
Faculty of Information Engineering,
Informatics and Statistics

Master’s Degree Thesis in

Engineering in Computer Science

Transparent Distributed Cross-State
Synchronization in Optimistic Parallel

Discrete Event Simulation

Advisor Candidate

Prof. Bruno Ciciani Matteo Principe

Co-Advisor External Advisor
Dr. Alessandro Pellegrini Prof. Francesco Quaglia

Academic Year 2016/2017

Si sopravvive di ciò che si riceve
si vive di ciò che si dona

Contents

Abstract 1

1 Introduction to Simulation and PDES Overview 3
1.1 Simulation Taxonomy . 4

1.1.1 Discrete Event Simulation 4
1.2 Synchronization Approaches . 7

1.2.1 Conservative Synchronization 8
1.2.2 Optimistic Synchronization 9
1.2.3 Hybrid Synchronization 12

1.3 Rollback Strategies . 13
1.3.1 State Save and Restore 13
1.3.2 Reverse Computation . 15

1.4 PDES Logical Architecture . 17
1.4.1 The ROOT-Sim Environment 19

2 PDES Programming Models 23
2.1 Sequential and Distributed DES 23
2.2 PDES Strikes Back . 25

2.2.1 Shared and Global Variables 26
2.2.2 Message Passing . 29
2.2.3 Mixed Sharing . 30

3 Distributed Event Cross State Synchronization 32
3.1 Reference System Model . 33
3.2 Memory Management Policy . 35
3.3 Kernel Level Support . 37

3.3.1 Explicit Interaction . 37
3.3.2 Implicit Interaction . 39
3.3.3 The Distributed Synchronization Protocol 43
3.3.4 Userspace ECS Management 45

4 Experimental Results 48

5 Conclusions and Future Work 52

Bibliography 54

Acknowledgments 58

i

List of Algorithms

1 DES Skeleton . 6
2 Space Time Memory Read Operation 28
3 Space Time Memory Write Operation 28
4 ECS Page Fault Kernel Handler 40
5 Userspace ECS Handler . 45

ii

List of Figures

1.1 Simulation taxonomy diagram . 4
1.2 Causality violation example . 7
1.3 Conservative synchronization deadlock example 9
1.4 Example of execution where rollback is needed. 10
1.5 Rollback operation in the case of CSS 14
1.6 Rollback operation in the case of SSS 15
1.7 PDES classical architecture . 18
1.8 PDES newest (multithreaded) architecture 19
1.9 ROOT-Sim architecture . 20
1.10 ROOT-Sim example of possible configuration 22

2.1 Virtual time consistency violation. 27
2.2 Ex-LP grouping examples. 31

3.1 LP state machine. 35
3.2 LP memory map organization . 36
3.3 x86 64 paging scheme . 38
3.4 ECS schedule example. 39
3.5 Page Table Entry (4 KB page). 42
3.6 LP synchronization scheme . 43
3.7 Page touch lists . 46

4.1 Simulation throughput . 51
4.2 Speedup with respect to sequential simulation 51

iii

Abstract

Parallel Discrete Event Simulation (PDES) is a powerful technique to simulate

real world complex models. In fact, by sharing the workload over different

machines, thus parallelizing it over different entities it is possible to satisfy the

high amount of computational power and resources needed by such a kind of

models. Indeed, taking advantage of this sort of organization allows to overcome

both the power wall ([Sut05]) and the memory wall ([McK04]), which represent

the main aspects limiting the delivery of high performance executions.

In particular, this thesis directly faces the disadvantages given by distributed

memory accesses arising between Logical Processes (LPs, which are the main

simulation entities representing real world objects evolving over time, [Fuj90])

while synchronizing between each other. In fact, those LPs are continuously

communicating and often requesting access to portions of memory owned by

others. This scenario needs the involved (two or more) LPs to synchronize

in order to ensure that the requested operation will be correctly reflected in

their memory. This could lead of course to a degradation of performance, given

the distributed nature of the system on top of which the simulations are exe-

cuted. The innovative technique presented in this document exploits the new

kernel-level facilities in order to detect, manage and optimize the aforementioned

situation, which is known as Event Cross State Synchronization (ECS).

Also, an important result reached in this work is represented by the fact

that the provided solution is transparent to the final model developer in the

sense that the whole job is handled by the underlying run-time environment,

leveraging shared-memory accesses of the simulation state by relying on the

data-sharing paradigm and executing and deploying in a seamless manner on

distributed memory within clusters of multicore machines.

The whole work was developed on top of an open source, optimistic sim-

ulation platform provided by the High Performance and Dependable Comput-

ing Systems (HPDCS1) research group at Sapienza, University of Rome, called

ROme OpTimistic Simulator (ROOT-Sim2).

1https://hpdcs.github.io/.
2https://github.com/HPDCS/ROOT-Sim.

https://hpdcs.github.io/
https://github.com/HPDCS/ROOT-Sim

2

The remainder of this thesis is organized as follows. In the first chapter,

an overview and an explanation of the main topics of simulation and PDES is

presented, focusing in particular on the environment and the choices made in

this work. In Chapter 2, an introduction to the programming models of PDES is

given, going through what literature proposes. Then, in Chapter 3, the proposed

solution is discussed, concentrating on the specific implementation and design

choices that were made in order to get the best results. Finally, Chapter 4 shows

the experimental data for an assessment of the proposed solution.

Chapter 1

Introduction to Simulation

and PDES Overview

The term simulation comes from the Latin expression simulare, which means the

act of imitating a real world situation evolving over time. In order to accomplish

this, it is needed to build an abstraction of the physical system of interest, trying

to make it follow the specific behavior of the real one: in other words, a model

is needed. Note, however, that this is not an easy task, since sometimes it can

be the case that our knowledge about the reality around us is not enough to

produce a model, or that the generated model is too complex to be simulated,

and this is why research, is giving effort in this area. Historically, research about

simulation started in late 1979 by Chandy and Misra in [CM79].

In particular, two main problems brought scientists and researchers to dis-

criminate different kinds of simulation: time and randomization. The first one

is related to how the passing of time is considered, since it can be seen as con-

tinuous, which is well suited for real world phenomena such as heat diffusion, or

discrete, that fits for example the case of the demographic growth of a specific

area, where the time interval between evolutions of the model could be enlarged

(e.g.: a day, a month. . .).

As far as randomization is concerned, it can be noticed that not all the sim-

ulation applications are strictly related to timing. In fact, there are some cases

where it is not an interesting quantity, for example when the target is to evaluate

or approximate a mathematical problem which is not easy to solve analytically

and which is involving a high number of variables. Consider, for instance, the

case of the approximation of the value of finite integral of a function. It is fun-

damental to pick as more randomly distributed points falling in the integration

interval as possible, in order to sum all the values the function gets in those

points and dividing them by the total number of points.

1.1. SIMULATION TAXONOMY 4

These different approaches gave rise to three main different types of simula-

tion:

• Continuous simulation

• Monte Carlo simulation

• Discrete event simulation

1.1 Simulation Taxonomy

Depending on what kind of phenomenon the simulation needs to carry on, a

specific kind of simulation can be suited or not. Of course, this means also that

there isn’t a type, among the aforementioned ones, that outperforms another

since the best is to be chosen with respect to the kind of simulation of inter-

est. However, in this work we focus on the particular case of Discrete Event

Simulation. In Figure 1.1 a scheme of the main simulation types is shown.

Digital simulation

Discrete models Continuous models Monte Carlo models

Event-driven
Time-stepped ODE/PDE Solvers

Figure 1.1: Simulation taxonomy diagram

1.1.1 Discrete Event Simulation

Discrete Event Simulation (DES) is based on the representation of the simulated

system’s evolution as a chronological sequence of events. An event is said to be

discrete if it is related to a specific instant of time, and if it marks a change in

the simulation’s state in a infinitesimal period of time (namely, impulsively). If

this type of simulation is run on top of a parallel (possibly distributed) system,

it is called Parallel Discrete Event Simulation (PDES).

Events are generated and processed by simulation entities called Logical Pro-

cesses (LPs), each one of them representing a real-world object evolving in time

due to state transitions, which are dictated by the actual model. Thus, we can

define a simulation as a collection of N logical processes, LP0, LP1, . . . , LPN−1,

1.1. SIMULATION TAXONOMY 5

each of them keeping a state Sj , j ∈ [0, N−1]) containing all the data used to i)

execute, asynchronously or not, events in an independent manner with respect

to other LPs, ii) produce events targeting either itself or other LPs, iii) inter-

act with other LPs through message exchange. It is important to notice that

every logical process executes events according to its Local Virtual Time (LVT)

which is a private clock expressing the simulation time instant the specific LP

has reached and which is different from the simulation time, representing the

actual amount of time taken to perform the simulation, called Wall Clock Time

(WCT).

When dealing with DES, a set of building blocks must be specified:

• Clock Since logical processes execute independently, the probability

that their LVT diverges from the ones of other LPs is very high. Neverthe-

less, a global clock shared among all entities of a simulation is an essential

element when coordination is needed. Thus, simulation must compute a

Global Virtual Time (GVT), keeping in mind that, being discrete, time

just jumps to next event’s timestamp.

• Random-Number Generators Being the real-world systems highly

dependable on random happenings, a simulation needs to try to recreate

such an unpredictable operation. This is why a random number generator

is used, which typically is implemented in the form of a Pseudorandom-

Number Generator (PRNG), since a simulation could need to rerun with

exactly the same previously generated values (thus, acting precisely in the

same way).

• Statistics When running a simulation, collecting interesting data is

quite important in order to realize what the model is telling us. Thus,

a simulation usually monitors the aspects of interest, in order to allow

the developers to tune it and get better performance, or have a better

knowledge of what is going on.

• Event Lists By definition, this kind of simulation must keep at least

an event list (namely, the pending event list). The main reason behind the

needed presence of this list lies in the fact that the fanout of an event (i.e.,

the number of events generated during the execution of a single event)

can be higher than 1. We need then a method to store events, ensuring a

future execution of those events. Usually, more than a list is maintained,

since events can be discriminated according to their type and typically are

sorted by events’ timestamp, guaranteeing that when extracting entries,

the processing order is chronological.

• Ending Condition Since, once started, a simulation can run indefi-

nitely, the model designer must specify a terminating condition at which

1.1. SIMULATION TAXONOMY 6

the run should end. For instance, the condition could be the reaching

of a specified instant of time or, more generally, of a specific number of

processed events.

Discrete Event Simulation is thus strongly related to a particular kind of pro-

gramming, called Event-Driven Programming. This programming paradigm is

based on two main phases:

- Event selection/detection

- Event handling

The first one consists in capturing simulation events resembling hardware sys-

tem behaviors upon interrupts arrival, while the latter deals with the actual

execution of actions specified by the event, consequently modifying the simula-

tion state. Of course, event handling could be improved by event dispatching,

that manages the association of an event to the corresponding handler, discrim-

inating events according to their type. In order to implement those two phases,

typically DES provides a main simulation loop, where essentially i) the next

event (e.g.: the smallest timestamped one, cf. [Fuj90]) is taken into account

(event selection), ii) the logic to execute the selected event’s actions is triggered

(event handling), along with an update of the simulation time with the value of

the timestamp of that event, reflecting the actual advancement. However, this

is not enough: an initialization phase is needed since the simulation requires

the ending condition, the initial simulation state and the initial simulation clock

time to be set to some predefined values and also the first event (namely, the init

event) starting all the other ones of the whole simulation, needs to be processed.

In Algorithm 1 the reader can see an example of a high-level implementation of

the paradigm discussed above.

Algorithm 1 DES Skeleton

1: procedure INIT
2: End← false
3: initialize State, Clock
4: schedule INIT
5: end procedure
6: procedure SIMULATION-LOOP
7: while End ==false do
8: Clock ← next event’s time
9: Process next event

10: Update statistics
11: end while
12: end procedure

1.2. SYNCHRONIZATION APPROACHES 7

1.2 Synchronization Approaches

As mentioned, simulation models can be arbitrarily complex, making their exe-

cution on a single processing unit often unfeasible. To cope with this, PDES has

been put in place, in order to exploit the computing power offered by multiple

parallel/distributed processors to carry out the simulation of the model.

While on the one hand parallelization of execution of events from different

LPs was certainly an improvement regarding simulation performance, on the

other hand it raised a synchronization problem regarding the correctness of

the execution of events. In fact, given the independent processing of events

belonging to different LPs, causality errors might be generated.

As an instance, consider the situation depicted in figure 1.2.

LP
i

LPj

Wall clock time

Wall clock time
7

5 10

15 12

15

Event timestamps Violation of the causality
Straggler

message

12

Figure 1.2: Causality violation example

Here, we can see that LPi is sending a message associated with timestamp

12 to the LPj , while the latter logical process is ahead in time (it already

processed an event with timestamp higher than 12). In this case, the system

needs a procedure to face this error, since the event that generated the violation,

which is called straggler message, needs to be processed at LPj before the event

timestamped with the value 15. In general, a violation happens at an LPk if it

receives an event Ex with timestamp Tx < LV Tk.

To cope with this kind of situation, three main different synchronization

approaches can be adopted:

Conservative synchronization mainly based on the avoidance of

causality errors by building a structure aimed at executing only those

events considered safe

Optimistic synchronization where execution is carried on without

considering the possibility of causality violations generated by the pro-

cessing of an event (namely, not considering its safety). In this case, a

technique to revert to a consistent situation needs to be implemented.

1.2. SYNCHRONIZATION APPROACHES 8

Hybrid synchronization aimed at understanding which, between the

previous two strategies, is the best appropriate approach to undertake

regarding the running simulation model and choose it.

These three possibilities, largely discussed in the literature (cf. [Fuj89b], [Fuj93]

and [Rey88]), are presented in the following subsections.

1.2.1 Conservative Synchronization

As stated above, conservative synchronization’s goal is to avoid the occurrence

of an erroneous situation. This was the first kind of synchronization that was

introduced in the context of PDES, and at the same time the easiest one. In

particular, the main idea at the basis of this approach is the usage of FIFO

reliable links, that are by definition static. Every LP owns a predefined number

of those channels, marked by a timestamp value (which can be either the times-

tamp of the element on top of the queue, or the timestamp of the last processed

event). Then, every LP selects the next event from the queue with the smallest

timestamp Ts among all possible queues. Also, note that if a queue Q1 is empty

and has a timestamp Tq1 < Tq2 , even if Q2 is not empty execution should be

blocked in order not to generate inconsistency. Indeed, extracting an element

from Q2 would be inaccurate since a new event Ek with timestamp Tq1 ≤ Tk <

Tq2 could arrive, clearly generating a causality inconsistency.

Therefore, the system is able to select as the next event to execute the one

with the smallest timestamp among all possible events, leading to execute a

strictly safe event.

This technique, however, is prone to deadlocks. Consider, for instance, the

scenario depicted in figure 1.3, where there are only 3 LPs in the system, each

one of them collecting events in two lists (in the figure, an empty list is shown

as blank rectangle). Given that all the logical processes own an empty list

as the one from which they need to select events (being them the ones with

smallest timestamps), execution is blocked for all of them until a new event is

put in those lists. It is definitely a stall situation, for which many solutions were

proposed. For instance, a possible workaround for this problem is represented

by null messages, dummy messages not containing any event but used to notify

other LPs that the sender, say LPh, will not send any event ex marked with a

timestamp Tx < Tnull. In this way, any blocked LPj is free to execute events

belonging to different queues, letting the execution to proceed.

Conservative synchronization presents thus some advantages and disadvan-

tages, which are listed below:

– it needs a minimal synchronization among logical processes, because the

wall clock time (simulation time) always increases (as opposed to opti-

1.2. SYNCHRONIZATION APPROACHES 9

LPi

LPj LPk

empty queue

ts =10

ts =43 ts = 22

ts = 2

ts =84

ts = 33

Figure 1.3: Conservative synchronization deadlock example

mistic synchronization discussed in the next section). This ensures that

the GVT can be much easily evaluated.

– it is said to be aggressiveless, since the simulation goes on explicitly avoid-

ing unwanted situations, namely not permitting, at each simulation step,

to generate a causal violation.

– it is a kind of synchronization that is free of risks (riskless). In fact, no

incorrect data is produced and thus it can be delivered to other portions

of the model at any instant of time.

– it is not meant to effectively make use of parallel architectures. It is

a common situation, regarding this kind of synchronization, the one in

which the execution of two events could be forced to be serial, even if they

are not directly related each other.

1.2.2 Optimistic Synchronization

In order to describe optimistic synchronization, the Time Warp technique, pre-

sented in [Jef85], needs to be introduced. This mechanism is mainly based on

the idea that, as completely opposed to conservative synchronization, execution

is carried on independently of the correctness of the executed events. However,

it is able to i) detect if an inconsistent situation raised ii) keep the information

introduced by the event that generated the violation iii) restore a correct state

from which to restart the execution. This mechanism is strongly related to the

1.2. SYNCHRONIZATION APPROACHES 10

speculative processing, which consists in executing tasks that are evaluated as

likely to be right. The great advantage of this kind of processing is the fact

that, if the assumption was right, then the cost that would have been necessary

in order to compute the correctness of it can be reduced to zero while, on the

other side, if the inference was incorrect, the cost to come back to a consistent

situation might be the same as if no speculative processing was carried on.

In the specific case of simulation, optimistic synchronization needs a method

to come back to a consistent situation, if a straggler message was received by

any LP. To have a better idea of what is the situation to cope with, let’s refer

to figure 1.4.

LPi

LPj

WCT

WCT

WCT

LPh

17

8 11

42 12

23

Events

timestamps

12

7 19 33

10

19

Message

19

Message

19

Anti-message

Anti-message

receival

Rollback execution:

restore of the state

with LVT = 10

Rollback execution:

restore of the state

with LVT =7

Straggler

message receival

Last correct

state

Straggler

message

Anti-

message

Figure 1.4: Example of execution where rollback is needed.

In the picture, the reader can see that LPi, being it free to go ahead in exe-

cution without caring about causality, is sending to LPj a message timestamped

with the value 12, which is less than the last executed event’s timestamp value

at LPj . Thus, the latter LP needs to come back to the state of the event having

the closest timestamp to the one of the straggler message, in this case 10, since

up to this pont execution was correctly carried on. However, LPj at time 17

already sent a message with timestamp 19 to LPh, and rollbacking to 10 would

mean to undo also that operation. This is why, during a rollback operation,

the usage of antimessages is needed. The function of this kind of messages is

to annihilate the corresponding positive event, both in case it had been already

executed or not. In the former case, a previous consistent state has to be re-

1.2. SYNCHRONIZATION APPROACHES 11

covered thanks to a rollback operation; in the latter, the positive event can be

simply deleted from the event list. Optimistic synchronization presents many

disadvantages:

• high memory usage

• additional overhead

• aggressiveness

and advantages:

• high exploitation of parallelism

• better performance degree

• avoided usage of dummy values

First of all, in order to perform a rollback phase the system needs to remember

the states from which it is safe to restore the execution. This has of course an

impact on the overall memory usage, which can represent a problem when the

number of LP increases. Indeed, considering the work in [McK04], we can see

that the memory wall limits the throughput even on most recent architectures

(thus leading software manufacturers to move towards a distributed approach).

Moreover, checkpointing, rollbacking and synchronizing bring additional over-

head in the normal procedure of simulation, that in some pathological situations

causes performance degradation. Finally, as opposed to the previous scheme,

optimistic synchronization is aggressive, meaning that there can be incorrect

state configuration forcing the system to rollback. On the other hand, it can be

noticed that the execution of events in this kind of synchronization is never en-

forced to be sequential. In fact, no check about consistency is made and events

are executed as they are extracted from their specific list. This definitely has

an impact on performance when running with a parallel computing paradigm,

as operation can be concurrently completed on various cores/machines. Then,

regarding performance, the simulation trajectory is never interrupted due to

uncertainty about correctness: this speeds up the execution when no violations

are detected. Also, the model designer doesn’t need to care about checking the

consistency of the execution. Being the rollback operation only related to the

system, it will be carried on when a dangerous situation is (automatically) rec-

ognized. This also leads to the avoidance of the use of null messages, since it is

sufficient the analysis of the information of an LP to guarantee correctness.

Since rollbacking is a core operation when dealing with this kind of syn-

chronization, many different implementations were proposed, and they will be

discussed in section 1.3. Finally, note that it is quite important, regarding this

approach, the agreement of LPs on a value before which every entity is sure that

1.2. SYNCHRONIZATION APPROACHES 12

execution has been finished and memory dedicated to checkponting it can be

released (performing the so called fossil collection operation), namely the GVT

(for further informations about how the possibly distributed GVT value can

be calculated, please refere to [Bel90], [LL89] and [TPQ+17]). Consequently,

between two consecutive values of GVT, an optimistic execution time window

is defined. Nonetheless, the calculation of this value needs to be precisely pon-

dered: if the time window stretches to a large value, the system tends to loose

the benefits of this approach falling back to a high memory demand approach,

while if it shrinks to a too small value, then LPs will need to run the GVT

calculation operation too often, therefore increasing computational costs and

coming back to the case of conservative synchronization. Since this evaluation

can be strongly related to the underlying application model, different solutions

are possible. In particular, observing the behavior of the system until a specific

instant of time, it can be dynamically computed exploiting machine-learning

algorithms and properly tuned as long as simulation is running ([Gos03]).

1.2.3 Hybrid Synchronization

The synchronization schemes described in the previous section are intrinsically

characterized by some limitations and, as already stated, the application model

developer should choose the best suited among them with respect to the phe-

nomenon to simulate. However, there can be situations in which a mixture of

the previous two alternatives could represent an interesting choice.

Hybrid synchronization (introduced in [RAT93]) works by tuning, as far

as possible, both the conservative and the optimistic approaches, in order to

insert in one some benefits of the other. In particular, two main possibilities are

proposed:

• Restricted conservativeness which tends to avoid the system to be totally

conservative, thus enabling speculative execution only locally, that is only

for those events regarding a specific entity and not involving other LPs.

This leads to the elimination of cascade rollback scenarios, and clearly

reflects in a gain in performance. In this way, the aggressiveness mentioned

above is reduced.

• Limited optimism built in order to get rid of the high memory usage and

the possibly high risk degree typical of optimistic synchronization, defining

a commitment horizon before which LPs cannot rollback. This means that

the system allows LPs to execute events falling in a specific time window,

and to agree on the GVT value in order to free up memory. Particularly,

this approach is related to the GVT value considering its distance in the

future: if an LP executed speculatively and reached a simulation time too

1.3. ROLLBACK STRATEGIES 13

far from the last GVT calculated value , its advancement is slowed down

(e.g.: throttling).

1.3 Rollback Strategies

Concerning synchronization alternatives, we already saw that when simulation

is carried on in a speculative fashion if at a specific simulation time a causal

violation is detected, a technique to restore a consistent state is needed. This

means, practically, either to remember diverse undertaken steps during execu-

tion, or to elaborate a technique to execute backward the involved events.

1.3.1 State Save and Restore

The first solution, called state save & restore, basically consists in taking snap-

shots of simulation states of logical processes including their timestamp and a set

of variables related to the specific LP. Depending on the mode used to perform

this (costly) operation, we move across three different solutions: Incremental

State Saving (ISS), Copy State Saving (CSS) and Sparse State Saving (SSS),

which are discussed in the following subsections. A thorough description of this

strategy can be found in the seminal papers [Jef85] and [Jef90].

1.3.1.1 Copy State Saving (CSS)

Basing on the idea of state save & restore, an immediate solution is the one of

taking a copy of the simulation state of an LP as soon as an event is scheduled.

This copy is marked with the timestamp of the event processed immediately

before taking the snapshot. Thus, if a straggler message arrives at timestamp

Ts, the system just needs to restore the state from the checkpoint with the

highest associated timestamp value among the ones strictly lower than Ts. This

is obviously a task as easy as costly, since repeatedly taking a photo of the system

at a specific instant of time means asking, when time grows indefinitely and the

number of LP is huge, great amounts of both memory and computational time.

For this reason the aforementioned technique of fossil collection tends in this

case to be necessary: considering the limitations of nowadays machines with

respect to the demand in the context of simulation, it is crucial to free up some

resources when reaching trashing thresholds. In figure 1.5 a rollback situation

of this kind is presented.

1.3.1.2 Sparse State Saving (SSS)

The method previously exposed has been improved taking care of the high

resources requirement needed. Basically, Sparse State Saving (SSS) aims at

1.3. ROLLBACK STRATEGIES 14

LP
i

LP
j

WCT

WCT

8

3 14

24 21

30

21

24

Rollback: restore state

with timestamp 8

State log is taken

just before event

execution

Snapshot associated with

a timestamp

Straggler

message

3

8 21

14

?

?

Figure 1.5: Rollback operation in the case of CSS

reducing the frequency at which the snapshots are taken, since it is not strictly

needed to perform that operation at every event scheduling. The term sparse

refers to the fact that state saving procedure is done in different instants of time,

either periodically or heterogeneously.

When the capture of checkpoints is done in a periodic way (cf. [Bel92]), the

name of this technique switches to Periodic State Saving (PSS). The main draw-

back of this kind of organization is the fact that at some point, when a rollback

is necessary, there can be a lack of logs from which restart the computation.

Thus, simulation needs to start from the latest secure photo of the LP’s state

with respect to the rollback’s timestamp, giving rise to the so called coasting

forward execution. In fact, if the last useful log was placed before some already

executed events, those events must be processed again (thus rebuilding their

states), keeping in mind that all the messages which may have been generated

by those events directed to other LPs must be ignored, hence executing in a

silent mode.

As an example, refer to the scenario depicted in figure 1.6. Here, state

saving is performed every 3 events (periodically), but LPj receives a straggler

message (event’s timestamp equal to 14, while LVTj is 24) in the middle of his

checkpoint period. Therefore, it needs to come back to the last available state,

that is the one marked with value 8. Note that, while executing the event with

timestamp value 11, LPj sent a message to LPi in order to make him execute an

event marked with value 14. When re-executing in a silent mode after having

rollbacked, LPj avoids sending the same message again to LPi, as it would be

a backward event for it.

1.3. ROLLBACK STRATEGIES 15

8

6 9

11 19

28

19

24

Rollback execution:

restore state with

LVT = 8

Periodic state saving

operation

14 21 34

17 24 11

Coasting f r ar :

ev nts 11 and 17

mus be silently r processed

6 21

198

LP
i

LP
j

WCT

WCT

Straggler

message

14

Figure 1.6: Rollback operation in the case of SSS

1.3.1.3 Incremental State Saving (ISS)

The final technique related to state saving is called Incremental State Saving

(ISS), and it tackles the problem of high memory consumption related to check-

pointing (as also faced in [DF97] and [DFP+94]), but from another point of view

with respect to SSS. In fact, the main idea at the basis of this method is not to

create, when planned, a completely new state snapshot but to memorize only

those informations that were not stored in the previous log. Thus, only interest-

ing data is, as the name suggests, incrementally added to the future snapshots.

In particular, in order to perform so, events were augmented with additional

informations. If, on the one hand this could be a drawback, on the other it

drastically reduces the overhead generated by copying and restoring states in

checkpoint and rollback phases, respectively.

A recent work presenting one of the most innovative approaches in the field

of ISS can be found in [PVQ15].

1.3.2 Reverse Computation

The second solution, named Reverse Computation (RC), is instead based on

undoing all the past events until a consistent state is reached, trying to eliminate,

or at least to significantly reduce, the usage of checkpoints. This can be done

exploiting compilers facilities, in particular generating, for each event ei that

needs to be undone, an anti-event which executes the same operations performed

by ei, but in reverse order. If the rollback request at LPi with timestamp

Trollback involves multiple events, the undo operation has to be done for each

event with timestamp greater than the rollback instant, i.e. starting from LV Ti

up to Trollback.

1.3. ROLLBACK STRATEGIES 16

As an instance, consider the following code snippet modeling a multiplexor

ATM model cell transition (cf. [CPF99a]), resembling a possible event action:

1 i f (va lue > 0) {
2 value−−;
3 count++;

4 }

It is easy to understand that the anti-event that would be generated for this

particular case would have this reverse actions:

1 i f (va lue ”was ” 0) {
2 count−−;
3 value++;

4 }

Although the inverse computation of arithmetic operations can be easily per-

formed, the same procedure when encountering a branching condition may be

not such an obvious task. Indeed, when reversing a branching condition it is

essential to check an old value of a state variable (hence the ”was” keyword in

the above code block), which is not available during the execution of the reverse

event. Thus, it results to be useful the introduction of a so called bit variable, a

(transparently added) boolean variable which tells the system whether a branch

was taken on not while normally executing.

1 i f (va lue > 0) {
2 entered = 1 ; // b i t v a r i a b l e : the branch was entered

3 value−−;
4 count++;

5 }

When executing backward events involved in a rollback, the anti-events can

make use of the value of this particular kind of variables to discriminate the

cases in which a branch needs to be taken or not:

1 i f (entered) {
2 count−−;
3 value++;

4 }

Anyhow, this solution introduces an extra state variable definitely increasing

the size of LPs states. However, this size increase is quite negligible, since if the

number of branches is n, then the amount of added variables would be log2(n).

1.4. PDES LOGICAL ARCHITECTURE 17

The same reasoning can be done for while statements, keeping in mind that the

number k of iterations is a mandatory value to remember when re-executing in

the opposite order the same loop. Additionally, note that not all the operation

can be undone via reverse computation: a particular class of them, the disruptive

operations (e.g. assignments or bit-wise computations) must be managed with

state saving techniques, since they produce changes in the system that are note

reversible.

Another important point to take into account is the handling of jump in-

structions, such as goto, break and continue. In fact, it could be a non-

straightforward process to restore the actual execution flow. Again, the use

of bit variables is fundamental, as the steps attempted during forward execu-

tion are to be remembered in some way. Moreover, for this particular case the

aforementioned technique can be augmented by the (automatic) insertion of

switch/case statements, in order to be able to execute the same flow in the

reverse order. Nevertheless, this time the additional overhead caused by the

added code portion can represent, depending on the complexity of the code to

restore, a non-negligible state size increase.

Reverse computation can be considered an interesting alternative with re-

spect to state saving, as it provides a faster execution of rollback operations

with a minimal amount of overhead, especially in situations in which the roll-

back target point is near in time to the current logical time of the involved LP.

However, the more the number of disruptive operations grows, the more it moves

back to the fine-grain state saving solution.

Finally, since this kind of solution is not adopted in the work presented in

this thesis and has been studied elsewhere, we refer the reader to [CPF99b].

1.4 PDES Logical Architecture

In the last years, the high demand of computational costs with respect to sim-

ulations, which spread among many research fields (such as demography, engi-

neering, medicine, etc.) brought to the design and development of systems and

architectures following the parallel and distributed computing paradigm. It is

well known, in fact, that dividing the whole amount of load among different cores

on a local machine, and among different machines in a cluster can strongly in-

crease performance, provided that coordination and cooperation between nodes

are properly implemented.

As far as DES is concerned, this kind of architectures have been proved to

be well suited to get better performance, leading to the concept of PDES. In

particular, being DES characterized by a high number of LPs interacting with

each other thanks to timestamped messages exchange, the great advantage came

1.4. PDES LOGICAL ARCHITECTURE 18

with the possibility of processing different LPs’ events on different processors

in a concurrent way and, moreover, to distribute the LPs on different machines

communicating via an interconnection network (e.g.: LAN).

Communication network

Machine

CPU

Kernel

LP
LP

LP

CPU

Kernel

LP
LP

LP

Machine

CPU

Kernel

LP
LP

LP

CPU

Kernel

LP
LP

LP

... ...

...

Figure 1.7: PDES classical architecture

PDES architectures are also based on the idea of simulation kernels, which

are user-space processes running on top of a host operating system and thus

related to a specific CPU. The model interacts with it thanks to minimal in-

terfaces, notifying the creation or the execution of an event, or that an ending

condition was reached. Simulation kernel instances manage a set of LPs, and

can communicate with other instances either exploiting facilities provided by

the O.S. they’re running on (e.g.: Inter-Process Communication, IPC), or by

taking advantage of message passing primitives (e.g.: Message Passing Interface

protocol, MPI). An important peculiarity of this organization is the fact that,in

general, LPs may or may not directly access other one’s state, even if they lie on

the same simulation kernel. In fact, on some platforms this kind of operation is

only supported, again, via message exchange, and that’s an important point to

stress since it will be discussed in the remainder of this thesis. Figure 1.7 shows

an example of this type of architecture.

With the advent of multi-core and Symmetric MultiProcessing (SMP) sys-

tems, PDES architectures evolved to a new structure where basically less in-

1.4. PDES LOGICAL ARCHITECTURE 19

stances of simulation kernels are deployed on a single machine, handling a higher

number of CPUs. Therefore, kernels rely on multiple worker threads managing

any LP. This kind of architecture is presented in figure 1.8

Communication network

Machine

Kernel

LP
LP

LP LP
LP

LP LP
LP

LP

Kernel

LP
LP

LP

... ... CPU CPUCPUCPUCPUCPUCPU

Kernel

Machine...

Figure 1.8: PDES newest (multithreaded) architecture

As a final note, given the possibility of a worker thread to manage whatever

LP, the cost of switching a logical process from a thread to another should

be considered, especially if the interested threads lie on a remotely connected

simulation kernel instances. This is because migrating an LPi means to transfer

all the data related to it, including its simulation state Si and its event queue(s).

To this end, typically a LP binding is defined, in order to avoid transferring

objects among worker threads too often, consequently degrading performance.

This binding is intended as a time interval inside which the operation of moving

a LP is not permitted, and can be reduced or enlarged discretionary. However,

LP migration is not always an operation to bypass: it can be very useful when

the system recognizes that the load among processing units/computing nodes is

not evenly distributed enough. In fact, migration can be used to implement a

load sharing technique, when dealing with a distributed environment. Finally,

a trade-off between the two concepts should be found.

1.4.1 The ROOT-Sim Environment

The whole project developed and presented in this thesis was realized on top

of an Open Source, multithreaded, distributed general purpose simulator called

ROme OpTimistic Simulator (ROOT-Sim). It is a simulation platform writ-

1.4. PDES LOGICAL ARCHITECTURE 20

ten following the C/POSIX standards, developed according to the Time Warp

protocol and targeting the x86-64 architectures. Being it created in 1987 by

the High Performance and Dependable Computing (HPDC) research group at

Sapienza, University of Rome it now implements the most recent research discov-

eries regarding optimistic PDES, also supporting distributed computing making

use of the MPI protocol.

From an architectural point of view, ROOT-Sim is constructed thanks to a

series of building blocks interacting with each other, as depicted in figure 1.9

GVT Manager

Input/Output Queue Manager

Remote Messaging Manager

SchedulerSchedulerIntermediate

Bu ers

Call/Callback interfaces

ProcessEvent

ScheduleNewEvent

OnGVT

Function calls

to libraries

MPI and Third Party Libraries

Application Level Software

ff

Figure 1.9: ROOT-Sim architecture

In particular, the application level software, (i.e.: the code representing

the model the user is interested to simulate) is interacting with this environ-

ment through three main APIs: ScheduleNewEvent(), ProcessEvent() and

OnGVT(). The first one can be used to notify the simulation kernel that a new

generated event is ready to be scheduled. The kernel will process the request

delivering it to the correct recipient, who is in charge of scheduling it accord-

ing to the adopted scheduling function. The second is the function called to

request the processing of an event. This is why it accepts as parameters some

values representing the event’s details, such as sender, receiver, type, content

and so on. Finally, OnGVT offers the simulation kernel the possibility to notify

the model that every LP evolved their simulation until a committed state, that

means a state before which they cannot rollback. This is a core function since

thanks to it the user can understand, evaluating a sort of global predicate, if

1.4. PDES LOGICAL ARCHITECTURE 21

the simulation reached the ending condition.

The most important sub-systems this architecture is composed of are the

following:

• Dynamic Memory Allocator (DyMeLoR) This library, proposed

in [TQ08]), is basically a wrapper for the widely spread malloc/free

function calls, and in particular it was developed to better manage mem-

ory regarding state saving. DyMeLoR works essentially by preallocating

equally-sized chunks of contiguous memory, upon a memory request made

by the model. To keep track of what chunks are currently in use, a per LP

meta-data table called malloc_area is maintained, storing the reference

to a bitmask that keeps informations about a block of chunks. After build-

ing up those data structures, DyMeLoR finally calls the malloc function.

This wrapper evolved in time to Di-DyMeLoR (cf. [PVQ09]), which scope

was to offer a better memory usage by storing, step by step, only state

differences, exploiting the incremental approach presented earlier.

• Scheduler This subsystem is aimed at selecting the next executing LP.

Thus, it defines an order among all the LPs in a simulation kernel. Within

ROOT-Sim different kinds of scheduler were implemented, but as a default

the Smallest Timestamp First (STF) one is preferred. As the name says,

this scheduler activates the LP whose next event to execute is the one with

the smallest timestamp among all queues of all LPs.

• Global Virtual Time Manager As described in the previous sections,

this module is delegated to periodically calculate a GVT value in order to

let the LPs free up memory.

• Committed and Consistent State Manager (CCGS) This block

is designed to periodically try to establish if a terminating condition was

reached. It is strongly related to the GVT manager, since it uses the

GVT calculus also to start the termination procedure. For instance, in

some cases it is enough to check if a certain amount of time elapsed.

ROOT-Sim implements the aforementioned worker thread paradigm. In par-

ticular, this platform supports both multi-core machines, thus enabling (multi-

threaded) parallel execution, and distributed computing. Inside this architec-

ture, every logical process is managed by a worker thread and it’s identified

by i) a unique Local Identifier (LID) on the machine it is running on ii) a

unique Global Identifier (GID) among all the distributed machines interacting

each other. Every worker thread manages a pool of different LPs and can be

bounded to a specific physical core parallelizing the workload over it. Threads

schedule LP implementing the DES skeleton presented in section 1.1.1. Each

1.4. PDES LOGICAL ARCHITECTURE 22

Communication network

Machine

Kernel

LP
LP

LP

Thread

LP
LP

LP

Machine

LP
LP

LP

Thread

Kernel

Thread

Figure 1.10: ROOT-Sim example of possible configuration

of them is identified by a Thread Identifier (TID) on the node it is executing.

Even if it is not a strict rule, typically a single simulation kernel instance is

deployed on a specific machine. Kernels regulate multiple threads, maintaining

their data structures and handling inter-kernel/inter-machine communications.

For further informations about this platform, please refere to [PQ14a].

Chapter 2

PDES Programming

Models

Starting from its birth, the great advancements in high performance computing,

the beginning of the multi-core era and the spread of rich distributed compu-

tation resources lead Discrete Event Simulation to constantly evolve and tune

to fully exploit the platforms it needs to rely on. In fact, research in this area

widely increased over years and many researchers started to care about how to

deal with this new types of platforms. In this chapter, we present an overview

of the steps research moved to bring simulation at the point it currently is,

starting from the very beginning (sequential DES) to the newest results (dis-

tributed PDES). In particular, we want to focus on how memory was intended

to be managed from an implementation to another, in order to enlighten the

benefits and the disadvantages of different approaches, delivering the reader an

exhaustive analysis of the state of the art that also made us taking the choices

discussed in this thesis.

2.1 Sequential and Distributed DES

The very first implementation of DES was inherently sequential. The main idea

behind this (as we outlined in the previous chapter) was to have an event queue

keeping the future events to be executed and a clock, holding the simulation

time (WCT). At each time step, an heuristic was used to select the next event

to execute, that typically was the smallest timestamp first. Thus, after sim-

ulating an event, it was removed from the queue and it could either generate

a message to be inserted in the queue or cancel a previously scheduled event.

Given that the whole simulation is based on the execution of events causing the

advancement of the clock variable, we call this approach event driven. Note

2.1. SEQUENTIAL AND DISTRIBUTED DES 24

that there exists another approach, called time driven, in which simulation is

carried on by increasing the clock variable by one tick at each simulation step,

executing the events scheduled for that time.

Regarding this sequential paradigm, the reader can see that this is not eas-

ily parallelizable: only one event is extracted from the queue at each simulation

time and its consequences are possibly reflected, thus not taking advantage of

other cores on a machine, provided that the event list cannot be properly parti-

tioned in such a kind of execution. This is clearly a key problem since nowadays

architectures are, from the lowest to the highest end, equipped with a number

of CPU/cores. Thus, the first trial of exploiting this kind of organization was

represented by the definition of (sequential) distributed DES. Briefly, it was at

first based on spreading the just discussed idea on multiple CPU/cores (recall

that being distributed doesn’t strictly mean to execute on different physical

machines). Of course, even if concurrency problems are still avoided, the intro-

duction of communication between simulation entities was needed, giving rise

to problems regarding the sharing of the memory we want to discuss in this

chapter. In fact, it is important to notice that this kind of communication can

be accomplished according to three main different approaches:

• Share everything any data item declared inside the memory block ded-

icated to a LP can be accessed by any other LP running in the system.

Note that the distributed nature of a simulation platform is perfectly inline

with this kind of organization (think about data replication/mirroring).

• Share nothing any LP is not allowed to access any memory portion

among other LPs. In this organization, communication is only supported

via message passing. Implementations of this organization purely rely on

messages exchange or Remote Procedure Calls (RPC). Consider, however,

that it can be implemented also in a shared memory machine.

• Hybrid sharing the system determines and restricts the amount of shared

data that entities can access in a shared way.

As far as the above problems are concerned, when dealing with processors, one

important point to discuss is their coupling. Indeed, if two processors are loosely

coupled, they can execute in an independent way, without conveying with others,

for a longer time period, thus well fitting the share nothing approach. However,

typically this is achieved via a pre-processing phase, in which static data parti-

tioning, a not always trivial operation, is performed in order to properly employ

each entity and also to compute some relevant simulation parameters. On the

other hand, if the processors are tightly coupled, then the high amount of event

execution by LPs would mean a great amount of messages to be exchanged be-

tween processors, originating a significant additional overhead and leading to

2.2. PDES STRIKES BACK 25

the choice of the share everything mode.

2.2 PDES Strikes Back

With the advent of multi-processor/multi-core distributed high-scalable archi-

tectures, the sequential execution of DES became computationally intractable.

However, even if the implementation moved to a parallel version (PDES), the

main (memory) problems discussed above still remained interesting issues to

cope with, being them easy to directly map on those kind of architectures. In

particular, PDES simulations rely on parallel simulation languages (PSL), capa-

ble of exploiting the possibilities offered by the underlying software (i.e.: thread

definition and management, IPC, etc. . .), usually based on a share nothing

memory programming paradigm. This represents an active research area, even

if literature presents many works related to this problem which is interesting to

discuss.

Traditionally, the problem of memory accessing by various LPs during sim-

ulation was faced according to the approaches described above and the most

important proposed solutions rely on:

– Shared variables: this covers the case of share everything, in which (a

part of) the state of an LP can be accessed by multiple LPs, namely

accessing shared (global) variables resembling the wide spread sequential-

style programming.

– Message-passing : as opposed to share everything approaches, this is mostly

built on requesting the access to specific memory areas, instead of directly

accessing it as in conventional shared memory systems. This clearly in-

volves a messages exchange-oriented protocol.

– Mixed sharing : when implementing memory accessing combining notions

of both share everything and share nothing approaches, we come to a

solution of this kind. Either partitioning shared memory, or adapting the

system to a well suited approach can represent, in some cases, the best

performing choice.

Note, however, that the discussion carried out so far and the results listed above

may be implemented in both conservative and optimistic simulation approaches

([Fuj89a]). In fact, they can be properly tweaked in order to support either

rollback strategies or safe/unsafe event discovery. Given that the speculative

paradigm is the one preferred in this thesis, we will only focus, if not differently

stated, to results related to it. In the following subsections, we briefly present

the aforementioned solutions, along with some details of implementations that

literature provides.

2.2. PDES STRIKES BACK 26

2.2.1 Shared and Global Variables

Before going through the implementation problems and development of them,

let us discuss what is the goal of shared variables in the context of PDES.

In order to do so, consider the simulation example provided in [GF91] about

battlefields. Here, a rectangular war field is divided in a number of hexagonal

sectors equal to the number of LPs, each of them in charge of managing its area.

In order to carry on simulation, each time a combat unit moves from a sector

to another LPs need to know some information about them (e.g.: strength,

amount of soldiers. . .) in such a way to make decisions about the next action

to take (namely retreat or make an attack). If shared memory facilities are

provided in such a kind of scenario, then modeling and executing it could be a

straightforward operation. The realization of this approach in PDES is however

related to some problems. First of all, a well known property to cope with

in a parallel architecture is consistency. Indeed, if the interested value(s) is

implemented as a global variable, then the system needs a protocol to maintain

a consistent version among copies of it on different CPUs/nodes. Moreover, DES

introduces the concept of virtual time consistency. Consider, as an instance, the

situation in which LPi wants to update a shared variable Vx at time Ti and LPj

needs to read the same value at simulation time Tj , being Ti < Tj . Suppose, also,

that LV Ti < LV Tj , and that LPj reaches the read operation of Vx before the

write operation issued by LPi. In this way, LPj won’t see an updated value of Vx

event if the LVT at which it reads is logically greater than LV Ti. This is clearly a

situation in which virtual time consistency is not kept. A possible and popular

solution to this issue is the definition of an owner LP, which stores a multi-

version list for each shared variable storing the history of the values assigned to

it at some specific LVT. This is done because, as rollbacks can occur, if a LP

reads a value which is later withdrawn, it needs to roll back as well to a consistent

version of the variable. On the other hand, when a LP generates a new version of

the shared variable, a new entry in the version list storing the new value along

with the LVT of the writer is inserted. As an important note, consider that

a parallel execution of such read/write instructions can generate concurrency

problems, which is why lock-based programming is mandatory. Indeed, this

can represent a bottleneck when implementing such a kind of architecture, and

may lead, in some worst-case scenarios, to not finally having a considerable

gain in performance. The work in [PPQV16] presents a solution similar to the

described one, which fully exploits multi-threading paradigm benefits via per-

thread memory global variables. Accesses are transparently intercepted at run-

time and concurrency problems are tackled making use of ad-hoc non-blocking

(wait-free) data structures.

Another similar approach to the one just presented is proposed in [GF91].

2.2. PDES STRIKES BACK 27

Here, the organization of shared variables is focused on the idea that memory

portions are associated with an address, as the standard view of the memory,

and to a certain timestamp, expressing the version in time of the current block.

Coming back to the battlefield example, situations in which different LPs de-

mand a snapshot of the battlefield grid at different simulation times often arise.

Hence, in the proposed scheme, a state shared variable can ideally be plotted

in a chart where the coordinates are its memory address and its LP simulation

time (hence the name Space Time Memory, STM). Whenever a LP desires to

access such a variable, the entry corresponding to its timestamp is returned.

Algorithms 2 and 3 show how writes and reads are managed in this proposal.

In particular, every event stores in a list the versions, specific of an object, that

it read over time, and the same is done for the written versions. Those lists

are fundamental in order to implement rollbacks. Also, an earliest timestamp

event, EarliestW, who is currently writing its version of a variable is kept. On

a single object a pair of locks are defined: earliest writer’s time stamp (EWTS)

and write lock (WR).

LPi
WCTw

rite

shared variable

LPj reads old value a at LVTi = 15 > LVTj = 4
at which it should have been
updated by LPi

2 4

LPj

Vx = a

15
WCT

Vx = b

re
a
d

Figure 2.1: Virtual time consistency violation.

2.2. PDES STRIKES BACK 28

Algorithm 2 Space Time Memory Read Operation

1: procedure STMRead(Obj, EventTimestamp)
2: while EWTS lock not obtained do
3: nothing
4: end while
5: if EventTimestamp < EarliestW then
6: while WR lock not obtained do
7: nothing
8: end while
9: release EWTS lock

10: entr ← Obj list entry with higher timestamp ≤ EventTimestamp
11: if entr == NULL then
12: raise error
13: else
14: release WR lock
15: return pointer to entry
16: end if
17: else
18: release EWTS
19: insert event in obj’s read/write waiting queue
20: end if
21: end procedure

Algorithm 3 Space Time Memory Write Operation

1: procedure STMWrite(Obj, EventTimestamp)
2: if no free entry to write available then
3: free up space via fossil collection
4: else
5: while EWTS lock not obtained do
6: nothing
7: end while
8: if EventTimestamp < EarliestW then
9: EarliestW ← EventTimestamp

10: while WR lock not obtained do
11: nothing
12: end while
13: release EWTS lock
14: entr ← Obj list entry with higher timestamp ≤ EventTimestamp
15: copy entr in new entry
16: for each reader event e with timestamp < EventTimestamp do
17: rollback e
18: end for
19: insert new entry of Obj with EventTimestamp in list
20: invalidate entries ei with timestamp > EventTimestamp
21: rollback events accessed ei
22: else
23: release EWTS
24: insert event in obj’s read/write waiting queue
25: release WR
26: return pointer to new Obj entry
27: end if
28: end if
29: end procedure

2.2. PDES STRIKES BACK 29

2.2.2 Message Passing

This kind of technique is quite orthogonal to the one of the previous subsection.

Indeed, when the share nothing concept is to be put in place, this is the most

spread realization that literature provides. In particular, the core idea is that the

communication between logical processes which have the necessity to access each

others’ state is ultimately set up by a (possibly distributed) protocol. Depending

on the approach the protocol is based on, we can distinguish two main kinds:

• Pull-processing

• Push-processing

To understand the rationale behind both of them, consider a set of n LPs, say

LP1, . . . , LPn, and a single LP, namely LPx, which holds a specific portion of

data Vx that has to be read by any LP before being updated. As for the first

mechanism, when reading/writing Vx it works, respectively, by i) asking LPx

to send a copy Vx ii) requesting the current value of Vx to LPx before having

the possibility to update it, then change it and send back the updated value

to LPx. Push-processing, instead, works by replicating an update of certain

fraction of data to every LPi, i ∈ [1, n] in such a way that each of them sees, at

any simulation time, a consistent version of it.

At this point, it is easy to figure out that both the two methods require a

high amount of messages to be exchanged in order to synchronize and preserve

consistency. Indeed, in the first scenario, when the update operation occurs, at

least 2n + 1 messages are needed, while in the second approach, each time an

update is performed in an LP in the system, a message needs to be sent to any

other entity (in our particular case, n messages per update).

One of the most famous message-passing approach literature provides is the

one presented in [FD97], where a Time-Warp based synchronization for state-

dependencies is proposed. This work introduced the notion of Cross-State syn-

chronization, which is the main topic of this thesis. Mainly, it works by using

a message exchange pattern in order to support the update of LP states which

are dependent from data belonging to different LPs. Being it designed to run

on optimistic simulators, this protocol is able to cope with rollback situations,

by means of logically blocked execution states when the requesting LP is asking

data. The main advantages this work provided are related to an easier coverage

of causality violation scenarios that may arise when shared data structures are

widely used, where non-recoverable situations can happen.

2.2. PDES STRIKES BACK 30

2.2.3 Mixed Sharing

The arrival of new technologies, both in hardware and in software, produced

an innovative rethinking of the problems DES needed to tackle. The advent of

distributed programming paradigms (MPI and openMP), thread based parallel

libraries, and Transactional Memory (TM) supports contributed to a new way of

sharing the load among the all possible computation resources. As mentioned

above, multi-threaded development techniques played an important role not

only regarding parallel executions, but also concerning shared/private memory

issues ([PPQV16]). Given the great heterogeneity of the platforms simulation

researchers adopted, an hybrid exploitation of the aforementioned proposals was

encouraged. In fact, it is common practice to adapt the development of systems

to the underlying platform evolution, finding the best trade-off among the avail-

able possibilities. In this context, we mean with mixed sharing a different mode

of operation with respect to resources (namely, memory) that fits aspects of

both share nothing and share everything approaches.

The research trend, in particular in the area of memory-accessing, stepped

forward to a different organization of logical processes aimed at gaining higher

throughput by grouping them and exploiting the profits of collaborative execu-

tion ([MNPQ16]). Indeed, depending on the simulation model case, LPs can

be partitioned in coarser or finer grains, as explained in [CLY+11]. In particu-

lar, this work introduces the notion of Extended Logical Process (Ex-LP), which

essentially is a collection of LPs. The LPs forming an Ex-LP are allowed to

access each others’ states directly (thus resembling shared memory methods).

However, those accesses cannot be traced by future possible rollbacks (which is

a well known disadvantage also previously discussed), and that’s the reason why

every Ex-LP needs to maintain a processed event list holding all the events ex-

ecuted by LPs within the Ex-LP. In order to support such a kind of operations,

different types of (state) variables were defined: private, which can be only ac-

cessed by members of the Ex-LP it is owned by; public, accessible by all entities

in simulation, even if not belonging to the same Ex-PL; common, specifically

related to the case in which the selected grain for grouping was the finest, i.e.

simulation events are the parallel units, no LPs are used: in this case common

(state) variables store all the simulation’s state structures, and are normally ac-

cessible. To have a clearer idea of how the accesses are performed, see figure 2.2,

where from left to right the possible grouping approaches are shown, from the

coarsest to the finest grain. Here, different colors discriminate different Ex-LPs.

As stated above, to increase efficiency group operations are performed: in

this case, rollbacks are undertaken on a per Ex-LP way, in order to avoid re-

current rollback cases that may occur among LPs in the same partition. It is

important then to categorize LPs on the basis of some parameters related to the

2.2. PDES STRIKES BACK 31

kind of grouping is performed: in this particular case, close causal relationships

was taken into account.

event

Figure 2.2: Ex-LP grouping examples.

As for other examples of hybrid technique, it is to be noticed that the Event

Cross State solution, initially proposed in [PQ14b] and then augmented in this

thesis can be seen as a mixed approach. Indeed, the ECS synchronization pro-

posed in that work is based on i) a message-passing synchronization protocol

and ii) kernel level based approach to access other entities’ memory. The first

point guarantees that the involved LPs all reach the same LVT in order not to

generate consistency problems when reading/writing each others memory, while

the second ensures that the involved LPs can directly access the memory of the

LP they’re targeting to. The innovative approach of this thesis doesn’t exactly

fit the categories mentioned so far. In fact, it is based on the concept of leasing

of memory portions: an ephemeral (transient) owner of that memory portion is

defined , which is in charge of managing it for a certain period of time. Specifi-

cally, the great advantage of this thesis, differently from all the other approaches

presented in the literature and discussed above, is the fact that the programmer

has the freedom of implementing a custom model following the pure sequential

style programming paradigm. Indeed, the whole synchronization concerning the

simulation state of an LP, which as mentioned above becomes completely share-

able in an on-demand fashion, is entirely delegated to the run-time underlying

layer. Thus, we didn’t focus on global variables, which were widely addressed

in the works presented above, since they represent an orthogonal problem with

respect to ours. Details of our idea are presented in the next chapter.

Chapter 3

Distributed Event Cross

State Synchronization

As described in the previous chapter, the constant need of a logical process

to access and possibly modify other LPs’ states brought research to introduce

the concept of Event Cross State synchronization. With the software archi-

tecture presented in this thesis a transparent materialization of ECS on top of

distributed memory systems is achieved. Thus we enable the exploitation of

any kind of distributed resource for running the simulation model, while not

sacrificing the flexibility of shared-memory accesses offered to the programmers

by the ECS paradigm. Also, this proposal is based on fully transparent roll-

back based optimistic processing, which has been proved to be a core building

block regarding the scalability of the model execution. This solution targets the

Linux operating system, in particular aiming at properly enhancing its memory

management subsystem in order to:

1. detect, by pointer dereferencing in shared-memory application coding, the

materialization of cross-state accesses among LPs hosted either on the

same machine or on remote ones.

2. provide a mechanism to permit the accessing LP to transparently gain a

lease on the requested logical pages related to the targeting LP’s state, at

the specific time of the event that triggered the synchronization.

3. discover on the fly what machine instruction actually generated the ac-

cess, in order to get crucial informations (e.g.: which kind of operation it

was, how much data involved) and to pre-fetch and locally materialize the

proper number of pages that will be written back to the remote LP’s state

at the end of the cross-state interaction.

3.1. REFERENCE SYSTEM MODEL 33

3.1 Reference System Model

In this section, we formally describe the reference system archiecture, which

follows the organization already sketched in chapter 1.

A set of (possibly non-homogeneous) CPUs, scattered across any number

of different computing nodes is supporting the PDES application model runs.

Every computing node executes any number of simulation kernel instances, de-

veloped according to the multi-threading paradigm, where a shared-memory

approach is used to enable intra-kernel synchronization. Inter-kernel communi-

cation is then supported by the underlying network interconnection linking all

distributed machines.

In this organization, each simulation kernel instance spawns at startup as

many worker threads as the number of processing units the system provides, and

binds every thread to a specific CPU for a specific time window selected before

starting execution. This binding, evaluated according to some binding rule and

valid for a specific predetermined time window, represents an important feature

since it ensures that for a certain period of time only one worker thread is

allowed to schedule events related to a specific LP. Bindings can be recomputed

either after the specific wall-clock time interval has elapsed or basing on some

runtime parameters for the sake of an even distribution of simulation workload

on the available computing power.

To have a more formal description of this simulation reference system model,

we can state that it is composed by:

• Kernel set: a set (named KernelSet) composed by K different simulation

kernel instances scattered across the available machines.

• Thread sets: K sets of concurrent worker threads, namely TSetk being

k ∈ KernelSet, each of them exploiting the shared memory paradigm to

accomplish their internal synchronization and communication tasks.

• Logical Processes sets: n sets of logical processes bounded to a spe-

cific thread. At any WCT in fact, a thread t, where t ∈ TSetk, k ∈
KernelSet, is demanded to schedule events of a group of bounded LPs,

namely LPSett. Note that, thanks to the binding rule, at a certain in-

stant of time one LP is managed by one and only one worker thread, i.e

LPSeti ∩ LPSetj = ∅ ∀i, j i 6= j

Also, considering the distributed nature of this kind of architecture, every

LP sees, at any time, a set of local LPs, which are the ones running on its

simulation kernel instance, and a set of remote LPs, in any other case. Formally,

an LPi considers as local all the LPs bound to any worker thread x ∈ TSetk

s.t. LPi ∈ LPSett and x, t ∈ TSetk.

3.1. REFERENCE SYSTEM MODEL 34

As stated above, the first operation that this proposal is able to perform is

the detection of the initiation of a cross-state synchronization. In particular, this

is done by exploiting innovative kernel-level facilities, which are later discussed.

Mainly, a page fault upon accessing the memory area dedicated to the state

of a different LP is recognized to be the origination of a (possibly remote)

ECS synchronization. This kind of synchronization relies then on a (potentially

distributed) communication protocol, built on the notion of control message.

This is a special kind of message, exchanged between two different LPs, since it is

not included in the receiver’s event queue as they are related to ephemeral state

transition that are not to be repeated upon rollback procedures. Correctness of

the protocol is enforced by two main aspects:

– Preemptable execution of the events of a LP

– State transition based on a well-formed state machine

To guarantee the first of the two points, simulation is based on the concept

of User Level Threads (ULT). Those are basically CPU contexts that a thread

t ∈ TSetk is able to suspend and restore at any instant of time. Specifically, in

order to give control to a logical process, the worker thread managing it allows

the execution of the events in an isolated environment, changing its CPU context

and thus switching to a different stack. Hence, if the simulation platform takes

control back and determines that an event’s execution needs to be preempted,

the worker thread just restores the CPU context related to its execution in

platform mode and deschedules the running LP. Simply restoring the LP’s CPU

context, the execution of the suspended event can be resumed whenever the

platform disposes it. Thus, it can be easily noted that having different memory

areas dedicated to different execution entities can be a crucial aspect in executing

events correctly. A technical description of the realization of this technique is

presented in [PQ17].

As for the second point, the reader can see that the state machine counts

three different types of states:

◦ Blocked states: those are the states referring to the LPs that are desched-

uled while executing an event, making use of the ULT facilities. A logical

process associated with this state is not able to interact with other LPs,

until simulation platform notifies it that a condition was reached, namely

the reception of a specific kind of control message. This kind of states are

grey-shaded in picture 3.1.

◦ Ready states: states related to those LPs that are able to either start the

execution of a new event or to resume the execution of a preempted one,

but that are not scheduled yet. In figure 3.1 they’re white colored.

3.2. MEMORY MANAGEMENT POLICY 35

◦ Running states: as the name suggests, those are the states of LPs that are

currently executing an event. Running states are green in picture 3.1.

The transitions from a state to another are either caused by cross-state detec-

tion (e.g.: page fault disclosure) or by actual LP synchronization (e.g.: control

message arrival).

WAIT FOR

PAGE
READY

RUNNING

WAIT FOR

SYNCH

RUNNING

ECS

READY FOR

SYNCH

schedule

complete

com
plete

major ECS

fault
m

ajo
r E

CS

fa
ult schedule

ECS ack

minor ECS

fault

page

ackWAIT FOR

UNBLOCK

ECS Sta
rt

ECS

Unblock

Figure 3.1: LP state machine.

3.2 Memory Management Policy

In order to provide a cross-state access detection, the system must enforce a

memory management policy which easily enables to map a LP to a specific

given memory address range, and viceversa. This is a core aspect because every

LP has the necessity to understand if it’s targeting a local or a remote LP’s

memory. Thus, the goal that we wanted to reach is to understand what LP’s

state is being requested by relying on pure address space mapping.

Moreover, when simulation is started up, there are multiple symmetric sim-

ulation kernel instances running on potentially distributed machines: this con-

dition requires a sort of agreement across the different kernel instances upon LP

state mappings over the same virtual address ranges. Also, as an another im-

portant point to stress, transparency was considered in developing such a kind

of memory management. In fact, the application-level developer is not asked to

3.2. MEMORY MANAGEMENT POLICY 36

care about this agreement, as well as about dynamic memory allocations. Addi-

tionally, the arrangement across simulation kernel instances could be over-costly

at runtime, which is why memory aspects are dealt with at startup time.

In particular, following the scheme presented in [PQ14b], the LP dedicated

memory consists of a contiguous virtual block of 1 GB, referred to as memory

stock. Every memory stock base address, as depicted in figure 3.2, is deter-

ministically computed by every simulation kernel instance and is unique among

all LPs living in the current execution. Thus, every simulation kernel instance

maps LPs identically, meaning that the address range is defined also for the LPs

that are not residing on a specific instance. Therefore, what was implemented

can be defined as a deterministic memory map manager, resorting what was

proposed in [PDQ11]. For instance, in figure 3.2, simulation kernel K1 is map-

ping, inside its address space, stocks for LP1 and LP2, which it’s going to host

and manage (green colored stocks are the ones referring to local, with respect

to kernel instance, LPs), but also for LP3 and LP4, which instead are running

on another remote kernel instance, K2. In this way, accessing a memory area

falling outside the stocks of local LPs, i.e. going from green to grey shaded areas

in picture 3.2, would mean trying to access a remote LP’s state that is precisely

what we wanted to achieve: detect a cross-state initiation.

Overall, this memory map organization delivers memory buffers in a non

anonymous fashion, in which all the memory requested by an LP are guaranteed

to be a sub-portion of the contiguous virtual memory address region reserved

for that specific LP, if it is locally hosted. As for the case of a remote LP, a

memory stock will be in any case initialized for it, but will be never used to

serve memory requests.

Address Space of K1 Address Space of K2

...

...

...

...

LP1 Memory

Stock

LP2 Memory

Stock

LP3 Memory

Stock

LP4 Memory

Stock

Figure 3.2: LP memory map organization

3.3. KERNEL LEVEL SUPPORT 37

3.3 Kernel Level Support

Cross-state detection and management is ultimately supported thanks to the

usage of ad-hoc operating system’s kernel facilities, which are basically exploited

in our custom Loadable Kernel Module (LKM). This module is mainly based

on two kind of interactions: an explicit and an implicit one. The former is

supported by a set of ioctl commands, to provide the worker threads a method

to alert the above simulation kernel that a certain logical process is starting

to process an event. The latter allows the operating system kernel to notify

whenever a LP is accessing a remote LP’s state.

3.3.1 Explicit Interaction

Upon loading, the LKM generates a special single-access device file in the path

/etc/ecs that, at simulation startup, the simulation kernel opens in order to

notify the module that the worker threads spawned by it are to be managed

with a set of rules defined by the module. In particular, the simulation kernel

instance tells the module what range of virtual addresses dedicate to a specific

LP through the SET_VM_RANGE ioctl command. Since the remainder of this

chapter is strongly related to x86 64 architectures virtual to physical address

mapping, it is important to introduce it in order to better understand the rest

of the proposed solution.

When dealing with low-level memory management, the virtual to physical

address translation is achieved via a technique called paging, since a page is

the smallest memory handable unit. This method is based on storing some data

structures, called page tables, in order to constantly have a consistent saved map-

ping. This kind of architectures, in particular, support (at most) 4 levels of page

tables, each one of them addressing, in a single entry, the lower level one, until

the last one which is pointing to the physical address of the actual 4 KB page.

The 4 tables have a capacity of 512 entries, being thus ultimately able to map up

to 5124 entries, which means in turn 256 TB of total addressable memory: the

tables are called, in order from the highest level one to lowest, Page Map Level

4 (PML4 which is equivalent to Page Global Directory, PGD), Page Directory

Pointer Table (PDPT, equivalently Page Upper Directory, PUD), Page Direc-

tory (PD, equivalently Page Middle Directory PMD, whose entries are Page

Directory Entries, PDE) and Page Table (PT, whose entries are the Page Table

Entries, PTE).

A representation of this structure is depicted in figure 3.3. In particular,

it can be noticed that every linear (virtual) address can be decomposed in five

different parts, each of them useful to traverse the 4 levels of page tables, ex-

pressing the offset where to find the pointer, inside the corresponding page table,

3.3. KERNEL LEVEL SUPPORT 38

to the lower one. The last displacement, of course, refers to the one within the

physical page into which the memory access is falling. In order to know where to

start the indirection procedure, the Control Register 3 (CR3) stores the address

of the first level page table, the PML4. Also, note that only 48 bits of the linear

address, from the 64 available are used, letting the programmers have many free

bits to use as they please still allowing to address a big amount of memory.

DirectoryPML4 Directory Ptr Table O�set

0111220212930383947

CR3

PML4E

PDPTE

40

40

Linear Address

Page-Directory-

Pointer Table

PDE with PS=0 PTE Physical Addr.

Page Directory Page Table 4-KB Page

9 9

40

40 40

9 9 12

Figure 3.3: x86 64 paging scheme

The mapping described in the previous section, and depicted in figure 3.2

is realized basing on a specific rule: the 1 GB stock of memory dedicated to a

LP is allocated in such a way that only one entry of the PDP table is involved.

Therefore, any access to any physical page of a logical process can be associated

with the actual LP simply via the PDP entry used in the virtual-to-physical

translation. Indeed, memory stocks assignment results, in a very straightforward

way, in calling the SET_VM_RANGE ioctl command passing as a payload the

initial address of the first stock, that is the one dedicated to LP0, and the

overall number of LPs.

In order to detect whether an LP is accessing another one’s memory, another

technique is adopted. First of all, the worker threads inform the simulation

kernel about what will be the next scheduled LP via the SCHEDULE_ON_PGD

ioctl command. This command triggers the LKM logic that in turn essentially

installs a copy of the current page table, namely a sibling page table, in the CR3

of the CPU core where the worker thread is currently running. This copy is

performed by simply cloning both the PML4 related the virtual memory of the

current process, retrievable accessing the current macro (more precisely, via

current->mm->pgd) and the PDP tables that point to the actual LPs states.

However, all those PDP entries but the one of the currently running LP are

manually zeroed, in such a way that when an access towards a different LP’s

3.3. KERNEL LEVEL SUPPORT 39

PML4

PDP

	

LPx
O-th PDPTE

Sibling	PML4

Sibling	PDP

NULLCR3	register

access	to	LPx
	 	opened

	
upon

issuing
	
the

	
command

SCHEDULE_ON_PGD

Figure 3.4: ECS schedule example.

state is tried, a memory fault is (automatically) generated. Regarding this last

concept, note that when a memory stock is initialized it is important to actually

materialize the entries of the whole chain of tables in order to really have them

filled and to create consistent sibling pages. This is done by not only relying on

mmap primitive, since it would leave the target memory in a empty-zero state

(in fact, the kernel will finally materialize it only when strictly needed). Thus,

what is done is that, beyond calling mmap, a null byte is written into the single

virtual page of the stock.

Finally, it is important to highlight that the same result about LP cross-

state accessing couldn’t be reached exploiting more traditional facilities, such

as functions like mprotect. In fact, this offers the user the possibility to block

the access to a range of memory at the grain of the process, while the described

approach allows multiple threads within the same process observe different mem-

ory accesses privileges, paying a negligible computational cost. Moreover, the

coarse granularity of that kind of functions could lead to an erroneous situation

while detecting ECS synchronization scenarios. An example of the sibling page

table scheme is shown in figure 3.4.

3.3.2 Implicit Interaction

In order to make use of the sibling page tables structures, the simulation plat-

form needs a technique to intercept and understand artificial memory faults gen-

erated by accesses falling in those cloned tables. Thus, the Interrupt Descriptor

Table (IDT) is properly modified in such a way that the entry containing the

pointer to the traditional do_page_fault kernel function, which manages mem-

ory faults, now points to an ad-hoc ECS fault handler. This handler logic follows

3.3. KERNEL LEVEL SUPPORT 40

the traditional one enhancing it in order to cope with cross-state accesses.

The pseudocode of this handler is presented in Algorithm 4.

Algorithm 4 ECS Page Fault Kernel Handler

1: procedure FaultHandler(pt regs* regs)
2: if current→ mm = NULL then . F1
3: DoPageFault()
4: return
5: end if
6: if current→ pid is not registered then . F2
7: DoPageFault()
8: return
9: end if

10: target← ReadCR2()
11: if PML4(target) not in LP range then . F3
12: DoPageFault()
13: return
14: else
15: if PDP(target) = NULL then . F4
16: fault type←Major
17: else
18: if GetPteStickyBit(target) then . F5
19: fault type←Minor
20: SetPresenceBit(target)
21: else
22: if ¬GetPresenceBit(target) then . F6
23: DoPageFault()
24: if GetPdeStickyBit(target) then
25: fault type←Minor . F7
26: SetPageStickyFlag(target)
27: else
28: return
29: end if
30: else . F8
31: fault type← AccessChange
32: SetPagePrivilege(target, WRITE)
33: end if
34: end if
35: end if
36: end if
37: Switch to the original Page Table . F9
38: Copy to userspace fault information
39: Push on userspace stack regs→ ip
40: regs→ ip← EcsHandler . F10
41: end procedure

First of all, when it is activated the ECS handler needs to understand if

it is a fault not concerning cross-state synchronization, since in that case the

traditional fault handler needs to be called. The cases in which this happens

are:

• The handler is activated to solve a fault from kernel space (F1).

3.3. KERNEL LEVEL SUPPORT 41

• The process who generated the fault is not registered, i.e. it didn’t open

the /etc/dev device file (F2).

• The targeted address is not falling inside a PML4 entry related to LP

memory stocks (F3).

If one of the three cases above arise, then the traditional DoPageFault kernel

facility is invoked.

Then, the algorithm checks what kind of access a LP is trying to perform

towards other LPs. In particular, if the PDP entry evaluated basing on the

target address is zeroed (F4), it means that the faulting LP is generating a

cross-state access for the first time, falling in a scenario named ECS Major

Fault. Indeed, the UNSCHEDULE_ON_PGD ioctl command explicitly clears PDP

entries which are reserved for different LPs. In this case, we simply change

the Instruction Pointer (IP) value to make it point to a userspace platform

function called EcsHandler (F10). However, before giving back the control

to platform, the original page tables view is re-installed restoring the old value of

the CR3 (found at current->mm->pgd) and all the informations about the fault

(such as fault type, fault memory target and address of the faulting instruction)

are copied to userland in a per-thread buffer (F9). The execution flow is then

resumed by simply pushing on userspace stack the original value of the IP.

The userspace EcsHandler starts a (potentially distributed) synchroniza-

tion algorithm that will be later discussed. When synchronization is started

with a different LP, the kernel module needs to understand which pages are

accessed and in what mode, in order either fetch the requested content from

the targeted LP or to update it. Thus, the IOCTL_PROTECT_REMOTE_LP ioctl

command, which is in charge of protecting the memory in a way similar to the

mprotect primitive, is invoked.

In order to overcome the aforementioned limit that the mprotect facility

presents, the PTE structure, shown in figure 3.5, is exploited. In particular,

starting from the PDP related to the LP the synchronization is targeted to, all

the page table entries attainable from it are scanned. According to the operating

system kernel default behavior, all the PTE entries which are not-null have

the presence bit set, being them already materialized. The algorithm explicitly

forces this bit to be unset, hence generating an additional artificial page fault the

next time the page will be accessed. However, in order to understand whether

the fault is artificial or not, along with the presence bit, also a sticky bit, the

one at position 9, is set. From the picture above (figure 3.5) in fact we can

notice that the bits in the interval [9,11] are not used (they’re available bits),

and thus can be manually set by developers to program a custom behavior not

supported by the firmware. Also, when this operation is performed, the bit 11

of the associated PDE entry is set, in order to mark the whole stock as the one

3.3. KERNEL LEVEL SUPPORT 42

Figure 3.5: Page Table Entry (4 KB page).

of a remote LP. Eventually, the LP generating the ECS synchronization will

be re-scheduled and it will generate an (artificial) page fault due to the access

to the page whose PTE was manually modified. At this point, the algorithm

checks whether the page was already materialized, condition that could arise if

a previous execution of an ECS synchronization was put in place. This is done,

at points F5, F6 and F7 by inspecting the value of the sticky bit. If the checked

value is 1, then the presence bit is restored to 1, and the retrieval of the required

pages is allowed to start by delivering to user-space the information that the

happening scenario is the ECS Minor Fault. If, otherwise, the sticky bit is

unset, the page needs to be materialized if and only if the presence bit is unset

as well (F6), which is done by simply invoking the standard DoPageFault

kernel handler. Finally, the algorithm determines whether the page fault being

handled is related to local or remote pages, by inspecting the value of the bit

11 of the PDE entry. If this bit is set (F7), then we’re in the case of an ECS

Minor Fault and this is notified to the user-space ECS handler just after having

set all the sticky bits of the PTE entries related to that PDE, in order to bring

back the PTE table to a consistent state.

Moreover, another consideration about the check at line F6 is to be done.

In particular, this check covers another case related to the access mode to the

page. When, in fact, a remote page is accessed in read mode, the possibility of

accessing it in write mode is explicitly prevented by setting the bit at position 1

of the associated PTE entry via the IOCTL_SET_PAGE_PRIVILEGE ioctl com-

mand. This bit is called read/write bit and, when unset, generates a page fault

if the targeted page is accessed in write mode. When this is the case, the bit

is manually brought back to one (F8) enabling the possibility to update values

on the page. Also, the user-space is notified about this change thanks to the

delivery of an ECS Access Change Fault notification. This final note is impor-

tant due to the optimizations about multiple ECS synchronizations changing

the access mode discussed in the remainder of the chapter. As a final remark,

note that the proposed scheme supports both the standard 4 KB page size and

3.3. KERNEL LEVEL SUPPORT 43

large pages, namely 2 MB sized. The first case is the one described above, in-

volving the whole 4 levels chain of page tables, while the latter only entails three

levels: PML4/PDP/PDE. Indeed, the fault handler is able to understand what

kind of pages are currently used, and set up the sibling page table’s structure

accordingly. Moreover, the swapon/swapoff facilities, natively supplied by the

operating system kernel, were exploited in order to temporarily disallow asyn-

chronous updates of the original page table chain issued by the kswapd swapping

daemon.

3.3.3 The Distributed Synchronization Protocol

Whenever a cross-state request is detected, the involved LP will need to synchro-

nize since, in order to update each others memory, the WCTs must be aligned

not to generate inconsistency in both the two entities. This is achieved by con-

trol message passing among LPs, and the scenario we will refer to is depicted in

figure 3.6. The synchronization starts when the system detects that an LPx is

trying to access a memory area owned by LPy.

WCTLPx

LPy WCT

CSDx = {y}
ex

erv

erva

eub

cross-state access detected while processing the event:

generation of a unique ID

thread schedules a di�erent object

since x is temporary blocked

thread in charge of object y

CPU-schedules a di�erent object

both objects are active at the

same time along a same thread

which performs shared accesses to

their states

the objects execute

again independently
ervaadded when receiving

x

x x

x

Figure 3.6: LP synchronization scheme

This triggers the rendezvous control message passing logic, which consists of

the following steps:

1. LPx sends a rendezvous start control message ervx directed to LPy and

associated to a system-wide unique rendezvous mark.

2. LPx execution is suspended (condition reached thanks to the above de-

scribed ULT technique) and its state is switched to the Wait For Synch

one.

3.3. KERNEL LEVEL SUPPORT 44

3. Eventually LPy will i) receive the rendezvous start control message and

incorporate it inside its event queue, ii) reach the execution time of this

event either due to forward execution or due to a rollback procedure if

ervx represented for this LP a straggler message. LPy thus generates a

rendezvous ack control message ervay carrying the same rendezvous mark

of ervx in order to notify LPx the correct delivery of the ECS request.

4. LPy is put in the Wait For Unblock state, which is a blocked state, in order

not to execute events that may change the memory view LPx is accessing.

5. Once ervay is delivered at LPx, the system switches its state to Ready For

Synch, allowing this LP to be eventually reactivated. LPy is also inserted

into the Cross State Dependency table of LPx. This is an important data

structure since it is passed as an argument to the SCHEDULE_ON_PGD ioctl

command, determining thus what PDP entries should be opened for access

in order to build the sibling page table scheme for the core running the

worker thread.

6. The two LPs are now synchronized: they share the same logical virtual

time and it is safe now for LPx to access LPy’s state. If the latter LP is

remote, then the accesses will generate additional control messages, which

constitute a slight improvement, presented later in this chapter, to the

adopted approach.

7. When LPx finishes the operations on the state of the other LP, i.e. it

completes the execution of the currently scheduled event, it terminates

also the synchronization by sending to LPy a rendezvous unblock control

message eubx .

8. The states of both the LPs are restored to Ready, and execution can

proceed normally.

Note that this procedure can be iterated multiple times, in such a way that

within the execution of a single event, LPx is able to synchronize with more than

one LP at a time. In this scenario, the same rendezvous mark is used. This is a

core aspect since in this way, whenever any of the involved LPs needs to rollback,

the synchronization is aborted and all the LPs involved in a synchronization with

it would rollback as well.

3.3. KERNEL LEVEL SUPPORT 45

3.3.4 Userspace ECS Management

Algorithm 5 shows the logic triggered upon LKM runtime notification of the

cross-state synchronization request issued by a logical process. This algorithm

handles both the local and remote ECS synchronization request cases. As de-

scribed in the above section, the ECS Major Fault (H1) is related to the ini-

tiation of the scheme which follows the (distributed) described protocol. First

of all, a system-wide unique rendezvous mark is generated, and the rendezvous

start control message is sent to the target LP that corresponds to the one keep-

ing the portion of simulation state which is currently accessed by the executed

event (as stated in section 3.3.1). In fact, the ID of the target LP is associ-

ated strictly to only one entry of the PDP table related to the faulting memory

address, and it is delivered to the handler by the LKM.

Algorithm 5 Userspace ECS Handler

1: procedure EcsHandler(type, info)
2: if type = Major then . H1
3: ECS mark ← generate mark()
4: Send(RENDEZVOUS, info.targetLP , currentLV T)
5: LP state← WAIT FOR SYNCH
6: CSD ← CSD ∪ {info.targetLP}
7: Deschedule()
8: else if type = Minor then . H2
9: disasm← Disassemble(info.rip)

10: write mode← disasm.write
11: page addr ← BaseAddr(info.target)
12: pages← PgCount(info.target, disasm.span)
13: if write mode then
14: AddToWriteList(page addr, pages)
15: else
16: AddToReadList(page addr, pages)
17: end if
18: Send(PAGE LEASE, info.targetLP , currentLV T)
19: LP state← WAIT FOR PAGE
20: Deschedule()
21: else if type = AccessChange then . H3
22: page addr ← BaseAddr(info.target)
23: AddToWriteList(page addr, 1)
24: end if
25: end procedure

Therefore, the running LP’s state is set to Wait For Synch and the target

LP identifier is inserted into the Cross State Dependency set (CSD) which is

ultimately represented by the aforementioned Cross State Dependency table.

The currently running LP is then descheduled, exploiting the ULT facilities

mentioned above, in order to block its execution until a rendezvous ack control

message is received.

If the type of the ECS fault is minor (H2), it means that an access to the

3.3. KERNEL LEVEL SUPPORT 46

<LP, address> <LP, address> <LP, address>

<LP, address> <LP, address> <LP, address>

<LP, address> <LP, address>
Read

List

Write

List

Figure 3.7: Page touch lists

state of a remote LP was tried. Therefore, it is needed to discriminate what

kind of request was performed, namely a read or a write operation. To cope

with this issue, the algorithm relies on a in-place dynamic disassembly 1 of the

instruction, passed within the info argument by the LKM, which can be found

in the model’s address space by inspecting the address which caused the memory

fault. This disassembler provides, along with the just mentioned one, several

important informations related to the faulting instruction. Indeed, for instance,

it gives the possibility to know whether the fault was generated due to a read or

a write operation, and the amount of memory that the operation involved. This

latter information is crucial since it is used, together with the memory address

where the fault occurred, to calculate the base address of the first (remote)

page and the number of pages which are to be transferred to the target LP.

This information is in fact piggybacked by an additional control message sent,

before entering the Wait For Page state, towards the target LP, and it takes

the name of page lease since the requesting LP is acquiring a page, logically

controlling it for a specific amount of time. This means that it temporarily

owns a master copy of the data stored in the leased pages, which represent a

portion of state. Those pages can be safely installed in the local LP address

space thanks to the non-overlapping organization presented in figure 3.2. Since

the number of the leased pages can vary and possibly increase, two touch lists

are maintained: one is dedicated to the pages requested in read mode (the read

list), and the other for the one accessed in write mode (the write list). The

entries of those lists not only keep the addresses of the interested pages, but

also the real LP owning that page. In fact, a LP is allowed to synchronize

with any number of LPs, so the ownership of the page must be remembered.

Technically each node of the list is associated to a single PTE entry, and a 512

bits bitmask (one bit for each entry of the PTE) is stored with the scope of

determining whether the corresponding page was gained or not.

Accessing a page in read mode would mean, for an LP, to already have

acquired a lease on it and to already have its content installed in the local

address space. However, accessing the same page in write mode would generate

a page fault since the underlying operating system granted the access to it only

1This disassembler is a part of a bigger software called Hijacker, developed by the HPDCS
research group and foundable at https://github.com/HPDCS/hijacker

https://github.com/HPDCS/hijacker

3.3. KERNEL LEVEL SUPPORT 47

in read mode. Nonetheless, this kind of fault can be managed locally by the

LKM and the user-space ECS handler. In fact, upon this kind of request the

LKM updates the access rights (see F8 in Algorithm 4) before giving back the

control to the users-pace handler. Thus, the latter performs the only task of

switching the touch list of that page, from the read to the write one.

Furthermore, the role of the write list is not limited only to store the leased

pages. When synchronization is about to end, the LP who started the ECS

needs to send a rendezvous unblock control message in order to allow all the

synced LPs to restart execution. Hence, those LPs need to be informed about

what pages were updated and what is the new content they need to install

in their local address space. This is performed by augmenting the unblock

message by adding as payload all the pages for which a lease in write mode has

been acquired during event execution. At the recipients side, the memory view

is updated immediately before restarting the execution of the LP, in order to

reconciliate the remote states and to share a consistent state with respect to the

logic of the just executed handler.

Chapter 4

Experimental Results

We remind the reader that the proposed solution was integrated within ROOT-

Sim, a general purpose parallel/distributed Open Source C/MPI based opti-

mistic simulator, which exposes the explained facilities transparently to the

model developer. In order to evaluate interesting experimental results, we

needed to choose a well suited simulation model as a benchmark application. To

this end, a multi-robot exploration and mapping simulation model, following the

results of [FKK+06] was selected. In particular, the main actors of this models

are robots whose scope is to explore the unknown space they’re inserted in, by

means of the sensors they’re equipped of (lasers, cameras, etc.). Specifically,

the area to explore is a squared region divided in hexagonal cells. The robots

exploit their sensors in order to build a map during the exploration of the world

in order to accomplish their task in a more efficient way. Moreover, every robot

has the ability to determine an exploration frontier, which is defined as the clos-

est unexplored area reachable from the current position. Hence, whenever a

robot needs to figure out where to proceed in the exploration, it relies on this

concept, computes the fastest way to reach the destination point and continues

the exploration. The number of cells and exploring robots can be determined

at application startup and they perform their task in an independent way as

long as they coincidentally notice the presence of another of them in the nearby.

Whenever this happens, we say that a robot enters a proximity area and the

associated actions performed by the involved robots in this circumstance are the

following:

1. they estimate their mutual position collecting the data retrieved by their

sensors. Recall that in this scenario robots are only in a proximity area,

which means that they are not necessarily positioned in adjacent cells.

48

49

2. they generate a rendezvous (i.e. appointment) point in the map where to

meet again in order to estimate the goodness of their current estimated

mutual position

3. if they success in meeting again at the rendezvous point, they share each

other the acquired data in order to shorten the exploration time and in-

crease the precision of the future movements that they will opt for.

Furthermore, if the robots manage to meet again at the rendezvous point, they

start to cooperate constituting a so called cluster, exploiting teamwork to ac-

complish their task. This collaboration is composed by two main sub-tasks:

i) collectively establish their next target exploration areas, basing on the cost

and utility functions also described in [FKK+06] and ii) they try to define a

prediction on the position of the robots not forming the cluster they’re part

of. In particular, the robot for which is more advantageous to perform the lat-

ter operation (namely, the one for which the cost and utility functions returned

more suitable values with respect to the target position) is demanded to actually

complete it. If the guessed hypothesis is verified, the steps described above are

carried out again, so that the cluster is possibly enlarged and simulation speeded

up. Since robots are likely to exchange possibly considerable amounts of data

(namely, explored maps, guesses, etc.), this kind of model is well suited to test

the behavior and the performance of the provided distributed ECS solution.

In particular, we ran the experiments on a HP ProLiant server mounting

8 AMD Opteron 6376 CPUs, running at 2.6GHz each and equipped with 100

GB of RAM. Each CPU includes four cores, for an overall total of 32 phys-

ical cores. Furthermore, the actual simulation was executed on a cluster of

virtualized nodes made up by 10 Virtual Machines (VMs) hosted by VMware

Workstation hypervisor, version 10.0.4 build-2249910. On top of every virtual

machine, Debian 6.0.7 was installed, thus relying on Linux Kernel 3.16.0-4. The

cluster was created in such a way to reproduce a mid-range computer set, since

every VM rely on 8 GB of memory and 2 virtual cores. Finally, the model was

configured to have a map formed by 484 hexagonal cells, which are explored by

4 different robots. In order to get a good comparison between the traditional

communication pattern and our optimized ECS solution, we ran tests in two

different approaches:

• ECS: exploiting the actual transparent distributed synchronization pro-

tocol described in this thesis. It is based then on memory pointers while

i) exchanging data between robots and ii) registering one robot into a cell

(note that upon initialization, each cell stores its state in a shared array

which is mirrored in all computing nodes).

50

• No-ECS: basing on classical message passing as an alternative to imple-

ment the same logic described in the previous point. For instance, when

robots are required to exchange each other the fraction of the map they

explored, data is simply inserted into an event’s payload and it is pig-

gybacked to the recipient. This clearly represents a drawback since the

model design complexity is increased, a problem that was directly tackled

in this thesis.

In the chart of figure 4.1 the simulation throughput, when changing the num-

ber of computing nodes, is drawn, showing two main different behaviors. In

particular, when the number of nodes does not overcome three we can notice

that the presented solution provides an improved performance compared to the

traditional technique. This is mainly caused by the fact that while running

simulation events, the involved robots are accessing a non-minimal portion of

each others data both in read and in write mode. However, this is also the case

where the probability that LPs reside on the same node is very high (approx-

imately 50%), consequently increasing the likelihood of accessing a simulation

state which is already present in the machine they’re running on. This situation

is clearly a case in which our solution is disadvantaged, since the exchanged data

typically occupies around three pages, which can be easily and better optimized

transferred with the traditional method (event data marshaling/unmarshaling).

Nonetheless, when the number of nodes increases, while overall number of LPs

is kept fixed, thus incrementing the degree of parallelism, the overhead intro-

duced by our solution only increases up to 30%. Keeping in mind that while

synchronizing logical processes block their execution for a non-minimal amount

of WCT, exchange a high number of control messages and that the low number

of LPs drastically increases the chance of delivery of straggler messages by LPs

involved in a synchronization (thus entailing rollback operations and forcing

ECS protocol to retry multiple times), we can state that the evaluated overhead

value mentioned above represents a good result. Indeed, despite the adverse

scenario, the protocol is able to keep this overhead quite reduced.

Finally, in figure 4.2 we show the speedup, with respect to the number of

nodes, when running the same model in purely sequential way and execut-

ing making use of an efficient Calendar Queue (a data structure presented in

[Bro88]).

By the results, we can observe that the introduced speedup is non-minimal,

showing that the experimental assessment was conducted comparing competitive

parallel runs. Still, although the low number of LPs is limiting the speedup

in our ECS solution, that speedup is always increasing, leading the reader to

expect that in the best-case high-load, inter-kernel communication intensive

widely-distributed scenario it can overtake the No-ECS execution case.

51

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7 8 9 10

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
i
n
u
t
e
s
)

Computing Nodes
ECS No-ECS

Figure 4.1: Simulation throughput

 0

 1

 2

 3

 4

 5

 6

 7

2 3 4 5 6 7 8 9 10

S
p
e
e
d
u
p

Computing Nodes
ECS No-ECS

Figure 4.2: Speedup with respect to sequential simulation

Chapter 5

Conclusions and Future

Work

In this thesis we presented an innovative approach to directly tackle the problem

of distributed cross-state synchronization in PDES. In particular, the described

architecture allows LPs to rely on sequential-style programming paradigm to

access in read or write mode the simulation state of any local or remote LP

lying in the distributed simulation system.

This thesis specifically aimed at significantly simplifying the programming

model, giving the model designer a high amount of flexibility in developing its

system being it not forced to care about synchronization issues. Overall, the

designer is asked to develop using a fully sequential style paradigm, demanding

the underlying platform to care about simulation concerns.

Moreover, this solution was meant to be transparently deployed on generic

and general purpose distributed environments. Indeed, the tests were executed

on a cluster of virtualized computing nodes, which clearly denotes the univer-

sality of the approach. The discussed work is only constrained by the usage of

Linux 3.16.0-4 kernel facilities, running on top of x86-64 architectures. Given the

wide spread exploit of those two requirements, they ultimately don’t represent

an obstacle to the transparent deployment of this system.

The worst-case scenario used to collect the previously presented experimental

assessments shows that our solution can be considered well viable from a per-

formance point of view, being the introduced overhead almost negligible under

unfortunate circumstances.

This work, that finally resulted in the [PPQ18] article submitted to the Inter-

national Symposium on Cluster, Cloud, and Grid Computing (CCGRID) 2018,

opened a path in this research field, giving us many ideas about possible future

works. Specifically, since this work aimed at generating page leases whenever

52

53

an LP accesses a remote LP’s state memory portion, our idea is to tune the

approach estimating what portions of memory an LP is going to access. In fact,

thanks to the concept of temporal locality we can understand if a LP is request-

ing a certain portion of memory at a high frequency, giving the LP the right

of owning it for longer periods. Also, exploiting the spatial locality principle,

we can make guesses about pages which are likely to be requested by an LP, in

order to obtain the lease of a set of pages that may be useful in the future. We

believe that both this two techniques can drastically reduce the overhead gener-

ated by the synchronization protocol, since in both cases the number of times it

would be started should be significantly cut off. Therefore, less messages would

be exchanged and the overall per-LP elapsed time in a blocked state would be

radically lowered down, consequently leading to a gain in performance.

Bibliography

[Bel90] Steven Bellenot. Global virtual time algorithms. In Proceedings of
the SCS Multiconference on Distributed Simulation, pages 122–127,
January 1990.

[Bel92] Steven Bellenot. State skipping performance with the Time Warp
operating system. In Proceedings of the 6 th Workshop on Parallel
and Distributed Simulation (PADS ’92), pages 53–64, 1992.

[BP29] Robert Baden Powell. How the acorn became an oak tree. Boy’s
life, XIX(2):9, 1929.

[Bro88] Randy Brown. Calendar queues: a fast O(1) priority queue imple-
mentation for the simulation event set problem. Communications
of the ACM, 31(10):1220–1227, 1988.

[CLY+11] Li-li Chen, Ya-Shuai Lü, Yi-Ping Yao, Shao-Liang Peng, and Ling-
Da Wu. A well-balanced time warp system on multi-core environ-
ments. In 25th ACM/IEEE/SCS Workshop on Principles of Ad-
vanced and Distributed Simulation, PADS 2011, Nice, France, June
14-17, 2011, pages 1–9, 2011.

[CM79] K. Mani Chandy and Jayadev Misra. Distributed simulation: A
case study in design and verification of distributed programs. IEEE
Transactions on Software Engineering, SE-5(5):440–452, September
1979.

[CPF99a] Christopher D. Carothers, Kalyan S. Perumalla, and Richard Fuji-
moto. Efficient optimistic parallel simulations using reverse compu-
tation. ACM Trans. Model. Comput. Simul., 9(3):224–253, 1999.

[CPF99b] Christopher D. Carothers, Kalyan S. Perumalla, and Richard Fuji-
moto. Efficient optimistic parallel simulations using reverse compu-
tation. ACM Transactions on Modeling and Computer Simulation,
9(3):224–253, July 1999.

[DF97] Samir R. Das and Richard M. Fujimoto. Adaptive memory man-
agement and optimism control in time warp. ACM Trans. Model.
Comput. Simul., 7(2):239–271, 1997.

[DFP+94] Samir Das, Richard Fujimoto, Kiran Panesar, Don Allison, and
Maria Hybinette. GTW: a time warp system for shared memory
multiprocessors. In WSC ’94: Proceedings of the 26th conference on
Winter simulation, pages 1332–1339. Society for Computer Simula-
tion International, 1994.

54

BIBLIOGRAPHY 55

[FD97] Alessandro Fabbri and Lorenzo Donatiello. SQTW: A mechanism
for state-dependent parallel simulation. description and experimen-
tal study. In Proceedings of the Eleventh Workshop on Parallel and
Distributed Simulation, PADS ’97, Lockenhaus, Austria, June 10-
13, 1997, pages 82–89, 1997.

[FKK+06] Dieter Fox, Jonathan Ko, Kurt Konolige, Benson Limketkai, Dirk
Schulz, and Benjamin Stewart. Distributed Multirobot Exploration
and Mapping. Proceedings of the IEEE, 94(7):1325–1339, 2006.

[Fuj89a] R. M. Fujimoto. Time Warp on a shared memory multiprocessor.
Transactions of the Society for Computer Simulation, 6(3):211–239,
1989.

[Fuj89b] Richard M. Fujimoto. The virtual time machine. In Proceedings of
the fisrt annual ACM symposium on Parallel algorithms and archi-
tectures, pages 199–208. ACM Press, 1989.

[Fuj90] R. M. Fujimoto. Performance of Time Warp under synthetic work-
loads. In Proceedings of the Multiconf. on Distributed Simulation,
pages 23–28. Society for Computer Simulation, January 1990.

[Fuj93] Richard M. Fujimoto. Parallel and distributed discrete event simu-
lation: algorithms and applications. In WSC ’93: Proceedings of the
25th conference on Winter simulation, pages 106–114. ACM Press,
1993.

[GF91] Kaushik Ghosh and Richard Fujimoto. Parallel discrete event simu-
lation using space-time memory. In Proceedings of the International
Conference on Parallel Processing, ICPP ’91, Austin, Texas, USA,
August 1991. Volume III: Algorithms and Applications., pages 201–
208, 1991.

[Gos03] Abhijit Gosavi. Simulation-Based Optimization: Parametric Opti-
mization Techniques and Reinforcement Learning. Kluwer Academic
Publishers, Norwell, MA, USA, 2003.

[Jef85] David R. Jefferson. Virtual Time. ACM Transactions on Program-
ming Languages and System, 7(3):404–425, July 1985.

[Jef90] David R. Jefferson. Virtual Time II: storage management in con-
servative and optimistic systems. In Proceedings of the 9th annual
ACM symposium on Principles of distributed computing, pages 75–
89. ACM, 1990.

[LL89] Yi-Bing Lin and Ed D. Lazowska. Determining the global virtual
time in a distributed simulation. Technical report, University of
Washington Department of Computer Science and Engineering, Jan-
uary 1989.

[McK04] Sally a. McKee. Reflections on the memory wall. Proceedings of
the first conference on computing frontiers on Computing frontiers
- CF’04, page 162, 2004.

BIBLIOGRAPHY 56

[MNPQ16] Nazzareno Marziale, Francesco Nobilia, Alessandro Pellegrini, and
Francesco Quaglia. Granular time warp objects. In Proceedings
of the 2016 annual ACM Conference on SIGSIM Principles of Ad-
vanced Discrete Simulation, SIGSIM-PADS 2016, Banff, Alberta,
Canada, May 15-18, 2016, pages 57–68, 2016.

[PDQ11] Sebastiano Peluso, Diego Didona, and Francesco Quaglia. Appli-
cation Transparent Migration of Simulation Objects with Generic
Memory Layout. In Proceedings of the 25th Workshop on Princi-
ples of Advanced and Distributed Simulation, pages 169–177. IEEE
Computer Society, 2011.

[PPQ18] Matteo Principe, Alessandro Pellegrini, and Francesco Quaglia.
Transparent Deploy of Sequentially-Coded PDES Models on
Distributed-Memory Systems. In EEE/ACM International Sym-
posium on Cluster, Cloud, and Grid Computing CCGRID, 2018.

[PPQV16] Alessandro Pellegrini, Sebastiano Peluso, Francesco Quaglia, and
Roberto Vitali. Transparent speculative parallelization of discrete
event simulation applications using global variables. International
Journal of Parallel Programming, 44(6):1200–1247, 2016.

[PQ14a] Alessandro Pellegrini and Francesco Quaglia. The ROme OpTi-
mistic Simulator: A Tutorial. In Proceedings of the 1st Workshop on
Parallel and Distributed Agent-Based Simulations, PADABS, pages
501–512. LNCS, Springer-Verlag, Aachen, Germany, 2014.

[PQ14b] Alessandro Pellegrini and Francesco Quaglia. Transparent Multi-
Core Speculative Parallelization of DES Models with Event and
Cross-State Dependencies. In Proceedings of the 2014 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation, PADS,
pages 105–116. ACM, 2014.

[PQ17] Alessandro Pellegrini and Francesco Quaglia. A fine-grain time-
sharing time warp system. ACM Trans. Model. Comput. Simul.,
27(2):10:1–10:25, 2017.

[PVQ09] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. Di-
dymelor: Logging only dirty chunks for efficient management of
dynamic memory based optimistic simulation objects. In PADS
’09: Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on
Principles of Advanced and Distributed Simulation, pages 45–53,
Washington, DC, USA, 2009. IEEE Computer Society.

[PVQ15] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. Auto-
nomic state management for optimistic simulation platforms. IEEE
Trans. Parallel Distrib. Syst., 26(6):1560–1569, 2015.

[RAT93] Hassan Rajaei, Rassul Ayani, and Lars-Erik Thorelli. The local
time warp approach to parallel simulation. SIGSIM Simul. Dig.,
23(1):119–126, 1993.

[Rey88] Paul F. Reynolds, Jr. A spectrum of options for parallel simulation.
In Proc. of 1988 Winter Simulation Conference, pages 325–332. So-
ciety for Computer Simulation, December 1988.

BIBLIOGRAPHY 57

[Sut05] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software. Dr. Dobb’s Journal, 30(3):202–210, 2005.

[TPQ+17] Tommaso Tocci, Alessandro Pellegrini, Francesco Quaglia, Josep
Casanovas-Garcia, and Toyotaro Suzumura. ORCHESTRA: an
asynchronous wait-free distributed GVT algorithm. In 21st
IEEE/ACM International Symposium on Distributed Simulation
and Real Time Applications, DS-RT 2017, Rome, Italy, October
18-20, 2017, pages 51–58, 2017.

[TQ08] Roberto Toccaceli and Francesco Quaglia. Dymelor: Dynamic mem-
ory logger and restorer library for optimistic simulation objects with
generic memory layout. In PADS ’08: Proceedings of the 22nd Work-
shop on Principles of Advanced and Distributed Simulation, pages
163–172, Washington, DC, USA, 2008. IEEE Computer Society.

Acknowledgments

First of all, I would like to thank my advisors proff. Bruno Ciciani and Francesco
Quaglia, who gave me the possibility to get into this field of computer science,
which is as hard as challenging, and offered their knowledge and competences
to introduce me in the world of scientific research. I give my best thanks to
Alessandro Pellegrini, a true lifelong friend with whom I shared the craziest
moments in the development of this thesis: without his help, his sustain and
our teamwork this thesis wouldn’t have been possible to realize. I would like
also to thank all the members of the HPDCS (and, eventually, Lockless S.r.l)
research team, a group made by kind, nice and skilled people who improved
my knowledge and, primarily, made me feel at home (overall, I used your desks
more than my own one at my place!).

Then, I cannot forget my family. My father, my mother and my sisters
always believed in me and gave me the (financial) possibility to reach this result
concurring at my realization as a man. The support they always showed me in
the countless times I was unbearable, and the love they gave me in all this long
period of studies were the light that allowed me to overcome the darkest times
I needed to face in these years. Also, my sisters Chiara and Elena taught me
that persisting in our choices is something to believe in, even if it implies not
to live under the same roof. Thank you for understanding my sometimes hard
personality, and to give me smiles and laughs in the moments i needed.

Thanks to Tommaso, Djordje and Lorenzo, my best university colleagues
and friends with whom I spent days and years in front of a screen, and without
whom it would have been almost impossible to pass all the exams and to believe
that we could achieve this great success.

Finally, thanks to all my friends from the Scouts family. Thanks to all the
scout chiefs, that went and come, that contributed and still contribute in my
personal fulfillment. Without you, Matteo wouldn’t be the person he is, now.
Baden Powell (founder of Scouts movement) used to say the acorn [. . .] had
grown a seeding plant (cf. [BP29]): I may be still a little tree, but if I am, it is
mostly thanks to you.

This work was entirely developed using open source software, such as TEX
and LATEX, I would like to thank all the people that offered me those free-to-use
tools.

The master thesis opened a new chapter in my life: i am really grateful to all
the people who stayed with me along this path. . . but the best is yet to come!

	Abstract
	1 Introduction to Simulation and PDES Overview
	1.1 Simulation Taxonomy
	1.1.1 Discrete Event Simulation

	1.2 Synchronization Approaches
	1.2.1 Conservative Synchronization
	1.2.2 Optimistic Synchronization
	1.2.3 Hybrid Synchronization

	1.3 Rollback Strategies
	1.3.1 State Save and Restore
	1.3.2 Reverse Computation

	1.4 PDES Logical Architecture
	1.4.1 The ROOT-Sim Environment

	2 PDES Programming Models
	2.1 Sequential and Distributed DES
	2.2 PDES Strikes Back
	2.2.1 Shared and Global Variables
	2.2.2 Message Passing
	2.2.3 Mixed Sharing

	3 Distributed Event Cross State Synchronization
	3.1 Reference System Model
	3.2 Memory Management Policy
	3.3 Kernel Level Support
	3.3.1 Explicit Interaction
	3.3.2 Implicit Interaction
	3.3.3 The Distributed Synchronization Protocol
	3.3.4 Userspace ECS Management

	4 Experimental Results
	5 Conclusions and Future Work
	Bibliography
	Acknowledgments

