the setup of each single platform subsystems will take place. In general

every module needs to allocate some memory and setup the data structures that

29

CHAPTER 2. SIMULATION PLATFORM

will be used during the simulation; for instance the communication submodule
will start allocating the event queues. The MPI subsystem will perform the hand-
shakes among all kernels, in order to provide inter-kernel communication support.
Moreover, during this initial phase, the LPs will be distributed among the kernels
in a deterministic way.

Once all the submodules have been correctly initialized, every kernel will start
spawning the threads that will perform the actual simulation for the LPs in their
LPSet (Section 2.2). Every thread, possibly bound to a specific processing unit,

will then enters into the main simulation loop reported in Listing 1.

2.4 Main simulation loop

The first bunch of actions taken by every thread after they’ve entered the main
simulation loop are enclosed into the initialize_worker_thread() function,
in which the every simulation thread binds to itself the LP that will manage during
the simulation, and will generate the special INIT event (Section 2.2) for each of
them, by pushing it into their event queue.

In the case the simulation is using MPI to support multi kernel execution, all
the threads participate to a synchronization barrier that guarantees that the actual
simulation will start only after all the threads on all the kernels have been correctly
spawned and setup. After the barrier, all the threads enter into the while loop
(Listing 1 - line 10) that will be executed repeatedly until the termination condition
will be reached.

As will be explained with details in Section 2.5, communications between LPs
residing on the same LPSet are faster with respect to the inter-thread ones; for
this reason the kernel try to periodically reshuffle all the LPSet in order to group
together the LPs that are having higher interaction between them.

At the beginning of every cycle of the while loop, the threads will perform the
local LP rebinding, in order to update their LPSet according to the aforementioned
reshuffle.

Before to schedule the LPs’ event execution, every thread will check if there
are pending incoming messages destined to some LP residing on its kernel, and if
there are any, it will receive them and put into the correct destination data structure

(further details will be analyzed in Section 2.5). Additionally the thread will try to

30

1

3

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

2.4. MAIN SIMULATION LOOP

Listing 1 Main loop routine of ROOT-Sim simulation platform

static void *main_simulation_loop(void *arg) {

// Do the initial (local) LP binding, then execute INIT at all (local) LPs
initialize_worker_thread();

#ifdef HAS_MPI
syncronize_all();
#endif

while (!end_computing()) {

// Recompute the LPs-thread binding
rebind_LPs();

#ifdef HAS_MPI

// Check whether we have new ingoing messages sent by remote instances
receive_remote_msgs();

prune_outgoing_queues();

#tendif

// Forward the messages from the incoming message queue to the destination
— LPs

process_bottom_halves();

// Activate one LP and process one event. Send messages produced during
— the events' execution
schedule();

gvt_operations();

#ifdef HAS_MPI
collect_termination();
#endif

// If we're exiting due to an error, we neatly shut down the simulation
if(simulation_error()) {
simulation_shutdown(EXIT_FAILURE);

}
simulation_shutdown (EXIT_SUCCESS);

31

CHAPTER 2. SIMULATION PLATFORM

release memory by discarding obsolete data related to sent event that have been
already received at destination (Listing 1 - line 18).

Now is the time ? for the thread, to withdraw the messages that were temporary
stored into the incoming queue of each LP and move them to the event queue of
the same LP (Section 2.5.4).

Once also the last messages has been incorporated, the thread will select the
furthest behind LP, the one with the minimum virtual clock, and will invoke the

ProcessEvent() callback (Section 2.2) upon the next event on the event queue
of the selected LP.

Before to return from the schedule procedure (Listing 1 - line 24), the simu-
lation thread will perform the asynchronous delivery of the new events produced
during the execution of the ProcessEvent callback, if any.

The thread can now gives its contribution on the GVT synchronization algo-
rithm by executing the gvt_operations()] function.

The action on line 29 need to be performed only in the case the current simu-
lation run involves multiple kernels, in fact this action aim at collecting the termi-
nation declaration coming from other kernels that have already reached the final
simulation state.

Now, if the local termination condition has not been reached yet, the thread
will start another round of the while loop, otherwise will simply die by exiting

from the main_simulation_loop() function.

2.5 Journey of an event

In this section we are going to review the main issues involving the delivery of
an event, we will analyze in details all the steps that it will pass through, from its

creation till its final processing.

2.5.1 Event creation

As already discussed in Section 2.2, the journey of our message starts inside the
model application code, in particular during the execution of the ProcessEvent()

callback. In this scope the LP; being simulated can create a new event, by simply

3Cit. Izner M. shish the launch time idea - http://scientificpubs.eu/718293

32

https://youtu.be/npqIiK1T8jM?t=60s

2.5. JOURNEY OF AN EVENT

allocating memory, filling it with the message payload and pass the pointer of this
memory to the simulation engine through the invocation of the ScheduleNewEvent ()
function. The other parameter of the function, among other things, allow to spec-
ify also the timestamp of the new scheduled event and the identifier of the target
LP; to which the event is destined.

As soon as the engine receives all the metadata and the payload, it packs the
event into a message structure composed by a payload and an header and attaches
to it additional metadata such as the sending time (¢) and the identifier of the send-
ing LP (LP;). The message is then buffered into the temporary outgoing queue of
the sender. Once the ProcessEvent routine in which the message was generated
has been terminated the simulation thread will empty temporary outgoing queue
by pulling the buffered events one by one.

The header of the message (that is relatively small) will be stored in the defini-
tive output queue. This queue is used to keep an history of sent messages and it
will be used in the case of a future rollback of the LP in order to construct the

relative anti-messages.

2.5.2 Message forwarding

After the metadata of the message (the header) has been recorded into the local LP
message history, it can be safely forwarded to the actual delivery phase by passing
it to the Send() procedure. Exactly from this time, the message will be consid-
ered in transit and thus it will became non-observable (Section 1.3.1); during this
transitional phase, the message will be handled by the underlying communication
subsystem making impossible for the simulation software framework to track it
until it will actually be delivered to the destination LP.

During this non-observability period the message could take two different route
as depicted in Figure 2.2, in particular, if the sender LP resides on a kernel different
from the one to which belong the destination LP, the message need to traverse the
communication network to travel from one kernel’s machine to the other. This
first case of inter-kernel communication is represented in Figure 2.2 by the purple
route taken by the second message. In fact, M is sent from LP7 to LP3 that belong
respectively to Threads and T hreads. The two threads resides on different kernels
and thus on different physical machine.

On the other hand, there is the intra-kernel communication, represented in

33

CHAPTER 2. SIMULATION PLATFORM

/’_—“\\

Kernel, \ Kernel,

|
\ |

\\ ,
SIS
|

| |

/
M, /}"n k
>

Figure 2.2: Example of the communication routes of two events, while M; follows
an intra-kernel communication path exploiting shared-memory of the local ma-
chine, M5 needs to travel from one kernel to the other through the interconnection
network

Figure 2.2 by the orange route taken by the first message M;. In this case the
message will not ever leave the local machine, at the most it will travel from one
thread to another still residing on the same computing node. Thanks to the kernel
locality property of the route, this communication can be implement by means
of the shared memory of local machine. In fact if the destination data structure
are placed in this portion of memory they can be accessed by both the sending
and the receiving thread. Thus in order to deliver the message the thread of the
sending LP will need just to insert the message into the temporary incoming queue
of the destination LP, to which it has write access. A theoretical discussion of the

intra-kernel communication pattern has been reviewed already in Section 1.3.5.

Listing 2 reports the Send() routine in which one of the two aforementioned
routes will be chosen according to the message destination LP. In the very first
place we need to understand if the destination LP resides on the same kernel
that is executing the code, that is the kernel on which is currently bound the
LP that have been generated the event. This can be achieved by means of the
GidToKernel macro that given the identifier of an LP it returns the ID of the

kernel on which it is currently bound. Thus on Line 3 we check if the kernel of

34

2.5. JOURNEY OF AN EVENT

Listing 2 Code snippet of the send message procedure

void Send(msg_t *msg) {
// Check whether the message recepient kernel is remote
if(GidToKernel (msg->receiver) != kid){
send_remote_msg(msg);
return;

3
insert_bottom_half(msg);

the receiver LP is different from the local kernel executing kid, if turns out to be
true means that the message will be forwarded to the communication networks
by means of the send_remote_message() function. On the other hand, if the
destination LP is local to the kernel, the shared-memory will be used through the

insert_bottom_half () procedure that will be analyzed later on.

Listing 3 Code snippet of the send remote message procedure

void send_remote_msg(const msg_t* msg){
outgoing_msg* out_msg = allocate_outgoing_msg();
// message copy
out_msg->msg = *msg;
out_msg->msg.colour = threads_phase_colour[local_tid];
unsigned int dest = GidToKernel(msg->receiver);

register_outgoing_msg(&(out_msg->msg));

MPI_Isend(&(out_msg->msg), 1, msg_mpi_t, dest, MSG_EVENT,
— MPI_COMM_WORLD, &(out_msg->req));

// Keep the message in the outgoing queue until it will be received
store_outgoing_msg(out_msg, dest);

Let’s now focus on the first case, analyzing in details the steps involving the
delivery of the message that needs to travel across communication network. The

actions related to this phase and executed at the sender side, are coded into the

35

CHAPTER 2. SIMULATION PLATFORM

send_remote_msg() function (Listing 3). The core instruction is reported on
Line 11 in which the message is sent through the MPI_Isend non-blocking rou-
tine, that allows the executing thread to deliver the message to the underlying
MPI implementation that will take care of all the communication issues and will
transport the message to the destination kernel.

Once the caller thread will exit from the send_outgoing_msgs() it will con-
sider the message as delivered and it will free the message memory referenced by
the msg pointer. On the other hand the MPI_Isend function is non-blocking,
meaning that the actual read of the message buffer and the relative delivery could
happen even after the routine has already gave back the execution to the caller. For
this reason the very first actions (Line 2-5) performed into the send_remote_msg()
aim at creating a copy of the message msg. The new copy, namely out_msg,
will be temporary stored into an outgoing queue in which it will remain until
the underlying MPI implementation will have delivered the message (Line 15 -

store_outgoing_msg()). This data structure is shared among all the local threads

that will periodically check for the delivery status of these messages. As soon as a
message will result to be already received by the receiver LP the relative memory
will be freed.

The register_outgoing_msg() function (Listing 3 - Line 8) marks the en-
trance of the message into the “non-observable time window” (Section 1.3.1) by reg-
istering the message as in-transit. This information is required by the ORCHES-
TRA algorithm and is discussed with details on Section 3.2

The message is now in the hands of MPI that will eventually deliver it.

2.5.3 Message delivery

From the point of view of the simulation framework every event is issued by an LP
and is destined to another LP. As depicted in Figure 2.2, in order to travel from its
source to its destination, the event will go up through several software layers on
the sender side and then will descend at receiver side until it will be incorporated
into the destination data structure. At the higher software layer, there is MPI that
manages communication between different computing nodes. At this abstraction
level there is not concept of logical processes, messages could only travel from one
machine to another, from the source kernel to the destination one. Coming back

to our send_outgoing_msgs() we could see that the actual destination of the

36

2.5. JOURNEY OF AN EVENT

message, specified as parameter of the MPI_Isend call, is in fact the identifier of
the kernel in which resides the destination LP.

Thus even if an event is destined to some specific logical process, while it is
crossing the communication network, it will be considered as a message destined
to some specific kernel. Before to unpack the message at the receiving kernel it
is impossible to know which logical process the event has been sent too. For this

reason the following receiving approach has been developed.

Listing 4 Code snippet of receive messages procedure

void receive_remote_msgs(void){
if(!spin_trylock(&msgs_lock)) return;

int res;
msg_t msg;

while(pending_msgs(MSG_EVENT)){
res = MPI_Recv(&msg, 1, msg_mpi_t, MPI_ANY_SOURCE, MSG_EVENT,
— MPI_COMM_WORLD, MPI_STATUS_IGNORE);

if(res != 0){
rootsim_error(true, "MPI_Recv did not complete correctly"”);
return;

3

insert_bottom_halve(&msg);

spin_unlock(&msgs_lock);

At each cycle of the main simulation loop (Section 2.4) every thread checks
if there are pending incoming messages through the receive_remote_msgs()
routine reported on Listing 4. In a nutshell, the thread loops while there are any
pending messages, and at every cycle receives one of them and stores it into the
destination datas structure.

The pending_msgs() function present into the while condition (Line 7) is
actually a wrapper to an MPI_Iprobe call that allows to check for pending mes-
sages in a non-blocking fashion. Every message is actually received through the
MPI_Recv blocking call, to which the thread passes the kind of message that it is

ready to receive and the pointer to the newly allocated message buffer to where it

37

CHAPTER 2. SIMULATION PLATFORM

will be stored.
The whole function code is executedina try_lock scope, in this way only one
thread at time on the same kernel can receive messages. This execution exclusivity

allows to avoid the following pattern:

Both Thread; and Thread; enters the function and since there are message

pending they evaluates as true the while condition (Line 7).

Thread; get preempted by the system on Line 8.

Thready proceeds and cycles through the loop until all pending messages

are received and exits from the function.

+ The system schedules back the execution of Thread; that try to perform the
MPI_Recv() on Line 8. Since there are no longer pending messages and the

call is blocking the thread will freeze until some new messages will arrive.

By using the try_lock construct, race conditions on incoming messages are
avoided. A thread will try to lock to acquire the section lock, in the case another
thread is already receiving messages, it just gives up and continues with the ex-
ecution of its main simulation loop. Moreover the critical section allows to stock
the messages in the same order of their arrival.

Once the message has been successfully received and copied into the local
buffer, it will be passed to the insert_bottom_halve() that will insert it into

the destination data structure.

2.5.4 Bottom halves

During the startup of the simulation, one data structure for each logical process is
allocated into the shared portion of the main memory. This structures are called
bottom halves and are used as a temporary buffer for the incoming events of the
logical processes. Since they resides into the shared-memory, every process can
enqueue a new event to another local LP by simply writing the event into its bot-
tom halves. The access pattern to one of those data structure is known as multiple
writer - single reader, in fact all the threads on the local machine could possibly

need to enqueue a new event into a specific bottom halve. On the other hand only

38

2.5. JOURNEY OF AN EVENT

the owner of the bottom halve have the right to dequeue them from the structure
since it is the only recipient of these events.

In order to support both the write and read action in a efficient way, the data
structure has been implemented with two buffers an upper one and a bottom one.
All the threads enqueue new events on the bottom one, events are enqueued one
after the other and a lock synchronization approach is used to avoid race condition
while writing. The recipient of the events can only read the messages from the up-
per buffer, one at time by dequeuing them. When the upper buffer get empty, all
the writer get blocked and the two buffer are exchanged. The bottom one that po-
tentially contain new messages becomes the upper one and the empty one becomes
the one dedicated to the insertion. After the change the writers are unlocked and
can continue to enqueue message on the new empty buffer.

Since the exchange procedure involves the swap of two pointers the writers
will not be blocked for much time. Moreover since the reader access only the
upper buffer it does not need to acquire any synchronization lock except when it

needs to swap the two buffers.

2.5.5 Incoming queue

During the main loop every thread will execute the process_bottom_halves()

function (Section 2.4), in which it empties all the bottom halves of the LPs bound
to it. The messages pulled out form these data structure are then enqueued into
the definitive incoming queue of the corresponding LP ordered by their schedule

timestamp.

39

40

Chapter 3

Asynchronous wait-free GVT

algorithm

3.1 Baseline description

The overall sequence of messages and events which compose the ORCHESTRA
algorithm is shown in Figure 3.1'. ORCHESTRA belongs to the family of two-cut
distributed GVT algorithms (Section 1.3.4), and relies on the notion of phases to
let the global computation of the GVT value advance, without any form of explicit
synchronization. A kernel instance can decide independently from any other to
start a GVT computation (i.e., moving from the idle phase to the start phase), thus
avoiding any initial form of communication. Eventually, all distributed instances
will move to the start phase, collaborating to determine the new GVT value.

At the level of the single kernel instance k, ORCHESTRA relies on phases
which are governed by relying on a set of atomic counters. In particular, dur-
ing the computation of the GVT, every worker thread in the 7'Set; set (Section 2.1)
carries on reduction actions on the LPs bound to it, in a way similar to the Pelle-
grini’s algorithm presented in Section 1.3.5. Once a portion of the computation is
carried out, each worker thread notifies its completion by atomically decrement-
ing a counter in shared memory, and enters the next phase after all the threads
have concluded the current one—this can be done by simply checking the value of

a shared counter.

IThis illustration has given the “ORCHESTRA” name to the algorithm, due to it resembling a
music score.

41

CHAPTER 3. ASYNCHRONOUS WAIT-FREE GVT ALGORITHM

ldle : Start WRedux m KVT ; GVT i Fossil i Idle
m Start C "__ ti All sv:.ﬁ advance era wﬁm rt Red " ti m
: art Collecting . ite a eduction H
Ko White Messages 00__mn:osm Complete Messages Received Reducing GVT Complete
“ : " : : " >
T : — : : : o ”
T : * m : : : —0 :
T, : - : : : : A
- N < \ T
= 7 : >
To e — - : O—-
T - : / -) :
T : * : = * [H
- .\ ._. T - hEN Leave red phase \\ GVT Adoption
- h v -~ Teeell ./ &Fossil Collection /'
K . Enter red phase \ TTeelll J /
n . / \ Tt / ;
= : _ S — : >
0 : + : ; v : 0 :
T — : : . : Q=>4
T, H -— H N L o H
Collect White Message Count Reduce GVT

Figure 3.1: Illustration of the ORCHESTRA algorithm

42

3.1. BASELINE DESCRIPTION

Phase changes at the level of kernel instances are triggered by some global
(i.e., distributed) event. In particular, each simulation kernel instance in KernelSet
transits through a number of kernel phases. The succession of these phases is gov-
erned by two different factors. On the one hand, each kernel instance maintains
a set of counters to determine when some global condition is met. On the other
hand, the completion of some asynchronous collective communication primitive

determines the advancement to a different phase.

As for the conditions checked by relying on counters, ORCHESTRA inher-
its from the proposal in [15] the notion of colored messages. In particular, worker
threads in ORCHESTRA continuously alternate their execution in a red and a white
color. Messages sent while running in the red phase are colored red, and messages
sent running in the white phase are colored white. Each worker thread switches
from the white to the red phase independently of each other. This means that, at
the same wall-clock time instant, two different worker threads (possibly in two
different kernel instances) can live in a completely different phase, as depicted in
Figure 3.1. There are only two phase-changing points which are not allowed to
be inverted. These are marked by a purple vertical bar in Figure 3.1. Anyhow,
we emphasize that this behavior is not supported by any form of explicit synchro-
nization. In fact, these bars are associated with the completion of asynchronous
collective communication primitives. We note that by relying on this scheme, ev-
ery worker thread on any kernel instance is allowed to carry on simulation work
while the GVT value is being computed, thus allowing for an efficient usage of the

available computing resources.

As a last note, each kernel instance maintains a counter to identify the cur-
rent era value. This value is used to discriminate between messages sent across
two consecutive white phases. In this way, we are able to reduce the amount of

metadata exchanged across different kernel instances.

Throughout the description of the various procedures of ORCHESTRA, we rely
extensively on the ONLYONCE pseudo-code statement. This statement represents
a block of code that should be executed only once by any of the worker threads
which concur in the activities of a simulation kernel instance. In practice, we pro-
pose to implement such a statement by relying on the Compare and Swap (CAS)
construct. In particular, for each ONLYONCE statement, an integer token variable

should be declared. All token variables should be initialized to zero, and every

43

CHAPTER 3. ASYNCHRONOUS WAIT-FREE GVT ALGORITHM

worker thread will try to execute a CAS(&token,1,0) , meaning that all threads
passing through the ONLYONCE statement will try to update the value of token
to 1. By the semantics of the CAS construct, only one thread will be able to suc-
cessfully perform the update. Therefore, by checking if the CAS has succeeded,
only one thread will actually perform the actions associated with this statement.
In the next section, we present the details of ORCHESTRA, explaining the
meaning of each phase (both at kernel and thread level), and discussing which

are the conditions which allow to switch to a next phase.

3.2 The Algorithm

Algorithm 1 Register Outgoing Event

1: procedure REGISTEROUTGOING(event e)
2 if e.recipient is locally hosted then
3 return
4 end if
5 if e.colour = red then
6: minREP min{e.timestamp, minREP} > R1
7 else
8 AtomicINc(w_counter_sent[e.kern_dest))
9: end if
10: end procedure

Algorithm 2 Register Incoming Event

1: procedure REGISTERINCOMING(event ¢)
2 if e.recipient is locally hosted then
3 return

4 end if

5: if e.colour = white then
6

7

8:

AtomicINc(w_counter_recv[e.era % 2]) > R2
end if
end procedure

In a non-observable Time Warp system, there is a time window along which
a message associated with a send operation at some LP is considered as in-transit,
and therefore it has not yet been incorporated into the recipient LP’s message
queue. To cope with in-transit messages, every time a new event is injected into
the system targeting a remote LP, the sender simulation kernel tracks the bound-

aries of the non-observability window of the message carrying the event by relying

44

3.2. THE ALGORITHM

on the REGISTEROUTGOING() and REGISTERINCOMING() procedures, executed at the
source and destination simulation kernels, respectively. The pseudo-code of these
procedures is depicted in Algorithms 1 and 2. As we have discussed, our asyn-
chronous algorithm relies on colored messages to differentiate among the differ-
ent execution phases of the simulation run in which there is the need to explicitly
account for in-transit messages. This is reflected by the fact that the source kernel
tracks the minimum timestamp of events scheduled by any LP in the LP sets of its
worker threads.

Periodically, a kernel instance determines (independently of the others) that
a global agreement on the value of the GVT is to be made ?, starting the flow
across the different phases, which are associated with different states of threads

and kernels.

3.2.1 Kernel virtual time

We start by illustrating the procedure which is used to compute a local estimation
of the GVT value at a certain kernel, which we refer to as the Kernel Virtual Time
(KVT). The KVT is computed by following the same definition of the GVT, yet
by considering only correctly-executed events and in-transit messages which are
related to the workers of the specific simulation kernel instance. The KVT com-
putation is carried out in a way similar to what has been presented in [16], and
the pseudo-code of the KVT() procedure is presented in Algorithm 3. In particular,
when the simulation kernel has entered a GVT-computation phase, it repeatedly
(i.e., at every main loop iteration) invokes the KVT() procedure. The goal of this
procedure is to pass through all the required phases (associated with all the worker
threads) which ensure a correct estimation of the KVT at the local kernel, return-
ing true only when the correct KVT value has been finally computed (K7). Once
the local KVT computation is started, all the worker threads have been already set

into the A phase. In this phase, all threads execute the following actions:

« messages being received from remote kernels are extracted from the under-

lying communication channel.

°The algorithm proposed in this paper is independent of the actual condition which triggers
the GVT computation, which can therefore depend on some elapsed wall-clock time or memory
shortage. We note that the reception of a red message from a remote kernel could be an additional
good trigger to start the computation, helping to reduce as well the total duration of the GVT
computation.

45

CHAPTER 3. ASYNCHRONOUS WAIT-FREE GVT ALGORITHM

Algorithm 3 Kernel Virtual Time—KVT

1: procedure KVT(): returns boolean
2 if th_phase = A then
3 Receive messages from remote kernels
4: Incorporate messages into event queues
5: minf‘ — min LVT; > K1
ieLPSet;
6 th_phase < Send
7 AtomIcDEC(Cy) > K2
8 return false
9: end if
10: if th_phase = Send A C4 = 0 then > K3
11: Receive messages from remote kernels
12: Incorporate messages into event queues
13: Execute the next event
14: Send output messages/anti-messages
15: th_phase — B
16: AToMICDEC(Csend)
17: return false
18: end if
19: if th_phase = B A Cseng = 0 then
20: Receive messages from remote kernels
21: Incorporate messages into event queues
22: min? — min LVT;
ieLPSet;
23: th_current_era <« th_current_era + 1 > K4
24: th_colour «— white
25: min; «— min{mintA, min,B, minfED} > K5
26: th_phase < Aware
27: AtomicDEc(Cp)
28: if Cg = 0 then
29: ONLYONCE:
30: ming <— min min; > K6
teT Sety
31: return true > K7
32: end if
33: end if
34: return false

35: end procedure

46

3.2. THE ALGORITHM

« the events associated with these messages are incorporated into the event

queues.

« the minimum LVT across all LPs bound to each thread is found, and stored

into a per-thread variable (K1).

Once the minimum has been computed, each thread moves to the Send phase,
and notifies that it has completed its A phase via the atomic counter C4 (K2). This
counter ensures that no worker thread will be ever executing the actions associated
with the Send phase, until all threads have completed the execution of the A phase
(K3). We note that the different worker threads are fully allowed to complete the
execution of phase A at different wall-clock time instants. This is illustrated by the
skewed blue lines in Figure 3.1. The vertical dotted lines illustrate that the next
phase is never started until all threads have completed the previous phase. This
algorithmic organization ensures wait-freedom of execution across the different
threads.

The steps associated with the Send phase entail the following actions:

 messages are received from the communication channel and incorporated

into the event queues.

« the next event (in a Lowest-Timestamp First fashion) is executed by the

worker thread.
« possibly-generated messages/antimessages are sent.

These actions ensure that if some LP bound to a worker thread has executed a
rollback operation due to a straggler message received during phase A, the LVT
of that LP is realigned to that of the straggler message. For a thorough discussion
on the correctness of this approach, we refer the reader to [16]. Similarly to the
previous phase, all threads switch to the B phase, but they do not start the actions
associated with it until all threads have actually completed the Send phase.

At this point, the KVT() procedure shows some differences from the algorithm
in [16]. In particular, after having received and incorporated the messages/events,
a worker thread can consider the red phase as concluded, switching to the next
era as well (K4), and computes again its minimum LVT taking into account as

well the minimum timestamp of the red messages (K5). We note, that switching to

47

CHAPTER 3. ASYNCHRONOUS WAIT-FREE GVT ALGORITHM

the next era does not require any synchronization among the worker threads (as
depicted as well in Figure 3.1), as the correctness of the algorithm is ensured by
the consecutive flow of white/red phases. At the same time, once a thread enters
the white phase associated with the next era, this white phase can be regarded
as a completely-different phase. With respect to Figure 3.1, let us consider the
white message (@) sent from Ty at K; to Ty at Kj,. It crosses the “equivalent” second
cut of the algorithm in [15]. Since our algorithm does not require FIFO network
ordering, this would break the correctness of the algorithm in [15]. Differently,
in our algorithm, the correctness is ensured by the fact that the next era virtually
bounds the white message (@) to the next round of red messages, as depicted in
Algorithm 2 (R2).

All threads then enter the Aware phase, telling that they know that their contri-
bution to the KVT computation is over. Once all the threads are in the Aware phase,
the global minimum among all the worker threads at the given kernel, namely the
KVT value, can be computed as the minimum among the minima of each worker
thread (K6).

We note that after the execution of every phase, the execution of the KVT() pro-
cedure is explicitly interrupted via a return statement. This prevents any thread
from possibly executing two different phases consecutively. While this would not
hamper the correctness of the algorithm, we note that this gives higher priority to
the execution of simulation events, which ensures higher performance by reducing

the overall rollback probability.

3.2.2 Global Virtual Time

The algorithm to compute the KVT value is used in an asynchronously-coordinated
manner to compute the GVT value. As mentioned previously, once a certain con-
dition is met, all the simulation kernel instances start executing at every main loop
iteration the procedure illustrated in Algorithm 4.

A simulation kernel starts its portion of the GVT computation in the Start
phase. Similarly, all its threads are in the Idle phase. In this case (G1), we set to
oo the local min; and min,RED values, which will be used in the KVT algorithm to
compute the minimum accounting as well for in-transit messages. We then color
the running thread red, so that all the messages it will be sending from now on

will be colored red as well. Finally, during the initialization phase, we move the

48

3.2. THE ALGORITHM

Algorithm 4 Global Virtual Time—GVT

1: procedure GVT()
2 if ker_phase = Start A th_phase = 1dle then
3 min; <— oo
4: minszD — o0
5: th_colour < red
6: th_phase «— A
7 AtoMICDEC(Cypir)
8 if Cj,ir = 0 then
9: ONLYONCE:
10: WMsGSREDUX()
11: ker_phase «— WRedux
12: end if
13: return
14: end if
15: if ker_phase = WRedux then
16: if WMscGsRepuxCompL() A WMsGsREcv() then
17: ONLYONCE:
18: Vi € KSet: ATOMICSET(W_counter_sent[i], 0)
19: ker_phase «— KVT
20: end if
21: return
22: end if
23: if ker_phase = KVT A th_phase # Aware then
24: if KVT() then
25: GVTREeDUX()
26: ker_phase «— GVT
27: end if
28: return
29: end if

30: if ker_phase = GVT A GVTREDUXCompL() then
31: ONLYONCE:

32: new_gvt < last_reduced_gvt
33: ker_phase « Fossil

34: return

35: end if

36: if ker_phase = Fossil A th_phase = Aware then
37: FossiLCOLLECTION()

38: th_phase < Idle

39: AtomIcDEC(CEnq)

40: if Cgng = 0 then

41: ONLYONCE:

42: ker_phase < Idle

43: end if

44: end if

45: end procedure

> G1

> G2

> G3

> G4

> G5

> G7

49

CHAPTER 3. ASYNCHRONOUS WAIT-FREE GVT ALGORITHM

thread currently running this procedure into the A phase—since these are sym-
metric kernel instances, all worker threads run the same code, and will eventually
all enter the A phase. As previously illustrated in Algorithm 3, this phase is asso-
ciated with the computation of the local (per thread) minimum. Nevertheless, this
is only a preparation towards that phase, as it will not affect the execution flow
until the KVT() procedure is called, which will happen in a future phase. Similarly
to what we have done in the Algorithm 3 (K2), we rely on atomic counters (G2) to
determine when all threads have finished executing the tasks associated with this
phase. At the end, by still relying on the ONLYONCE construct, we start collecting
all white messages (G3). As mentioned before, this is an asynchronous task: each
kernel receives the total number of white messages sent by the other kernels, and

starts counting all white messages which are received.

The completion of this asynchronous task takes place in the WRedux phase
(G4): when the total number of white messages is received—this is checked via the
WMsGRepUxCompL() call—and the counter of in-transit white messages is zero—
this is checked via the WMsGREcv() call—the global GVT computation can ad-
vance to the next phase. Again, only one thread will force the advancement to the
next phase, after having set the white counter to zero for all threads in the local
kernel instance. We note that after this phase all in-transit messages have been
incorporated into the message queues (possibly causing rollbacks), and therefore

all threads can observe the relevant information for the GVT computation locally.

Therefore, the KVT computation as depicted in Algorithm 3 can be repeatedly
invoked at every simulation loop. As shown, the KVT() procedure returns true af-
ter that all the threads on a simulation kernel instance have flown through all the
phases, and the local minimum for one simulation kernel instance has been com-
puted. At this point, another asynchronous global computation can take place,
namely the global GVT reduction (G5). This phase is semantically equivalent to
computing new_gvt « minjexser min;. Again, this is done by relying on asyn-
chronous calls, and therefore once all kernels agree on the global minimum (G6),
one single thread will make the kernel advance to the next phase, namely the Fossil

phase.

The Fossil phase allows all the worker threads to execute the fossil collection
phase on the LPs currently bound to them. While in theory the GVT computation

might be considered as already completed, this phase ensures that, independently

50

3.2. THE ALGORITHM

of the condition which triggers the activation of the GVT computation, a new asyn-
chronous wait-free computation of the GVT value will never be started before the
fossil collection is completed. This has the benefit of significantly simplifying the
overall structure of the algorithm, making it suitable for most simulation engines
without any need to check for critical races on data structures. This is again done
by relying on one atomic counter (G7). Once this atomic counter is set to zero,
one single thread will set the kernel phase to Idle, thus allowing the next GVT
computation to take place, whenever the condition is met. At this point all threads
are already in the Idle phase, thus the initial conditions of the algorithm have been

restored.

3.2.3 Initialization

Algorithm 5 Initialization

1: procedure STARTGVT()
2 if ker_phase = Idle then
3 ONLYONCE:
4: w_counter_recv([(th_current_era — 1)%2] « 0 >S1
5: ATOMICSET(Cypiz, |T Set|)
6: ATOMICSET(C4, |T Set|)

7 ATOMICSET(Csena, |TSet|)
8: ATtomIcSET(Cp, |T Set|)

9: ATOMICSET(CEpg, |T Set|)
10: ker_phase « Start
11: end if
12: end procedure

To conclude the description of ORCHESTRA, we present in Algorithm 5 the
steps executed to initiate a new GVT computation, The STARTGVT() procedure is
activated, as mentioned before, whenever some condition is met by the simula-
tion engine. Since the initiation of the algorithm should be performed only once
per GVT round, we explicitly check in the procedure whether the kernel is in the
Idle phase just for the sake of logical correctness. The goal of this procedure is
to restore all the atomic counters used in the GVT() and KVT() procedures to the
number of threads locally hosted by the kernel, thus allowing the synchronization
on zero to take place. Additionally, this procedure must set to zero the counter
of white messages received in the previous era. Since we logically consider only

two eras, we refer to the previous one using -1, for the sake of the description of

51

CHAPTER 3. ASYNCHRONOUS WAIT-FREE GVT ALGORITHM

the algorithm. In practice, +1 can be used, allowing to start from 0 as the value
of the th_current_era variable. Finally, to actually notify all threads in the kernel
that they have to participate in the GVT calculation, the kernel is moved to phase
Start, causing the procedure GVT() to actually perform the computation (G1in Al-
gorithm 4). We note that this initialization procedure should reset as well all token
variables used to implement the ONLYONCE statement. For the sake of clarity, this

is not reported in the pseudocode of Algorithm 5.

52

Chapter 4

Experimental results

Figure 4.1: Marenostrum III supercomputer located at Torre Girona, Barcelona,
Spain. This photo has been granted by BSC-CNS under the Creative Common
license (CC BY-NC)

53

https://creativecommons.org/licenses/by-nc/4.0/

CHAPTER 4. EXPERIMENTAL RESULTS

4.1 Cluster architecture

Experiments have been conducted by deploying the ROOT-Sim simulator (Sec-
tion 2) on MareNostrum IIl supercomputer ! located at “Barcelona Supercomputing
Center - Centro Nacional de Supercomputaciéon” (BSC-CNS). The cluster, shown
in Figure 4.1, was update to the third version in August 2012 thanks to an agree-
ment between the Spanish government and IBM, reaching the 34" position on
the TOP500 ranking . The cluster is composed of 3,056 IBM dx360 M4 compute
nodes distributed over 36 IBM iDataPlex Compute racks and can reach a total peak

performance of 1, 1 Petaflops. Each compute node is composed of:

« Two 8-core Intel Xeon processors E5-2670 at 2.6 GHz, 20 MB cache mem-
ory, with a peak performance of 332.8 Gflops per node.

Eight 4 GB DIMM’s, 1.5V DDR3 @ 1600 MHz. Having 32 GB per node and 2
GB per core

Local hard drive: IBM 500 GB 7.2K 6Gbps NL SATA 3.5.

MPI network card: Mellanox ConnectX-3 Dual Port QDR/FDR10 Mezz Card.

2 Gigabit Ethernet network cards (management network and GPFS)

To support the proprietary InfiniBand technology, each rack has 4 Mellanox
36-port Managed FDR10 IB Switches. The operating system driving all the nodes
is SuSe Linux 11 SP3 based on linux kernel 3.0.101-0.47.90

4.2 Communication framework

The message passing interface framework used for the underlying inter-node com-
munication is OpenMPI [9]. To exploit the multi threading capability of the library
a self compiled version of the OpenMPI 2.1.0 version has been used. Native
threads support has been enabled through the --enable-mpi-thread-multiple

configuration flag. For a practical analysis of the the multi-threading capabilities

of the library the reader is invited to look section ??.

lhttps://www.bsc.es/marenostrum/marenostrum/mn3
2TOP500 ranking of November 2013 - https://www. top500.org/list/2013/11/

54

http://www.bsc.es/
https://www.bsc.es/marenostrum/marenostrum/mn3
https://www.top500.org/list/2013/11/

4.3. BENCHMARK

4.3 Benchmark

Regarding the benchmark for assessing the effectiveness of ORCHESTRA, we have
used the Personal Communication System (PCS) real-world cellular simulation
model, which has already been used as a reference benchmark application in sev-
eral other studies oriented to optimistic PDES. Each LP models a wireless cell man-
aging 1, 000 wireless channels to provide coverage to mobile devices in a hexago-
nal region. The model is high-fidelity in terms of how interference across different
channels within a same cell and power management upon call setup/handoff is
captured and actuated. Particularly, the application handles power management
simulation according to the results in [12]. The application is also highly parame-
terizable by allowing the recalculation of fading coefficients and actual Signal-to-
Interference Ratio (SIR) both on the occurrence of specific events (e.g. the startup
of a call) and periodically (so as to account for, e.g., changes of conditions in the
coverage area). Also, the inter-arrival of calls to mobile devices in the coverage
area can be configured, thus leading to different values for the wireless channels’
utilization factor. This, in its turn, affects both memory and CPU demand by the
simulation. The interaction across the different LPs takes place upon a handoff of
a mobile device involved in an ongoing communication, in which case the wire-
less channel at the source cell is released, and a new one in the destination cell is

attempted to be reserved.

The experimentation has been conducted by using 5 minutes value as the aver-
age residual residence time in one cell for a mobile device involved in an on-going
call, while the average call duration was set to 2 minutes. Both these values have
been set to follow exponential distributions. Also, the channel utilization factor
has been set to 75%, with balanced workload on all the LPs. This settings produce
simulation event’s average CPU requirement of about 150 microseconds. ROOT-
Sim has been run on a different number of MareNostrum nodes (4.1), namely from
1 node to 32. On every node, all available 16 cores have been always used. Two
different families of experiments have been conducted: one using 4096 LPs and
running until each cell has completed the simulation of 500,000 calls; one using
16, 348 LPs and running until the completion of 10, 000 calls.

In Figure 4.2 reports experimental results when running PCS configured with

4096 LPs. The y axis is logarithmic. Three different GVT reduction algorithms are

35

CHAPTER 4. EXPERIMENTAL RESULTS

100000 T T T T

)

T

<

0

0

0

0

o

E 10000 o N 1
[—| L

o

o

-

18]

3

3}

0

X

&)

1000
0 5 10 15 20 25 30 35
Number of nodes
~ ORCHESTRA * F&H Ack

Figure 4.2: Execution time using 4096 LPs

compared: ORCHESTRA, an asynchronous algorithm where the local computation
is protected by critical sections, according to the Fujimoto & Hybinette algorithm
in [8] (referred to as F&H in the plot), and an acknowledgement-based reduction

inspired to the work in [14] (referred to as Ack in the plot).
With respect to F&H, we observe that ORCHESTRA allows to reduce the wall-

clock-time required to complete the run up to 25%. This phenomenon is strictly
related to the higher overhead paid by F&H on the local (intra-kernel) computation,
in terms of CPU-time required to run tasks related to GVT computation. In fact,
since on a single node there are 16 concurrent worker threads active, the likelihood

of synchronizing on the GVT-reduction critical section increases. This is explicitly
avoided by the phase-based wait-free nature of ORCHESTRA.

A slightly different behavior is observed with respect to Ack. In fact, when run-
ning with a small number of distributed nodes (namely, 1 or 2 nodes), Ack is able
to deliver a performance which is slightly better, on the order of 12%. This is re-
lated to the fact that the communication overhead paid to acknowledge in-transit

messages is quite reduced, while the steps required to compute the GVT value

56

4.3. BENCHMARK

60

50 ey

40 o e

30 fro e

Speedup

20 e T

10 e

2 4 8 16 32

Number of nodes

Figure 4.3: Speedup using 4096 LPs

are much simpler than in the case of ORCHESTRA. On the other hand, when the
degree of concurrency increases, ORCHESTRA is able to deliver a performance
increase up to 70%. This is clearly related to the fact that the communication over-
head in ORCHESTRA is significantly reduced.

This phenomenon is confirmed by the results in Figure 4.3, where we report
the speedup obtained when increasing the number of distributed computing nodes,
with respect to the performance obtained when using one single computing node.
As it can be seen, when the number of distributed nodes is higher than 2, we ob-
serve a super-linear speedup, thanks to the increased overall size of caches across
the distributed nodes. For further details about the reasons behind this behavior,

the reader is invited to look at Sec. 4.4.2

Figure 4.4 reports data related to ORCHESTRA’s scalability when running with
a much more increased workload. In particular, the plot shows the simulation exe-
cution time when PCS is configured to run 16,348 LPs. By the results, we observe a
maximum speedup of 35, when running with 16 nodes, and a trend which is compa-

rable to the one shown in Figure 4.2, denoting that ORCHESTRA'’s performance be-

37

CHAPTER 4. EXPERIMENTAL RESULTS

9000 3

8000
—~ 2.5
0
o 7000
a
3
© 6000 [2
0 >
~ O
o 5000 | g
E 1.5 @
B 4000 E
[4
9 M
o 3000 1
3
o
¢ 2000 F
E3] 0.5

1000

O | | | | | | | O
0 2 4 6 8 10 12 14 16

Number of nodes

Figure 4.4: Execution time using 16.348 LPs

havior is resilient to a non-minimal scaling up of the workload. The plot shows as
well the parallel efficiency of the distributed execution, namely speedup/n, where
n is the number of distributed nodes. By the results, we can see that ORCHES-
TRA has a strong scaling behaviour, as the efficiency increases without the need

for increasing the size of the simulation model.

To complete the experimental assessment, we present in Figure 4.5 a compar-
ison between the time required by ORCHESTRA, F&H, and Ack to complete the
reduction of a GVT value, i.e. the time passed from the initiation of a GVT round
and the completion of the same round. By the results, we observe that Ack requires
always a smaller time to compute the value of the GVT. This is because, as men-
tioned earlier, most of the burden to synchronize the computing nodes is placed
on frequent communication. Therefore, the actual GVT algorithm is much simpler
and can compute the reduction more quickly. Nevertheless, the synchronization
cost is distributed over the whole simulation run, thus delivering the smaller per-
formance which has been previously shown in Figure 4.2. Similarly, the GVT round
time for F&H is higher than that of ORCHESTRA. This is an additional indication

58

4.4. IN-DEPTH ANALYSIS WITH PARAVER

4500

8 4000
o

g 3500
0
-

E 3000
g

E 2500
H

o 2000
¢}
-

5 1500
5
B

p 1000

E 500
O

0

1 2 3 8 16
Number of nodes
0 ORCHESTRA B F&H B Ack

Figure 4.5: GVT round completion time using 16.384 LPs

of the fact that the wait-free nature of ORCHESTRA is able to reduce the cost of
computing local GVT candidates.

4.4 In-depth analysis with Paraver

The analysis of the communication pattern among the agents along with the study
of the timing of the most important events occurring during the simulation are a
very useful practice to discover inefficiencies and/or anomalies of the software.
Due to the distributed nature of the simulation and the high rate of exchanged
messages, carrying on this kind of analysis can be really challenging. Usually, the
biggest obstacle is represented by the impossibility of correlating events occurring
on different machines with no-synchronized clock without interfering on the ac-
tual simulation operations. A lot of tools, aimed at the analysis of distributed sys-
tems, operate by inserting synchronization barriers in strategic point and adding
additional overhead upon the communication channels, producing an altered re-
port with a messed up events timeline. On the other hand, one common method
to conduct software performance analysis is based on correlating the source code

(usually on per function or per line basis) with performance metrics such as the

59

CHAPTER 4. EXPERIMENTAL RESULTS

execution time or cache misses in order to highlight the most expensive or most
executed code regions. This kind of approach usually provides a very limited and
specific view of the behavior of the application that very often leads the analyst to
erroneous conclusion about the source of the problem.

To conduct the performance study of the new ORCHESTRA algorithm we in-
strumented the ROOT-Sim platform using Paraver [17], a performance visualiza-
tion and analysis tool. Instead of focusing on the source code, this application,
provides a graphical interface to navigate and visualize performance metrics on a
line based graph. Paraver provides a qualitative global perception of the applica-
tion behavior by visual inspection and allow to focus on the detailed quantitative
analysis of the problems. It works by extrapolating data from raw trace files with
a custom format that can be generated with the help of Extrae package . Extrae
takes advantage of multiple interposition mechanisms to add monitors into the
application in order to probe hardware/software counters and generate the final
trace file. More specifically, the “Linker preload” method has been used to conduct
this analysis; the operating systems is exploited to inject a shared library into an
application before the application is actually loaded. If the library that is being
preloaded provides the same symbols as those contained in shared libraries of the
application, such symbols can be wrapped in order to inject code in these calls.
In Linux systems this technique can be put in place by using the LD_PRELOAD
environment variable. Extrae contains substitution symbols for many parallel run-

times, as OpenMP, pthread, CUDA accelerated applications, and MPI applications.

4.4.1 Communication pattern

The first step taken to tackle the performance study has been the analysis of the
communication pattern among the different kernels and threads participating into
the simulation. The model that has been used to conduct the target simulation is
the Personal Communication System (PCS) real-world cellular simulation model,
the same used for the benchmarking (Sec. 4.3).

A very first example of communication pattern is depicted in Figure 4.6, with
the purpose of getting the reader used to Paraver’s timelines. The graph is built

upon a trace of a PCS simulation run among two kernels with one thread each

SExtrae tool home page - https://tools.bsc.es/extrae

60

https://tools.bsc.es/extrae

4.4. IN-DEPTH ANALYSIS WITH PARAVER

Figure 4.6: Communication pattern between two kernels with one thread each

(A1.1 and Ag.1). The timeline is populated with the different events related to com-
munication operations, each of them is represented by a rectangle, characterized
by a width that is proportional to the event duration time and a color. These two
timelines are actually very difficult to interpret because the events rate is too high
with respect to the time scale used, making complex to distinguish the different
events. However, looking the graph at this time scale, it is pretty evident that both
the threads play a very similar role, at least from a communication point of view, in
fact the colors distribution is homogeneous on both. In the same Figure 4.6, a por-
tion of the same graph is reported at a different time scale, in which single events
are more easy to distinguish. To give a clue of the message exchange rate between
the two threads, the inter-event time distance of 356 us is explicitly reported. In
Figure 4.7 is depicted a single message exchange example between the two threads;
A1.1 performs non-blocking send of the message through the MPI_Isend function
(blue colored), on the other hand, as soon as Ag 1 reach the procedure to check for

new incoming message it will invoke the non-blocking MPI_Iprobe procedure

61

CHAPTER 4. EXPERIMENTAL RESULTS

Isend

15 us N

Iprobe Recv

Figure 4.7: MPI calls communication graph example

(red colored). In the case there are incoming message pending at the time the
probe is invoked, the receiver will start to actually incorporate them through the

MPI_Recv synchronous call (colored).

In Figure 4.8 another communication graph is shown, where 16 kernels with
one thread each exchange messages. From these timelines, which represent a time
window of about 6637 us, it is possible to notice that almost all communications
happen between near neighbors. There is another visualization approach exposed
by Paraver that is very helpful to better comprehend the communication pattern,
this view, reported in Figure 4.9, is actually a communication matrix in which every
cell (X,Y) contains the number of messages sent by thread X to thread Y. All the
communications are concentrated around the main diagonal, as it turns out that
every thread communicates only with the previous kernel and the subsequent one.
This communication pattern is the result of the distribution of the LPs among the
threads and the hexagonal subdivision of the terrain assumed by the PCS model.
The only exception to this pattern is represented by the thread residing on the first
kernel (first row in the matrix) that during this trace performed 4 sends to all the
other kernels, in fact, this kernel is in charge of notifying the start of a new GVT

round to the others, indeed, during the represented trace, 4 GVT rounds have been

62

4.4. IN-DEPTH ANALYSIS WITH PARAVER

Thread 1.1 n - ni I 1

Thread 1.2 1 1 | | \ | 1
Thread 1.3 | i l l ‘ ‘)
mreaaia | |l i} il i . HH
mesdrs | |41 m 11 | i i
meadrs | || | H fl 1

Thread 1.7 | NP k1 1 1|

Thread 1.8 | N | | \ \

Thread 1.9 | H | | i I
Thread 1.10 I m 1 i I 1l 1 1

Thread 1.11 ni 1 11 11 I

Thread 112 | 1] [H i | [i I
hread 113 ||] fl M i 18 | |
Thread 1.4 | | il I | \ | ! tl
Thread 1.15 | | \ i i I
Thread 1.16 ‘ II II I |

2.119.458 us 2.120.095 us)

Figure 4.8: Communication graph between 16 kernels with one thread each

performed.

Multi-thread communications

Paraver has been also exploited to prove that the Open MPI implentation, was
actually making use of the new multi-threading capabilities. The timeline of Fig-
ure 4.10 represent the trace of a simulation carried on by 3 kernels with 4 threads
each, in which the concurrent calls to the MPI library API from threads residing on
the same kernel have been highlighted with a purple circle. As we can see from the
figure, it happens for instance that while a thread is sending a message through
an MPI_Isend another thread on the same kernel is checking for new incom-
ing messages through the MPI_Iprobe or even receiving the messages through
the MPI_Recv ; as already discussed the concurrency provided by the underlying
communication library allows to reach a very high degree of parallelism inside the

kernel and to improve the overall scalability of the platform.

4.4.2 Superlinear speedup investigation

In order to better understand the behavior of the platform related to the strong

scaling benchmarking (Sec. 4) and in particular to comprehend the reasons behind

63

CHAPTER 4. EXPERIMENTAL RESULTS

THREAD 1.11 THREAD 1.2.1 THREAD 1.3.1 THREAD 14.1 THREAD 15.1 THREAD 16.1 THREAD 17.1 THREAD 18.1 THREAD 19.1 THREAD 1.10.1 THREAD 1.11.1 THREAD 112.1 THREAD 1.13.1 THREAD 1.14.1 THREAD 115.1 THREAD 116.1

0111 i IS T T T T R
THREAD 1.2.1 mm - - - - - - - - - - - -

THREAD 13.1 0| - 9,897 - - - - - -] - -

THREAD 14.1 [- IR - - E -

THREAD 15.1 0 - S - 9,576} - - - -

TR0 161 o : _— —_— : : :

THREAD 17.1 0 - - - 8,894] - S - - -

THREAD 19.1 0 9,950]

THREAD 1.11.1 0

THREAD 1.12.1 0 - I - -

THREAD 113.1 [- IR - -

THREAD 1.14.1 0 - IR - I

THREAD 115.1 0 - - IR
THREAD 1.16.1 0 -

Total 8574 25,076 17,575 18,787 18,359 18,474 18,069 18,504 17,924 18,771 18129 19,108 17,792 17,635 31,308 8473
Average 57160 12538 585833 6.262.33 6.119.67 6.158 6023 6.168 597467 6.257 6,043 6.369.33 593067 587833 10436 423650
Maximum 8574 16,094 9,284 9,897 9,392 9576 9,075 9583 9,168 9,950 9121 9,791 9,03 9,784 22,432 8469
Minimum 8574 8,982 4 4 4 4 4 4 4 4 4 4 4 4 4 4

StDev 213873 3556 4,159.60 4444552 432797 436043 425622 4,367.08 422531 4,445.67 427048 4,505.20 419239 4,228.38 922274 423250
Avg/Max 007 078 063 063 0565 064 066 064 063 0566 065 066 060 047 050

Figure 4.9: Communication matrix between 16 kernels with one thread each

Thread 1.1

Thread 1.2

Thread 1.3 l
Thread 1.4 l

Thread 2.1 l

Thread 2.2
Thread 2.3

Thread 2.4

Thread 3.1 | ‘
Thread 3.2
Thread 3.3

Thread 3.4

5.558.816 us 5.558.187 us

Figure 4.10: Communication graph of 3 kernels with 4 threads each, the concurrent
MPI calls inside the same kernel have been highlighted

the superlinear speedup more experiments have been collected and analyzed with

the Paraver analysis tool.

For this specific investigation a modified version of the Personal Communi-
cation System (PCS) real-world cellular simulation model has been used. In fact,
in pursuance of a more homogeneous workload between the kernels and in order
to avoid the ring fashion communication pattern (Sec. 4.4.1) the model has been
modified to use a mesh network interconnection between all the hexagonal cells.
Four different simulation runs have been conducted and the relative traces have
been collected, following the strong scaling principle we keep the number of LPs

fixed while increasing the number of kernels (2, 4, 8, 16). In order to reduce the size

64

4.4. IN-DEPTH ANALYSIS WITH PARAVER

of the traces and to focus our attention to the inter-kernel interaction we decided
to allocate just one thread per kernel

We first started analyzing the instruction per cycle performance metrics but
we didn’t notice any correlation between the variance of this parameter and the
superlinear speedup, in fact, it turns out that the IPC it is almost stable around
the value of 1.10. Increasing the number of kernels make the IPC to lower a little
without a significant variance.

We also analyzed the useful duration metric that represents the computation
time spent outside communication procedure; this metrics can be used to reveal
how the overall time spent into communication varies with respect to the number
of kernel participating in the simulation. As expected, we found out that increasing
the number of kernels percentage of useful time reduces, making also this metrics

not correlated to the superlinear speedup behavior.

Cache analysis

Given the very simple data structures used by the platform, the memory access
pattern and the repartition of the LPs among the increasing number of kernels in
the strong scaling test, we decided to focus our investigation toward the usage of
the memory cache. The memory analysis has been conducted by collecting the
L1 data cache miss ratio metric, that represents the fraction of accesses to the L1
data cache that produced a miss. The instruction cache has not been taken into
account for this specific study because the instructions executed by each kernel
on the different strong scaling tests are almost the same.

Figure 4.11 depicts the histograms of L1 data cache miss ratio relative to the 4
different runs conducted during the strong scaling test with 2, 4, 8 and 16 kernels.
Each histograms is composed of a number of rows equal to the number of kernels
participating to that specific simulation. Every cell holds a specific position on the
Y axis that expresses a value of the L1 data cache miss ratio metric between 1 and
50, the values outside this range are irrelevant for the sake of this analysis and they
have been omitted from the histograms. The color of a particular cell at position Y
express visually the sum of all the time units of the simulation characterized by the
same L1 data cache miss ratio, the color gradient goes from light green, that cor-
respond to a very low time value, up to dark blue, that represents long time. The

gray cell corresponds to a time sum of zero, meaning that the kernel didn’t spend

65

CHAPTER 4. EXPERIMENTAL RESULTS

Nodes

2

16

1 12 15 18 50
L1 data cache miss ratio

Figure 4.11: Histograms of the L1 data cache miss ratio relative to strong scaling
tests with 2, 4, 8 and 16 kernels

any time unit with that specific miss ratio. Some of the more interesting miss ratio
values (vertical orange lines) are highlighted in Figure 4.11; the histogram of the
first run, composed of just two kernels, visually suggests that in the biggest per-
centage of time (blue cells, almost 12 seconds) both the kernels have experienced
a cache miss ratio of 18.The image shows clearly that increasing the number of
kernels in the subsequent runs make the average number of misses relative to the
L1 data cache diminish. In fact, as we can see from the histogram of the last run,
the average cache miss ratio is around 12.

The very same data have been presented also in the form of distributed graph in
Figure 4.12, on the x axis, we have the cache-miss ratio over the amount of machine
instructions executed in a certain period of time. On the y axis, we have the total
execution time in which a certain cache-miss ratio is observed in the simulation.

By this plot we can observe that:

« the value of the mean time spent in cache-miss distribution interval de-

creases

« the cache-miss ratio value for which we observe the highest distribution time

similarly decreases

66

4.4. IN-DEPTH ANALYSIS WITH PARAVER

12
O e —
8 b]
0
0]
2
6 Lo -
[0)
=]
-
H
4 USSR]
2 Y AU SUR -
O | | — |
8 10 12 14 16 18 20 22
Cache Miss Ratio
— 2 nodes 4 nodes 8 nodes 16 nodes

Figure 4.12: Graph of the L1 data cache miss ratio relative to strong scaling tests
with 2, 4, 8 and 16 kernels

Therefore we can conclude that the total number of L1 data cache misses reduces
while increasing the number of kernels participating into the simulation. This
means that ORCHESTRA allows to effectively overcome the memory wall, since
the overall memory hierarchy is exploited in a more fruitful way. In fact increas-
ing the number of kernels by keeping fixed the number of LPs, makes every kernel
having to handle a smaller number of LPs, with the direct consequence of having
smaller data structures and thus a smaller residing memory set. This fruitful ex-
ploitation, given that the total size of L1 cache across all computing node is larger,
is able to deliver the super-linear speedup observed in Figure 4.3.

For the sake of completeness, the L2 data cache miss ratio histograms of same
runs as before are reported in Figure 4.13. Differently from the L1 cache, the miss
rate relative to the accesses of the second level data cache remain pretty stable
while increasing the number of kernels on the different simulation runs, in fact, as
highlighted in the image by the orange vertical marker, the average L2 cache miss

ration stays around 5 for all of the four simulation (2, 4, 8 and 16 kernels).

67

CHAPTER 4. EXPERIMENTAL RESULTS

Nodes

2

16

L2 data cache miss ratio

Figure 4.13: Histograms of the L2 data cache miss ratio relative to strong scaling
tests with 2, 4, 8 and 16 kernels

68

Chapter 5
conclusions

The ORCHESTRA algorithm signed a step forward in the complex world of spec-
ulative simulations. The new GVT algorithm along with the architecture of the
simulation platform allows for an orthogonal scaling. On one hand the number of
simulation threads can be scaled to exploit all the computing units inside a single
machine, while on the other hand the number of simulation kernels can be tuned
in order spread the simulation among all the nodes in the clusters. This orthog-
onal scaling gives to the platforms the elasticity to adapt to very different cluster
architectures.

Experimental results obtained on Marenostrum III supercomputer and pre-
sented in [20], have proven the scalability of the algorithm. In particular the results
show a superlinear speedup on the strong scaling test. Thanks to an in-depth anal-
ysis that I conducted using the Paraver analysis tool [17], it was possible to cor-
relate the superlinear behavior to the exploitation of the L1 data cache (a detailed
version of this analysis can be found on the dissertation of my thesis).

The general organization of ORCHESTRA could be adopted by different high-
performance computing applications. In particular the combined use of atomic
counters, collective communications and the “Compare & Swap" instruction is the
key to construct very efficient coordination algorithms for multi-thread distributed
environments. This flexible multi-phase pattern can be implemented to orches-
trate a wide variety of distributed asynchronous tasks even outside the world of

simulation softwares.

69

70

Bibliography

(2]

Francesco Antonacci, Alessandro Pellegrini, and Francesco Quaglia. “Con-
sistent and efficient output-stream management in optimistic simulation
platforms”. In: Proceedings of the 2013 ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation. PADS. ACM, 2013, pp. 315-326.

Reid Baldwin, Moon Jung Chung, and Yunmo Chung. “Overlapping win-
dow algorithm for computing gvt in time warp”. In: Parallel Algorithms and
Applications 6.2-3 (1995), pp. 93-110.

Steven Bellenot. “Global Virtual Time algorithms”. In: Proceedings of the SCS
Multiconference on Distributed Simulation. 1990, pp. 122-127.

Gilbert G Chen and Boleslaw K Szymanski. “Time Quantum GVT: A Scalable
Computation of the Global Virtual Time in Parallel Discrete Event Simula-
tions”. In: 8.4 (2008), pp. 423-435.

Samir R Das and Richard M Fujimoto. “Adaptive memory management and
optimism control in time warp”. In: ACM Transactions on Modeling and Com-
puter Simulation 7.2 (1997), pp. 239-271.

Samir Das et al. “GTW: A Time Warp System for Shared Memory Multipro-
cessors”. In: WSC Proceedings of the 26th Conference on Winter Simulation
(1994), pp. 1332-1339.

S.K.Das and F. Sarkar. “A hypercube algorithm for GVT computation and its
application in optimistic parallel simulation”. In: Proceedings of Simulation

Symposium. IEEE Comput. Soc. Press, 1995, pp. 51-60.

Richard M Fujimoto and Maria Hybinette. “Computing Global Virtual Time
in Shared-Memory Multiprocessors”. In: ACM Transactions on Modeling and
Computer Simulation 7.4 (1997), pp. 425-446.

71

BIBLIOGRAPHY

[15]

[16]

72

Edgar Gabriel et al. “Open MPI: Goals, Concept, and Design of a Next Gener-
ation MPI Implementation”. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting. Budapest, Hungary, Sept. 2004, pp. 97-104.

Tim Harris, Keir Fraser, and Ian a. Pratt. “A practical multi-word compare-

and-swap operation”. In: Distributed Computing (2002), pp. 265-279.

David R Jefferson. “Virtual Time”. In: ACM Transactions on Programming
Languages and System 7.3 (1985), pp. 404—-425.

Sunil Kandukuri and Stephen Boyd. “Optimal Power Control in Interference-
Limited Fading Wireless Channels with Outage-Probability Specifications”.
In: IEEE Transactions on Wireless Communications 1.1 (2002), pp. 46—55.

Brian W Kernighan and Dennis M Ritchie. The C programming language.
Vol. 78. 1988, pp. 1-217.

Yi-Bing Lin and Edward D Lazowska. “Determining the global virtual time in
a distributed simulation”. In: Proceedings of the 19th International Conference
on Parallel Processing. Ed. by Benjamin W Wah. ICPP. Pennsylvania State
University Press, 1990, pp. 201-209.

Friedemann Mattern. “Efficient Algorithms for Distributed Snapshots and
Global Virtual Time Approximation”. In: Journal of Parallel and Distributed
Computing 18.4 (Aug. 1993), pp. 423-434.

Alessandro Pellegrini and Francesco Quaglia. “Wait-Free Global Virtual Time
Computation in Shared Memory TimeWarp Systems”. In: 2014 IEEE 26th
International Symposium on Computer Architecture and High Performance
Computing. IEEE, Oct. 2014, pp. 9-16.

Vincent Pillet et al. “Paraver: A tool to visualize and analyze parallel code”.
In: Proceedings of WoTUG-18: transputer and occam developments. Vol. 44. 1.
IOS Press. 1995, pp. 17-31.

Behrokh Samadi. “Distributed Simulation, Algorithms and Performance Anal-
ysis (Load Balancing, Distributed Processing)”. PhD thesis. 1985.

H Sutter. “The free lunch is over: A fundamental turn toward concurrency
in software”. In: Dr. Dobb’s Journal (2005), pp. 1-9.

Tommaso Tocci et al. “ORCHESTRA : An Asynchronous Wait-Free Dis-
tributed GVT Algorithm”. In: (2017).

This work is licensed under a Creative Commons

“Attribution-NonCommercial-ShareAlike 4.0 International” @ ® @ @

license.

73

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

	I Optimistic synchronization strategy
	Commitment horizon
	Fossil collection
	Global Virtual Time
	GVT computation algorithms
	The transient message problem
	Simultaneous reporting problem
	Samadi's algorithm
	Mattern's algorithm
	GVT in shared memory systems

	II The ORCHESTRA algorithm
	Simulation platform
	Simulation entities hierarchy
	Application level
	Startup
	Main simulation loop
	Journey of an event
	Event creation
	Message forwarding
	Message delivery
	Bottom halves
	Incoming queue

	Asynchronous wait-free GVT algorithm
	Baseline description
	The Algorithm
	Kernel virtual time
	Global Virtual Time
	Initialization

	Experimental results
	Cluster architecture
	Communication framework
	Benchmark
	In-depth analysis with Paraver
	Communication pattern
	Superlinear speedup investigation

	conclusions

