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Abstract

In the era of ubiquitous Artificial Intelligence and power-hungry Neural Networks,

the brain offers prime inspiration for a faster, greener, more efficient, and arguably

more effective alternative: Spiking Neural Networks (SNNs).

This thesis explores simulating SNNs using Parallel Discrete Event Simulation

(PDES) with Time Warp. We present the motivations for this approach, the chal-

lenges that using it poses, and illustrate our solutions in-depth from both a theo-

retical and technical point of view, with emphasis on the latter.

With the ability to execute SNN simulation on a PDES support, we show how

this simulation method allows for achieving significantly higher simulation accuracy

with respect to the traditional Time-Stepped approach. In our experimentation, the

traditional approach was shown to suffer from substantial drift from the expected

network activity due to the compounding effect of inaccuracies. Higher accuracy

is crucial to properly simulate and thus study biological neural networks in silico,

as well as simulate analogical neuromorphic chips, but we also show it plays a fun-

damental role when using SNNs for AI by replicating recognition experiments and

achieving higher classification accuracy, all while using simpler network topologies,

with lower energy consumption.

Finally, our experimentation also highlights the high scalability of our approach

thanks to effective utilisation of both parallel and distributed computing.
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Chapter 1

Introduction

For centuries, the brain has fascinated humans, who wondered about its purpose

and, more recently, about its inner workings. Written records touching on the

brain’s structure and treatment of traumatic brain injury are found on the Edwin

Smith Papyrus, bringing us as far back as the 17th century BC, in ancient Egypt.

However, it was not until the work of Alcmaeon of Croton in ancient Greece that

the brain was first linked to higher intellectual activities [6].

Through continued effort across the centuries, this fundamental understanding

continued to evolve, culminating in the groundbreaking discovery of the neuron as

the basic unit of the nervous system in the late 19th century, which led us to a time

of deeper, although still incomplete, understanding of the brain.

At the same time, thinkers from every era have been captivated by other aspects

of the human experience: the ability to have complex thoughts, problem-solving,

and the very nature of consciousness itself. These have always been shrouded in

enticing mystery. Philosophers long debated about the nature of the mind and its

relationship to the body, while folklore and modern fiction often present stories

of inanimate objects becoming sentient. In more modern times, we find attempts

at recreating complex behaviour through automata, mechanical devices mimicking

human or animal actions.

Nowadays, we know that the brain is the organ that controls the functions of the

body and interprets the information from the outside world, allowing us to think

and act in complex ways. Furthermore, modern technologies such as brain imaging
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allow us to take a peek into the brain and observe its activity in real time.

It is not surprising then, that the progresses on the path of brain discovery have

inspired many of the advancements in the Artificial Intelligence (AI) field. Indeed,

the most obvious path towards replicating (or rather, emulating) intelligence that is

currently being explored is that of replicating the brain’s inner workings, or at least

its behaviour. For this reason, the concept of Artificial Neural Networks (ANNs)

has become a hot topic in computer and data science, and the most well-known and

practised approach to AI in the current day.

ANNs are function approximation tools loosely inspired by the brain’s structure.

From the brain, they borrow the idea of having a multitude of interconnected small

and simple components—the neurons—, the interaction of which gives rise to com-

plex behaviour. The applications achieved with this approach are countless, ranging

from speech recognition and improved computer vision, to more recent advances in

generative tasks, such as generative adversarial neural networks or diffusion mod-

els for images and videos [60, 24], and language processing through large language

models [59]. However, training and using ANNs requires significant amounts of com-

putational resources and, additionally, they often struggle to replicate the brain’s

flexibility and adaptability.

This inherent limitation of ANNs spurred deeper research in the direction of

models that better follow the brain’s biological functioning. Spiking Neural Net-

works (SNNs) represent in this sense a significant step forward, as strong candidates

as a computational tool, to execute AI tasks with extreme energy efficiency com-

pared to ANNs, but also—and possibly more notably—as a modelling tool to better

understand the brain’s nature, structure, and inner workings.

The interest in SNNs has increased in the last decade [23]. Their momentum is

strongly related to their expressive capabilities that allow them to mimic biological

neural networks closely. This characteristic makes SNNs a perfect tool for research

activities in disparate fields, such as medicine, neuroscience, or psychology, and,

again, provides a non-negligible potential in Artificial Intelligence. At the same

time, their significantly-reduced energy requirements open the way for specialised

hardware applications in the form of neuromorphic chips [26, 52, 56]. These chips
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are regarded as one of the essential future steps in computing, as they introduce

a level of parallelism, with reduced energy demand, that does not exist in today’s

hardware, including GPUs, FPGAs, and most AI accelerators.

Neuromorphic systems, in general, have an increased value due to their ca-

pability to perform processing asynchronously. Indeed, they rely on event-driven

processing models to tackle complex computing problems, in a way similar to the

human brain, which uses only a subset of its neurons and synapses to carry out

tasks at maximum efficiency.

SNNs encode data in a temporal domain known as the spike train [9]. Due to

this behaviour that evolves with time, their output cannot be simply computed with

a one-shot function, however complex, but instead they need to be simulated. The

event-driven processing model of SNNs makes them a perfect match with Discrete

Event Simulation (DES) techniques. Nevertheless, simulating SNNs is exceptionally

computationally intensive due to their sheer size and scale. This is reflected in non-

negligible running times, making it difficult to obtain relevant simulation results in

reasonable time. As an example [45], simulating 250ms of activity for a network of

11,250 neurons/127 million synapses on the well-known NEST simulator [21] can

take more than 30 seconds on a single CPU core. At the same time, the research

community is striving to simulate networks of size comparable to the mammalian

brain’s, containing on the order of 107 to 1011 neurons, with thousands of synapses

per neuron on average [2, 29, 30, 34], which are considered very large networks.

The computational demand of large-scale SNN simulation is addressed by the

vast majority of existing simulators by employing parallel/distributed execution.

This is done by exploiting multicore CPUs (also in distributed environments) or

by relying on accelerators such as GPUs [5, 10, 14, 18, 32, 42, 45, 71] or FP-

GAs [13, 63, 70]. Nevertheless, we observed that the trouble at scaling up faced by

most state-of-the-art SNN simulation methods may stem from their use of con-

servative time-stepped synchronisation. Indeed, popular simulators rely on the

time-stepped simulation approach, and the simulators that employ Parallel Discrete

Event Simulation (PDES), regardless of whether they use a conservative synchroni-

sation scheme such as the YAWNS algorithm [46] (e.g. [15]), or not (e.g. [55]), rely
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on recurring “heartbeat” events scheduled at constant intervals to trigger neuronal

dynamics computation, essentially making them into time-stepped simulations.

However, SNN models have, in general, a low rate of neuron activity at any

given time, which is strictly connected to their brain-inspired nature, which uses

only a subset of the neurons for a given task. This space/time partitioning of the

activities makes it perfectly suitable for exploiting speculative simulation adhering

to the Time Warp synchronisation protocol [33]. The hypothesis was that this

choice could produce non-negligible simulation speedups, especially on large-scale

computing infrastructures, as it has been shown that speculative PDES can be

deployed on millions of (distributed) CPU cores [3].

At the same time, spikes carry a piece of information which is either binary (i.e., a

neuron has spiked) or with a tiny payload (e.g., the intensity of the spike) depending

on the nature of the model and its implementation—in general, the behaviour of

spikes is somewhat homogeneous in a simulation. Similarly, the state of each neuron

is reduced in size, and the time complexity of the execution of a single event can

be significantly fine-grained. These aspects could make the employment of Time

Warp-based PDES sub-optimal, as the housekeeping cost might not be paid off by

forward-processing activities [20].

1.1 Thesis objectives and Contributions

In this work, we present modelling methodologies and PDES runtime-environment

support for SNN models based on the ROOT-Sim Simulation Framework [51],

which employs the Time Warp synchronisation protocol to enhance the scalability

of simulations. This approach has a twofold goal. On the one hand, we tackle

the complexity of deploying an SNN model on top of a speculative PDES runtime

environment. The modeller should not need to worry about where the synapses are

kept or how they are organised, nor should they care about the fact that spikes

are, in fact, events that need to be sent (logically) one by one or, even worse, they

should not need to schedule an event to check whether a spike should happen or not.

Ideally, the modeller should be tasked with as few programming related actions as

possible, made as simple as possible.
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On the other hand, we focus on simulation accuracy. Indeed, many approaches

relying on (time-stepped) synchronisation algorithms consider a fixed forward step

in time (typically set on the order of tenths of milliseconds). In this way, the sim-

ulation results approximate the actual results. This is a well-known limitation [27]

related to classes of neuron models with linear subthreshold dynamics, wherein some

circumstances even some spikes can be missed. Our modelling methodology lever-

ages the nature of discrete events together with an innovative numerical method

and ad-hoc events management strategies, allowing us to obtain precise simulation

results. Furthermore, we apply this approach to exponential synapses, which are

much more complex than jump synapses typically dealt with in the literature that

tackles spiking neural network simulation using DES.

The content of this thesis is partially based on the publications that appeared

in international conferences, and are listed below at the label “SNN simulation”.

Furthermore, the author also contributed to the publications listed below at the

label “Other Publications”, which, in varying degrees, have served as inspiration for

the findings presented in this thesis.

Finally, as part of the commitment to the research community, the author has

also been involved in the reproducibility initiative, for which the report listed below

at the label “Reproducibility”, was produced.
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1.1.1 Structure of this Thesis

This thesis is structured as follows. After introducing the work’s background and

motivations in the first and current Chapter, we move on to introduce Spiking Neural

Networks in Chapter 2, and present the neuron model we use throughout this work,

two synapse models and the simulation method classically used for SNN simulation:

time-stepped simulation. Then, in Chapter 3, we present the approach we propose

to use for SNN simulation, Parallel Discrete Event Simulation. We explain the

basic concepts of PDES and explain how the previously presented neuron model can

be adapted to be simulated using PDES. Furthermore, we introduce the runtime

supports we implemented and used to achieve scalable and accurate simulations

using PDES. Chapter 4 presents the Python interfaces implemented to allow for

easier and faster development of SNN simulation models. Chapter 5 deals with

the experimental evaluation of the approach, from a perspective of performance

and accuracy. It also presents the work done to evaluate the capability of SNNs

simulated using PDES to execute AI workloads and evaluate the performance of

hardware deployments. Finally, Chapter 6 concludes the thesis, and proposes future

research directions in line with the presented work.

1.2 Reference Implementations and Benchmarks

We now proceed to present the various models and benchmarks used in creating

research for this thesis. All of the models and benchmarks have been implemented on

top of runtime supports (see Section 3.5) developed for the ROOT-Sim Simulation

Framework [51] specifically for the purpose of supporting this research. The source

code can be found online1. Whenever possible, we opted-in to the Reproducibility

of Computational Results supported by the ACM.
1https://github.com/ROOT-Sim/core

https://github.com/ROOT-Sim/core
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1.2.1 Simulation Frameworks

ROOT-Sim

ROOT-Sim1 [51] is a general-purpose, parallel and distributed, high performance

discrete event simulation framework, leveraging optimistic synchronisation using

the Time Warp algorithm for speculative execution of events.

All the simulation runtime supports implemented for this research have been

implemented on top of ROOT-Sim.

NEST

NEST2 [22] is an open-source, time-stepped, spiking neural network simulator im-

plemented in C++. Boasting a multitude of active contributors and almost 20 years

of history, it comes prepacked with “over 50 neuron models many of which have been

published” and “over 10 synapse models”. Users can implement new custom neuron

and synapse models.

NEST can run parallel simulations through OpenMP, using the worker thread

paradigm for parallel computing, while distributed simulations are supported via

MPI. Inter-process communication and neuron distribution is handled transparently

inside of NEST.

Brian

Brian [64] is an open-source time-stepped simulator written in Python. Its main

focus is ease of use, but provides a series of interesting facilities that allow for great

flexibility and high performance.

The simulation structure is simple and follows few key steps:

1. The runtime is initialised automatically upon importing Brian.

2. Neurons are declared and initialised through the NeuronGroup class.

3. Synaptic connection between two NeuronGroups is declared with a SynapseGroup

object.
2https://nest-simulator.org

https://nest-simulator.org
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4. Synapses are created inside a SynapseGroup, using one of the provided con-

nection methods.

5. Other inputs are created (e.g. input from a poissonian population of neurons).

6. A SpikeMonitor, or another similar object, is used to gather statistics about

a target neuron, or (slice of) neuron group.

7. Created objects are added to the simulation.

8. The simulation is run for a selected amount of time.

9. Data is gathered, object states can be manually modified. These last two

steps can be repeated ad libitum.

When declaring the neurons, the differential equations describing the state and

its evolution have to be provided in string format. The equations are then parsed

with SymPy, a library for symbolic mathematics, and is prepared to be solved with

the preferred integration method at each time step. The need to provide differential

equations is also found when creating synapses, both in modelling the synapse state,

and the effect of spikes which must “be expressed as (possibly delayed) one-off

changes”.

Brian’s internal code that executes models (i.e. that solves the model equations)

is written and compiled on-the-fly when initialising the simulation. Based on the

model, high-level code in string format is generated, which is then transposed into

an intermediate representation that is optimised and then compiled into C++ code.

At the time of experimentation, Brian lacked multi-threading support.

1.2.2 Synthetic Models

CUBA benchmark

The standard current-based (CUBA) synaptic interactions benchmark [9] is inspired

by a study on signal propagation in leaky integrate-and-fire (LIF) models [69]. As

the name suggests, this benchmark entails simulating a network of LIF neurons

that communicate using current-based (CUBA) synaptic interactions. The network
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consists of two distinct populations of neurons: excitatory neurons, which make

up the vast majority (80%) of the network, and inhibitory neurons, comprising

the remaining 20%. All neurons are connected randomly to one another using a

connection probability of 2%.

For the purpose of this research, the CUBA model proved useful for performance

evaluation: owing to the parametric nature of the topology of its network, it pro-

vided an excellent infinitely-scaling stress-test. The network used for the majority

of the experimentation we conducted comprises 300,000 neurons (240,000 excitatory

and 60,000 inhibitory), leading to approximately 1.8 billion synapses.

2 neurons model

This network is composed of two neurons, the input neuron N1 and the output

neuron N2. N1 receives a constant external current of 1,800 mV, and its output

is propagated to N2 through an exponential synapse with a weight of 5,000. N2

receives no other input. The output of N2 is monitored, and its spikes are collected.

The simplicity of this network allows us to easily evaluate simulation accuracy.

1000 neurons

This model is composed of a network of 1,000 LIF neurons. The neurons are divided

into one input layer and three “passive” layers, each of which has two populations,

one excitatory and one inhibitory. The input layer has 100 excitatory neurons, each

of which receives a constant current input, and each of the three layers has 200

excitatory and 100 inhibitory neurons. It employs a connectivity map, reported in

Table 5.3, to randomly connect the populations according to connection probabili-

ties. This configuration aims to model a small network to statistically compare the

observed spiking frequencies against those from state-of-the-art simulators.

Feed-forward Precision Benchmark

For the purpose of carrying out accuracy experiments, a synthetic network model

consisting of 1,000 neurons was built. The network is acyclic, divided into four

layers: Input, L1, L2, and Output. The network topology scheme is found in
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Table 1.1. Connectivity map for the 1000 neurons synthetic benchmark.

to
L1e L1i L2e L2i L3e L3i

from In 0.292 0.192 0.049 0.237 0.169 0.115
L1e 0.224 0.293 0.106 0.254 0.438 0.099
L1i 0.135 0.025 0.409 0.25 0.309 0.271
L2e 0.165 0.177 0.122 0.032 0.491 0.3
L2i 0.448 0.319 0.08 0.207 0.225 0.201
L3e 0.395 0.123 0.265 0.215 0.476 0.174
L3i 0.223 0.276 0.358 0.028 0.065 0.188

Figure 1.1. Schema of the Feed-forward Precision Benchmark.

Figure 1.1. The Input layer comprises 100 excitatory neurons, which receive a

constant input current of 1800pA. Layers L1 and L2 both comprise two populations

of 100 excitatory (L1e/L2e) and 100 inhibitory neurons (L1i/L2i). The Output

layer consists of 100 neurons. Synapses all have fixed weights of 200pA with a

delay of 1.5ms when excitatory and a weight of −600pA and delay of 0.8ms when

inhibitory, as specified in Table 1.4. The neuron parameter specification is reported

in Table 1.2.

This model is built to be comparable across different simulators. As such, it does

not make use of randomness during the network simulation, so as to avoid differences

stemming from (pseudo) random number generator implementations. Additionally,

to render the network execution comparable across simulators, the network topology

and relevant parameters (initial membrane potential, input current, synaptic weight,
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Table 1.2. Parameter specification for the precision benchmark.

Populations and inputs
Name Input L1e L1i L2e L2i Output
Population size 100 200 200 200 200 100

Neuron Model
Name Value Description
τm 10 ms Membrane time constant
τref 2 ms Absolute refractory period
τsyn 0.5 ms Postsynaptic current time constant
Cm 250 pF Membrane capacity
Vreset −65 mV Reset potential
Vth −50 mV Fixed firing threshold

Table 1.3. Connectivity map for the Feed-forward Precision Benchmark.

to
In L1e L1i L2e L2i Out

from In - 0.292 0.192 0.049 0.237 0.169
L1e - - - 0.106 0.254 0.438
L1i - - - 0.409 0.250 0.309
L2e - - - - - 0.491
L2i - - - - - 0.225

Table 1.4. Synaptic parameter specification in the Feed-forward Precision Benchmark.

Name Value Description
wexc 200 pA Excitatory synaptic strength
winh −600 pA Inhibitory synaptic strength
de 1.5 ms Excitatory synaptic transmission delay
di 0.8 ms Inhibitory synaptic transmission delay

synaptic delay) are generated with a script into a configuration file, which then

is loaded by the models of each simulator, leading to the exact same topology

and initial conditions for every single neuron in all cases. Table 1.3 reports the

connectivity map used when generating the topology.
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1.2.3 Real-world Models

Local Cortical Microcircuit Model

As real-world model we used the local cortical microcircuit model developed by

T. C. Potjans and M. Diesmann [57]. This model addressed a critical limitation in

local cortical microcircuit models: while numerous such models existed, the sim-

ulated activity diverged from in-vivo recordings. While the prevailing approach

focused on incorporating more complex neuron models, the researchers hypothe-

sised that the discrepancy stemmed from inaccurate network connectivity.

They argued that existing connectivity maps, derived from anatomical and elec-

trophysiological data, were insufficient. To address this, they developed a novel

connectivity map that integrated insights from anatomy, electrophysiology, photo-

stimulation, and electron microscopy studies. Their approach algorithmically com-

bined the diverse datasets, accounting for the inherent biases of each experimental

methodology.

The model comprises 4 layers of cortex, named 2/3, 4, 5, and 6, each with an

excitatory and an inhibitory neuron population, for a total of 77,169 neurons. Layers

are connected to one another according to probabilities present in a connectivity map

reporting the 64 connection probabilities between the 8 populations. The synapses

in the model are static. The number of neurons per population are chosen according

to [8]. Furthermore, every layer can receive a background input in the form of a

continuous current and input from an external thalamocortical neuron population.

The thalamic neurons are implemented as Poisson neurons [53] with a fixed spiking

rate.

Figure 1.2 shows the network representation as presented by the authors in [57].

Table 1.5 contains the neuron parameters: population sizes for each population, ex-

ternal inputs for e each population, and the neuron’s physical properties. Table 1.6

contains the connectivity map and the synaptic connection parameters.
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Table 1.5. Neurons and populations parameter specification.

Populations and inputs
Name L2/3e L2/3i L4e L4i L5e L5i L6e L6i Th
Population size, N 20683 5834 21915 5479 4850 1065 14395 2948 902
External inputs, kext 1600 1500 2100 1900 2000 1900 2900 2100 n/a

Neuron Model
Name Value Description
τm 10 ms Membrane time constant
τref 2 ms Absolute refractory period
τsyn 0.5 ms Postsynaptic current time constant
Cm 250 pF Membrane capacity
Vreset −65 mV Reset potential
Vth −50 mV Fixed firing threshold
θ 15 Hz Thalamic firing rate during input period

Table 1.6. Connectivity and Synaptic parameter specification.

Connectivity
from

L2/3e L2/3i L4e L4i L5e L5i L6e L6i Th
to L2/3e 0.101 0.169 0.044 0.082 0.032 0.0 0.008 0.0 0.0

L2/3i 0.135 0.137 0.032 0.052 0.075 0.0 0.004 0.0 0.0
L4e 0.008 0.006 0.050 0.135 0.007 0.0003 0.045 0.0 0.0983
L4i 0.069 0.003 0.079 0.160 0.003 0.0 0.106 0.0 0.0619
L5e 0.100 0.062 0.051 0.006 0.083 0.373 0.020 0.0 0.0
L5i 0.055 0.027 0.026 0.002 0.060 0.316 0.009 0.0 0.0
L6e 0.016 0.007 0.021 0.017 0.057 0.020 0.040 0.225 0.0512
L6i 0.036 0.001 0.003 0.001 0.028 0.008 0.066 0.144 0.0196

Name Value Description
w ± δw 87.8± 8.8 pA Excitatory synaptic strengths
g −4 Relative inhibitory synaptic strength
de ± δde 1.5± 0.75 ms Excitatory synaptic transmission delays
di ± δdi 0.8± 0.4 ms Inhibitory synaptic transmission delays
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Figure 1.2. Potjans and Diesmann’s local cortical microcircuit model structure. Excita-
tory populations are represented by triangles, inhibitory populations are circles.
Source: [57]
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Chapter 2

Spiking Neural Networks

The ongoing pursuit of understanding and mimicking the brain’s remarkable abili-

ties to learn, generalise, and perform complex tasks drives research in Neural Net-

works, with the incredible efficiency of biological brains making them a natural

source of inspiration. Various approaches have been developed to imitate the brain,

each with its strengths and weaknesses, and different degrees of similarity with the

original biological structure. Spiking Neural Networks take the concept further,

striving for a higher degree of fidelity to the brain’s structure and function. The

intricate relationship between SNNs and biological neural information processing,

requires a primer on our current knowledge of this aspect of the brain’s inner work-

ings.

2.1 From Biological Neurons to Spiking Neural Net-

works

The brain is a complex system, composed of a huge number of simple functional

units: the neurons. A neuron (see Figure 2.1) consists of a cell body called soma,

dendrites, and an axon. The axon and dendrites are filaments extruding from the

soma which usually is, instead, compact. While the axon sparsely branches and can

extend for surprising lengths (up to one meter in humans), dendrites do not travel

far from the soma, but produce abundant branching. We can see the dendrites as

the input channels of the neuron, while the axon is used for the output. At the tip of
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the axon’s branches are axon terminals, where the neuron transmits signals across a

synapse to another neuron’s dendrite. In Neural Networks which strive for a higher

degree of biological accuracy while maintaining performance, attention is currently

placed on modelling of synapses and their strength: dendrites are abstracted away,

and the axon’s role is incorporated in other aspects of synapse modelling. Indeed,

the axon’s role can still be recognised in topological aspects, such as the neuron’s

increased probability of forming connections with neurons that are topologically

closer, and the signal transmission delay. The latter depends both on the type of

synapse and the point of the axon body at which the synapse lies.

Figure 2.1. Representation of a neuron.
Source: “Neural Networks with R”

Neurons have plasma membranes with embedded voltage-gated ion channels.

The membrane—among other things—electrically separates the inside of the cell

with the outside, effectively creating what can be seen as a capacitor. The ion

channels embedded in the membrane are sensitive to changes in its electric po-

tential, which influences their opening and closing: the higher the potential is,

the more these channels open, allowing more ions to flow through the otherwise

ion-impermeable membrane. When the membrane potential is close to the resting

potential the ion channels are completely closed. When the potential rises they open

up, until it hits a precise threshold voltage for which a great number of (sodium) ions

is allowed to flow inside the cell, starting an explosive chain reaction further rais-

ing the cell’s membrane potential, causing more channels to open, and so on. The

rapid rise of potential causes an inversion of the plasma membrane polarity, which
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rapidly deactivates the sodium ion channels, trapping the sodium (Na+) ions inside

the cell. The inversion of the membrane polarity is called action potential [4] (or

signal, or spike) and propagates along the body of the cell, that is to say along the

axon, to ultimately reach the synapses and propagate to the post-synaptic neurons.

Note that the depolarisation is temporary, as the polarity inversion opens potassium

(K-) ion channels, which in turn let potassium ions flow outside of the membrane,

returning the membrane potential to a negative value over a short period of time.

Figure 2.2. A visualisation of the action potential propagating through the axon with
time.
Source: https://www.macmillanhighered.com/BrainHoney/Resource/6716/digital_first_content/
trunk/test/hillis2e/hillis2e_ch34_2.html

After the depolarisation is reverted, the cell, that usually has potassium ions

inside and sodium ions outside, is back to having negative electric potential, but

with potassium ions outside and sodium ions inside the membrane. This situation

is reverted by the sodium potassium pump, which restores the initial conditions by

actively transporting the sodium outside of the membrane and the potassium back

inside, at the same time. Until this process is completed, the membrane potential

cannot rise, as such the time interval between the generation of the action potential

and the completion of the “resetting” of the potential is called refractory period of

the neuron. During the refractory period, the neuron is essentially unaffected by

further incoming spikes.

Building on top of this knowledge, SNNs, differently from other types of Artificial

Neural Network (ANNs) utilise a unique class of neuron: the spiking neuron. These

neurons rely on communication through electrical signals (spikes) transmitted via

the synapses connecting them.

https://www.macmillanhighered.com/BrainHoney/Resource/6716/digital_first_content/trunk/test/hillis2e/hillis2e_ch34_2.html
https://www.macmillanhighered.com/BrainHoney/Resource/6716/digital_first_content/trunk/test/hillis2e/hillis2e_ch34_2.html
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Unlike their counterparts in ANNs, spiking neurons are stateful, meaning their

internal state influences their behaviour. Synapses may also exhibit stateful proper-

ties. The key difference in information processing lies in how these neurons generate

outputs. While neurons in other ANNs produce and propagate an output whenever

they receive an input, spiking neurons only propagate information when a specific

condition is met: much like biological neurons, spiking neurons only fire (generate

a spike) when their membrane potential reaches a specific threshold value.

When a spiking neuron fires, it generates a spike that is propagated to the

neurons it is connected to. The receiving neurons then react by increasing or de-

creasing their membrane potential accordingly, over time. To reach another neuron,

the spike passes through the synapse connecting the two. The synapse is weighted

and introduces a transmission delay. Indeed, a fundamental aspect that differen-

tiates SNNs from other ANNs is the role that time plays: while in other classes of

ANNs the computation and propagation of the output is, in general, instantaneous,

spiking neurons need to wait for their membrane to charge over time. When the

threshold potential value is reached, they fire and, after a transmission delay, the

post-synaptic neurons (i.e. those connected on the receiving end of the synapses

connected to the spiking neuron’s axon) receive the signal. As such, information is

not only encoded in the way synaptic weights change the amplitude of spikes, but

in their timing as well.

While the reader may recognise a time-dependent behaviour similar to that

taking place in Recurrent Neural Networks (RNNs), it is worth emphasising how

SNNs’ time dependence differs from that of RNNs: the former evolve through time

by having their state be influenced by past events, while the latter do so by feeding

their output back to themselves or to special memory units to use in the next

computational step.

Spiking neurons models are derived from experimental observation of biological

neurons’ behaviour. Starting from the emergent behaviour of the neuron, electronic

circuits that approximate it are devised. The structure and parameters of the

circuits are derived by feeding the neuron with different input currents and seeing

what the response to the various different stimuli is. Thanks to the knowledge of a
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neuron’s anatomy, the observations that follow can be made:

• The isolating properties of a neuron’s plasma membrane give rise to the mem-

brane capacitance Cm.

• The potential between the two sides of the membrane (that we refer to as

membrane potential Vm) is what kick-starts the action potential propagation

once it reaches a target threshold value Vth.

• In the absence of incoming stimuli, the membrane potential gradually resets to

a resting value Vr; this also holds true after the action potential is generated

and the sodium potassium pump is done reverting the neuron back to its

resting state, that is, after the refractory period τref is elapsed.

• For the membrane potential to rise, there has to be some kind input cur-

rent I, which is the sum of the stimuli coming from pre-synaptic neurons.

Additionally, an external current Iext can be supplied (e.g. for experimental

observation).

These observations provide a solid foundation of the mathematical modelling

process for a biological neural model. At the same time, from the presence of the

capacitance follows that a spiking neuron is stateful (the minimum state being just

the membrane potential at a given time) and that such state evolves with time.

Since this membrane potential evolves with incoming spikes, networks of spiking

neurons require simulation through time to capture their behaviour. This time-

dependent nature of SNNs makes them computationally expensive to execute, which

is a defining characteristic and a key challenge explored throughout this work.

The computationally expensive nature of SNN simulation could raise doubts

about the necessity and usefulness of SNN simulation. However, continued research

in this area is motivated by several potential benefits.

The first reason motivating SNN research lies in its potential to simulate, with

increasing efficiency and precision, specific aspects of the human brain’s behaviour,

while aiming to eventually simulate the entirety of the brain itself. This capability

would be invaluable in various fields. In neuroscientific research, SNNs could provide
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a powerful tool for studying complex cognitive functions like learning and decision-

making. Similarly, the field of medicine could benefit from the ability to simulate

brain diseases, their evolution, and their response to potential treatments using

SNNs.

The second reason stems from the fact that spiking neurons are modelled as

electronic circuits: they can easily be implemented in hardware. A series of neuro-

morphic chips have already been created and commercialised (see IBM’s TrueNorth

neuromorphic processor [12]). This removes the cost associated with simulation,

and a series of advantages arise with respect to all other ANNs:

• No approximation: since the electronic components are physically present,

there is no approximation stemming from the precision limit that is inherent

of computer simulations.

• Computation is inherently and naturally parallel: what actually happens in a

chip with physically implemented neurons is essentially signal processing. No

orchestration or communication between worker threads (which then may or

may not share memory, etc.) is needed.

• Locally stored state: state is stored in the components, which means no mov-

ing data back-and-forth from memory to CPU and vice-versa, which is a

crippling bottleneck when running networks on Von-Neumann machines.

• Energy and power efficiency: specialised circuitry is vastly more energy and

power efficient than general purpose computational units, whether it be CPUs

or GPUs we compare it with (see, e.g. [41]).

However, such huge advantages come with the drawback of high hardware design

and manufacturing cost. This is also because SNNs can be huge, requiring a great

number of neurons and an even greater number of synapses. Before investing in

hardware production or acquisition, conducting thorough research is crucial. One

may want to compare firing rates and general network behaviour with those of the

actual natural neural network they are trying to replicate, or any other correctness

metric of interest. This is especially important when no access to a neuromorphic



2.2 The Leaky Integrate and Fire Spiking Neuron 24

chip is available, or when implementing a kind of neuron or synapse that existing

neuromorphic chips might not be able to properly replicate.

SNN simulation then serves as a cost-effective and time-efficient method for

prototyping new hardware solutions and validating new SNN approaches, especially

when dedicated hardware is unavailable or shows physical limitations. Furthermore,

if between now and the release of neuromorphic chips to consumer market (and their

widespread adoption as hardware accelerators) a point is reached in which SNN

simulation becomes very efficient, we could be able to exploit SNNs to perform

tasks without relying on specialised hardware accelerators.

2.2 The Leaky Integrate and Fire Spiking Neuron

The Leaky Integrate and Fire (LIF) neuron model is one of the simplest, yet power-

ful, models for spiking neurons. First developed by L. Lapicque in 1907 [1], it models

the neuron as a leaky integrator. This simple model offers a lightweight represen-

tation of a neuron, from the standpoints of both computational and memory costs.

Furthermore the model is analytically tractable. These advantages have made the

LIF neurons into a popular choice for building large-scale SNNs, for applications in

deep learning and artificial intelligence, as well as for biological modelling.

The LIF model (in Figure 2.3) comprises all the fundamental aspects we have

mentioned in Section 2.1. In Figure 2.3a, we find the circuit devised by L. Lapicque,

in which we find the components to model the membrane capacitance C, the mem-

brane potential V (t), a resting potential Vrest, an input current I(t). The model

also has a resistance R in parallel with the capacitor, which allows us to compute

the time constant of the “leaky integrator” τm = RC. The threshold potential Vth

is not presented in the scheme, but it was postulated by Lapicque that “when the

membrane capacitor was charged to certain threshold potential, an action poten-

tial would be generated and the capacitor would discharge, resetting the membrane

potential” ([1]). The only aspect missing from the original model that we instead

consider, thanks to improved knowledge of neuronal dynamics, is the presence of

the refractory period, τref .

To derive the model’s equation, we use Figure 2.3a as a reference. First of all,
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(a) Lapicque’s LIF model as a circuit.
Source: [1]

(b) A parallel between the scheme of a neu-
ron and the LIF model circuit.
Source: https://neuronaldynamics.epfl.ch/
online/Ch1.S3.html

Figure 2.3

because of the law of current conservation, the input current I(t) is split into two

components: IR and IC , respectively passing through the resistor and charging the

capacitor.

I(t) = IR + IC (2.1)

From Ohm’s law we have for the resistive current:

IR = VR

R
where VR = V (t)− Vrest (2.2)

with VR the voltage between the extremes of the resistor. For IC , we have:

IC = C
dV

dt
because C := q

V
and IC := dq

dt
(2.3)

From Equations 2.2 and 2.3 we get:

I(t) = V (t)− Vrest

R
+ C

dV

dt
(2.4)

By multiplying Equation 2.4 by R we obtain the standard form:

https://neuronaldynamics.epfl.ch/online/Ch1.S3.html
https://neuronaldynamics.epfl.ch/online/Ch1.S3.html


2.2 The Leaky Integrate and Fire Spiking Neuron 26

τm
dV

dt
= −(V (t)− Vrest) + RI(t) (2.5)

Where τm = RC is the membrane time constant of the neuron.

In Equation 2.5 is the differential equation modelling the neuronal behaviour.

We again notice how the firing threshold Vth does not figure in the equation, but is to

be taken into consideration when using it. Furthermore the behaviour of the neuron

after the membrane potential hits the threshold potential—namely the sudden rise

of the membrane potential until the polarity is reversed, followed by an abrupt

drop in V (t), and the start of a refractory period—is not specified; we now know

however that such behaviour is marginal for this model and can be approximated

by resetting V to Vrest without any noticeable consequences. This holds true unless

someone were to be trying to also keep into account the inductive currents that the

abrupt rise of V would cause in neighbouring neurons (that some have theorised

could play a role in neural ensemble behaviour), but one could argue that to explore

and study such a complex process some other, more accurate, neuron model should

be used rather than the LIF.

To include in the mathematical model the spiking non-linear behaviour once the

potential reaches the threshold value Vth, as well as the refractory period, we can

expand Equation 2.5 with Equation 2.6.

V (t) = Vth ∧ t̂ ∈ (t, t + τref ] =⇒ V (t̂) = Vrest (2.6)

Despite its simplicity as an approximation of a real neuron, Lapicque’s work

has been a pioneering effort in the field, the effects of which persist to this day.

Nowadays, extensions of the LIF neuron are found everywhere and still make up

the majority of neurons used in simulations.

The Leaky Integrate and Fire neuron with current based exponential synaptic

interactions is the reference neuron model used throughout this work.
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2.3 Synapse Models

SNNs rely on the concept of synapse to model the intricate communication patterns

between neurons. Synapses are not merely passive connections, but rather dynamic

elements that can influence the flow of information. To capture this complexity,

researchers have developed various synapse models, each offering different levels of

biological realism and computational efficiency. In this section, two of the most

commonly used synapse models—delta synapses and exponential synapses—are in-

troduced.

2.3.1 Dirac-delta Synapses

The Dirac-delta synapse (or, simply, delta synapse, or jump synapse) is an idealised

and simplified model of the synapse. When using this delta synapses, postsynaptic

currents are delivered instantaneously and atomically upon receiving a spike, in

a Dirac-delta fashion. This results in an instantaneous “jump” in the membrane

potential of the receiving neuron.

Jump synapses are the most widespread synapse model for simulating SNNs

using discrete event simulation: the simplicity and atomicity of the state update

make it the obvious choice for ease of implementation. When the spike is delivered,

the membrane potential is updated: if it surpasses the spiking threshold, the neuron

spikes, otherwise it does not. This ensures no calculations need to be carried out to

discover potential future spike times, resulting from the gradual application of the

incoming spike.

While computationally extremely convenient, using delta synapses greatly re-

duces the expression potential of SNNs, which is tightly coupled to timing, both

in spike delivery and application. Squashing down the synaptic signal dynamics,

results in a fundamentally unrealistic behaviour.

2.3.2 Exponential Synapses

Instantaneous rise, exponential decay synapses (or more commonly exponential

synapses) are a more complex synapse model, which models the postsynaptic cur-



2.4 Classical Simulation Methods 28

rent generated by a spike as an exponentially decaying function over time. While

the incoming current is still modelled as instantaneously rising, it is applied over

time to the membrane potential, which provides a more realistic representation of

biological synapses when compared to delta synapses.

Equation 2.7 reports the differential equation describing the evolution of the

input current the neuron receives when using this kind of synapse. Equation 2.8

instead reports the closed form equation, which we used in our modelling (see Sec-

tion 3.4).

dI(t)
dt

= − I(t)
τsyn

(2.7)

I(t) = e
− ∆t

τsyn Ispk (2.8)

The continuous nature of the postsynaptic current generated by exponential

synapses—as opposed to the instantaneous nature of delta synapses—significantly

increases the computational effort required to simulate them, regardless of the cho-

sen approach (time-stepped or discrete event simulation). The challenges it poses

for DES are explored in Section 3.4.

2.4 Classical Simulation Methods

The problem of accuracy and performance in SNN simulations is well-known in

the literature [27]. In particular, it directly derives from the availability of multiple

methods to solve the neuron model equations and handle spike events [25, 40, 36, 28].

The technique picked for a particular simulation directly determines the simulation

speed and accuracy of the results [43].

To improve accuracy, several works [27, 72, 39, 48] have employed different nu-

merical approaches or parameter estimation. Overall, resorting to a different numer-

ical approach still depends on the underlying scheduling/synchronisation algorithm.

In this sense, the work in [28] tackles the estimation of the error introduced by an

SNN simulation. In particular, the authors show that it is possible to separate the

numerical integration error from the spike-detection timing error, proper of time
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stepped simulations.

On the performance side, several works have explored the possibility of running

SNN models on various hardware instances, such as GPUs [7, 68, 72], FPGAs [67,

37], or even heterogeneous systems [45]. Again, these works mainly focus on the

deployment of time-stepped simulations.

The literature has also considered exploiting different discrete event simulation

algorithms. In [55], the authors have shown that relying on speculative PDES

simulation using the Time Warp synchronisation protocol can lead to non-minimal

performance improvement when focusing on the TrueNorth Leaky Integrate and

Fire (TNLIF) [12] architecture. However, their evaluation is limited to the TNLIF

implementation provided, which uses delta synapses (see Section 2.3.1), and employs

a “heartbeat” event, that is scheduled at constant intervals towards each neuron in

order to carry out the computation of neuronal dynamics. In [65], discrete event

simulation is used to provide better performance in the case of synapse models

showing a spike latency, i.e. a delay exhibited in response to depolarisation. The

research we presented in [53] is inheriting the usage of Time Warp synchronisation

from [55] and then goes on to show that with proper event management strategies, it

is possible to obtain good scalability even when using more complex instantaneous

raise/exponential decay synapses, all while avoiding the use of heartbeat events.

This section illustrates the inner workings of the first approach to SNN simula-

tion we consider in this work: Time-Stepped Simulation. Time-Stepped Simulation

is the classical, most widespread approach for this matter. Later in this work,

Chapter 3, explores in detail the approach we propose to achieve scalable and more

accurate SNN simulation: Parallel Discrete Event Simulation using Time Warp.

2.4.1 Time-Stepped Simulations

As previously stated, the largest part of SNN simulations as, e.g., implemented by

NEST [21] and Brian [64] simulators, rely on time-stepped algorithms. An example

high-level pseudo-code implementing time-stepped simulation of SNNs is provided

in Algorithm 1.

This kind of simulation approach is rather straightforward. In it, all neuron
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Algorithm 1: Time-Stepped Simulation Algorithm.
1 t = 0
2 while t < tend do
3 foreach neuron do
4 process incoming spikes
5 advance neuron dynamics by dt

6 foreach neuron do
7 if V (t) > Vth then
8 reset neuron membrane
9 foreach connection do

10 send spike

11 t← t + dt

states are updated periodically by evaluating an update function, and by processing

any incoming spikes for the time-step. These spikes increase membrane potential,

which is again evaluated numerically after every time interval dt. After updating

all neurons’ states, the simulation algorithm checks which of them (if any) have a

membrane potential Vm that has reached the spiking threshold, Vth. If this is the

case for any neuron, spikes are sent from each of the ready-to-spike neurons to the

respective postsynaptic neurons. To account for synapse delays, the typical strategy

is to rely on some sort of future event queue, typically implemented as a circular

array [9], that allows to keep track of what spike should be delivered to what neuron

at what time(step) in the future.

The time complexity of this simulation algorithm can easily be calculated. The

first inner loop accounts for neuron state updates. If there are n neurons in the

network, the loop has an O(n) cost. Considering that the physical time of the

simulation is divided into intervals of the same size, the cost is O(n/ dt) per unit

of physical time. Concerning the second inner loop, if we call f the average firing

rate of neurons per physical-time unit, assuming that on average each neuron is

connected to s other neurons, the cost is O(fns). Under general assumptions, it

cannot be stated which of the two components impacts the overall cost more. We

can therefore conclude that the cost of this algorithm per physical-time unit is:

O

(
n

dt
+ fns

)
(2.9)
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In performing this calculation, we have assumed that activities related to the

computation of neuron dynamics and spike delivery are negligible, although depend-

ing on the specific used neuron model and the complexity of the topology, it might

not always be the case. Regardless, Equation (2.9) indicates that the overall com-

putational cost of the time-stepped simulation grows with the network’s size and

the simulation’s precision, which is one of the key points we explore experimentally

in this work.

An additional issue with the time-stepped simulation algorithm is that spike

timings are aligned to a grid defined by the time steps. Therefore, the final result

approximates the actual behaviour of the network, even when the numerical meth-

ods used to compute differential equations provide exact results. Similarly, since

the check on the threshold is carried out only at the time steps (see line 7 in Algo-

rithm 1), some spikes may be missed. This is the second key point that we assess

experimentally in this paper. We further explore the effects of snapping the spike

timing and the threshold checking to the time step grid in Section 5.3.

2.5 Scaling SNN Simulations and Other Notable Sim-

ulators

Several works have proposed techniques to speed up or scale out SNN simulations.

Notably, in [55], the authors have shown that relying on speculative PDES sim-

ulation using the Time Warp synchronisation protocol can lead to non-minimal

performance improvement, especially in scenarios where only a subset of neurons,

in a specific time window, are actively sending spikes to each other. While that

work mainly focuses on the TrueNorth Leaky Integrate and Fire (TNLIF) [12] ar-

chitecture, the seminal results in the paper can be deemed general.

In [45] the authors show the viability of running SNN simulations on top of

heterogeneous hardware, possibly composed of CPUs, GPUs and FPGAs. The

main contribution in the work is identifying portions of code in an SNN model that

is repeatedly used in multiple simulations and/or runtime environments. This code

is manually ported to the different hardware architectures. Conversely, the code
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specifically bound to the model is automatically transformed towards the target

architecture.

The relevance of large-scale SNNs simulation is also reflected in the availability

of multiple tools to design experiments and obtain simulation data. Several SNN

simulators have been proposed in the literature, frequently focusing on scalability

to large networks.

Among them are the simulators NEST [21] and Brian [64], that we presented in

Section 1.2.1. Another notable simulator to mention is Neuron [11], which mainly

focuses on biologically-accurate simulation. Provides facilities to observe internal

aspects of neurons and synapses, such as the model’s electrical, chemical, and topo-

logical evolution. The simulator can describe ion concentrations and the functioning

of ion gates, the dynamics of ion diffusion, and more.

Other established simulators, such as CARLsim [14], NCS [32], NeMo [18],

Nengo [5], HRLSim [42], and PCSIM [49] support multi-threaded execution on

CPUs, some of them with support for execution on multiple nodes. GeNN [71] can

be executed on a single GPU. Some simulators additionally support the execution in

GPU clusters [14, 18, 32, 42, 71]. CARLsim [14] and NCS [32] support a CPU-GPU

co-execution.
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Chapter 3

Scalable Accurate Simulations

An SNN simulation can be seen as a collection of simulations of individual neurons

that interact via the exchange of spikes. The changes in neuron state may trigger

the emission of a spike, which is then delivered to the connected neurons. Since the

spikes must be considered in the target neurons’ future state updates, a neuron’s

state can only be consistently updated once it has received all spikes with smaller

timestamps.

The computation of neuron state updates and the delivery of the generated

spikes are the two principal operations implemented by SNN simulation platforms.

Since most of them employ a time-step-driven approach, commonly used neuron

models have been picked favouring those handily computable via some iterative

numerical procedure, such as the Euler method.

Anyhow, the conservative synchronisation scheme typically employed by SNN

simulators cannot efficiently deal with arbitrarily-low synaptic delays, which would

otherwise force a costly synchronisation and spike delivery operation after each

time-step. For this reason, many models include a minimum fixed delay in spikes

transmission to reduce the necessary synchronisation steps and improve spike de-

livery performance.

To the best of our knowledge, prior to our research contributions listed in Sec-

tion 1.1, the only SNN synapse model used in (P)DES were jump (a.k.a. delta)

synapses (see Section 2.3.1). When a jump synapse transmits a spike, it is instan-

taneously applied to the membrane in a Dirac-delta fashion, resulting in a jump in
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the membrane potential. This behaviour is highly convenient for PDES simulations

as it requires no further computation and perfectly fits the DES paradigm: if a

spike results in the membrane potential surpassing the firing threshold, the neuron

spikes, otherwise it does not.

In this work, we transition to the optimistic PDES paradigm instantaneous

raise/exponential decay synapses, commonly called just exponential synapses (see

Section 2.3.2). This type of synapse does not directly act on the membrane potential,

but rather, it generates an instantaneous increase in the incoming current the neuron

receives. The current’s effects are applied over time to the membrane potential: the

latter rises over time, charging similarly to an electronic capacitor. At the same

time, the current’s intensity decreases exponentially with time. This means the

neuron might spike in the future, the hypothetical spike time (if any) has to be

computed via numerical methods, and the resulting event enqueued.

In the rest of this chapter, we introduce Discrete Event Simulation, then outline

the steps needed to represent this spiking model in a PDES runtime successfully,

and finally we present the extensions to the traditional PDES facilities required to

speed up the spike scheduling and delivery for SNNs.

3.1 Virtual Time

To talk about Discrete Event Simulation, the concept of Virtual Time (VT) [33]

has to be introduced. As opposed to Wall Clock Time (WCT), which is the time

that passes in real life, that a clock on the wall would measure, the “Virtual Time

paradigm is a method of organising distributed systems by imposing on them a tem-

poral coordinate system more computationally meaningful than real time” for the

given application, e.g. when simulating a producer-consumer scenario, the concept

of time could be based on the number of steps needed to produce and process units.

Using VT frees us from the need to evolve at the same speed at which wall

clock time evolves, or to use a notion of advancement based on time altogether.

As such, depending on the simulation complexity, needs, and the specific temporal

coordinate system used, VT can pass much faster or much slower than wall clock

time.
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In the specific case of spiking neural networks, virtual time is related to wall

clock time in its representation and meaning (one can simulate SNNs using seconds

or milliseconds for VT).

3.2 Discrete Event Simulation

Discrete Event Simulation (DES) is a simulation technique that focuses on repre-

senting a system’s behaviour through discrete events, which are significant moments

that occur at specific points in simulated time. These events are considered instan-

taneous within the simulation’s timescale. Phenomena that have a longer duration

and cannot be considered instantaneous can be modelled by capturing their key

moments. For instance, a quick computation in a client-server system might be a

single event, while a longer process like database access or a download/upload could

be modelled with two events: start and finish.

In DES the simulation is optionally partitioned into a series of Logical Processes

(LPs), each of which represents a sub-portion of the simulation and receives events

in the form of messages, responds to them by properly handling incoming events and

consequently updating its state, and possibly scheduling new ones for the future.

For the sake of simplicity, in this work we always assume the simulation uses logical

processes.

For LPs, the passage of time happens with simulation time leaping from one

event to the next: the state of the simulation is considered static, or rather in a

state of inertia—meaning that its evolution follows a known trajectory—in between

events. As such, DES is ideal to be used in systems whose evolution can easily be

described by only taking into account some key points in time. On the other hand,

modelling continuous systems with DES can be complex, as it might require closely

spaced events or calculations about the future state in order to simulate continuous

behaviour.

In this section, a vision of DES is presented in-depth through a systemic ap-

proach, followed by Parallel DES and the necessary support to execute discrete

event simulation in parallel.
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3.2.1 Systemic Approach to DES

We will now introduce Discrete Event Simulation using a systemic approach.

When using DES, the model is defined as the union of:

• the simulation states of Logical Processes, that when taken together describe

and keep track of the system’s evolution.

• a set E of events, which describe key phenomena happening during the evo-

lution of the system and that cause the state to evolve in response to them.

• a transition function σ(s, e) : S × E → S which describes the transition

between two simulation states s and s′ when an event e ∈ E is received and

handled (we can also refer to this as “execution” of an event).

Each event e has a timestamp Te that corresponds to the Virtual Time (VT) at

which it takes place.

Borrowing from event-driven programming, a DES model can be seen as “a set

of event handlers, which capture the events generated by the same application (i.e.,

the simulation model) and, depending on the nature of the event, produce a state

variation.” (from [50]).

While handling an event e, a series of new events can be generated. As such,

the notion of causal dependency between events is introduced: if an event e′ is

generated while processing event e, we say that e′ causally depends from e. In

other words, e′ only exists as a consequence of the execution of event e. The causal

dependence from e also holds for all the events that causally depend from e′, since

causal dependence is a transitive property. Due to the non-decreasing nature of

(virtual) time, it has to hold that for all events e′ causally dependent from e we have

Te′ ≥ Te, as events happening in the (simulation) present or future may not influence

the past. The notion of causal dependence might seem similar to the “happened-

before” relationship in distributed systems [35]. Indeed, both worlds face challenges

related to coordinating events across multiple entities, and ensuring a consistent

global state. This shared challenge underscores the importance of enforcing causal

dependence, which is a critical precondition to guarantee correctness of execution,

especially in Parallel DES.
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The simulation can be split into two components: the model and the kernel.

While the model describes the system that we want to simulate with its event

handlers, the simulation kernel is responsible of providing all the facilities that

make this possible. This is typically achieved through the usage of APIs: the kernel

“serves” the model’s requests for whatever simulation related need it might have,

and guides the execution from start to finish by running the simulation loop. As

such, when a model generates a new event e′ during the execution of event e, the

event e′ is passed along with its timestamp Te to the kernel by using the exposed

APIs, and the kernel will take care of enqueueing the event and raising it at the

correct timestamp by waking the receiving LP. If a collision were to arise with

respect to timestamps (i.e. when Te′ = Te′′ and e′ ̸= e′′) the kernel resorts to tie-

breaking policies to decide which of the two events is to be handled first. These

policies have a very delicate job, as malformed tie-breaking could lead to biased or

erroneous simulation.

3.2.2 Components of DES

To fulfil its simulation management duties, the simulation kernel relies on a series

of concepts and components that will now be explored.

Simulation state. The state of the simulation is composed of the states of the

various LPs into which the model is split. The evolution of these states depends on

the transitions produced by the transition function σ(s, e) : S×E → S. In practice,

the transition from one state to the other is operated by the event handlers.

Events. Events are the core concept of DES. Each simulation model defines a-

priori the set E of event types that may take place at run time. This definition

process also entails defining an appropriate programmatic event handler for every

event e ∈ E. The simulation framework can define additional control events for the

model to handle. An example of one such event in ROOT-Sim is the INIT event.

It is scheduled by the kernel before starting the simulation, has timestamp 0 and

serves the purpose of letting the model initialise all the needed variables and data

structures representing the state to their initial values and schedule the first batch
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of events. While framework generated, a handler must be defined in the model for

events of this kind, as the handling is anyway model-dependent.

Clock. The simulation kernel is also responsible of keeping track of the Virtual

Time of the simulation. As we know, in DES VT does not move continuously, but

rather it leaps from one event’s timestamp to the next event’s timestamp. When

the execution is serial the clock can be a global variable as events are raised and

processed in causal order, and no important distinction needs to be done between

the time of the whole simulation, and that of the LPs. This changes for parallel

execution, which will be discussed later.

Event Queue. The kernel is tasked with keeping track of events and delivering

them at appropriate times. Event management is achieved through the use of the

Event Queue (EQ). The event queue is a priority queue that holds events scheduled

for the future: when the model wants to schedule a new event, it populates the event

and calls the appropriate kernel API, which puts the event into the queue. When

the handling of an event concludes (i.e. the handler function returns control to the

kernel), the kernel goes on to extract the next upcoming event from the EQ. While

being used in a write-heavy fashion, the actual implementation of the priority queue

is irrelevant, as long as its performance is adequate with respect to the application

needs. Given Tmin the minimum timestamp of any event in the queue, no event

with timestamp Tei > Tmin shall be raised by the kernel, as this would cause a

causality violation, resulting in an incorrect execution. In non-parallel DES, raising

events in order is simple.

Ending Condition. Simulation models often describe phenomena that do not

stop on their own, but rather continue on evolving. In practical terms, this means

that new events are continuously generated by the model, and the event queue never

empties. Furthermore, there are phenomena for which the ending time is not known

a-priori, requiring the capability to stop when some ending condition is met.

The simulation end can be achieved either by specifying a maximum time for

the simulation (either in terms Virtual Time, or Wall Clock Time, depending on the
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simulation needs), or by checking if a particular condition in the simulation state is

met. Time based ending is entirely managed kernel-side, while the second approach

requires cooperation by the model, which can either be “asked” by the kernel to

check whether the ending condition is met, or can actively communicate that its

ending condition has been reached after handling an event.

Simulation Object. The concept of simulation object can provide interesting

advantages to the modeller. A simulation object describes a portion of the whole

model, whether it be a spatial portion, or an agent. Simulation Object is actually

the name used to indicate Logical Processes. Thus, every Simulation Object is an

LP, with its own state and events directed to it, and with the ability to raise events

directed towards other LPs. The concept of simulation object is vital when moving

from Discrete Event Simulation to Parallel DES.

3.2.3 DES Kernel Logic

Having introduced DES and its core components, and then having discussed the role

of the kernel, this section delves into the fundamental logic behind a DES kernel.

As explained in Section 3.2.2, it is the kernel’s job—among others—to manage

events and deliver them at the correct time instant. This process is kick-started by

the scheduling of the INIT event after the kernel initialisation. A high-level flow of

the kernel’s initialisation and event processing loop is shown in Algorithm 2.

Algorithm 2: Skeleton of DES execution. Source: [50]
1 procedure: Init
2 End ← false
3 initialize State, Clock
4 schedule INIT
5 end procedure
6
7 procedure: Simulation-Loop
8 while End == false do:
9 Clock ← next event’s time

10 process next event
11 Update statistics
12 end while
13 end procedure
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3.3 Parallel Discrete Event Simulation

Parallel Discrete Event Simulation (PDES) [19] refers to the execution of a single

Discrete Event Simulation on a parallel/distributed system. This requires the DES

kernel to be “augmented” into a PDES kernel implementation. As mentioned in

Section 3.2.2, DES can be seen as two separate interacting components: the simu-

lation kernel and the model. With this separation in mind, work can be conducted

independently on the components to enact this transformation. Models can easily

be ported to the parallel paradigm provided they respect a set of restrictions, the

simulation kernel instead, has to undergo a series of important modifications. The

advantage is that once the work on the simulation kernel is done, DES models can

be adapted with minimal effort.

While in DES the concept of Logical Process described in the previous sections

is optional, in PDES it becomes crucial. The name “Logical Process” reflects the

parallel between LPs in simulations and processes in operating systems. Indeed, LPs

operate independently from one another, and without sharing any memory. They

thus have to exclusively rely on messages (i.e. events) Ffor inter-LP communication.

A PDES simulation is then composed by N LPs, each of which has its own unique

identifier number assigned in [0, N −1]. We denote the LPs as LP0, LP1, ..., LPN−1.

While in DES the concept of a single Global Virtual Time sufficed, in PDES each

LP has its own private clock, referred to as Local Virtual Time (LVT). That of GVT

remains a crucial concept in PDES, as it represents the time horizon for simulation

commitment. The adoption of LVT means that two different LPs (e.g. LPi and

LPj) can have different LVT values, LV Ti ̸= LV Tj .

With the decoupling of LPs comes the first and most important model restric-

tion: no shared variables may be used. This is because if two LPs, say LPi and

LPj with different LVTs (suppose, without loss of generality, LV Ti > LV Tj) were

to share a variable v, and LPi were to write to v at LV Ti and Wall Clock Time

ti, and LPj were to read v at LV Tj and WCT tj , with ti < tj , there would be a

causality violation, as the future affected the past, which violates the assumptions.

Thus, the modeller is required to split the simulation state S into per-LP sub-
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portions Si such that:

S =
N−1⋃
i=0

Si ∧ Si ∩ Sj = ∅,∀i ̸= j (3.1)

The restriction on global variables can pose no problem for some applications,

but can also be troubling for others, forcing data organisation with sub-optimal

performance, or requiring a great amount of messages to be exchanged.

Figure 3.1. Classical architecture of a Parallel Discrete Event Simulator.
Source: [50]

In Figure 3.1 a classical distributed architecture of a PDES simulator is shown.

Each LP is mapped to a simulation kernel instance, each of which can be seen

as a user-space process, running on a processor. Different instances located on

different machines are connected via a communication network. However, while

Figure 3.1 can be a satisfactory abstraction, in reality the locality should be (and is)

exploited by LPs hosted on the same machine, which can communicate through local

inter-process communication facilities, lightening the burden put on the distributed

memory that is in place to communicate with instances that are actually remote.

In ROOT-Sim, such memory is implemented on top of message passing primitives.

A message carries one event, as such there is a correspondence between message
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and event exchange.

In the last decade, the physical locality has been extended to kernel instances:

while in the past each kernel instance would be a process run on a single-core CPU,

nowadays the more lightweight concept of worker thread is used. The simulation

kernel is still a process running on a CPU, but manages multiple processing units,

and each worker thread runs the main simulation loop and is in charge of a number of

LPs. This removes the inter-process memory separation, speeding message passing

up between LPs sharing the same machine.

3.3.1 The Synchronisation Problem

In DES the execution was serial, posing no particular problems related to causality,

only requiring a correct algorithm to pick the next event to be processed. In PDES,

due to the parallel nature of the approach, extra steps are required in order for the

absence of causality violations to be ensured. Let us take an execution (depicted

in Figure 3.2) in which at a given WCT, LPi (bound to thread k0) has reached

LV Ti = 5, and LPj (bound to another thread, e.g. k1) has reached LV Tj = 16.

Since the two threads have extract events from different event queues, each of them

will extract the appropriate next event according to Algorithm 2, obtaining events

e0
n and e1

n as next events for LPi and LPj respectively. Suppose that Te0
n

= 10 and

Te1
n

= 20. If during the execution of e0
n a new event e0

new with timestamp Te0
new

= 12

and target LPj were to be generated, then the situation would arise in which, while

executing correctly, a LPj would find itself at LV Tj = 20, having executed Te1
n
,

but with e0
new—an event with a timestamp belonging in the virtual-time-past—

in its event queue, creating a causality violation. The event that is “late” is called

straggler message, consequence of nothing but the parallel nature of PDES. The fact

that causality errors may arise because of the asynchronous nature of the execution,

is the so-called synchronisation problem.

As it is inescapable, the synchronisation problem has to be overcome in order to

obtain a simulation run that is perfect independently of the asynchronous nature of

message exchange. Two main categories of approaches have been proposed: conser-

vative, and optimistic. The conservative category avoids the occurrence of causality
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Figure 3.2. PDES execution with a straggler message.
Source: [50]

errors altogether by executing an event only once it is considered to be safe. Algo-

rithms in the optimistic category (such as Time Warp [33], see Section 3.3.2) execute

the next-to-be-processed event without any safety verification of causal consistency.

Hence, timestamp-order violations might arise. If any such violation is detected,

then correcting actions are taken. The two approaches are at the extreme and

can be sub-optimal for a given workload, which gives rise to a third category: the

hybrid approach, which tries to alternate between the two approaches to obtain

the best performance. In this work, the focus will be directed towards optimistic

synchronisation using the Time Warp algorithm.

3.3.2 Optimistic Synchronisation with Time Warp

In optimistic synchronisation, speculative processing is used: when it is unknown

whether an event is safe to execute, it is executed in speculative fashion, the idea

being that if no causality violation is detected, then the work done is committed

and no computational resource was wasted waiting for the assurance of safety, while

if a violation occurs, the additional work is discarded and correctness is preserved.

The additional cost associated to correct guesses is none, while the cost associated

to wrong guesses is equal to what a non-speculative system would have paid, plus

the time needed to discard the work. This only takes into account time costs,

while energy costs associated with the wasted computation are being ignored. This

approach to tackling the synchronisation problem was first presented in [33], where

Time Warp was introduced.

When a worker thread finishes executing an event and still has events in its
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queue, the next event to be executed is extracted and executed independently of its

safety which, as we have seen when introducing the synchronisation problem, might

send the execution into an inconsistent state, where during the execution a causal

violation has taken place through a straggler message. If this happens, a rollback

has to be executed.

Rollbacks. When a straggler message with timestamp Tstraggler arrives, a causal-

ity violation is detected. When this happens, the simulator needs to halt the ex-

ecution, restore a consistent state whose VT precedes Tstraggler, and restart the

execution of the model. While this happens, any action taken when performing the

computation that was discarded has to be reverted, including the sending of mes-

sages. This operation is known as rollback and was first introduced and popularised

in database management systems to perform transactions in parallel.

Figure 3.3. An execution in which a rollback takes place.
Source: [50]

When a rollback is performed, an additional problem may rise: during spec-

ulative execution, messages might have been sent. If any of these messages was

created while executing an event that is getting rolled back, the message has to be

reverted too. Let us see an example execution in which this could happen, in Fig-

ure 3.3. LPj is at LV Tj = 20 when it receives the straggler message estraggler with
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timestamp Tstraggler = 12. The execution is therefore rolled back to the last valid

state: the one at LV Tj = 10. LPj ’s state is now consistent again. However, during

the execution of the event with timestamp T = 15, LPj scheduled a message with

timestamp T = 17 to LPK . Since this message is the result of a processing that is

being reverted, it has to be reverted, too. It is indeed possible that by executing

estraggler the execution would follow an entirely different trajectory that never gives

rise to the event associated with timestamp T = 17, or at least it does so with a

different content. What happened is:

1. LPi sends a straggler message estraggler to LPj

2. LPj detects the causality violation, rolls back the most recent consistent state

preceding Tstraggler

3. LPj has to undo the sending of message with timestamp T = 17 to LPk

The cancellation of messages is achieved through antimessages. An antimessage

is a “negative copy” of a given message, signalling it has been undone. When rolling

back, the LP checks if any message was sent during speculative forward execution,

if so, the corresponding antimessage is sent to the same target. Upon receiving an

antimessage, one of two things happen at the receiving LP LPk:

• The antimessage has a timestamp Ta > LV Tk, which means that the message

that the antimessage wants to annihilate is still in the Event Queue. This is

the best-case scenario, as in this case the effect of the antimessage is limited

the removal of the message from the queue, and thus low-impact.

• The antimessage has a timestamp Ta < LV Tk, which means that the positive

message has already been processed. This situation is analogous to receiving a

straggler message: LPk needs to perform a rollback to the last valid state with

LV Tk < Ta. This rollback could itself cause the sending of more antimessages,

creating a chain of rollbacks.

We see how a causality violation can cause a series of rollbacks. This is referred

to as cascading rollback.
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The rollback operation can be executed in one of two ways: by checkpoint-

ing memory with state save & restore, or by reverse computation. When reverse

computation is chosen, the model code needs to be able to reverse the effects of

event handling to make the system travel back in time, adding computational over-

head and hindering transparency. Furthermore computation might not be easily

reversible. With checkpointing, the rollback can be executed in a completely trans-

parent manner with respect to the model’s point of view: the only prerequisite is

for the kernel to know what are the memory areas that contain the LP’s state. The

kernel uses a series of data structures to create snapshots of the simulation state

to transparently and safely revert it to a coherent one in case a causality violation

were to present itself. Before delving deeper into the inner workings of state save &

restore, another fundamental concept has to be introduced: Global Virtual Time.

Global Virtual Time (GVT). Introduced in [33], Global Virtual Time (GVT)

serves multiple purposes when performing optimistic simulation. The GVT is cal-

culated on a global snapshot of the system at WCT t. GVT(t) is defined as the

minimum timestamp of any unprocessed message or anti-message flowing in the

system at Wall Clock Time t.

The computation of GVT(t), is carried out by inspecting the timestamps of all

the unprocessed messages currently in the system. Due to the distributed nature

of PDES, this also includes the timestamps of messages that are currently being

delivered by the messaging subsystem.

Given its definition, GVT lets us keep track of the commitment horizon: since

in (P)DES, for the very concept of causality, no event e with timestamp Te may

schedule an event e′ with timestamp Te′ < Te, this means that, because GVT(t)

is the minimum timestamp across all unprocessed events in the system GV T (t) =

Tmin, no event ê such that Tê < GV T (t) will ever be scheduled. As such, at WCT

t no straggler message could possibly exist that would cause any LP to rollback

to V T < GV T (t). We can thus say that all the events that have a timestamp

T < GV T (t) are committed, meaning that they will never be rolled back and can

be used to perform I/O operations safely or verify the ending condition.
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State Save & Restore. To support speculative execution, a checkpointing sub-

system is essential. This subsystem periodically takes snapshots of each LP’s sim-

ulation state. Should a rollback be triggered, the state of an LP can be restored to

the a valid one using the most recent valid snapshot.

Supposing that a snapshot is taken after processing each event, when a causality

violation is detected at time Tviolation and a rollback operation has to be carried

out, it is sufficient to restore the state snapshot with the highest timestamp among

the snapshots with Tsnapshot < Tviolation.

Taking snapshots is however a costly operation in terms of time and memory.

As such, increasing the time that elapses between consecutive snapshots can save

resources. This however has its own drawbacks, namely when a causality violation

is detected with timestamp Tviolation and a snapshot with Ts < Tviolation is restored

following the rollback, any event e whose timestamp Te happens to be Ts < Te <

Tviolation, its execution will have to be carried out again before continuing. As such,

the snapshotting interval has to be chosen (either statically or dynamically) to be

one that minimises the amount of time spent creating snapshots and re-executing

correct events that were rolled back because of snapshot sparsity.

For memory usage, using GVT offers a solution: if a state has been committed

it is guaranteed to be correct and will never be invalidated (i.e. rolled back). All

the snapshots with timestamp prior to to the GVT (T < GV T (t)) can be safely

discarded, as they will never be used to restore a valid state. Only the most recent

committed snapshot always needs to be retained, to ensure a correct simulation state

can always be restored. The process of discarding old snapshots and committed

messages is called fossil collection.

3.3.3 Additional Supports for Simulation

PDES simulation kernels rely on a variety of elements to carry out their job, espe-

cially in an optimistic simulation context, where events must be stored (at least,

those with a timestamp Te > GV T ) and snapshots taken. In Figure 3.4 a schema

of a reference implementation including the various systems and data structures is

provided.
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Figure 3.4. A Reference Architecture for Optimistic Simulation Systems.
Source: [50]

Input and Output Message Queues. While we have mentioned the (input)

EQ earlier, more queues are needed to properly support optimistic simulation: a

per-LP output queue needs to be maintained in order to generate antimessages in

case of a rollback.

Messaging Subsystem. The messaging subsystem is vital as it lets the model

be decoupled from the fact that the application is distributed. Indeed it takes care

of message passing and the model relies on its APIs to perform the scheduling. It is

then the kernel that takes care of where (and how, depending on whether the target

LP is local or remote) a message must be delivered. Furthermore it can handle

the output queue internally, which allows to decouple rollbacks and antimessage-

sending.

State Queue and State Management Subsystem. The state queue is used

to store the various snapshots that are kept by the system to be restored in case of

a rollback. This subsystem takes care of:

• Maintaining a list of snapshots ordered by timestamp. When a new snapshot

is taken, it is inserted in the list.

• Performing rollbacks by determining the correct state to be restored from the

State Queue.



3.4 Modelling Neurons for Parallel Discrete Event Simulation 49

• Performing coasting forward (a.k.a. silent execution), that is, reprocessing

the intermediate events between the restored snapshot and the timestamp of

the straggler message, but without sending any messages (as no antimessages

were generated for events causally dependent from such events, as they were

correct, just not included in the snapshot).

• Performing fossil-collection, i.e. discarding messages and states with times-

tamps older than current GVT (except from the most recent snapshot as

explained above).

GVT Subsystem. The GVT subsystem is in charge of computing the GVT at

the scheduled time intervals, by accessing the message queues and the message

subsystem. Furthermore it is tasked with termination detection, meaning that it

either evaluates if GVT is greater than a given value, or by checking if a termination

condition is met by evaluating some predicate. Lastly, fossil collection is also one of

the subsystem’s responsibility, by freeing old messages and logs that are unneeded

because the related part of simulation has been committed.

Event Scheduler. Is tasked with deciding which is the LP (among those owned

by a simulation kernel instance) that needs to be scheduled next. As mentioned,

the typical approach is that of Lowest-Timestamp-First. This avoids the generation

of causality violations among the LPs hosted by the same kernel.

Random Number Generators (RNG). In simulations relying on RNG, it is

required that the generation be carried piece-wise deterministically. As such, when

a rollback happens, the state of the RNG has to be rolled back as well. This can

typically be done by storing the RNG status inside the snapshots.

3.4 Modelling Neurons for Parallel Discrete Event Sim-

ulation

Neuron models are commonly expressed as a set of differential equations that de-

scribe the behaviour of the membrane potential and synaptic currents. Given a
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Figure 3.5. A neuron (on the left) is enclosed by the cell membrane (the circle). When
it receives a positive input current I(t), it increases the electrical charge inside the cell.
The cell membrane is modelled as a capacitor in parallel with a resistor, which is in line
with a battery of potential Vr.

known neuron state, generating discrete event spikes require computing the next

spike timing. In the case of a Leaky Integrate and Fire (LIF) neuron (introduced

in Section 2.2), the differential equations have an analytical solution, which we will

hereby solve for a matter of precision and convenience. Other neuron models show-

ing dynamics that cannot be expressed in analytical form, might still benefit from

being simulated using PDES. For more on the topic, see Chapter 6.

While the modelling approach that we present is general, we exemplify it by

showing how we can manipulate a neuron model to be simulated on top of a spec-

ulative PDES runtime environment adhering to the Time Warp synchronisation

protocol.

We focus here on the LIF neuron model, which conveniently is also one of the

most commonly used in large SNN simulations, with exponential current based

synapses. For reader convenience, Figure 3.5 reports a scheme of the neuron and

the circuit used to model its behaviour when using the LIF model. Equation (3.2)

describes the sub-threshold dynamics of the neuron, that is, the evolution of its state

in the absence of emitted spikes, where V (t) is the membrane potential, and I(t)

is the incoming synaptic current flowing into the neuron. Equation (3.3) models

the behaviour of an input synaptic current using an exponential synapse model
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(see Section 2.3.2). The two equations form a system modelling a LIF neuron with

exponential synapses, and will be manipulated together to come to an analytical

solution.

dV (t)
dt

= −V (t) + Vr

τm
+ I(t) + Iext

Cm
(3.2)

dI(t)
dt

= − I(t)
τsyn

(3.3)

The positive quantities τm, τsyn, Cm represent the membrane time constant, the

synaptic time constant and the membrane capacitance, respectively. The quantity

Iext is a constant external current stimulus that is either fed to the neuron, or

models the inputs coming from sources external to the simulation, while Vr is the

reset potential. For a more thorough discussion on the meaning of these parameters,

the reader can refer to Section 2.2 and to [9].

The non-linear spike behaviour works as follows: if, at any time t, V (t) over-

comes a voltage threshold Vth, the neuron emits a spike, then V (t) is forcefully

reset at voltage Vr for a period of time τr, the so-called refractory period. Spikes

are delivered to post-synaptic neurons with a delay in virtual time and an effect

established by the synapse model. Many large simulations employ static synapses,

characterised by a fixed transmission delay ttrans and weight w. When using expo-

nential synapses, a spike causes the post-synaptic neuron to instantaneously increase

its I(t) by w. Overlapping the effects of different synapses into a single incoming

current value I(t) is possible because the model for exponential synapses is Linear

Time-Invariant (LTI).

Solving Equations (3.2) and (3.3) in V (t) and I(t) yields Equations (3.4).

V (t) = I0A1e
− ∆t

τsyn + (V0 −A2 − I0A1)e− ∆t
τm + A2

I(t) = e
− ∆t

τsyn I0

(3.4)

In these equations, V0 and I0 represent the state of the neuron at time t0,

while the two constants A1 and A2 have been introduced for the sole purpose of

readability: their expansions are found in Equations (3.5). Constants A0 and A2
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can be computed once at simulation startup.

A1 = 1(
1

τm
− 1

τsyn

)
Cm

A2 = Vr + τm
Iext

Cm

(3.5)

To compute the next spike timing, it would be sufficient to solve Equations (3.4)

in t with V (t) = Vth. Unfortunately, the analytical general case solution in t is yet

to be found, as it is a transcendental equation with no direct method to solve it.

We must therefore resort to relatively expensive numerical methods. To min-

imise reliance on these methods, we now carry out further analysis that, while

applied to this specific neuron model, has the potential to be applied to any model

with analytical solution, by following the same method. We emphasise that the

method is likely only applicable to models with analytical solution. Regardless,

models without an analytical solution would not benefit from this reasoning, as

their evolution still needs to be approximated and stepped through using numeri-

cal methods. For how using PDES could still benefit such models with respect to

time-stepped simulation, despite the fact that they are stepped through, again we

refer the reader to Chapter 6.

3.4.1 Predicting Spike Times in Analytical Models

It is possible to distinguish between self-spiking and non-self-spiking neurons. If,

for a given neuron, its set of parameters is such that the condition in Equation (3.6)

holds, the neuron is self-spiking. In other words, it spikes periodically on its own,

without needing to receive any incoming spikes.

lim
t→∞

V (t) = A2 > Vth (3.6)

In this case, using the bisection method, we can compute once at startup the con-

stant τself , the self spike timing in absence of synaptic inputs, i.e. I(t0) = 0, V (t0) =

Vr. With t0 indicating the current time in the simulation. To find a suitable win-

dow for the bisection method, we can simply consider the interval [0, tlarge] into the
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future, with tlarge chosen larger than the time it takes for the neuron’s membrane

potential to reach Vth when Vt0 = 0 and no incoming spikes are registered. In other

words, tlarge is the time necessary for the neuron to self spike, starting from the

resting state. Since Equation (3.6) holds by assumption, tlarge must exist. On a

practical level, it should be noted that in the case of inhibitory (negative) synaptic

input, the neuron might take longer than tlarge to spike, as waiting for the inhibitory

inputs to wear off could be necessary. In this case, tlarge still provides a reasonable

starting point for a search window. Should V (tlarge) < Vth, we can simply move

the bisection window forward, from [t0, tlarge], to [tlarge, 2tlarge], to [2tlarge, 4tlarge],

and so on. Again, since Equation (3.6) holds and synaptic inputs always decay, a

suitable upper bound tub in which V (tub) > Vth will eventually be found.

For a non-self-spiking neuron, assuming the absence of incoming spikes, we de-

rive a procedure to establish whether it will emit a spike in the future. In Equa-

tions (3.7) we provide the definition and the explicit value of the constant Ith. In a

nutshell, Ith is the minimum synaptic input required for the potential to reach the

firing threshold. Being I(t) monotonic decreasing, I0 > Ith is a necessary (but not

sufficient) condition for a non-self-spiking neuron to spike in the future.

Ith := I(t) | V (t) = Vth ∧
dV (t)

dt
= 0

Ith = Cm
Vth − Vr

τm
− Iext

(3.7)

If a non-self-spiking neuron satisfies the necessary spike condition, we can com-

pute tth, the time needed to decay from I0 to Ith, using Equation (3.8). If V (tth) <

Vth then we can conclude that the neuron does not spike, otherwise it will spike at

a time tspike ∈ [t0, tth].

tth = − ln
(

Ith

I0

)
τsyn (3.8)

This result holds because we have V (t0) < Vth and V (tth) ≥ Vth therefore, given

the continuity of the V (t), at least one tspike ∈ [t0, tth] must exist. Otherwise,

if V (tth) < Vth, then V (t) < Vth for all t ∈ [t0, tth]: the neuron did not and

will not spike in absence of further stimuli since I(t) < Ith for all t > tth. In

the case in which we know the neuron will spike, we use the bisection method to
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compute tspike. Bisection uses a starting search interval [tmin, tmax]—in this case

[t0, tth]—and narrows it down by iteratively splitting it in half and picking one of

the two halves—the one holding tspike—, and discarding the other. The algorithm

stops when the diameter of the search interval is less than or equal to an arbitrary

value, which we refer to as ROOT-Sim ’s “tolerance”, “precision”, or “resolution”:

tmax − tmin ≤ tolerance. Higher order numerical methods were briefly explored

with an implementation of Newton’s method. However, after observing numerical

stability issues, it was decided to focus on the development of runtime supports,

and the usage of more complex numerical methods postponed to future work.

The proof that tspike is unique in the [t0, tth] interval is more involved, so we

will only sketch the main idea. Using the definition of Ith it is possible to show that
dV (t)

dt = 0 for exactly one td ∈ [t0, tth], where V (t) reaches its maximum. We have

that dV (t0)
dt > 0 and dV (tth)

dt ≤ 0. Also, since dV (t)
dt is continuous, we can conclude

that V (t) is monotonous increasing in [t0, td] and monotonous decreasing in [td, tth];

tspike is therefore unique and lies in the interval [t0, td].

Regardless of the neuron type, the future spike time will ultimately be found.

The neuron then tells the simulation kernel it will spike at tspike, if no other spikes

are delivered to it. The facilities to support this capability are presented in the

upcoming sections.

3.4.2 Managing Spike Events

Spikes are represented in the simulation kernel as messages, which are delivered

to the destination LP at the time they need to be applied. Since a single neuron

can be connected to a multitude of neurons, injecting one spike event for each

destination LP every time a new possible spike time is calculated, will easily thrash

the simulation due to the event management overhead.

A simple solution at the model level could be to inject in the system tentative

spikes, i.e. events associated with some per-neuron epoch counter that ensures their

validity. Every time the neuron state is updated due to the receipt of an incom-

ing spike, the epoch counter would be increased, the new spiking time could be

re-computed and a new spiking event (superseding the previous one) with the new
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Figure 3.6. Retractable Spikes Naïve Scheme. A neuron can decide to change the time of
a spike already injected in the system. Receiving neurons might have to rollback part
of their execution.
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epoch counter could be injected into the system. At the time of handling, a spik-

ing event with a mismatching epoch counter would be considered stale. While this

approach limits the generated events to one per received spike—and thus, updated

future spike time—, it is unlikely to scale due to the large amount of extremely-fine

grained simulation events produced, and that are typically the cause of poor perfor-

mance in Time Warp simulations [20]. The performance degradation of this scheme

stems from the strict decoupling between the model and the runtime environment

in Time Warp simulations. In this scenario, the model cannot inform the runtime

environment that a tentative spiking event should be removed from the system, and

is thus forced to only logically discard it once it is delivered for execution.

For this reason, in [53] we introduced in ROOT-Sim the concept of retractable

events, i.e. events that can be rescheduled and descheduled by the model. Logically

speaking, this support allows implementing tentative spike events, according to the

scheme depicted in Figure 3.6. After sending its tentative spikes to the receiving

neurons as retractable messages, the “spiker” neuron ns can reschedule the events

via dedicated APIs, to effectively update the delivery time of said spikes. Take, e.g.,

the case of new excitatory spikes being delivered to ns, which consequently charges

faster, thus reaching the threshold Vth earlier. In this case, the neuron can inform

the receiving neurons that the spike should be dealt with earlier. At the destination

neurons, if the involved spike has not been processed yet, the event is simply moved

earlier in the future. Conversely, if it has already been processed, a traditional

rollback operation will restore the neuron state to a consistent timestamp, and

the new spiking time will be considered in the simulation. This naïve approach

still suffers from the fact that (1) a large number of control messages need to be

scheduled (and then ignored) when implementing this approach and (2) the total

number of rollbacks would likely remain high, crippling the simulation speed. An

experimentation showing the cost of the approach can be found in Section 3.5.2.

A straightforward optimisation is to have every neuron deal locally with re-

tractable events. Indeed, a neuron can determine its next firing time and schedule

a tentative spike-firing event directed to itself. This tentative firing event is man-

aged the same way as a regular firing event (i.e., the neuron sends the spikes to
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all destination neurons upon receiving it) if no change in the firing time occurs.

Differently, if the neuron model determines a new timestamp for the firing event,

the runtime environment will act accordingly on the message queue. In particular,

the firing event will simply be moved to the newly calculated future firing time, if

any, or descheduled. This way, the number of events injected into the system and

the total number of rollbacks are significantly reduced, as the destination LPs will

only receive a spike at the accurate firing time, after that the firing neuron has

correctly received all pre-synaptic stimuli. All of this is achieved in a manner that

is transparent for the model, as it is hidden behind a neural simulation interface

(see Section 3.5.1). The implementation of dynamic spiking events as a runtime

support and the benefits coming from it are dealt with in Section 3.5.2.

Having solved the issue of future spiking events thrashing the simulation, another

important aspect remains to be explored: spike event delivery. In large simulations,

a single neuron will be connected to a multitude of postsynaptic neurons: when

gathering performance data, we ran networks where neurons had 6,000 connected

postsynaptic neurons, on average. Since one event has to be generated per post-

synaptic neuron (because of dedicated synaptic weights and transmission delays),

the message passing subsystem can experience noticeable load every time a spike

is propagated, or rolled back. This becomes more evident when running in a dis-

tributed environment, having to send thousands of events over the network, per

spike.

To overcome this limitation, a lightweight implementation of Publish/Subscribe

message dissemination algorithm was used, which extremely limited the amount of

data transferred from worker thread to worker thread. More on the Publish/Subscribe

message dissemination as a runtime support in Section 3.5.2. Again, this facility

was used transparently for the model, thanks to the neural simulation interface.
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3.5 Runtime Support

3.5.1 Neural Simulation Interface

To help modellers more easily develop Spiking Neural Network models using PDES,

a neural simulation interface was developed, which takes care of interfacing with

the simulation kernel, hiding its complexity from the modeller. The interface takes

care of managing the memory holding the neuron state (which is controlled by the

modeller) and the incoming synapses. Furthermore, it introduces a series of APIs

that guide the model’s execution flow. This is a lower level interface with respect

to the one presented in Section 4, and allows new neuron and synapse models to be

implemented.

While the technical details are lengthy and belong in a design document, a brief

rundown of the functionalities is hereby presented. The interface exposes APIs for

the model to:

1. Spike at a specific time, transparently delivering the spike to all postsynaptic

neurons.

2. Tentatively spike at a specific time, only if no other events are received by

the neuron in the meantime, and wake the neuron after spiking.

3. Connect two neurons via a synapse with specific weight and delay1.

In turn, it expects the modeller to provide handlers for the following events:

1. Neuron initialisation - to initialise the neuron state and network topology.

2. Spike delivery - to allow the neuron to react to an incoming spike. The neuron

is expected to communicate the updated spiking time every time this handler

is invoked, or the spike is considered descheduled.

3. Neuron awoken after spiking - to allow neuron state to be updated, and any

future spike to be scheduled.

4. Alignment event at simulation end - because there is no guarantee of LVT

being aligned across different LPs (see Section 3.3), this gives the modeller
1Only static synapses are currently supported
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the opportunity to align the states to the desired end time and even perform

output2.

The neural simulation interface uses the other runtime supports to ensure a

faster execution. Retractable events are used for tentative spiking events: whenever

a new tentative spike is scheduled, the interface actually reschedules the self-directed

spike event to the newly selected time. If no tentative spike event is scheduled, any

previously existing spike-firing event is descheduled. When a spike-firing event is

extracted, the message is disseminated, and then the neuron woken up.

For message dissemination, upon creation of a synapse, the neural interface sub-

scribes the postsynaptic neuron to the topic associated to the presynaptic neuron,

ensuring delivery is handled by the simulation kernel. When a spike-firing event

is extracted, it uses the Publish/Subscribe primitives to disseminate it to all the

connected (i.e. subscribed) postsynaptic neurons.

3.5.2 Dynamic Spiking Events using Retractable Messages

We have shown earlier how to determine the next spike timing tspike for a LIF neuron

with the condition that, in the meanwhile, such neuron does not receive any spike.

We also showed how it is possible to implement tentative spiking events without

recurring to retractable events, by using an epoch counter, and a large amount of

ignored messages.

In a discrete event simulation, we would schedule a new event e with time tspike

which represents the spike potentially emitted in the future. If the neuron receives

a spike before tspike, its previously computed spike timing would not be consistent

anymore with the newly induced state change, and therefore we would need to

somehow invalidate or retract the event e.

Our proposed solution consists in providing the model developer with dynamic

spiking events, that is, with the possibility of scheduling retractable events: events

that can be arbitrarily removed from the events queue or whose timestamp can be
2While no actual facility has been implemented yet to safely perform output, since even the

alignment event is speculative, expedients are possible to correctly perform output. Implementing
output in the interface is part of future work.



3.5 Runtime Support 60

changed at will, with these operations supported at the runtime environment level.

Future spike emission events can be effectively represented as retractable events.

In the context of SNN simulations, each neuron needs a maximum of one re-

tractable event destined to itself. The spiking event has no payload: because of the

way the neural interface is implemented, the fact that it got extracted for handling

is enough guarantee that the scheduling neuron did not receive any spikes since

the last time the spiking event was scheduled. These considerations significantly

simplify the implementation of this new mechanism. Each thread simply has a pri-

vate queue that handles the retractable events associated with the neurons bound

to it. The private queue is implemented as a k-heap data structure which allows

efficient priority changes and removal of events. In order to extract a new event,

each thread chooses the lowest timestamp between the normal events queue and its

private retractable events queue.

In order to correctly handle rollbacks, when computing the checkpoint of an LP,

we must also include their currently active retractable event timestamp, and upon

finishing the rollback, the event has to be rescheduled for the stored time. With this

precaution, when an LP must roll back to a previous state, its retractable message

is correctly restored, too.

In our experimentation, moving from utilising the naïve epoch counter approach

to retractable events reduced running times by 50% in the worse cases, and by over

60% when using higher thread counts. Figure 3.7 reports the running times for the

CUBA benchmark (see Section 1.2.2) when using retractable events, compared to

not using them. The experiments were run on a machine with two Intel Xeon CPUs

E5-2696 v4 @ 2.20GHz, with 22 physical cores and 44 virtual cores each, for a total

of 44 physical and 88 virtual cores. The machine has 256GB RAM. Figure 3.7a

reports times for a network of 100,000 neurons, using 1 to 88 worker threads, while

Figure 3.7b shows different network sizes, using 4 to 88 threads: single worker thread

runs were skipped for a matter of execution times. All data points are the average

of 5 runs. For the sake of readability, data points that would have flattened the

plots have been reported in numbers above the plot.

Retractable events are also helpful for other simulation models: for example,
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Figure 3.7. Run times when using the naïve spike scheduling method, compared to using
retractable events. For the sake of readability, run times that would have flattened the
plot, are indicated with a label outside the plot area.
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they can be employed in Blockchain simulation to efficiently implement future block

mining events that may be invalidated by receiving a new block or update to the

blockchain.

3.5.3 Publish/Subscribe Event Dissemination

While the use of retractable messages effectively reduces the number of events dedi-

cated to spike management, it has no impact on the number of events used to convey

the actual spikes. Each time a neuron spikes, one event per connected postsynaptic

neuron has to be generated and delivered. In larger models such as the CUBA

model (see: Section 1.2.2), with 300,000 neurons and an average out-degree of 6,000

per neuron, this translates to a small “message-bomb” that can be cumbersome

to disseminate across processing threads because of synchronisation, let alone over

the network. An early experimental assessment showed that this was a significant

performance bottleneck.

To address this, we extended the runtime environment with a feature that sup-

ports a light publish/subscribe event dissemination. To give an idea of the capa-

bilities of the pub/sub runtime support using the terms of actual publish/subscribe

messaging frameworks, every LP has its own topic, which is the only topic it can

write to, and in which it is the only writer. Any LP can subscribe to any LP’s topic,

to receive messages published by the topic owner. For simplicity, given the absence

of ambiguity, we say that a is subscribed to b to indicate that LP a is subscribed to

LP b’s topic.

The network topology is initialised during simulation initialisation by having

LPs perform subscriptions to the other LPs. For SNNs, when neurons invoke the

connection APIs to connect, e.g. ns to nd, the neural simulation interface actually

subscribes nd to ns. This way, when ns schedules a tentative spike event which is

then extracted to be handled (i.e. the spike actually happens), the spike is emitted

and propagated in the form of a published event. With this contract in place, the

simulation kernel can significantly reduce the number of events actively transmitted.

To simplify the description of our implementation, we say that a processing

thread is subscribed to an LP if any of the LPs bound to it are subscribed to
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Figure 3.8. Publish/subscribe event dissemination in a distributed environment. In this
example, the publisher LP generates only two events, instead of nine.

that LP. Similarly, a computing node is subscribed to an LP if any of the hosted

processing threads is subscribed to that LP. Our implementation expects a single

function that specifies the publish/subscribe graph. Each processing thread involved

in the simulation initialises the internal data structures based on the relevant subset

of information in the graph. In particular, each LP maintains a list of references

to the local processing threads and remote nodes subscribed to it. Also, each node

hosts a global table that maps identifiers of publisher LPs to a list of references to

the local processing threads and related LPs subscribed to it.

As exemplified in Figure 3.8, publish/subscribe events can drastically reduce

the number of events exchanged by processing units. When an LP publishes a

new event, the simulation framework only generates and delivers the events as

specified in its subscription list, sending one copy per local subscriber thread and

one per remote subscribed node, minimising the number of messages transferred,

both locally and over the network. The support implements a hierarchical structure

for message delivery: inter-node messages, thread-level messages, and normal LP-

level messages. Locally, a thread-level copy of the message is enqueued into each
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subscribed thread’s incoming event queue. The same happens at other nodes, where

the thread extracting the publish/subscribe event from the message-passing layer

proceeds to look-up the threads subscribed to the sender LP from the global table,

then creates and enqueues copies of the publish/subscribe event into their queues

as a thread-level publish/subscribe event. When a processing thread extracts a

thread-level publish/subscribe event from its queue, it simply needs to get the list

of bound subscribed LPs from the global table, and forward them a LP-level copy

of the event, by inserting the copy into the queue. The LP-level event is treated

as a regular event for all matters. All the look-ups are O(1) thanks to the global

map’s structure, and the fact that all subscribed threads and LPs need to receive a

copy in any case.

The management of the rollback operation for publish/subscribe events can be

realised according to the traditional scheme supported by Time Warp synchronisa-

tion, i.e. by relying on anti-events. Indeed, after a single publish/subscribe event

is materialised into multiple copies for each subscribed LP, publish/subscribe anti-

events are treated no different from regular events.

To support anti-messaging, when an event is published, the message keeps ref-

erences (pointers, actually) to all locally generated thread-level messages, so as

to avoid having to look them up in data structures. The same happens for LP-

level messages generated when handling a thread-level publish/subscribe message.

During anti-messaging, the local message references are iterated and those not yet

processed are annihilated, while the processed ones are re-queued as anti-messages

in the respective threads. When a thread-level anti-message is extracted, the thread

uses the list of pointers to generated messages to either annihilate them, or re-queue

them as anti-messages.

To perform anti-messaging of remotely sent messages, negative copies are gen-

erated and sent. At the receiving node, when the worker extracting incoming mes-

sages from the message passing layer extracts a publish/subscribe anti-message,

a thread-level copy of it is simply enqueued into relevant threads’ queues, in the

exact same fashion as positive messages. Once a thread extracts the thread-level

anti-message of a remote-generated publish/subscribe event from its queue, it uses a
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thread-local hashmap to look-up the positive message (before processing a positive

message generated from a remote node, a reference to it is added to the hashmap,

and it is checked whether the negative version of the message was already received).

If not found (i.e. the positive message was not processed yet), the anti-message is

kept in the map to annihilate the positive message when it comes. If found, the

anti-messaging is carried out the same way as above, using the list of pointers to

generated messages to either annihilate or re-queue the messages as anti-messages.

All the used data structures are regularly fossil-collected with the rest of mes-

saging subsystem to remove committed publish/subscribe events.

As far as performance is concerned, publish/subscribe event management provo-

cated around 1% loss in performance in single node executions, due to the message

unpacking overhead. However, the runtime support proved vital when executing

multi-node simulations, drastically reducing the network traffic of the simulated

models, reaching estimated reductions of up to 99.4%—meaning the execution used

0.6% of the bandwidth it would have used otherwise—on the CUBA model (see

Section 1.2.2) using 300,000 neurons and 32 processing nodes. The bandwidth re-

duction is proportional to the number of connections between Logical Processes,

and inversely proportional to the number of computational nodes.
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Chapter 4

Programming Interfaces

As stated various times in this work, as a method, speculative PDES allows for

efficiently executing simulations by partitioning the simulation space into smaller

simulation objects, each managed by a separate processor or computing node. De-

spite being scalable while maintaining high accuracy, the expertise required to im-

plement effective SNN models on top of speculative PDES can limit its adoption

among researchers and practitioners.

State-of-the-art SNN simulators, such as NEST, NEURON, and Brian, provide

both native Python interfaces and PyNN backends allowing easy model creation,

execution and comparison.

Listing 1. A minimal example of SNN simulation using PyNN

sim, options = pyNN.utility.get_simulator() 1

sim.setup() 2

pop = sim.Population(50, sim.IF_curr_exp()) 3

pop.initialize() 4

rng = sim.NativeRNG(seed=0) 5

conn = sim.FixedProbabilityConnector(0.5, rng=rng) 6

syn = sim.StaticSynapse(weight=0.02) 7

sim.Projection(pop, pop, conn, syn, receptor_type='excitatory') 8

sim.run(1000) 9

sim.end() 10
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Following this approach, to overcome these challenges and make SNN simulation

based on speculative PDES more accessible, we also proposed a novel, user-friendly

approach based on PyNN [16], a widely-used neural network modelling library.

PyNN provides a high-level, unified, and standardized programming interface

for defining neural network models and running simulations on any of the available

simulator backends. Among the supported simulators we find NEST [21], NEU-

RON [31], and Brian [64].

By leveraging PyNN, our approach aims to simplify the deployment of SNN

simulations on top of speculative PDES runtime environments.

We hereby present a minimal implementation of a PyNN backend, which en-

capsulates the SNN simulation interface for ROOT-Sim, providing a user-friendly

interface for configuring and deploying PDES-based SNN simulations. We also

evaluate the overhead introduced by the additional layer through a benchmark sim-

ulation.

Listing 1 contains a Python snippet using PyNN. It gets the simulation backend

and command line arguments, initialises the simulator, a neuron population of size

50, and the random number generator. Creates a random connector with a pairwise

connection probability of 50%, and connects the neuron population to itself with

static excitatory synapses. Then simulates for 1 second. While very essential, this

code is a perfect testament to how straightforward model development becomes

using these interfaces.

4.1 Implementation

Implementing a PyNN backend means implementing a Python class that exposes

the PyNN APIs in compatibility with the simulation framework that will, in the

end, run the simulation.

In our implementation, the Python interface does not interact directly with

ROOT-Sim, but rather, it responds to the various API calls by writing to its

internal state. Once the run command is given, only then does the interface start

the interaction with the simulation backend. The interface generates a C source and

header file couple with specific names, which are then compiled against an ad-hoc
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Figure 4.1. Run times using PyNN interfaces

SNN model for ROOT-Sim. Once the compilation is completed, the Python class

will launch the resulting binary, that runs the simulation.

The SNN model implements the main function, and upon launching takes care

to initialise the topology as specified in the PyNN-generated files. The topology can

be specified explicitly, or the fine details can be delegated to the simulator, which

takes care of connecting the neuron populations according to the specifics provided.
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If the requested connection pattern is probabilistic, the simulator can use its

internal random number generation facilities to build the connections, drastically

reducing the amount of computation carried out in the Python script, which speeds

up the initialisation, especially in the case of large networks.

Before initialising the topology, the ad-hoc model instantiates the neurons and

their initial state, either to a default state, or randomically, or by reading from

the generated files. The topology is then materialised by connecting neurons to

one another. Finally, the simulation is launched and executes until the specified

end time is reached. The model can produce output to file, to track the generated

spikes.3

4.2 Evaluation

The new PyNN backend communicates with ROOT-Sim via a generated configura-

tion file from which the simulator reads topology and initialisation information. To

evaluate the overhead introduced by this approach, we ran the CUBA benchmark

(presented in Section 1.2.2) using the PyNN interfaces. This version of the model

has a network of 100,000 neurons, 80,000 excitatory and 20,000 inhibitory. The

connection probability of 2% leads total of ∼200,000,000 synapses.

The experiments were run on a machine with two Intel Xeon CPUs E5-2696

v4 @ 2.20GHz, with 22 physical Cores each, for a total of 44 physical Cores. The

machine has 256GB RAM. Each data point represents the average of three runs.

The PyNN backends we compared are (1) the one which is currently being

presented, encapsulating ROOT-Sim, and (2) the one for the NEST simulator,

provided in PyNN.

The network topology is simple, thus easy to define using PyNN. When available,

a backend-provided Pseudo-Random Number Generator (RNG) was used for neuron

initialisation and topology definition to maintain the highest possible performance.

Because of the fast-paced development of SNN simulators, the native RNG

implementations of both NEST and NEURON simulators were unusable, due to

missing or outdated components, which would raise errors and result in the script

exiting. This forced the usage of a NumPy-based RNG that PyNN provides, which,
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however, carries out the entirety of the pseudo-random number generation within

Python, drastically increasing initialisation times (see Figure 4.1b). Initialisation

times using NEST’s built-in RNG with PyNN are thus unknown.

This obviously gave the ROOT-Sim implementation a noticeable edge in end-

to-end execution times (Figure 4.1a). For this reason, the more insightful plots of

initialisation time (Figure 4.1b) and simulation time (Figure 4.1c) are also provided.

It is interesting to notice how the overall performance of ROOT-Sim is essen-

tially unaffected by the presence of the Python interface, thanks to the possibility

of providing its internal RNG.

The simulation performance is in line with that observed in our other works

(see, e.g., [54, 53]), and that will be presented in Chapter 5. When comparing the

execution of the model by the two simulators, we see how ROOT-Sim starts slower

but benefits more from the added worker threads, while NEST starts with faster

times, but extracts less performance from additional computational power.

The presented data shows how exposing adequate interfaces renders the perfor-

mance overhead negligible, while making the cost of adoption aligned with that of

existing time-stepped simulation tools, for which various PyNN models are avail-

able.
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Chapter 5

Experimental Evaluation of

Simulation Performance and

Accuracy

In this chapter, various results of the conducted research are presented. First we

conducted experiments to ensure the adherence of produced simulation results to

expected behaviours, comparing with other simulators. Then a performance and

scalability evaluation is presented. Thirdly, we present our findings regarding precise

accuracy of SNN simulations using PDES and Time-Stepped approaches. Finally,

we recreated a network topology used to perform classification tasks and evaluate

the prediction accuracy, and present the findings.

5.1 Statistical Verification

Firstly, in our experimentation, we performed statistical verification of the imple-

mentation. This is done by picking a model, executing it, and then comparing the

neuronal ensemble behaviour to the one reported by other simulators, using the dis-

tributions of spiking frequencies. Due to the different nature of implementations,

this was intended as a rough correctness check of our implementation, before mov-

ing on to more detailed exploration as presented in Section 5.3, which will play an

important role in the explanation of the data we are about to present.
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Figure 5.1. Spiking rates (Hz) for 1000 neurons model.

1000 Neurons. First we start with the simple synthetic 1000 neurons benchmark,

presented in Section 1.2.2. This small model was deemed ideal to verify the ensem-

ble behaviour of the network in a contained way, while still in presence of various

differently timed spikes. We implemented the same network on both our simulation

framework, and on the Brian SNN simulator (see Section 1.2.1). We then ran the

network and collected the spiking rates from each neuron. The box-plots produced

from the executions are reported in Figure 5.1. It is clear from a quick look at the

figure, that the box-plots of spiking frequencies closely resemble one another. The

difference was attributed to the randomised initialisation of the network topology,

with the small size of the network not being enough to amortise randomness, and

some difference introduced by the limited precision Brian had due to time-stepping,

as it did not use closed form equations for neural dynamics. This last observation

would then be further corroborated by the additional knowledge regarding simu-

lation accuracy that we gathered with successive study and experimentation, the

results of which are presented in Section 5.3. Nonetheless, due to the contained na-

ture of the observed discrepancies, this verification showed how the framework and

LIF model implementation of the neurons are correct even when a modest number

of neurons is simulated, and with neurons handling spikes coming in varied patterns

from many other neurons.

Local Cortical Microcircuit Model. We have also considered the Local Corti-

cal Microcircuit specification by Potjans and Diesmann (see Section 1.2.3) to confirm
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Figure 5.2. Spiking rates (Hz) for Local Cortical Microcircuit model.

the results above. Again, this model is highly relevant, with its implementation be-

ing part of the examples in the NEST simulator (see Section 1.2.1) exhibiting similar

behaviour to the one observed in-vivo. The model has also been replicated in 2018

in [62] with an implementation for the Brian simulator. We have compared our

implementation of this model with the implementations in both NEST and Brian.

The simulation results are shown in Figure 5.2, again in the form of box-plots

showing the observed spiking rates, population by population. In a comparable fash-

ion to the previous benchmark, the obtained results closely resemble one another,

and considerations similar to those made in the previous experiment apply.

5.2 Performance Evaluation

Moving on, to assess the performance and scalability of our proposal, we have relied

on running the Local Cortical Microcircuit (see Section 1.2.3) and the larger CUBA

(see Section 1.2.2) models for 10 seconds of simulated time, and measured our

implementation against state-of-the-art NEST implementations.

The results have been obtained by relying on a set of virtual machines on Ama-

zon Web Services. In particular, we have used various configurations of m5.4xlarge

instances (equipped with 16 virtual cores), m5.8xlarge instances (equipped with 32

virtual cores), and m5.24xlarge instances (equipped with 96 virtual cores). We com-

pare our results with NEST, from a performance and scalability perspective. All

results are averaged over 5 different runs. The same sequence of random numbers

has been used across all runs in the experiment.
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Figure 5.3. Single-node Scalability (m5.24xlarge).

To evaluate the ability of the simulators to leverage multi-threading on a single

machine, we executed the experiments using a 96-vCPU m5.24xlarge instance. In

Figure 5.3 we report the total execution time (in seconds) for both benchmarks when

varying the number of threads. We have also studied both simulators’ performance

when varying the total amount of interconnections in the network, i.e. running from

the full load (as in the original benchmark) down to 25% of the total number of

connections among neurons.

In both scenarios, we see that NEST’s performance is mostly independent of the

number of threads used and the number of considered connections1. This is related
1For the sake of readability, we report only the curve related to the full connection configuration

for NEST, but the results with a reduced connection density showed the exact same performance.
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to the approximated time-stepped nature of the simulation algorithm. Indeed, most

of the time is spent by the NEST kernel advancing through the different steps and

synchronising the various threads (through OpenMP [61]).

Conversely, our implementation exhibits a performance improvement that grows

with the number of parallel threads used. At maximum parallelism, our simulations

deliver a performance improvement of 4x or more in both benchmarks. More inter-

estingly, the scalability trend shows that the minimum in the simulation time curve

has not been reached yet, suggesting that the amount of parallelism that the Time

Warp simulation can exploit is still non-minimal.

While the constant execution time of NEST consistently outperforms our im-

plementation in the case of a smaller network (Potjans and Diesmann’s model in

Figure 5.3b), in the case of a larger network, NEST’s performance starts to de-

grade at around 56 threads, when our solution starts to outperform it. This is an

indication that, if larger networks were to be simulated, our solution could provide

reduced simulation times—again, also offering results that are precise. This is a

significant result, as the research community has the ambitious goal of “simulating

the brains of mammals with a high level of biological accuracy and, ultimately, to

study the steps involved in the emergence of biological intelligence” [38].

We have also studied the performance and scalability of our proposal, again

against NEST, in a distributed environment, relying on MPI for both simulators.

We have performed a strong scalability assessment, keeping fixed the size of the

networks simulated in both benchmarks and varying the number of nodes from

4 to 32. We have used a set of m5.4xlarge instances (Figure 5.4) and a set of

m5.8xlarge instances (Figure 5.5). These virtual machines are equipped with 16

and 32 virtual cores, respectively—we thus have used up to 512 distributed virtual

cores, mimicking a tiny-scale supercomputer. By the results in Figure 5.3, this

is a worst-case scenario for our implementation, as NEST is still outperforming

ROOT-Sim on a single node in both configurations for both benchmarks.

From the results, we anyhow observe that the scalability trends of both ROOT-

Sim and NEST are comparable for the CUBA benchmark (Figures 5.4a and 5.5a).

This is an indication that our proposal (particularly owing to retractable messages
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and publish/subscribe events) can dampen out the performance penalty observed

on the single node in the case of a distributed simulation. Conversely, in the case of

a smaller network (Figures 5.4b and 5.5b) the NEST implementation does not scale,

probably due to synchronisation overhead, although, in most of the configurations,

it is still able to deliver better performance results—again, sacrificing preciseness.

To better understand the dynamics of our PDES speculative simulation with

respect to NEST’s time-stepped simulation, we have also carried out an experiment

using the large network in CUBA benchmark when varying the network activity,

i.e. the total number of spikes in the simulation. From the results reported in

Figure 5.6, we see that NEST exhibits a performance that is independent of the

amount of activity in the network (Figure 5.6b), while the Time Warp simulation

based on ROOT-Sim can exploit this reduced amount of interactions. This is an

expected result, given the nature of both simulation methodologies. At the same

time, it is interesting to note that when the number of nodes is reduced, the benefit

incurred from reducing the network activity is more noticeable (see Figure 5.6a).

This is related to the fact that more LPs are bound to the same thread when

the number of nodes is smaller. In this scenario, the publish/subscribe messaging

mechanism that we have devised is likely to pay off more at higher node counts. It

follows that if larger networks were to be executed, the performance improvement

offered by this runtime support can be non-minimal.

Finally, to shed light on the reason behind the performance gap between the

ROOT-Sim implementation and the NEST one (although we recall that the results

have been obtained in a worst-case scenario), we report in Figure 5.7 a breakdown

of the time spent in the initialisation phase vs the simulation phase for the CUBA

benchmark on the cluster of m5.8xlarge virtual machines. As it can be seen, the

simulation pays a non-negligible almost-constant time spent in the initialisation

phase, while the simulation phase is scaling significantly. This indicates that if

more effective initialisation strategies are devised, our approach might also improve

performance when simulating smaller-scale networks.
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Figure 5.4. Distributed Scalability (m5.4xlarge).
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Figure 5.5. Distributed Scalability (m5.8xlarge).
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Figure 5.6. Performance when varying network activity (m5.8xlarge).
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5.3 Accuracy Evaluation

After evaluating the accuracy at an ensemble level, by comparing frequencies, we

dove deeper to explore our accuracy claims at a neuron-grained level. By com-

paring the spike times of the single neurons, rather than the spike frequencies of

populations, we managed to gather data that paint an interesting picture.

2 neurons. We started with the tiny 2-neuron network (see Section 1.2.2), that

was deemed the ideal model to commence the evaluation of the approach, with

such fine grained precision. In the experiment, the spiking outputs of neuron N2

are monitored, and then compared with a ground truth. In particular, to generate

the ground truth, we have computed the timing of N2’s expected spike train via

numerical methods with a tolerance of 10−7 milliseconds. The computed ground

truth has been used as a reference for the result obtained simulating the model both

on NEST and ROOT-Sim. We have collected data for 1 second of simulated time.

In Figure 5.8 we report the accuracy results. In the Figure, we plotted the

absolute error for each ith spike in the train. While the accumulated error grows

linearly for both the simulation methods, it is clear that the error in the NEST
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Figure 5.8. Accuracy results with a 2-neuron model.

model is significantly higher, coming up to a total of 15 ms of error over 1 second

of simulated neuronal activity (ROOT-Sim shows an error reduction of ∼ 90%

compared to NEST). Again, this is the case with an extremely simple network with

two neurons, and in a very short time window. This error is also reflected in the

number of spikes—NEST runs late and thus misses one spike, with respect to the

total number of spikes in the considered simulation window.

Feed-Forward Precision Benchmark. In order to further assess the accuracy

capabilities of the different approaches, we have used the Feed-forward Precision

Benchmark introduced in Section 1.2.2.

The evaluation method consists in comparing the spike timings of the Output

population against the expected ones. We evaluate both NEST and ROOT-Sim.

First of all, we need to establish a method to compute the expected behaviour,

the ground truth. As noted when presenting the model, the network chosen for the

accuracy evaluation is acyclic, and, conveniently, there is a simple algorithm able to

compute its behaviour. Given such an acyclic network, we compute a topological

ordering of the neurons n0, n1, ...nk; then, necessarily, the behaviour of a neuron ni

will only depend on the behaviour of neurons n0, n1, ..., ni−1. It follows that, once a

simulation time limit t has been selected, it is possible to simulate the neurons one

by one, starting from n0 through nk feeding the output from each of the neurons to

the correct post-synaptic ones. Since there is no analytical closed-form solution for
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Table 5.1. Spiking Times for ROOT-Sim and NEST (tolerance/time-step: 0.1 ms). For
each result, we provide the spike time (ms) and the neuron number in brackets. The
results relate to the first 10 ms of simulated time.

Spike No. Ground Truth ROOT-Sim NEST
1 2.999 (900) 3.046 (900) 3.200 (900)
2 3.556 (977) 3.615 (977) 3.900 (975)
3 3.598 (975) 3.630 (975) 3.900 (950)
4 3.787 (970) 3.771 (970) 6.200 (912)
5 5.843 (953) 5.955 (953) 6.300 (952)
6 — 6.215 (927) —
7 — 6.667 (923) —

Table 5.2. Spiking Times for ROOT-Sim and NEST (tolerance/time-step: 0.001 ms).
For each result, we provide the spike time (ms) and the neuron number in brackets.
The results relate to the first 10 ms of simulated time.

Spike No. Ground Truth ROOT-Sim NEST
1 2.999 (900) 2.999 (900) 3.110 (900)
2 3.556 (977) 3.556 (977) 3.795 (975)
3 3.598 (975) 3.598 (975) 6.486 (952)
4 3.787 (970) 3.787 (970) —
5 5.843 (953) 5.842 (953) —

the spike times for the LIF neuron used in the network, we still have to resort to

numerical methods. However, we are not concerned with performance in this case,

just accuracy. Therefore, to compute the ground truth, we implemented a Python

script capable of carrying out the described computations. The script finds spike

timings using bisection, stopping after the diameter of the search interval (i.e. the

tolerance) is less than 10−9 ms.

We report in Tables 5.1 and 5.2 the results obtained running the synthetic model

on ROOT-Sim and NEST, compared to the ground truth results obtained according

to the method described above. To compute the results, the simulations were run by

setting NEST’s simulation time-step and ROOT-Sim’s bisection tolerance (i.e. the

stopping size of the search interval’s diameter, see Section 3.4.1) to 0.1 ms (results

in Table 5.1) and 0.001 ms (results in Table 5.2). The results report the spikes

emitted in the simulation’s first 10 ms. We provide the spiking time and the ID of

the neuron that generated the spike in the Output layer for each spike.

By the results in Table 5.1, we observe that, for both simulators, the accuracy is

not high. In particular, ROOT-Sim generates spikes at all the correct neurons, but
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the difference in spiking times is between 1% and 2%, even in such a significantly

reduced simulation time. Interestingly, this approach also generates two additional

spurious spikes. Conversely, NEST has a higher error (up to 60%), but more in-

terestingly, it induces spikes at the wrong neurons, except for the first one. The

number of spikes is anyhow correct. These results are expected. Indeed, given the

nature of the synthetic model, it is clear that a low resolution is unlikely to provide

accurate results due to the strong interaction between excitatory and inhibitory

neurons.

The results with a higher resolution, provided in Table 5.2, show that the results

based on ROOT-Sim deliver much higher accuracy. Conversely, NEST results show

that two spikes are missing, spikes are induced at the wrong neurons, and the

accuracy is still low (with an error ranging from 3.7% to 80%). One could wonder

how the two examined simulators may deliver a different accuracy even when using

the same value for the time-step/error. We believe that the sources of inaccuracy

are essentially two.

Common to both algorithms, the first source of inaccuracy comes from the

computational inaccuracy when calculating spike timings: even small deviations

can cause post-synaptic neurons to incorrectly emit or miss a spike. This source

however, can be overcome by increasing the simulation resolution. The impact of

increased simulation resolution will be evaluated in Section 5.3.1.

The second source of accuracy loss is specific to NEST only, and it depends

on the way spike detection is implemented. With the default settings, a spike is

detected only if the firing threshold potential is overcome at one discrete time-step.

In other words, NEST notices and correctly emits a spike, only if the conditions

are valid at the time of the time-step. The effect this has on accuracy is twofold:

firstly, it can lead to missing a spike in the edge case in which the threshold is

overcome only for a short period of time in-between time-steps, but the potential

is below threshold at the time-step end; secondly, the spike timings are snapped to

the time-step grid. This delays the spike timing to the end of the time-step, even

when the membrane potential would have surpassed the spiking threshold earlier.

In the worst case, the threshold could be surpassed immediately after the start of
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the time-step.

These inaccuracies have a compounding effect that is well visible already in this

simple experiment, let alone in larger and more convoluted networks.

5.3.1 The Trade-off Between Accuracy and Performance

To conclude the experimentation regarding accuracy, we have conducted a series

of performance experiments. The performance experiments were run on an AWS

m5.8xlarge virtual machine with 32 vCPUs. These machines are based on Intel

Xeon Platinum 8175M processors, running Ubuntu 20.04.3 LTS, on kernel version

5.13.0-1025-aws. Each experiment was run with 32, 24, 16, 8, and 4 worker threads.

NEST only has data points for 16 or more worker threads due to a limitation not

allowing more than 227 synaptic connections per worker thread. While it seemed

possible to change this number in the code, after some research, we ultimately

decided not to venture into that, to avoid causing any unwanted issues with the

simulator. Because of this, only ROOT-Sim was run on 4 and 8 workers.

Tested using the CUBA model (see Section 1.2.2) with 300,000 neurons, the

model is simulated for 10 seconds of simulation time with each simulator, while

varying the simulation precision. In NEST, this is achieved by selecting a resolution

value. In our implementation, the time tolerance is built into the model at compile

time and can be selected deliberately, as long as the hardware constraints allow it.

Figure 5.9, shows the results of the performance experiments. While NEST out-

performs ROOT-Sim in terms of speed for low-resolution values (10−1 and 10−2

milliseconds), when running with a resolution of 10−3, the performance dramati-

cally degrades, leaving the edge to ROOT-Sim, even when the latter runs on eight

workers. With a resolution of 10−4, the time-to-solution for NEST is significantly

larger, with the best configuration (using 32 worker threads), taking over 20, 369

seconds to complete, while ROOT-Sim took 1, 076—that is, NEST takes 18,92x

the time. This result is expected, as multiplying the resolution tenfold also mul-

tiplies the number of calculations needed. It is not unreasonable to expect higher

resolutions to be practically unfeasible for sizeable networks.

At the same time, increasing simulation resolution appears to have a minimal
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Figure 5.9. Performance Comparison.

impact on ROOT-Sim’s performance, allowing it to be increased almost at will

without the risk of running into prohibitive time costs, the only limitation being

the implementation’s floating point precision.

5.4 Braille Letter Reading

Starting from the high accuracy the simulation method is able to deliver, we want

to evaluate the effect of the increased accuracy when executing AI workloads. For

this reason, we re-implemented the network presented in [44] in ROOT-Sim.

The cited paper proposes a network implementation to perform braille letter

recognition. Braille is a tactile writing system for blind and visually impaired people.

The letters are represented by using raised bumps on a grid, arranged in three rows

of two dots each. The combination of the six raised/flat dots determines the letter

represented.

The authors suggest that braille reading, as a spatio-temporal pattern recogni-

tion task, can be an interesting test-bench for robotics applications. To perform

pattern recognition, they use a SNN that they also then deploy on the Intel Loihi

digital neuromorphic chip for fast and efficient inference. Loihi uses Current Based

LIF neurons and first-order integration to calculate the evolution of neural dynam-

ics.
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For the network, they propose two topologies, which are effectively different

ways to connect the same sets of neurons. The neurons are divided in three sets:

input layer of k ∗ 24 neurons, a hidden layer of 450 neurons, and the output layer of

27 neurons, one per letter, plus the space character. The first topology is a Feed-

Forward SNN (FFSNN), in which the input layer is fully connected to the hidden

layer, and the hidden layer is fully connected to the output layer. The second

topology is a Recurrent SNN (RSNN), which is the same as the FFSNN, but with

each layer also recurrently fully connected to itself.

To perform the sensing, the authors use a robotic fingertip with 12 sensors. Each

of the sensors emits a continuous signal, with varying intensity. The produced signal

can have positive and negative values. To emulate event-driven sensors, the authors

“spikify” the continuous signal generated by the sensors into two possible discrete

signals, ON and OFF. Using a sampling threshold θ, the ON spike is generated

whenever the signal intensity increases and crosses a multiple of θ, while the OFF

spike is generated when the signal intensity decreases, and crosses a multiple of θ.

E.g. a signal going from 0 to 11.2 and then to 7, will generate 11 ON spikes followed

by 3 OFF spikes with θ := 1. With θ := 2, the signal will be converted into 5 ON

spikes (when reaching 2, 4, 6, 8, 10) and 2 OFF spikes (when reaching 10, 8), and so

on. The datasets are generated for values of θ ∈ {1, 2, 5, 10}. Increasing θ decreases

the number of spikes and thus the sensitivity of the spikification.

The spikification of the dataset is the reason for having 24 input neurons: each

of the 12 fingertip sensors can generate 2 signals, thus each of the neurons in the

input layer is responsible for generating either an ON or OFF spike, when needed.

The multiplying factor k is used to increase the number of input copies: for higher

values of θ, the input signal can become very rarefied, with spikes distant from one

another. Thus, instead of a single spike, k spikes are sent per ON/OFF signal.

To simulate and train the network, the authors use a time-stepped approach

based on PyTorch. Consequently, there is a limit to the number of spikes an input

neuron can generate: a neuron cannot spike twice in the same time-step. For this

reason, the spikified dataset is further adapted by making the input neuron generate

a spike at time-step t if in the time window t+∆t at least one spike is emitted, thus
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Table 5.3. Reported Best Hyperparameter Configurations.

θ k ∆t (ms) τsyn (ms) τmem (ms)
1 2 3 6 60
2 8 5 5 50
5 4 5 7 70
10 2 3 7 70

ignoring all further spikes for the time-step. Needless to say, such approximation

would not be needed when simulating with PDES (or using an analogue neuromor-

phic chip): since the input neurons are simply there to model spike trains, then

they do not have a limit to their spiking rate, meaning all spikes would be delivered

to the hidden layer’s neurons at the appropriate time, which would have avoided

having to squash the sensor dynamics in this way.

The network’s prediction is obtained by counting the spikes of the output neu-

rons: the character associated with the neuron that spiked the most is the chosen

classification for the input signal.

A vast exploration phase for hyperparameter optimisation is conducted in the

paper. For the sake of brevity, we focus only on the hyperparameter configurations

yielding the best performance, according to the authors. Table 5.3 reports the

hyperparameters chosen for each of the values of θ.
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Figure 5.10. Reported Classification Accuracy, [44] Figure 7

Figure 5.10 shows the classification accuracies that the paper reports as being

achieved by the networks, when trained using the best hyperparameters.

Moving on to our experimentation, we executed the PyTorch training script

provided by the authors using the optimal hyperparameters, which generates 5

sets of weights, extracted the trained weights, and used them in the re-implemented

network model we built in ROOT-Sim. The accuracies we reproduced after training

and simulating using the PyTorch script are reported in Figure 5.11. As one can

see, there is an issue with the reproduced accuracy for RSNN at θ := 10, as it

plummets for no apparent reason, while the rest of the graph is comparable to the

paper’s. After multiple tries, it became apparent that this stems from an issue in

the original authors’ training script, which we did not focus on solving. The case of

θ = 10 will thus not be treated for RSNN. We now explain the process of porting

the simulation to ROOT-Sim, which proved to be an interesting task.
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Figure 5.11. Reproduced Accuracy, reproducing Figure 7 of [44]

5.4.1 Taming the RSNN

It turns out that the time-stepped implementation of the network using PyTorch

had no explicit transmission delays, nor refractory periods: the large values used

for ∆t are implicitly defining these characteristics, as we have seen in the accuracy

evaluation presented in Section 5.3. Indeed, spikes are aligned to the grid, and at

most one spike can be generated by a neuron per time-step ∆t, limiting the neuron’s

spiking capabilities. Furthermore, spikes generated are (in this implementation) de-

livered at the start of the next time-step, resulting in an implicit spike transmission

delay of ∆t.

As a result, the RSNN model ported to ROOT-Sim would spike uncontrollably,

thrashing the simulation. This happened because of recurrent connections: without

a refractory period, all it took was few neurons to spike in close succession to one

another to kick-start a positive feedback loop that generated an exploding number

of spikes. For this reason, we inserted both a refractory period τref , and a forced

spike generation delay df , while the spike propagation delay was set to the ∆t used

in the time-stepped version of the same network.

While unorthodox, the role of df was to simulate the implicit spiking delay in-
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troduced by the time-stepping with large ∆t values. Differently from what happens

during a refractory period, in which a neuron ignores all incoming spikes, the forced

delay just enforced spacing between consecutive spiking of the same neuron. As

such, a neuron’s membrane potential would be able to rise, but no spike would be

produced before df had passed since the last time the neuron fired.

Figure 5.12. Sweeping on τref and df . rf: τref , sd: df

To pick the correct values for τref and df , we executed a parameter sweep,

producing one experiment per combination in the Cartesian product of a number of

arbitrary values for τref ∈ {0, 2.5, 4, 5, 7.5, 10, 20} and the (again, arbitrary) values

for df ∈ {0, 20, 30, 40}. This was done once per value of θ ∈ {1, 2, 5}. Figure 5.12

reports the plot showing, among others, the best configuration found with this

parameter sweep: τref = 10ms and df = 20ms.
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Figure 5.13. Box-plots of accuracies for τref = 10ms, df = 20ms

The resulting box-plot of prediction accuracies over the 5 different weight sets, is

shown in Figure 5.13. We can see how the performance is not really comparable with

the one presented in the original paper, nor with the one we reproduced. By scaling

down the weights of the recurrent connections and performing a new parameter

sweep, a new configuration was found with better accuracy, shown in Figure 5.14.

However, this configuration is still slightly lacking with respect to both the

presented configuration and the learned one. We have to keep in mind that the

weights were learned on a network with a significantly different behaviour: the

achieved results are already vastly superior to what we started with, thanks to the

parameter sweep. This is also a prime occasion to bring attention to the fact that, if

deployed on an analogue chip, this network would have behaved in a way similar to

ROOT-Sim, showing once again how, since the accuracy losses make the simulated

behaviour drift away from that of the real implementation, renders the simulation

without accuracy much less reliable and useful for prototyping networks deployed

on analogue chips.
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Figure 5.14. Accuracies with scaled-down recurrent weights, τref = 0.25ms, df = 0ms

5.4.2 FFSNN Takes Over

Porting and simulating the FFSNN was a much more straightforward process, with

respect to the RSNN: the absence of recurrent connections makes an explosive

positive feedback loop impossible. As far as the other aspects are concerned however,

the network still carries the same quirks as the RSNN: implicit refractory period and

spike propagation delay determined by the simulation time-step ∆t. However, to

solve the issues in the case of the FFSNN, all that was needed was a parameter sweep

to find an appropriate refractory period τref , while setting the synaptic propagation

delay to the ∆t used in the time-stepped version of the network. The results of the

parameter sweep are shown in Figure 5.15.
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Figure 5.15. Sweep over τref for FFSNN.

For FFSNN we also find θ = 10 as a possible encoding threshold, as it did not

cause issues with FFSNN. The best value for τref was found to be 1.0ms. Then,

with the found value, the prediction accuracies were gathered by simulating using

the 5 different weight sets.

Figure 5.16. FFSNN accuracies with τref = 1.0ms

Figure 5.16 shows the resulting accuracies for FFSNN. In a surprising (or maybe
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at this point, not so much) turn of events, this configuration greatly outperformed

all accuracies, both reported in the paper, and reproduced, even when comparing

to RSNN. This FFSNN exceeds expectations at every single value of θ. The most

obvious difference is found for θ = 2, which shows a peak improvement of over 20%

with respect to the time-stepped FFSNN, and up to 10% with respect to the RSNN.

It is impressive that this result was achieved simply with a parameter sweep over

the refractory period, and by using a more accurate simulation of the network.

5.4.3 Energy Efficiency

After appreciating the capabilities brought about by a more accurate simulation, it

is time to use the gathered data to evaluate the energy efficiency that the hardware-

implemented network would have. We compare the RSNN, as the best performing

network reported in the paper, and the best performing FFSNN executed using

ROOT-Sim.

To estimate the electrical consumption, the metrics reported in [47] have been

used. These are based on existing dedicated hardware’s energy consumption. To

compute the energy consumption, the number of spikes emitted by each neuron is

collected.

According to gathered data, for a complete classification run, the hidden layer

of the RSNN on average emits around 106 total spikes, while the FFSNN’s hidden

layer simulated on ROOT-Sim emits around 107 spikes, on average. Taking into

account the size of the hidden layer (450 neurons), and the size of the used test-set

(1085 elements), this means that on average the neurons of the RSNN’s hidden layer

emit 2 spikes each, while the neurons in the FFSNN’s hidden layer emit, on average,

20 spikes each.

For the power consumption estimation, we use Equation 9 from [47]:

Esyntot = Esyn + Eneu

ra · sneu
(5.1)

Where:

Esyntot = Total energy dissipated for a message to pass through a synapse.
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Esyn = Dissipated energy per synapse

Eneu = Energy dissipated by a neuron

sneu = average number of synapses per neuron

ra = percentage of active synapses

We observe that ra ·sneu, is the number of synapses on which the spike has been

propagated. Since the topology is complete, ra = 1. In the RSNN sneu = 450 + 27

(recurrent connections + output neurons), while in the FFSNN sneu = 27, because

no recurrent connections are in place. Output neurons are counted as having a

single output synapse (i.e. sneu = 1 for them). Since Equation (5.1) calculates the

energy consumption of a single synaptic event, to have the energy consumed per

spike generated, we just multiply by sneu, obtaining:

Espike = sneu · Esyntot = (sneu) · (Esyn + Eneu

1 · sneu
) = sneu · Esyn + Eneu (5.2)

Using Equation (5.2), we can compute the energy consumed. Using average

consumption values Esyn = 621.645aJ and Eneu = 2477.112aJ , we obtain the

results shown in Figure 5.17.

As we can see, using this simulation method we have been able to estimate

that not only will the FFSNN perform better in terms of accuracy, but it will even

consume a noticeably smaller amount of energy, in the case of analogue implementa-

tions. This made possible thanks to the increased accuracy provided by our method,

which allowed more precise simulation of the neurons and of the chip’s behaviour,

leading to improved accuracy with a simpler network, which in turn resulted in a

lower estimated energy consumption.
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Figure 5.17. Estimated energy consumption for executing the different networks on neu-
romorphic hardware.
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Chapter 6

Conclusions and Future Work

In this thesis, we have presented an effective framework to carry out the simulation

of Spiking Neural Networks using Parallel Discrete Event Simulation. To do so, we

had to overcome innumerable obstacles in what at the start was—and because of its

sheer complexity still somehow is—a fascinating but daunting field. From having

to come up with a way to simulate a continuous-time system using discrete events,

to understanding and translating the models into workable materials, to debugging

elusive concurrency issues, the path to produce the presented research was deeply

challenging, and the time not nearly enough (although is the time ever enough?).

As developers and engineers at heart, we have indeed managed to model a con-

tinuous neuron by only using the salient instants of its evolution, and we managed to

do so with better scalability and accuracy than what was possible before. To support

a scalable and fast execution, we developed complex runtime supports the practical

reach of which goes well beyond the scope of SNN simulation: retractable events

and publish/subscribe message dissemination. To help others reap the benefits of

this innovative SNN simulation approach, we encapsulated the PDES backend with

the neural simulation interface that hides away its complexities. Then we encap-

sulated once more, by wrapping Python bindings around the models implemented

using the neural simulation interface, to further lower the barrier to adoption and

to make model development and deployment faster and easier.

We then demonstrated how small inaccuracies compound and make the simula-

tion drift from reality, and we underlined how accurate simulation of Spiking Neural
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Networks is vital for the future development of the field, by providing working ex-

amples of the efficiency and efficacy of accurate models.

All of this with the hope that this will prove useful to further the research in AI,

medicine, biology and much more. With this research, we believe to have pushed

the boundaries of what is possible a tiny step forward.

We conclude this thesis, by proposing future developments for this line of re-

search that hold promise in the eyes of the author.

Models Without Analytical Solution. The natural continuation of the en-

deavours presented in this thesis, passes through the implementation of more com-

plex neuron models, most of which have no analytical solution. While the absence

of an analytical solution prevents part of the reasoning we used to make the future-

spike-timing calculation faster, and imposes the need for some restructuring on the

approach to neuronal state evolution, the PDES approach still has the capacity to

offer advantages with respect to time-stepping.

Indeed it still holds that PDES does not need a snapping to grid of neuronal

dynamics nor spike timings. Thus, while the model evolution will have to be per-

formed with iterative numerical methods, when using PDES there is no constraint

on the step size to be used. As such, a desired precision level can be selected, and

more complex numerical methods employing dynamically sized integration step—

such as the Runge-Kutta-Fehlberg [17] method, widely used in other scientific and

engineering fields—can be used to ensure that a high level of accuracy is guaranteed,

while at the same time preventing excessively complicated calculations from having

to be done every single integration step for the sake of maintaining accuracy.

Sparse Coding by Spiking Neural Networks. At the time of writing of this

thesis, the author is working on reproducing the work presented in [66]. In the

mentioned work, the authors present a technique to perform sparse coding using

SNNs. Their adopted approach is time-stepped, as their focus is to demonstrate the

functionality of the algorithm, and the possibility to deploy it on the Intel® Loihi®

neuromorphic chip, which is a digital chip that uses first order numerical methods

to implement time-stepping.
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Similarly to what we presented in Section 5.4, the aim of this effort would be to

demonstrate the centrality of achieving high accuracy in SNN simulation, in order

to achieve higher usability and precision for algorithms implemented using simu-

lated SNNs but also, and perhaps most importantly, to accurately model analogue

hardware implementations of SNNs.

The experimentation we conducted and presented in this thesis has shown how,

when using the classical time-stepped approach, the behaviour of a simulated SNN

actually quickly diverges from that of the circuit it is supposed to be executing, due

to the compounding effect of small inaccuracies. This prevents us from being able to

adequately reproduce the physical network’s behaviour, precluding the possibility

to properly train it and rely on it.

The relevance of this further development lies in the fact that, while the research

in Section 5.4 is executing an AI task and workload, in this case the network has

special properties (far from biological ones) and is used to execute an algorithm

(which, ironically, is vastly used in AI).

Who knows what the future holds.
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