
High Performance Simulation of Spiking Neural
Networks

Facoltà di Ingegneria dell’Informazione, Informatica e Statistica

Corso di Laurea Magistrale in Engineering in Computer Science

Candidate

Adriano Pimpini
ID number 1645896

Thesis Advisor

Prof. Alessandro Pellegrini

Co-Advisor

Eng. Andrea Piccione

Academic Year 2019/2020

Thesis defended on 22 October 2020
in front of a Board of Examiners composed by:

Prof. Tiziana Catarci (chairman)
Prof. Francesca Cuomo
Prof. Francesco Delli Priscoli
Prof. Stefano Leonardi
Prof. Andrea Marrella
Prof. Alessandro Pellegrini
Prof. Simone Scardapane

High Performance Simulation of Spiking Neural Networks
Master’s thesis. Sapienza – University of Rome

© 2020 Adriano Pimpini. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: adriano.pimpini@gmail.com

mailto:adriano.pimpini@gmail.com

ii

Abstract

Spiking Neural Networks (SNNs) are a class of Artificial Neural Networks that closely

mimic biological neural networks. They are particularly interesting for the scientific

community because of their potential to advance research in a number of fields, both

because of better insights on neural behaviour, benefitting medicine, neuroscience,

psychology, and because of the potential in Artificial Intelligence. Their ability to

run on a very low energy budget once implemented in hardware makes them even

more appealing. However, because of their behaviour that evolves with time, when a

hardware implementation is not available, their output cannot simply be computed

with a one-shot function—however large—, but rather they need to be simulated.

Simulating Spiking Neural Networks is extremely costly, mainly due to their

sheer size. Current simulation methods have trouble scaling up on more powerful

systems because of their use of conservative global synchronization methods. In

this work, Parallel Discrete Event Simulation (PDES) with Time Warp is proposed

as a highly scalable solution to simulate Spiking Neural Networks, thanks to the

optimistic approach to synchronization.

The main problem of PDES is the complexity of implementing a model on it,

especially of a system that is continuous in time, as time in PDES “jumps” from

one event to the next. This greatly increases friction towards adoption of PDES to

simulate SNNs. As such, current simulation-based work on SNNs is relegated to

worse-scaling approaches. In order to foster the adoption of PDES and further the

work on simulation of SNNs on larger scales, in this work a solution is developed

and presented that hides the underlying complexity of PDES.

Chapter Organization

In Chapter 1, the research problem addressed in the thesis is introduced and

motivations are adduced. In Chapter 2 Artificial and Spiking Neural Networks

are introduced, along with other important aspects, in order to frame the research

context. In Chapter 3 Parallel Discrete Event simulation, which is the technique on

which this work builds the approach, is introduced. In Chapter 4 some well-known

iii

and widespread simulators specialized in Spiking Neural Networks are introduced,

to give an idea of what the state of the art is.

In Chapter 5 the problem of simulating large spiking neural networks is introduced

and the developed solution is presented in depth, explaining all the actions taken to

make PDES transparent to the user.

In Chapter 6 the methods and results of the experimental assessment are pre-

sented. In Chapter 7 conclusions are drawn and some directions are suggested for

future improvements regarding this work and the research context in general.

iv

Contents

1 Introduction 1

2 Spiking Neural Networks 4

2.1 Neural Networks at a Glance . 7

2.2 Spiking Neural Networks . 9

2.3 The Leaky Integrate and Fire Spiking Neuron 16

3 Parallel Discrete Event Simulation 19

3.1 Discrete Event Simulation . 19

3.1.1 Systemic Approach to DES 20

3.1.2 Components of DES . 21

3.1.3 DES Kernel logic . 24

3.2 Parallel Discrete Event Simulation 25

3.2.1 The Synchronization Problem 28

3.2.2 Optimistic Synchronization 29

3.2.3 Additional Supports for Simulation. 34

4 Related Work 36

4.1 Brian . 36

4.2 Neuron . 38

4.3 NEST . 40

5 Simulating Large Spiking Neural Networks 42

5.1 The module . 44

5.1.1 Interfaces . 44

Contents v

5.1.2 Data structures . 48

5.1.3 The simulation flow . 50

6 Experimental Assessment 52

6.1 The neuron implementation . 52

6.1.1 Leaky Integrate and Fire . 52

6.1.2 Poisson neurons . 58

6.2 The networks . 58

6.2.1 Potjans and Diesmann’s Local Cortical Microcircuit 59

6.2.2 Other networks . 62

6.3 Correctness . 63

6.4 Performance . 66

7 Conclusions 70

A CPU and Memory Footprint 72

Bibliography 77

1

Chapter 1

Introduction

F rom the beginning of the history of human thought, we have wondered about

consciousness: what sets us and other animals apart from a plant? How are

we able to reason and have thoughts? Replicating intelligence has always been one

of humanity’s aspirations, whether it be to study it, to employ it to solve problems,

or simply for the sake of playing god.

Thanks to modern research and knowledge, we know that the brain is the organ

that controls the functions of the body and interprets the information from the

outside world, allowing us to think and much more. Thus, the most obvious path

towards replicating (or rather, emulating) intelligence that is currently being explored

is that of replicating the brain’s inner workings, or at least its behaviour. In recent

years, the concept of Artificial Neural Networks (ANNs) has become a hot topic in

computer and data science and artificial intelligence, mainly owing to the work of

companies such as Google and OpenAI, that succesfully employed ANNs to perform

a plethora of tasks with excellent results, from speech recognition, to beating the

Go world champion in 2017 ([16], [18], [17]), and beating a team of pro-players

of the online multiplayer PC game Dota 2 [11]. Needless to say, the last two are

mind-blowing achievements that could have easily earned their place in science

fiction novels as recently as 20 years ago.

The Artificial Neural Networks that are the de-facto standard of the industry

are however just inspired at a very high level by the way the brain works, and do

not really take into account what actually happens inside of it: billions of cells—the

2

neurons—receive input stimuli in the form of electric pulses, charge themselves up,

and when they are “charged enough”, they produce an electric impulse themselves,

which gets propagated to the other neurons that are connected to them (more on

this in Chapter 2). In these ANNs neurons compute a mathematical function in a

one-shot fashion every time an input is received, usually with no regard for time

whatsoever.

Spiking Neural Networks (SNNs) are a class of ANN that aims to emulate the

biological behaviour of the brain. As such, they need to simulate the behaviour of

the neuron, synapses, and any other interesting object in real-time. This leads to a

higher fidelity execution of the neural network, at the price of higher computational

costs. SNNs however show an interesting trait: since the neurons react to and

communicate through electrical stimuli, they can be modelled as circuits, and

specialized hardware can be implemented that runs SNNs with extremely high

performances both in terms of speed and energy consumption. SNNs have been

shown to be capable of carrying out tasks that other ANNs do too with comparable

accuracy, while boasting an extreme degree of efficiency. Hardware however presents

a problem related to building costs: designing and manufacturing a chip is no

cheap task, and is not sustainable for prototyping. Neuromorphic chips—such as

IBM’s TrueNorth [2]—exist, but present limitations related to their design, which

constrains experimentation. The applications of SNNs are not limited to AI however,

as simulating biologically-accurate networks can be of vital importance for various

fields of research, such as Neurology, Neuroscience, and Medicine in general, to name

a few. This is why simulation of SNNs is fundamental for the near and the distant

future alike. The aim of this work is to make simulation of SNNs viable on High

Performance Computing systems.

Current simulation supports for SNNs consist of time-stepped simulators, which

carry out the simulation by computing the state of all objects at every small

increment of time. These simulators have acceptable performance on single-thread

and even multi-thread environments, but lack the ability to scale beyond few

computational nodes because of the conservative synchronization methods they

employ. Furthermore, updating the state of every object at each timestamp means

3

updating objects that are doing nothing, too, introducing costs that could be avoided.

Parallel Discrete Event Simulation (PDES) [6] with Time Warp (or optimistic PDES)

[8] is the simulation method we adopt in this work to make execution on HPC systems

possible and worthwhile.

In optimistic PDES, timestamped events are used to mark the passage of time,

jumping from one event to the next. When an event is handled by an object, it can

generate new events (messages) directed towards other objects in the simulation.

The simulation is carried out in parallel on different threads and even nodes, that

optimistically schedule events they have locally, assuming no causality violations will

happen because of it. If a violation happens, execution is rolled back to a consistent

state and resumed. This optimistic synchronization method allows for an extreme

degree of parallelism, without having to waste time waiting for synchronization to

happen.

The problem with PDES is that current simulators require the user to be familiar

with the concept of PDES and sending messages, and managing the object execution.

As such, writing a model for PDES is a complex endeavor requiring a high degree of

knowledge and familiarity with the approach. This makes developing for PDES very

costly, discouraging potential adopters. This holds true for the field of computational

neuroscience, too. As such, a simulator that simplifies the adoption of PDES is

needed.

To encourage adoption of PDES, in this work a module was developed which,

attached to a PDES simulator tailor-made to support Spiking Neural Networks

simulation, simplifies the adoption of PDES for simulating Spiking Neural Networks.

This is achieved by hiding the complexity behind a series of Application Programming

Interfaces that hold the modeller’s hand through successful creation and execution

of the model. The underlying simulator is multi-threaded and can run on multi-node

systems, making execution on HPC systems possible.

4

Chapter 2

Spiking Neural Networks

The unresting research on Neural Networks as computational systems is the

byproduct of the desire to understand and mimic the brain’s ability to learn, general-

ize, and carry out extremely complex tasks. Paired with the incredible efficiency that

biological brains have, it is no wonder that the most obvious and sought-after path

to achieve such capabilities is that of copying the brain in a number of its aspects,

and eventually covering all of them in due detail, when the technology will allow

it. Various approaches have been developed, each with its strengths and drawbacks,

and each with a different degree of similarity with the original biological structure,

with SNNs reaching for a higher degree of fidelity.

The brain is a complex system, composed of a huge number of simple functional

units: neurons. A neuron (see Figure 2.1) consists of a cell body called soma,

dendrites, and an axon. The axon and dendrites are filaments extruding from the

soma which usually is, instead, compact. While the axon sparsely branches and can

extend for surprising lengths (up to one meter in humans), dendrites do not travel

far from the soma, but produce abundant branching. We can see the dendrites as the

input channels of the neuron, while the axon is used for the output: at the tip of the

axon’s branches are axon terminals, where the neuron transmits signals across the

synapses to another neuron’s dendrite. In Neural Networks which strive for a higher

degree of similarity, attention is currently placed on modelling of synapses and their

weights, while dendrites are ignored and the axon’s presence is abstracted, but its

role can still be recognized in topological aspects, such as the neuron’s eagerness to

5

connect to neurons that are geographically closer, and the spike transmission delay,

which depends both on the type of synapse and the point of the axon body at which

the synapse lies.

Figure 2.1. Representation of a neuron.
Source: “Neural Networks with R”

Neurons have plasma membranes with embedded voltage-gated ion channels. The

membrane—among other things—electrically separates the inside of the cell with

the outside, effectively creating what can be seen as a capacitor; the ion channels

are sensitive to changes in the membrane electric potential, which influences their

opening and closing: the higher the potential is, the more these channels open,

allowing more ions to flow through the otherwise ion-impermeable membrane. When

the membrane potential is close to the resting potential these channels are completely

closed, however when the potential rises they open up, until it hits a precise threshold

voltage for which a great number of (sodium) ions is allowed to flow inside the cell,

starting an explosive chain reaction further raising the cell’s membrane potential,

causing more channels to open, and so on. The rapid rise of potential causes an

inversion of the plasma membrane polarity, which rapidly deactivates the sodium

ion channels, trapping the sodium (Na+) ions inside the cell. The inversion of the

membrane polarity is called action potential [3] (or signal, or spike) and propagates

along the body of the cell, specifically along the axon, to ultimately reach the

synapses and propagate to the post-synaptic neurons. Note that the depolarization

is temporary as the polarity inversion opens potassium (K-) ion channels, which

6

in turn let potassium ions flow outside of the membrane, returning the membrane

potential to a negative value over a short period of time.

Figure 2.2. A visualization of the action potential propagating through the axon with
time.
Source: https://www.macmillanhighered.com/BrainHoney/Resource/6716/digital_first_content/

trunk/test/hillis2e/hillis2e_ch34_2.html

Now the cell, that usually has potassium ions inside and sodium ions outside,

is back to negative potential, but with potassium ions outside and sodium ions

inside the membrane. This situation is reverted by the sodium potassium pump

which actively transports sodium back out and potassium back inside of the plasma

membrane. Until this process is completed the membrane potential cannot rise,

as such the time interval between the generation of the action potential and the

completion of the “on resetting” process is called refractory period of the neuron.

These concepts have been introduced as they will be useful in talking about spiking

neurons.

In this chapter, Spiking Neural Networks (SNNs) are presented. We begin by

introducing the concept of Neural Network (NN), and then go on to take a look

at different kinds of NNs and some of their application cases. Lastly we introduce

SNNs and go over how they work, their advantages, the challenges that using them

presents and how they are currently dealt with, and how they are currently being

used to achieve what.

https://www.macmillanhighered.com/BrainHoney/Resource/6716/digital_first_content/trunk/test/hillis2e/hillis2e_ch34_2.html
https://www.macmillanhighered.com/BrainHoney/Resource/6716/digital_first_content/trunk/test/hillis2e/hillis2e_ch34_2.html

2.1 Neural Networks at a Glance 7

2.1 Neural Networks at a Glance

Artificial Neural Networks (ANNs). ANNs are networks (or circuits) com-

posed of artificial neurons (or nodes). Artificial Intelligence is the field in which ANNs

have become so popular thanks to their ability to learn and approximate complex

unknown functions. In the simplest kind of ANN for AI—the first generation [10]—,

neurons are perceptrons [14]. Perceptrons employ an extremely simple algorithm:

every neuron has a vector w of weights, one for each incoming connection, and a

bias b. When the input vector x is received, the neuron computes the output f(x)

based on the value of the following (linear) activation function:

f(x) =

 1 if w · x + b > 0,

0 otherwise
(2.1)

The perceptron is a linear binary classifier: a single unit—once trained—can

be used to decide whether an input belongs to a class, given that it is linearly

separable from the others. A network of perceptrons consisting of three or more

layers (one input layer, at least one hidden layer, one output layer) can be built,

giving birth to a feed forward ANN commonly referred to as Multilayer Perceptron

(MLP). Perceptrons constituting this network usually have a non-linear activation

function: networks with this kind of perceptron are seen as the second generation of

ANN [10]. The combination of multiple layers and non-linearity in activation allows

MLPs to distinguish data that is not linearly separable.

Convolutional Neural Networks (CNNs). CNNs are the class of ANNs that

fostered the impressive advancements in Machine Learning and AI we have witnessed

in recent years. Because of the way convolution works, they are particularly well

suited for images, but the fields of application vary widely. The main differences with

MLP lie in the way information is processed, and in the fashion in which neurons

are connected. Indeed, MLP suffers from the fact that adjacent layers are usually

fully connected, which means a great deal of computation has to be carried out to

produce an output, and a fair amount of memory is used to keep track of the weights.

CNNs instead are constituted of convolutional blocks. A convolutional block is

2.1 Neural Networks at a Glance 8

made of three layers: convolution, pooling, and activation. The first layer performs

convolution, which actually is a sliding dot product of the layer’s kernel with the

input feature maps. Kernels are matrices of weights, which are tuned when training

the network. The fact that kernels are layer-specific, as opposed to neuron-specific

weights in MLPs, means that there is a much lower number of weights, letting CNNs

have a smaller memory footprint. Next is the pooling layer, which is responsible

for reducing the spatial size of the representation, so as to reduce the amount of

parameters needed and computation done in the network. This is done on every

feature map separately, by aggregating different adjacent elements into one. An

example is max-pooling: a subset of the feature map is taken and substituted by

a single element, the value of which is the max among those of the initial values.

Finally, the activation layer, which takes a feature map as its input and outputs a

feature map called activation map computed by means of an activation function

that is applied element-wise. The repetition of these three processes is the core of

CNNs as we know them, and allows CNNs to learn to extract and recognize specific

features in the input.

In both the above classes of neural networks, when a neuron receives an input it

computes a rather simple function and always yields an output that is instantaneously

propagated forward. The computation moves going from the back of the network to

the front in a one-shot fashion.

Recurrent Neural Networks (RNNs). RNNs are a class of ANNs in which

nodes are organized in successive layers, but differently from the first two classes

we have mentioned, the output of every node is directed not only towards the next

layer, but also recurs by going back towards the neuron that generated it—or some

other memory unit—so as to be used in the subsequent timestep. This structure

allows them to have a memory of what happened in the past, enabling them to

exhibit temporal dynamic behaviour. RNNs are used in prediction tasks, thanks

to their ability to analyze time series. Furthermore, they can work on sequences

of arbitrary length (contrary to CNNs which require input of predefined length),

which makes them prime candidates for text recognition and speech-to-text tasks:

2.2 Spiking Neural Networks 9

input is fragmented into an ordered number of vectors of the appropriate size, and

the vectors are fed to the network, one per timestep (or frame). To mention some

noteworthy use cases, RNNs are part of what is behind Google’s currently unmatched

speech-to-text engine, as well as the text-to-speech one.

Similarly to what happens in CNNs, RNNs have a parameter sharing mechanism:

while in CNNs weights are shared at layer level and get reused while convoluting

over the input feature maps, in RNNs the weights are shared among time steps, thus

decreasing the memory footprint, as well as the time needed to train the network.

2.2 Spiking Neural Networks

Spiking Neural Networks (SNNs) are a class of ANNs that mimics natural neural

networks more closely. This is achieved through the usage of spiking neurons, which

communicate by sending signals (spikes) to each other through synapses. Spiking

neurons are stateful, and the synapses connecting them can be too. Differently

from what happens in other classes of ANNs, where neurons produce and propagate

an output whenever they receive an input, spiking neurons only fire when a specific

condition is met. Specifically, much like biological neurons, they fire when their

membrane potential reaches a specific threshold value. When a spiking neuron

fires, it generates a spike that is propagated to the neurons it is connected to, which

react by increasing or decreasing their membrane potential accordingly, over time.

Before reaching other neurons however, the spike passes through synapses, which are

weighted and also introduce a transmission delay. Indeed, a fundamental aspect

that differentiates SNNs from other ANNs is the role that time plays: while in the

aforementioned classes of ANNs the computation and propagation of the output is

instantaneous, spiking neurons need to wait for their membrane charge over time,

then when threshold value is reached they fire, and after a transmission delay, only

then do the post-synaptic neurons receive the signal. As such, information is not

only encoded in the way synaptic weights change the amplitude of spikes, but in

their timing as well. It is worth emphasizing how, while it may look similar in

certain aspects, SNNs’ time dependence is different from that of RNNs: SNNs evolve

through time and keep a memory of the not-so-short past (how long this memory

2.2 Spiking Neural Networks 10

goes back depends on the physical parameters of the neuron) in their state, while

RNNs do so by feeding their output back to themselves—which in SNNs cannot

happen—or to other memory units—which are not present in SNNs—to use in the

next timestep.

But what, specifically, is a spiking neuron, how is it stateful, and how is bio-

logical accuracy achieved? Spiking neurons models are derived from experimental

observation of natural neurons’ behaviour. Starting from the emergent behaviour of

the neuron, electronic circuits that approximate it are devised. The structure and

parameters of the circuits are derived by feeding the neuron with different input

currents and seeing what the response to the various different stimuli is. We know

that neurons’ plasma membrane’s isolating properties give rise to a capacitance

(membrane capacitance Cm), and that the potential between the two sides of the

membrane (that we refer to as membrane potential Vm) is what kick-starts the action

potential propagation once it reaches a target threshold value Vth. Furthermore we

know that in absence of stimuli the membrane potential resets to a resting value Vr;

this also holds true after the action potential is generated (which we also refer to as

firing, or spiking) and the sodium potassium pump is done reverting the neuron back

to its resting state, that is, after the refractory period τref is elapsed. Additionally,

we know that for the membrane potential to rise, there has to be some kind input

current I, which is the sum of the stimuli coming from pre-synaptic neurons, and

that an external current Iext can be supplied (e.g. for experimental observation).

This series of observations already gives some clues about what to look for when

creating a biological neuron model. Furthermore, the presence of the capacitance

alone makes it obvious that a spiking neuron is stateful (the minimum state being

just the membrane potential at a given time) and such state evolves with time.

This gives a hint on a fundamental aspect that will be discussed later on, around

which the entire work presented in this document revolves: to be run on computers,

networks of spiking neurons have to be simulated through time. This means that

running a SNN on a computer is a costly endeavour.

2.2 Spiking Neural Networks 11

Why Spiking Neural Networks? If running a SNN is so much more computa-

tionally expensive than other ANNs, why should we direct our attention towards

them?

The first reason is obvious and possibly already satisfactory on its own: we

want to eventually be able to efficiently and precisely simulate a human brain—or

parts of it—to be able to study in detail its behaviour in various experiments, or to

understand how modifications in the structure or physical aspects of its components

would impact it; neurological research would gain a powerful tool to test and validate

hypotheses; medicine would be helped in diagnosing and treating brain diseases.

The second reason is that because spiking neurons are modelled as electronic

circuits they can easily be implemented in hardware. A series of neuromorphic chips

have already been created and commercialized (see IBM’s TrueNorth neuromorphic

processor [2]). This removes the cost associated with simulation, and a series of

advantages arise with respect to all other ANNs:

• No approximation: since the electronic components are physically present,

there is no approximation stemming from the precision limit that is inherent

of computer simulations.

• Computation is inherently and naturally parallel: what actually happens in a

chip with physically implemented neurons is essentially signal processing. No

orchestration or communication between worker threads (which then may or

may not share memory, etc.) is needed.

• Locally stored state: state is stored in the components, which means no

moving data back-and-forth from memory to CPU and vice-versa, which is a

crippling bottleneck when running networks on machines using Von-Neumann

architecture.

• Energy and power efficiency: specialized circuitry is vastly more energy and

power efficient than general purpose computational units, whether it be CPUs

or GPUs we compare it with.

Sadly, such huge advantages come at a cost, more specifically, hardware manu-

facturing cost. This is also because SNNs are huge: they require a great number

2.2 Spiking Neural Networks 12

of neurons, and an even greater number of synapses. Before investing in hardware,

it is vital to conduct appropriate research. One may want to compare firing rates

and general network behaviour with those of the actual natural neural network they

are trying to replicate, or any other correctness metric of interest. This is especially

important when no access to a neuromorphic chip is given, or when implementing

a new kind of neuron or synapse that existing neuromorphic chips might not be

able to properly replicate. This is where simulation of SNNs comes into play: it

is needed to prototype new hardware solutions while staying within a reasonable

cost and time frame, and to validate new approaches when hardware solutions are

either not available or physically cannot do so. Furthermore, if between now and the

release of neuromorphic chips to consumer market (and their widespread adoption

as hardware accelerators) a point is reached in which SNN simulation becomes very

efficient, we will be able to exploit SNNs to perform some tasks without having a

hardware implementation or accelerator.

Simulation. Now that we have established that simulation of SNNs is something

that we cannot forgo—not for the short future at least—the time has come to delve

deeper into this fascinating world.

Firstly, some words have to be spent on what a simulation is. Simulating a

physical system on a computer entails building a mathematical model that describes

the dynamic behaviour of said system and approximates it to a satisfactory degree; the

evolution through time of such model is then computed (i.e. the model is simulated)

with the help of some simulation software, which allows to gain various insights

about the real-life system’s behaviour under a plethora of different assumptions.

Simulation is used when running experiments in real life is unfeasible either because

of monetary cost (one might not want to destroy hundreds of airplanes for the sake

of seeing what would happen by crashing at different angles), time constraints (even

if one had the funds to crash hundreds of airplanes, they would not have the time to

produce them), safety reasons (even with the right funds and time, crashing planes

remains risky), or straight impossibility (good luck with crashing a plane... on Mars).

Furthermore, simulating lets the user extract and keep track of a great amount of

2.2 Spiking Neural Networks 13

data: depending on the simulation software, the entire state of the simulation can

be made available, and every single aspect of the model can easily be measured,

leading to easier correctness checks for the model, as well as precise and accessible

measurements.

Secondly, the concept of Virtual Time (VT) [8] has to be introduced. As opposed

to Wall Clock Time (WCT), which is the time that passes in real life, that a

clock on the wall would measure, the “Virtual Time paradigm is a method of

organizing distributed systems by imposing on them a temporal coordinate system

more computationally meaningful than real time” for the given application, e.g.

when simulating a producer-consumer scenario, the concept of time could be based

on the number of steps needed to produce and process units. Using VT frees us

from the need to evolve at the same speed at which wall clock time evolves. As such,

depending on the simulation complexity, needs, and the specific temporal coordinate

system used, VT can pass much faster or much slower than wall clock time. Virtual

time has countless applications and is relevant for a great number of fields, but

the point of view that is of interest for this document is that of simulation, and

from such point of view it will be dealt with. In the specific case of spiking neural

networks, virtual time is related to wall clock time in its representation and meaning

(one can simulate SNNs using seconds or milliseconds for VT), but, again, not in its

evolution: while VT and wall clock time might share the measure unit, the aim when

simulating is (generally) to be fast, which means that VT will hopefully go by faster

than wall clock time. We will more properly explore the concept and advantages of

virtual time in Chapter 3.

Thirdly, the various approaches to simulation need to be touched. The first,

most widespread and most intuitive approach to simulation is time-stepped. In this

approach, the simulation is carried out by moving the simulation’s virtual clock

forward one small time increment (step, or tick) at a time: at each tick the entire

state of the simulation is re-computed, allowing every component to be updated.

This is the most used approach when simulating physics and continuous systems in

general (which are usually described and modelled through differential equations),

as a plethora of methods exist to approximate differential equations through time

2.2 Spiking Neural Networks 14

stepping. The main drawback that time stepped simulation has, is that even when

nothing happens the computation proceeds at the same exact speed: for every

tick, time has to be incremented by one integration step, and all the states in the

simulation have to be calculated and updated accordingly. Simulating an object

sitting still on a plane for some amount of (virtual) time takes the same amount of

wall clock time and computational power that simulating that object bouncing up

and down for the same (virtual) time requires. The second approach is Discrete Event

Simulation (DES). Events are called discrete after the fact that each event happens

at a precise point in time, and its duration is instantaneous with respect to the

simulation time’s granularity. Phenomena that have a non-impulsive duration can

still be modelled by using events that capture their key instants, e.g. when simulating

the execution of a system employing the client-server paradigm, a computation that

is fast enough to be considered instantaneous can be modelled as a single event,

while a longer computation (e.g. one that involves a series of database accesses,

rather than a file upload/download) can instead be modelled with two events, one

for the start of the action, and another one for its end. In DES the simulation is

(actually it optionally can be partitioned, but we assume it always is) partitioned

into a series of Logical Processes (LPs), each of which receives events, responds to

them by properly handling incoming events and correctly updating its state, and

possibly scheduling new ones for the future. For LPs the passage of time happens

not with infinitesimal time steps, but rather with simulation time leaping from one

event to the next: the state of the simulation is considered static, or rather in a

state of inertia—meaning that its evolution follows a known trajectory—in between

events. As such, DES is ideal to be used in systems whose evolution can easily be

described by only taking into account some key points in time, and in general its

adoption to model continuous-time systems is limited, as it can be quite complex.

Simulating SNNs. Having rapidly covered the aforementioned important aspects,

we are now ready to take a glance at how spiking neural networks are currently

being simulated, and how we approached the problem instead. Both these topics

will be discussed more in depth later on in Chapters 3 and 4.

2.2 Spiking Neural Networks 15

The standard approach to simulating SNNs is time stepped. This might come

as no surprise: as mentioned earlier, spiking neural networks are continuous time

systems, and time stepped simulation, with its natural affinity to time-stepped

approximation of differential functions, is the standard for them. Indeed all of

the most prominent SNN simulators (Brian [19], NEST [7], Neuron [5]) are time

stepped. Sadly, the ever increasing scale of SNN models has led to manifold increases

in simulation times: the run time of time stepping is already severely affected in

networks with tens of thousands of neurons and millions of synapses. However, one

needs to keep in mind that while spiking neurons are modelled as continuous entities,

a great portion of their simulated existence is spent updating their membrane value

without actually spiking. Indeed, the membrane potential reaching the threshold

potential (and thus spiking) and the reception of spikes from pre-synaptic neurons

are the only two events worthy of attention: there is no reason to update a neuron

knowing that it will not spike, and no reason to wake one such neuron up (and

compute its state) unless it receives a new incoming spike. We see how spikes are

the embodiment of a discrete event in time: a spike either happens or does not and,

if a spike takes place, there is only a distinct moment in time at which a spike is

fired, and one time at which it gets delivered. With such considerations, we see how

DES starts becoming a valid candidate to simulate this kind of networks. SNNs

are indeed one of those cases for which, while time-continuous, the trajectory of the

state evolution is known after each event, and can thus be modelled by only taking

into account the key events that are spike reception and generation. Namely, when

an event is received at time tnow, the state needs to be updated from when it was

last updated tlu (i.e. when the neuron last received a spike or gave rise to one) to

tnow by taking the correct point of the trajectory Tlu(tnow); then the effects of the

event have to be applied to the neuron, computing a new trajectory Tn(t) that the

neuron state will follow starting from tnow on until it either spikes or receives a new

input. This obviously gives the best results when a closed form solution for the state

trajectory is known, but can also be achieved through algorithms for approximate

resolution of the differential equations constituting the model.

2.3 The Leaky Integrate and Fire Spiking Neuron 16

2.3 The Leaky Integrate and Fire Spiking Neuron

One of the simplest spiking neuron models is the Leaky Integrate and Fire (LIF)

neuron. First developed by L. Lapicque in 1907 [1], it models the neuron as a leaky

integrator. The LIF neuron’s extreme simplicity allows for an extremely lightweight

representation of a neuron, from the standpoints of both computational and memory

costs. This has earned it the spot as one of the most used neurons for SNNs for

deep learning and artificial intelligence.

(a) Lapicque’s LIF model as a circuit.
Source: [1]

(b) A parallel between the schema of a neuron
and the LIF model circuit.
Source: https://neuronaldynamics.epfl.ch/

online/Ch1.S3.html

Figure 2.3

The LIF model (in Figure 2.3) comprises all the fundamental aspects we have

mentioned at the start of Section 2.2: (looking at Figure 2.3a) A membrane capaci-

tance C, the membrane potential V (t), a resting potential Vrest, an input current

I(t). The model also has a resistance R in parallel with the capacitor, which allows

us to compute the time constant of the “leaky integrator” τm = RC. The threshold

potential Vth is not presented in the scheme, but it was postulated by Lapicque

that “when the membrane capacitor was charged to certain threshold potential, an

action potential would be generated and the capacitor would discharge, resetting

the membrane potential” ([1]). What is missing from the model however, is the

https://neuronaldynamics.epfl.ch/online/Ch1.S3.html
https://neuronaldynamics.epfl.ch/online/Ch1.S3.html

2.3 The Leaky Integrate and Fire Spiking Neuron 17

refractory period.

To derive the model’s equation, we use Figure 2.3a as a reference. First of all,

because of the law of current conservation, the input current I(t) is split into two

components: IR and IC , respectively passing through the resistor and charging the

capacitor.

I(t) = IR + IC (2.2)

From Ohm’s law we have for the resistive current:

IR = VR
R

where VR = V (t)− Vrest (2.3)

with VR the voltage between the extremes of the resistor. For IC , we have:

IC = C
dV
dt because C := q

V
and IC := dq

dt (2.4)

From Equations 2.3 and 2.4 we get:

I(t) = V (t)− Vrest
R

+ C
dV
dt (2.5)

By multiplying Equation 2.5 by R we obtain the standard form:

τm
dV
dt = −(V (t)− Vrest) +RI(t) (2.6)

Where τm = RC is the membrane time constant of the neuron. Equation 2.6

is the differential equation that models the neuronal behaviour. We again notice

how the firing threshold Vth does not figure in the equation, but is to be taken into

consideration when using it. Furthermore the behaviour of the neuron after the

membrane potential hits the threshold potential—namely the sudden rise of the

membrane potential until the polarity is reversed, followed by an abrupt drop in

V (t), and the start of a refractory period—is not specified; we now know however

that such behaviour is marginal for this model and can be approximated by resetting

V to Vrest without any noticeable consequences. This holds true unless someone

were to be trying to also keep into account the inductive currents that the abrupt

rise of V would cause in neighbouring neurons (that some have theorized could play

2.3 The Leaky Integrate and Fire Spiking Neuron 18

a role in neural ensemble behaviour), but one could argue that to explore and study

such a complex process some other, more accurate, neuron model should be used

rather than the LIF.

As mentioned, the Leaky Integrate and Fire neuron model has its evident

limitations. It neglects a series of aspects of neuronal dynamics; in particular the

fact that there is no mention in the mathematical model of the threshold voltage,

which could be expressed with the following condition:

if V (t) = Vth then lim
ε→0+

V (t+ ε) = Vrest (2.7)

Still, the refractory period would be ignored. Refractoriness of a neuron that

recently spiked might be expressed as (with τref the refractory period duration):

V (t) = Vth ∧ t̂ ∈ (t, t+ τref] =⇒ V (t̂) = Vrest (2.8)

Note that Equation 2.8 implies Equation 2.7 for τref > 0. As such we could use

Equations 2.8 to extend Equation 2.6 to obtain a model with refractory behaviour.

While a model as simplistic as leaky integrate and fire is obviously an approxima-

tion of a true neuron’s behaviour, Lapicque’s work certainly has been a pioneering

effort in the field, the effects of which persist to this day. Nowadays, extensions of

the LIF neuron are found everywhere and still make up the majority of neurons used

in simulations.

19

Chapter 3

Parallel Discrete Event

Simulation

In this chapter, Parallel Discrete Event Simulation (PDES) is discussed, starting

from DES, to then go on to explore the challenges that parallelizing DES poses

and how they can be properly faced. What follows stems from knowledge accrued

through practice and through the study of various scientific papers on the topic,

among which sections of [12] have been used as starting point and ground truth.

3.1 Discrete Event Simulation

In Section 2.2 Discrete Event Simulation (DES) was first introduced in this

document, along with a few key concepts:

• Events are called Discrete because of their impulsive nature.

• The simulation can be partitioned into a series of sub-processes called Logical

Processes (LPs) which receive events, process them, and possibly raise new

events. We also stated that (for the sake of continuity) we will assume that it

always is partitioned into LPs.

• The concept of Virtual Time (VT), that is the logical time associated with

the simulation, and Wall Clock Time (WCT), the time of real life.

3.1 Discrete Event Simulation 20

• In DES (and its LPs) the passage of time is not continuous, but rather time

skips from one event’s time to the next event’s. What happens between events

is either irrelevant or known.

The time has now come to talk about DES with a more well-formed, systemic

approach.

3.1.1 Systemic Approach to DES

When a systemic approach to DES is adopted, the model is seen as the union of:

• the simulation states of Logical Processes, that when taken together describe

and keep track of the system’s evolution.

• a set E of events, which describe key phenomena happening during the evolution

of the system that cause the state to evolve in response to them.

• a transition function σ(s, e) : S×E → S which describes the transition between

two simulation states s and s′ when an event e ∈ E is received and handled

(we can also refer to this as “execution” of an event).

Each event e has a timestamp Te that corresponds to the Virtual Time (VT) at

which it takes place (it should be emphasized one last time, that events take place

at a precise time instant).

It appears clear how DES borrows its approach from event-driven programming,

in which the execution of the program is determined by events and the actions taken

in response to them. Indeed “a DES model can be seen as a set of event handlers,

which capture the events generated by the same application (i.e., the simulation

model) and, depending on the nature of the event, produce a state variation.” ([12]).

While handling an event e, a series of new events can be generated. This brings

to our attention the need to talk about the notion of causality between events: if an

event e′ is generated while processing event e, we say that e′ causally depends from e.

This means that e′ only exists as a consequence of the execution of event e, as well

as all the events that will causally depend from e′, since causal dependence is very

obviously a transitive property. Furthermore, as anticipated when talking about

3.1 Discrete Event Simulation 21

DES for the first time, due to the non-decreasing nature of (virtual) time it has to

hold that for all events e′ causally dependent from e we have Te′ ≥ Te. This seems

rather obvious as events happening in the present or future shall not influence the

past. The notion of causal dependence may sound similar to the happened-before

relationship in distributed systems [9]; indeed the languages revolving around these

two worlds are very alike as they face challenges that are actually fairly similar, as

such it is no surprise that defining, understanding, and enforcing causal dependence

is extremely important to guarantee correctness of the execution, especially in PDES.

In the systemic vision of DES, the simulation can be split into its two components:

the model and the kernel. While the model describes the system that we want to

simulate with its event handlers, the simulation kernel is responsible of providing

all the facilities that make this possible. This is typically achieved through the

usage of APIs: the kernel “serves” the model’s requests for whatever simulation

related need it might have, and guides the execution from start to finish by running

the simulation loop. As such, when a model generates a new event e′ during the

execution of event e, the event e′ is passed along with its timestamp Te to the kernel

by using the exposed APIs, and the kernel will take care of enqueueing the event

and raising it at the correct timestamp by waking the receiving LP. If a collision

were to arise with respect to timestamps (i.e. when Te′ = Te′′ and e′ 6= e′′) the kernel

would need to decide which of the two events has to be passed to the handlers first;

this is done through a tie-breaking policy. These policies have a very delicate job, as

malformed tie-breaking could lead to biased or erroneous simulation.

3.1.2 Components of DES

We have mentioned that the kernel and the model have a series of duties to fulfill.

This is achieved through their cooperation using a series of components that will

now be explored.

Simulation state. As mentioned above and often repeated in this document, the

state of the simulation is composed of the states of the various LPs into which the

model is split. The evolution of these states depends on the transitions produced

3.1 Discrete Event Simulation 22

by the transition function σ(s, e) : S × E → S. In practice, the transition from one

state to the other is operated by the event handlers.

Events. Events are—no wonder—the core concept of the whole DES approach.

Each simulation model takes care of defining a-priori the set E of event types

that might take place at run time. This definition process also entails defining an

appropriate programmatic event handler for every event e ∈ E. The only event

that is not defined by the model is the initial event, typically called INIT. It is

scheduled by the kernel before starting the simulation, has timestamp 0 and serves

the purpose of letting the model initialize all the needed variables and data structures

representing the state to their initial values and schedule the first batch of events.

While automatically generated, a handler must be defined in the model for INIT, as

the initialization is model-dependent. A closing event, say, DEINIT, could also be

raised when finishing the simulation to notify the LPs to perform any action they

might want to upon closing; however this could be seen as unorthodox.

Clock. While keeping track of Wall Clock Time is responsibility of the Operating

System, the simulation kernel has to keep track of the Virtual Time of the simulation.

As we know, in DES VT does not move continuously, but rather leaps from one

event’s timestamp to the next event’s one. When the execution is serial the clock

can be a global variable as events are raised and processed in causal order, and no

important distinction needs to be done between the time of the whole simulation,

and that of the LPs. This changes for parallel execution, but this will be discussed

later.

Event Queue. The kernel is tasked with keeping track of events and delivering

them at appropriate times. Since the number of future events is generally greater

than 1, this is achieved through the use of the Event Queue (EQ). The event queue

is a priority queue that holds events that are scheduled for the future: when the

model wants to schedule a new event, it generates it and calls the appropriate kernel

API; the kernel receives the event and puts it into the queue. When the handling

of an event concludes (i.e. the handler function returns control to the kernel), the

3.1 Discrete Event Simulation 23

kernel must extract the next upcoming event from the EQ, this means the event

queue must be ordered by event timestamp, so that extracting the next event to

be processed is a fast operation. The actual implementation of the priority queue

is irrelevant, as long as its performance is good for the application, however the

event queue is definitely write-heavy, and this has to be taken into account when

choosing the implementation. The sorting aspect is important as the framework

needs to always pick the event with the lowest timestamp that sits in the EQ to be

raised next. Given with Tmin the minimum timestamp of any event in the queue, no

event with timestamp Tei > Tmin shall be raised by the kernel, as this would cause

a causality violation, resulting in an incorrect execution. Luckily, given that DES is

serial the state is entirely visible at any moment, and that the simulation is stopped

when in kernel mode, raising events in order is not a challenge.

Ending Condition. Simulation models often describe phenomena that do not

stop on their own, but rather continue on evolving. Programmatically, this means

that they keep generating events for as long as their event handlers keep getting

called, never letting the event queue empty out. Also, there are phenomena for

which the ending time is not known a-priori. This means that we need to be able to

stop the simulation once a given ending condition is met.

This can be done either by specifying a maximum time for simulation (either

in terms Virtual Time, or Wall Clock Time, depending on the simulation needs),

or by checking if a particular condition in the simulation state is met. The first

approach can be carried out entirely by the simulation kernel, while the second

approach requires cooperation by the model, which can either be “asked” by the

kernel to check whether the ending condition is met, or can actively communicate

that its ending condition has been reached after handling an event. In both cases

this happens through specific APIs.

Simulation Object. The concept of simulation object can provide interesting

advantages to the modeller. A simulation object describes a portion of the whole

model, whether it be a spatial portion, or an agent. Simulation Object is actually

the name used to indicate Logical Processes. Thus, every Simulation Object is an

3.1 Discrete Event Simulation 24

LP, with its own state and events directed to it, and with the ability to raise events

directed towards other LPs. The concept of simulation object is vital when moving

from Discrete Event Simulation to Parallel DES (i.e. to parallel and/or distributed

architectures).

3.1.3 DES Kernel logic

We introduced DES, along with all the components that allow the kernel and

model to run the simulation. We have made references to how a kernel carries out

its duties. In this section the basic logic behind a discrete event simulation kernel is

presented.

As explained in Section 3.1.2, the kernel’s job is to manage events and deliver

them at the correct time instant. This process is kick started by the scheduling of

the INIT event during the kernel initialization. An extremely stripped down version

of the kernel’s implementation is shown in Algorithm 1. The two procedures, Init

and Simulation-Loop take place.

Each consists of a few basic operations. We start from the Init procedure:

1. The ending flag is set to false. This is to take into account the ending condition.

2. The simulation State is initialized, by allocating its memory, gathering the

seeds for random number generation, and whatever further action the specific

implementation of the kernel might need.

3. The simulation Clock is initialized, by setting its value to the initial time

(generally, V T0 = 0).

4. The INIT event is either scheduled, so that the simulation loop can then pop

it from the event queue and feeds it to the handler, or the handler for the INIT

event is directly called.

And move on to analysing the main loop Simulation-Loop, which is entered

immediately after the Init procedure ends:

1. The while cycle is entered and it continues until the ending condition is met.

3.2 Parallel Discrete Event Simulation 25

2. The next upcoming event en (i.e. the one with the minimum timestamp among

those in the EQ) is extracted from the Event Queue.

3. The simulation Clock is set to Ten to actualize the VT advancement.

4. The correct handler for event en is called with the event as parameter. If LPs

are used, the correct handler for the target LP is invoked.

5. The model is now in charge and:

• The event is executed.

• New events are possibly scheduled.

• The simulation state (or the LP state) is updated.

6. Optional step: Statistics are gathered and updated

7. The ending condition is checked and the flag updated.

In the optional step, besides gathering statistics and logging kernel-side, a model-

side function can be called to let the model gather its own statistics and log them to

storage.

3.2 Parallel Discrete Event Simulation

Parallel Discrete Event Simulation (PDES) [6] refers to the execution of a single

Discrete Event Simulation on a parallel/distributed system. This requires for the

DES program to be transported into a PDES program. Since—as we have mentioned

in Section 3.1.2—DES can be seen as two components interacting (the simulation

model and kernel), work can be conducted on each of the two components separately

to enact this transformation. While models can easily be ported to the parallel

paradigm provided they respect a set of restrictions, the simulation kernel has to

undergo a series of important modifications. This however means that once the

work on the simulation kernel is done, DES models can be adapted to the PDES

paradigm with very limited to no efforts.

While in DES the concept of Logical Process described in the previous sections

is optional, in PDES it becomes vital. The name Logical Process is the result of

3.2 Parallel Discrete Event Simulation 26

Algorithm 1: Skeleton of DES execution. Source: [12]
procedure: Init

End ← false

initialize State, Clock

schedule INIT

end procedure

procedure: Simulation-Loop

while End == false do:

Clock ← next event’s time

process next event

Update statistics

end while

end procedure

a parallel between LPs in simulation, and processes in operating systems. Indeed

LPs operate in an independent manner one from the other, and without any shared

memory: their only way to communicate is through messages (i.e. events). A

simulation is then composed by N LPs, each of which has its own unique identifier

number assigned in [0, N − 1]. They will be called LP0, LP1, ..., LPN−1. While in

DES there was no need for it, in PDES each LP has its own private clock, referred

to as Local Virtual Time (LVT), as opposed to Global Virtual Time (GVT), which

is the time of the committed simulation. The adoption of LVT means that two

different LPs (e.g. LPi and LPj) can have different LVT values, LV Ti 6= LV Tj .

From this decoupling between the simulation shards that LPs are, comes the

first, most important restriction: no shared variables may be used in the model.

This is because if two LPs, say LPi and LPj with different LVTs (suppose, without

loss of generality, LV Ti > LV Tj) were to share a variable v, and LPi were to write

to v at LV Ti and Wall Clock Time ti, and LPj were to read v at LV Tj and WCT

tj , with ti < tj , there would be a causality violation, as the future affected the past,

which clearly is not acceptable. Thus, the model programmer is required to split the

3.2 Parallel Discrete Event Simulation 27

simulation state S into per-LP subportions Si such that:

S =
N−1⋃
i=0

Si ∧ Si ∩ Sj = ∅,∀i 6= j (3.1)

Equation 3.1 also implies that the simulation state is the union of LP local states,

meaning that no part of the state is left non-assigned to any LP: no global variables

can be used. The restriction on global variables can pose no problem for some

applications, but can also be troubling for others, forcing data organization with

sub-optimal performance, or requiring a great amount of messages to be exchanged.

Figure 3.1. Classical Architecture of a Parallel Discrete Event Simulator.
Source: [12]

In Figure 3.1 a classical distributed architecture of a PDES simulator is shown.

Each LP is mapped to a simulation kernel instance, each of which is a user-space

process, running on a processor. Different instances located on different machines

are connected via a communication network. However, while Figure 3.1 can be a

satisfactory abstraction, in reality the locality should be (and is) exploited by LPs

hosted on the same machine, which can communicate through local inter-process

communication facilities, lightening the burden that is put on the distributed memory

that is in place to communicate with instances that are actually remote. Such memory

3.2 Parallel Discrete Event Simulation 28

is implemented on top of message passing primitives. A message carries one event,

as such there is a correspondence between message and event exchange. In the last

decade, the physical locality has been extended to kernel instances: while in the past

each kernel instance would be a process run on a single-core CPU, nowadays the

more lightweight concept of worker thread is used. The simulation kernel is still a

process running on a CPU, but manages multiple processing units, and each worker

thread runs the main simulation loop and is in charge of a number of LPs. This

removes the inter-process memory separation, speeding message passing up between

local LPs even more.

The removal of memory separation brings along the concept of LP binding, that

is, which worker thread is assigned which LPs to manage. This of great importance

because the binding is relevant for memory locality matters, but also allows to easily

perform load sharing [20], [21] by moving LPs among local threads, requiring no

memory costs other than the cache related ones. An action more lightweight than

load balancing, which involves LP migration, which is an extremely costly operation

that requires careful evaluation.

3.2.1 The Synchronization Problem

In DES the execution was serial, posing no particular problems related to causality,

only requiring a correct algorithm to pick the next event to be processed. In PDES,

due to the parallel nature of the approach, extra steps are required in order for the

absence of causality violations to be ensured. Let us take an execution (depicted

in Figure 3.2) in which at a given WCT, LPi (bound to thread k0) has reached

LV Ti = 5, and LPj (bound to another thread, e.g. k1) has reached LV Tj = 16.

Since the two threads have extract events from different event queues, each of them

will extract the appropriate next event according to Algorithm 1, obtaining events

e0
n and e1

n as next events for LPi and LPj respectively. Suppose that Te0n = 10 and

Te1n = 20. If during the execution of e0
n a new event e0

new with timestamp Te0new = 12

and target LPj were to be generated, then the situation would arise in which, while

executing correctly, a LPj would find itself at LV Tj = 20, having executed Te1n ,

but with e0
new—an event with a timestamp belonging in the virtual-time-past—in

3.2 Parallel Discrete Event Simulation 29

its event queue, creating a causality violation. The event that is “late” is called

straggler message, consequence of nothing but the parallel nature of PDES. The fact

that causality errors may arise because of the asynchronous nature of the execution,

is the so-called synchronization problem.

Figure 3.2.
Source: [12]

As it is inescapable, the synchronization problem has to be overcome in order to

obtain a simulation run that is perfect independently of the asynchronous nature

of message exchange. Two main categories of approaches have been proposed:

conservative, and optimistic. The conservative category avoids the occurrence of

causality errors altogether by executing an event only once it is considered to be safe.

The optimistic category executes events “optimistically hoping” that no causality

violations will happen. If any such violation happens, then correcting actions are

taken. Both approaches are at the extreme and can be sub-optimal for a given

workload, which gives rise to a third category: the hybrid approach, which tries to

alternate between the two approaches to obtain the best performance. In this work,

the focus will be directed towards optimistic synchronization.

3.2.2 Optimistic Synchronization

In optimistic synchronization, speculative processing is used: when it is unknown

whether an event is safe to execute, it is executed in speculative fashion, the idea

being that if no causality violation is detected, then the work done is committed

and no computational resource was wasted waiting for the assurance of safety, while

if a violation occurs, the additional work is discarded and correctness is preserved.

3.2 Parallel Discrete Event Simulation 30

The additional cost associated to correct guesses is none, while the cost associated

to wrong guesses is equal to what a non-speculative system would have paid, plus

the time needed to discard the work. This only takes into account time costs,

while energy costs associated with the wasted computation are being ignored. This

approach to tackling the synchronization problem was first presented in [8], where

Time Warp was introduced.

When a worker thread finishes executing an event and still has events in its

queue, the next event to be executed is extracted and executed independently of its

safety which, as we have seen when introducing the synchronization problem, might

send the execution into an inconsistent state, where during the execution a causal

violation has taken place through a straggler message. If this happens, a rollback

has to be executed.

Rollbacks. When a straggler message with timestamp Tstraggler arrives, a causality

violation is detected. When this happens, we need to halt the execution, restore a

consistent state whose VT precedes Tstraggler, and restart the execution of the model.

While this happens, any action taken when performing the computation that was

discarded has to be reverted, especially the sending of messages. This operation is

known as rollback and was first introduced and popularised in database management

systems to perform transactions in parallel.

When a rollback is performed, an additional problem may rise: during speculative

execution, messages might have been sent. If any of these messages was created

while executing an event that is getting rolled back, the message has to be reverted

too. Let us see an example execution in which this could happen, in Figure 3.3. LPj
is at LV Tj = 20 when it receives the straggler message estraggler with timestamp

Tstraggler = 12. The execution is therefore rolled back to the last valid state: the one

at LV Tj = 10. LPj ’s state is now consistent again. However during the execution

of the event with timestamp T = 15, LPj scheduled a message with timestamp

T = 17 to LPK . Since this message is the result of a processing that is being

reverted, it has to be reverted, too. It is indeed possible that by executing estraggler
the execution would follow an entirely different trajectory that never gives rise to

3.2 Parallel Discrete Event Simulation 31

Figure 3.3. An execution in which a rollback takes place.
Source: [12]

the event associated with timestamp T = 17, or at least it does so with a different

content. What happened is:

1. LPi sends a straggler message estraggler to LPj

2. LPj detects the causality violation, rolls back the most recent consistent state

preceding Tstraggler

3. LPj has to undo the sending of message with timestamp T = 17 to LPk

The undoing of messages is achieved through antimessages. Antimessages are

copies of already sent messages with a negative sign. When rolling back, the LP

checks if any message was sent during speculative execution, if so, the corresponding

antimessage is sent to the same target. Upon receiving an antimessage, one of two

things happen at the receiving LP LPk:

• The antimessage has a timestamp Ta > LV Tk, which means the message the

antimessage annihilates is still in the Event Queue. In this case the effect of

the antimessage is the removal of the message from the queue.

• The antimessage has a timestamp Ta < LV Tk, which means that the positive

message has already been processed. This situation is analogous to receiving a

3.2 Parallel Discrete Event Simulation 32

straggler message: LPk needs to perform a rollback to the last valid state with

LV Tk < Ta. This rollback could itself cause the sending of more antimessages,

creating a chain of rollbacks.

We see how a straggler message can cause a series of rollbacks because of wrong

assumptions. This is referred to as cascading rollback.

The rollback operation can be executed in one of two ways: by checkpointing

memory with state save & restore, or by reverse computation. When reverse com-

putation is chosen, the model code needs to be able to reverse the effects of event

handling to make the system travel back in time, adding computational overhead

and hindering transparency. Furthermore computation might not be easily reversible.

With checkpointing, the rollback can be executed in a completely transparent manner

with respect to the model’s point of view: the only prerequisite is for the kernel to

know what are the memory areas that contain the LP’s state. The kernel uses a

series of data structures to create snapshots of the simulation state to transparently

and safely revert it to a coherent one in case a causality violation were to present

itself. Before delving deeper into the inner workings of state save & restore, another

fundamental concept has to be introduced: Global Virtual Time.

Global Virtual Time (GVT). Introduced in [8], Global Virtual Time (GVT)

serves multiple purposes when performing optimistic simulation. The GVT is

calculated on a global snapshot of the system at WCT t, according to the following

definition:

Definition 3.2.1. Global Virtual Time. GVT(t) is defined as the minimum times-

tamp of any unprocessed message or anti-message flowing in the system at Wall

Clock Time t.

Definition 3.2.1 tells us how to compute GVT(t), that is by inspecting the times-

tamps of all the unprocessed messages currently in the system. Due to the distributed

nature of PDES, this also means that we need to keep into account timestamps of

messages that are currently being delivered by the messaging subsystem.

Given its definition, GVT lets us keep track of the commitment horizon: since

in (P)DES, for the very concept of causality, no event e with timestamp Te may

3.2 Parallel Discrete Event Simulation 33

schedule an event e′ with timestamp Te′ < Te, this means that, because GVT(t) is the

minimum timestamp across all unprocessed events in the system GV T (t) = Tmin,

no event ê such that Tê < GV T (t) will ever be scheduled. As such, at WCT t

no straggler message could possibly exist that would cause any LP to rollback

to V T < GV T (t). We can thus say that all the events that have a timestamp

T < GV T (t) are committed, meaning that they will never be rolled back and can be

used to perform I/O operations safely or verify the ending condition.

State Save & Restore. Now that we have the concept of GVT, State Save &

Restore can be further explored. As mentioned, the idea is that of taking a snapshot

of an LP’s simulation state and keep it stashed so that if a rollback needs to be

issued, the state can be restored using a snapshot that is still correct. Naturally, a

series of snapshots is taken for every LP.

Supposing that a snapshot is taken after processing each event, when a straggler

message with timestamp Tstraggler arrives and a rollback operation has to be carried

out, it is sufficient to restore the state snapshot with the highest timestamp among

the snapshots with Tsnapshot < Tstraggler.

Taking snapshots is however a costly operation in terms of time and memory.

As such, increasing the time that elapses between consecutive snapshots can save

resources. This however has its own drawbacks, namely when a straggler is received

with timestamp Tstraggler and a snapshot with Ts < Tstraggler is restored following

the rollback, if there happen to be an event e with associated timestamp Ts <

Te < Tstraggler, its execution will have to be carried out again before continuing. As

such, the GVT period has to be chosen (or computed at run time) to be one that

minimizes the amount of time spent creating snapshots and re-executing correct

events that were rolled back because of snapshot sparsity.

For the memory usage, GVT comes to the rescue: if a state has been committed it

is obviously correct and will never not be. As such, all the snapshots with timestamp

T < GV T (t) can be discarded as not needed, exception made for the most recent

one which always has to be kept. This process is called fossil collection.

3.2 Parallel Discrete Event Simulation 34

3.2.3 Additional Supports for Simulation.

PDES simulation kernels rely on a variety of elements to carry out their job,

especially in an optimistic simulation context, where events must be stored (at least,

those with a timestamp Te > GV T) and snapshots taken. In Figure 3.4 a schema

of a reference implementation including the various systems and data structures is

provided.

Figure 3.4. A Reference Architecture for Optimistic Simulation Systems.
Source: [12]

Input and Output Message Queues. While we have mentioned the (input)

EQ earlier, more queues are needed to properly support optimistic simulation: a

per-LP output queue needs to be maintained in order to generate antimessages in

case of a rollback.

Messaging Subsystem. The messaging subsystem is vital as it lets the model

be decoupled from the fact that the application is distributed. Indeed it takes care

of message passing and the model relies on its APIs to perform the scheduling. It is

then the kernel that takes care of where (and how, depending on whether the target

LP is local or remote) a message must be delivered. Furthermore it can handle the

output queue internally, which allows to decouple rollbacks and antimessage-sending.

3.2 Parallel Discrete Event Simulation 35

State Queue and State Management Subsystem. The state queue is used

to store the various snapshots that are kept by the system to be restored in case of

a rollback. This subsystem takes care of:

• Maintaining a list of snapshots ordered by timestamp. When a new snapshot

is taken, it is inserted in the list.

• Performing rollbacks by determining the correct state to be restored from the

State Queue.

• Performing coasting forward, that is reprocessing the intermediate events

between the restored snapshot and the timestamp of the straggler message,

but without sending out messages (as the antimessages have not been sent for

such events, as they were correct).

• Performing fossil-collection, i.e. discarding values with timestamps older than

current GVT (except from the most recent one, as always).

GVT Subsystem. The GVT subsystem is in charge of computing the GVT at

the scheduled time intervals, by accessing the message queues and the message

subsystem. Furthermore it is tasked with termination detection, meaning that it

either evaluates if GVT is greater than a given value, or by checking if a termination

condition is met by evaluating some predicate. Lastly, fossil collection is also one of

the subsystem’s responsibility, by freeing old messages and logs that are unneeded

because the related part of simulation has been committed.

Event Scheduler. Is tasked with deciding which is the LP (among those owned

by a simulation kernel instance) that needs to be scheduled next. As mentioned, the

typical approach is that of Lowest-Timestamp-First. This avoids the generation of

causality violations among the LPs hosted by the same kernel.

Random Number Generators (RNG). In simulations relying on RNG, it is

required that the generation be carried piece-wise deterministically. As such, when

a rollback happens, the state of the RNG has to be rolled back as well. This can

typically be done by storing the RNG seed inside the snapshots.

36

Chapter 4

Related Work

In this chapter, the state of the art in simulation of spiking neural networks is

presented.

The world of SNN simulators is wide and variegated, in this work the simulators

that appear to be most widely used are presented. These simulators are:

• Brian [19], an open-source SNN simulator written in Python. Designed with

ease of use in mind.

• Neuron [5], which is also open-source. Boasting more than 1900 articles report-

ing that work was done with it, it is oriented to precise, in-depth simulation of

neuron models, but also supports larger-scale simulations. Cooperates with

the Human Brain Project.

• NEST [7], open-source as well. With over 290 research papers citing it as the

simulator on which the code was run.

It is important to note that all of the simulators mentioned above employ the

time-stepped simulation paradigm.

4.1 Brian

Brian [19] is an open-source time-stepped simulator written in Python. Its main

focus is ease of use, but sports a series of interesting facilities that allow for unlimited

flexibility and high performance.

4.1 Brian 37

The simulation structure is simple and follows few key steps:

1. The runtime is intialized automatically upon importing Brian.

2. Neurons are declared and initialized through the NeuronGroup class.

3. Synaptic connection between two NeuronGroups is declared with a SynapseGroup

object.

4. Synapses are created inside a SynapseGroup, using one of the provided con-

nection methods.

5. Other inputs are created (e.g. input from a poissonian population of neurons).

6. A SpikeMonitor, or another similar object, is used to gather statistics about a

target neuron, or (slice of) neuron group.

7. Created objects are added to the simulation.

8. The simulation is run for a selected amount of time.

9. Data is gathered, object states can be manually modified. These last two steps

can be repeated ad libitum.

When declaring the neurons, the differential equations describing the state and

its evolution have to be provided in string format. The equations are then parsed

with SymPy, a library for symbolic mathematics, and is prepared to be solved with

the preferred integration method at each time step. The need to provide differential

equations is also found when creating synapses, both in modelling the synapse state,

and the effect of spikes which must “be expressed as (possibly delayed) one-off

changes”.

Brian’s internal code that executes models (solves model equations) is written

and compiled on-the-fly when initializing the simulation. Based on the model,

high-level code in string format is generated, which are then transposed into an

intermediate representation that is optimized and then compiled into fast, low-level

C++ code. While this speeds Brian up, the current lack of multi-threading can be

seen as an impairment. However, the possibility to use OpenMP for multithreading

when running in C++ standalone mode is being worked on.

4.2 Neuron 38

The extremely high-level interface that Brian exposes is no doubt a great feature

that allows modellers to rapidly develop and test models without extensive knowledge

in computer science. Coupled with runtime code generation, it is able to deliver a

high standard of performance and can easily be called ground-breaking as far as

user experience goes.

Another interesting facility that Brian provides is that of creating groups of

neurons the only purpose of which is generating input, such as a PoissonGroup,

which generates a number of poisson neurons that are entirely managed by the

simulator, while being addressable by the user as normal neurons in a NeuronGroup.

The abstraction level is important, meaning that Brian is intended to simulate the

high-level behaviour of networks and their neurons in order to measure parameters

such as firing rates, rather than ion concentrations (even though one such thing

could be modelled through more differential equations). This makes it more useful

for observing ensemble behaviour of neural networks, rather than fine-grain neuron

details.

4.2 Neuron

Neuron [5] is an open-source time-stepped simulator written for the most part

in C and C++. Its main focus is on biologically accurate simulation. Neuron is

built with fine-grain details in mind: it allows the modeller to model, simulate

and observe most of the imaginable aspects of neurons and synapses, starting from

electrical, to chemical, to topological. The simulator can describe ion concentrations

and the functioning of ion gates, the dynamics of the ion diffusion, and more. The

geometry library allows for a 3D representation of neurons to be built, allowing

to model various parts of the cell (that can even be split further into subsections)

soma, dendrites, axons, along with their 3D position and orientation, both in the

neuron, and in space. This all can be done either programmatically, or through the

CellBuilder GUI (Figure 4.1), which even lets the user import a 3D reconstruction

of the cell one wants to model.

Neuron boasts a huge number of already implemented, ready to use neuron,

synapse, and network models. These—or any custom entity whether it be a neuron,

4.2 Neuron 39

Figure 4.1. Neuron’s CellBuilder GUI.

synapse, or entire network—can be loaded either programmatically or with their

GUI (Figure 4.2), which lets the user set the parameters for the experiment and run

them. The GUI approach is obviously more suitable for “playing around” to get to

know models and to observe their behaviour, or to verify that the behaviour of a

newly implemented model is correct.

Figure 4.2. Neuron’s GUI when running an experiment.

All of the aforementioned characteristics make Neuron a simulator that is most

4.3 NEST 40

well-suited for smaller simulations with high biological precision, as opposed to the

“fast and dirty” approach that is taken by simulators that are used when examining

the ensemble behaviour of SNNs, for which a higher-abstraction is pursued with

respect to single-neuron dynamics, in favor of network simulation size.

Notwithstanding this natural predisposition towards smaller simulations that

Neuron has, it can simulate fairly large networks, and most importantly can run

simulations on clusters, using MPI to abstract the network communication. However

when running on multicores, Neuron does not exploit the worker thread paradigm,

but the various kernel instances are run as separate processes, and MPI is used

to connect them, leading to a worse performance with respect to what would be

achieved using worker threads and using MPI only to reach physically remote nodes.

When the simulation is run in a parallel and/or distributed environment, gener-

ated spikes need to be disseminated in the system, as such a conservative approach

is taken, in the form of a maximum simulation time lookahead, which is equal to

the minimum synaptic delay among all the incoming synapses coming from another

computing node. As such, based on synaptic delays, a series of synchronization points

is created at which all the scheduled events are exchanged between computing nodes.

This is a very costly but necessary operation, however it is conducted sub-optimally

because it uses the communication network in bursts rather than maintaining a

steady pace, which causes moments of congestion when exchanging messages, al-

ternated to periods of silence. A better approach would be, while maintaining the

constraint of maximum simulation lookahead, exchanging messages whenever they

are generated in order to keep a steady but flowing network usage.

Neuron has a Python interface for programmatically instantiating networks and

running simulations. Membrane (and other) dynamics can instead be defined using

a Domain Specific Language.

4.3 NEST

NEST [7], the last of the three simulators presented in this chapter, is also open-

source and time-stepped, and written in mostly C++. As the other two simulators

it has Python interfaces to increase ease of use, but comes prepacked with “over 50

4.3 NEST 41

neuron models many of which have been published” and “over 10 synapse models”,

and users can implement new custom neuron and synapse models.

NEST can run parallel simulations through OpenMP, which means that it

adopts the worker thread paradigm when performing parallel computing, enjoying

the benefits of a more lightweight simulation kernel. Distributed simulations are

also supported and MPI is used to take care of message passing between multiple

computational nodes. Although OpenMP is used, message passing is always handled

by the global spike exchange mechanism, which here we take as to mean that

messages pass through MPI even when directed to another worker thread of the

same machine. The inter-process communication and node distribution is handled

transparently inside of NEST.

Neurons are instantiated only on the node on which they belong (which also

happens in Neuron), while devices are duplicated on every kernel instance. Synapses

are handled at the receiving node’s end for matters of synapse plasticity.

42

Chapter 5

Simulating Large Spiking

Neural Networks

PDES is a complex paradigm, which makes building simulators hard and costly.

(P)DES simulators usually do not offer a high level interface that abstracts from

the underlying presence of the Discrete Event Simulation. This means that model

writers need to be at least familiar with the concept of event, and how the time

passes inside a DES simulation. Then all of this has to be handled, i.e. neuron spikes

have to be mapped to events, and events are received and converted into spikes.

Then there are control events: when in PDES, a neuron cannot move forward in

the future. This means that it is “chained” to the virtual time of the event. This

means that it cannot explore the future and decide that it will spike at time Tspike.

What the neuron can do is evaluate, given the current state (membrane voltage,

input current, etc.), whether it will spike in the future, and if so, when. Once this

is done, then the neuron could schedule an event to wake itself up and check if its

state variables are such that it indeed meets the spiking conditions. There is no

need to say that getting to the point in which the need for this cumbersome process

becomes evident already requires having spent enough time to at least understand

what happens during a DES simulation and how to simulate a continuous time

system in a discrete time environment. This alone would be enough to discourage

any individual without good knowledge of PDES, or at least computer science, from

trying to implement their model for a PDES simulator. What this is saying is that

43

development cost is the main problem with current DES simulators, when compared

to their time-stepped competitors: it already takes a long time to become an expert

in computational neuroscience, having to become also proficient in computer science

is a cost not many (if anyone) are willing to pay. Indeed as if having to deal with all

the discrete event world was not enough, the problem is that the model code needs

to be error-free but, most importantly, it has to be efficient, as it can easily become

the bottleneck of the execution. It is important to remember that if no facility is

exposed for SNN support, the modeller also needs to come up with ways to handle

synapses: their representation, their behaviour when simulating, whether they are

to be modelled as LPs themselves (they probably should not if we are looking to

simulate an SNN for AI and not for extreme biological accuracy—and even in that

case it could be debatable whether a single synapse should have the dignity of an

entire LP), and scheduling spike events by looping on all of them, as well as possibly

waking itself up after spiking to see if another spike could belong in the neuron’s

future.

Saying that this is as complex as it sounds would mean understating the real

complexity of the whole endeavor. A simulation framework built to support spiking

neural network simulation on parallel discrete event simulator is needed. One such

framework would need to hide all the idiosyncrasies related to PDES by providing

an API, no matter how extended, that guides the modeller in the implementation

process, making it easier for someone that is not a computer scientist to build a

SNN model for discrete event simulation.

The modeller should not need to worry about where the synapses are kept or how

they are organized, nor should they care about the fact that spikes are in fact events

that need to be sent one-by-one and, even worse, they should not need to schedule

an event to check whether a spike should happen or not. Ideally, the modeller should

be tasked with as few programming related actions as possible, made as simple as

possible. In this work, a series of important steps have been undertaken to render

the modelling more easily achievable, requiring that the modeller only:

• Implement a series of APIs that the simulation framework calls in each specific

circumstance.

5.1 The module 44

• Implement a function that can compute the next presumed spike time and

communicate it to the framework, which then takes care of verifying that the

spiking conditions are still met once the time comes.

To achieve this, a module has been developed that is hooked into the simulator.

5.1 The module

To help modellers more easily develop Spiking Neural Network models to simulate

through PDES, in this work a module has been developed, which is attached to the

simulator and hides its complexity from the user. The modeller is supposed to only

use the module’s interfaces to execute the simulation, so as to get guided by the

module itself, and remove the need to manage events and the like.

5.1.1 Interfaces

The module encapsulates the complexity of the Discrete Event Simulation with

the interfaces that follow.

Spiking. When a neuron wants to spike, there are two kinds of interface exposed

by the framework:

• SendSpike

• MaybeSpike and MaybeSpikeAndWake

SendSpike allows to simply schedule a spike for a given time in the future. It

is translated by the framework into a series of messages, one per outgoing synapse,

directed to the postsynaptic neurons, where each message carries the weight of the

synapse.

MaybeSpike and MaybeSpikeAndWake are functions that handle the hypothetical

nature of spiking in the future, as such they allow the user to schedule a spike

that will take place if and only if the calling neuron receives no other spikes in the

meantime. This is achieved by scheduling a MAYBESPIKE or MAYBESPIKEWAKE

event to wake the module at the time of the hypothetical spike. For each LP, the

5.1 The module 45

framework keeps track of a progressive identifier. When MaybeSpike/AndWake is

called, upon scheduling the MAYBESPIKE/WAKE event, its payload is set to the

current identifier. Whenever an event other than MAYBESPIKE/WAKE is delivered

to the neuron, the identifier is incremented. When a MAYBESPIKE/WAKE event is

received, the framework checks its payload: if it matches with the current identifier,

it means that no other event has taken place in the meantime and the event has

to be executed, otherwise it is discarded (ignored) (note that wrapping around of

the identifier has not been deemed an issue as 64 bit integers are used). When a

valid MAYBESPIKE/WAKE event (with payload matching the current identifier) is

executed, the spike is materialised in the same fashion as a SendSpike, with the very

same function being called. If the event is a MAYBESPIKEWAKE, then the spiking

neuron is also woken up by calling the NeuronWake interface. Waking the neuron

after spiking is useful for self-spiking neurons, or to check whether a neuron will

have enough input current to spike again even without being solicited from other

neurons, and as such possibly invoke MaybeSpike/AndWake again.

Initialization. To initialize the network, a series of interfaces are exposed:

• NeuronInit

• SNNInitTopology

• NewSynapse

• NewSpikeTrain

• NewProbe

NeuronInit needs to be implemented by the user. When invoked, it is given the

identifier of the neuron to be initialized. The user is expected to create the neuron

state in it through malloc, and return a pointer to said state.

SNNInitTopology is also implemented by the user. In this function, raised after

all neurons have been initialized, the topology is initialized. The user may use

NewSynapse, NewSpikeTrain, and NewProbe to build the network.

5.1 The module 46

NewSynapse is used to create a new synapse between two neurons. It works as

a wrapper to malloc, allocating the memory for a synapse’s state and returning a

pointer to such memory. The allocation is only successful if the synapse lies on the

current node, and more specifically if the source neuron is managed by the current

thread, as synapses are managed by their pre-synaptic neuron. The synapse can be

either dynamic or static, meaning that its state can either change (and thus needs

to be tracked for performing rollbacks) or not, allowing to further decrease the load

put on the state management subsystem, and thus memory and computational costs

associated with it. Considering that each neuron has a great number of outgoing

synapses associated to it (in the model we ran, with circa 80’000 neurons, each

neuron had more than 3000 synapses), properly exploiting the possibility to declare

synapses as static allows for a huge boost in performance. This said, all the user

needs to do is to invoke NewSynapse and check that the returned pointer is not

NULL, if that is the case, the synapse can be initialized normally.

NewSpikeTrain is used to create spike trains, which are series of spikes directed to

specific neurons at specific times. Spike trains are used as inputs to Spiking Neural

Networks. The implementation is straightforward: the module schedules one event

per spike per target neuron. These events are not managed in any LP’s outbound

queue as they are not generated by any of the neurons, and need not be rolled back

through antimessage as they are not speculative. This is achieved by creating and

inserting the events in the thread’s input queue through a custom function that does

not push the messages in the outbound queue of any LP. Each thread only schedules

messages directed to LPs it owns when it executes a NewSpikeTrain. The events are

managed correctly by the messaging subsystem, meaning they can be rolled back

and re-scheduled, and are discarded once GV T > Timestamp.

NewProbe allows to probe a neuron, meaning that it is monitored and each

time said neuron fires, the user-defined ProbeRead handler is called, to extract

any interesting information. Furthermore, probed neurons are the only ones that

are interrogated when evaluating the ending condition through NeuronCanEnd.

Tracking probed neurons happens through a simple flag.

5.1 The module 47

Advanced memory management. For users that may want to create memory

areas that are read only (e.g. the physical parameters of the neuron), an interface

to allocate static memory is provided. This memory is called static because it

will not get checkpointed nor rolled back by the framework. This is obviously

only safe when the allocation and initialization with data are performed during

the network initialization—before running the actual simulation—, as it could lead

to inconsistencies otherwise. Using static memory for appropriate memory areas

relieves from part of the work from the framework, as no attention needs to be payed

to them by the rollback mechanism, saving both time and memory. The interfaces

are:

• st_malloc

• st_free

Which behave exactly like malloc and free, but while malloc and free get wrapped

by the simulator to manage dynamic memory that gets rolled back, st_malloc and

st_free do not, and allocate unmanaged memory.

Responding to events. The user needs to implement a series of functions that

behave as interfaces for handling a series of events. These interfaces are:

• NeuronHandleSpike

• NeuronWake

• SynapseHandleSpike

• ProbeRead

NeuronHandleSpike is called by the framework when a spike event is delivered

to the neuron. The module provides the intensity of the spike, and the model is

asked to handle it by updating the state of the neuron and possibly scheduling a

spike through SendSpike or MaybeSpike or MaybeSpikeAndWake.

NeuronWake is used to handle a neuron being woken up by the framework. At the

moment, this only happens after a neuron fires because a valid MAYBESPIKEWAKE

5.1 The module 48

event is received and processed. The purpose of waking up a neuron is to let it

compute its next fire time (if any) and schedule the (hypothetical) future spike.

SynapseHandleSpike is used when sending spikes, signifying the transmission

of the signal through the synapse. In this, the user needs to update the synapse

state and compute the synapse weight, that has to be returned. This way, the user

can have dynamic synapses with plasticity (either because of the state changing, or

simply because of plasticity variation in time) and the module can properly include

the intensity of the spike in the spike message. SynapseHandleSpike is invoked

during a SendSpike, when iterating over all the synapses of the spiking neuron, and

is invoked once per synapse.

ProbeRead is invoked after probed neurons spike. Its purpose it to let the user

gather information on the neurons it has probed. No modifying the state or raising

events should take place in this.

Management events. The last kind of interfaces need to be implemented by the

user, and are:

• NeuronCanEnd

• GatherStatistics

NeuronCanEnd is invoked when the system performs the check for ending

condition. While the simulation can be stopped after reaching a given virtual

time, one might want to check on an ending condition. This is where it happens.

NeuronCanEnd is only invoked on probed neurons.

GatherStatistics is invoked by the framework when completing the simulation.

It lets the user know that the simulation is complete and that the time to output

information to file has come, as it is now safe.

5.1.2 Data structures

Two main data structures are used by the module to properly transparentize the

execution for the user. The data structures are:

• __neuron_s, managing the entire LP state

5.1 The module 49

• __syn_t, which are used to keep the synapse information

The way the module behaves, it lives in a limbo between the simulator and user

space: the module uses the SetState facility (used to communicate to the simulator

where the current LP’s state is in memory) to set its __neuron_s struct as state, and

catches the ProcessEvent calls—issued by the simulator when an event is delivered

to a LP—to perform its magic.

The __neuron_s struct contains: an array of (pointers to) __syn_t objects,

which are the neuron’s outgoing synapses; a pointer to the user’s neuron state; a

pointer to an instance of mbspk_str, which is used to keep the identifier for the

MAYBESPIKE/WAKE events; a probed flag. Since the physical composition of

the neuron is supposed to be static, that is, the neuron does not change synapses

and does not get “unprobed”, the __neuron_s struct is not monitored for rollbacks.

However, the mbspk_str needs to be dynamic, as the identifier needs to evolve with

the simulation, and possibly be rolled back when needed. This is why we use a

pointer to dynamic memory, allocated and tracked by the memory manager, and

transparently rolled back when the LP is too. The user’s neuron obviously needs to

be dynamic too and in __neuron_s only the pointer to it is stored, as the framework

completely ignores its nature. The memory area is allocated by the user during

NeuronInit, and user’s mallocs are automatically wrapped to monitored allocations.

__syn_t structs are more complicated than just synapses. One instance contains

the ID of the synapse’s target neuron, the transmission delay, and the pointer to

the user synapse state, the nature of which, as with the neuron state, is completely

ignored by the simulator. __syn_t objects are also static throughout the simulation,

as synapses may not change target or delay in the current implementation. A single

__syn_t object is created when NewSynapse is invoked and the target neuron and

transmission delay are given by the user as parameters. As mentioned, NewSynapse

acts as a malloc as far as the user is concerned, and the allocated memory area is

pointed to from __syn_t, whether the user synapse is dynamic or not, so that if it

is, it gets rolled back properly.

5.1 The module 50

5.1.3 The simulation flow

In our approach, the model has to be written as a C program which imports the

simulator’s header file, and implements the functions NeuronInit, SNNInitTopology,

NeuronHandleSpike, NeuronWake, SynapseHandleSpike, ProbeRead, NeuronCanEnd,

GatherStatistics. The model files then have to be compiled using the ad-hoc compiler,

which outputs two executables: model_serial and model_parallel. When one of the

executables is launched, the number of LPs has to be specified as command line

argument, and then the simulation is started. The user is also allowed to specify

their own custom command line arguments and handlers through the argp library,

letting them configure the simulation run.

From the user’s perspective, the first implemented function (apart from the

argp handlers) that is executed is NeuronInit. Neurons are indeed mallocd and

initialized before the topology is. Then SNNInitTopology is invoked, the topology

is initialized, synapses are created, neurons are probed, and spike trains scheduled.

Then the simulation starts, and the handlers are called by the framework. The first

call happens at virtual time 0 and is a spike with intensity zero. This is used to

wake up neurons and allow self-spiking ones to compute and schedule their next fire

times. After this the simulation proceeds until one of the ending conditions are met:

there are no more spikes left to process, or the maximum simulation time has been

reached, or the ending predicate is verified.

From the point of view of the framework, the call to module initialization is

hooked to be performed immediately after the initialization of the memory manager

and the libraries. The call is performed on every thread. As such, attention is paid

to actually initializing exclusively objects that belong on LPs managed by the local

thread. The module initialization function computes how many LPs the thread

manages and the ID of the first of them, then sets up the facilities to manage the

neurons (__neuron_s objects) in each of the owned LPs, and calls the NeuronInit

for every neuron so as to let the user malloc and initialize said neuron and obtain

pointer to the user’s neuron state. Then the active LP is set to the first managed by

current thread, and (the user-defined) SNNInitTopology is called, and in it the user

may invoke NewSynapse, NewProbe, and NewSpikeTrain. Being that the execution

5.1 The module 51

is multi-threaded, but these functions have side effects on data structures hosted on

specific LPs, each of these functions first checks whether the interested LP is under

the responsibility of the current thread, otherwise the operation falls through. After

the user returns from SNNInitTopology, the duplicated synapses are pruned, and

synapse arrays are compacted, all to recover used memory that would otherwise be

wasted. Then control is given back to the simulator, that starts the run.

The first raised event is INIT at virtual time 0, which is caught by the module,

that delivers the above-mentioned spike with intensity 0 to all the neurons to let

them schedule spikes. From this moment, the simulation proceeds based on the

events that are raised.

52

Chapter 6

Experimental Assessment

The experimental assessment has been conducted in two phases: first, correctness

was verified, then performance was evaluated.

In doing so, a Leaky Integrate and Fire neuron model to be used as building

block of the test networks has been implemented. The physical parameters were

taken from T. C. Potjans and M. Diesmann’s work [13]. The network reported in

the aforementioned work ([13]) has been used in our testing as the reference model.

Other networks have been completely made up to verify correctness.

6.1 The neuron implementation

In this section, the two kinds of neurons that were implemented are reported.

6.1.1 Leaky Integrate and Fire

The Leaky Integrate and Fire neuron model was introduced earlier, in Section

2.3. The physical parameters used and their meanings are reported in Table 6.1

under the Neuron Model part. The equations have been taken directly from the

code of [15]—a more recent reimplementation of the Potjans and Diesmann’s work

on the Brian simulator—, which reported them in string format (as Brian takes

the model’s differential equations in string form). Note that the neurons take into

account the refractory period of duration τref , and as such the membrane voltage is

clamped to Vr for the entirety of the refractory period after spiking.

6.1 The neuron implementation 53

dV
dt = −V (t) + Vr

τm
+ I(t) + Iext

Cm
(6.1)

dI(t)
dt = −I(t)

τsyn
(6.2)

Equations 6.1 and 6.2 are the ones reported that describe the LIF neuron model.

Note that Equation 6.1 is simply a rewriting of Equation 2.6 in Section 2.3, where

τm has been brought to the right of the equals sign, and I(t) has been expanded

into I(t) + Iext where I(t) is now the current coming from incoming synapses, and

Iext is the current that raises as a consequence of the background input. Iext has

also been used to verify the correctness of the model in the two custom networks, by

simulating input spike trains thanks to neurons that were made self-spiking because

of Iext.

Both Equation 6.1 and 6.2 were solved in closed form for faster and more precise

computation, yielding Equations 6.3 and 6.6.

Vf = e
− ∆t
τsyn IiA0 +A2 + (Vi −A2 − IiA0)e−

∆t
τm (6.3)

A0 = 1(
1
τm
− 1

τsyn

)
Cm

(6.4)

A2 =
(
Vr
τm

+ Ie
Cm

)
Cm (6.5)

If = e
− ∆t
τsyn Ii (6.6)

In the equations, the two members A0 and A2 have been introduced for the

sole purpose of readability and their expansions are found in Equations 6.4 and

6.5. However, for the implementation, it is worth noting that A0 and A2 are

constants based on the neuron’s physical parameters, and A2 is the value at which

the membrane potential tends to when left with no inputs apart from Iext. As such,

in our implementation they are computed once during the initialization and stored

along the other physical parameters of the neuron.

6.1 The neuron implementation 54

Neuron parameters and state

Global parameters. The model needs to have its own state for the neurons. In

our case, since all physical parameters are shared between all neurons in the model,

they have been stored in a single global struct allocated on static memory that is

accessed from all the workers, posing no danger as it is accessed as read-only. This

struct is n_params and contains Vth, Vr, 1
τm

, 1
τsyn

, 1
Cm

, τref . The inverses of τm, τsyn,

and Cm are stored because they always appear in the denominator, and multiplying

by the inverse is way faster than dividing. There is only one calculation during the

run in which the model actually needs to multiply by τsyn, in which we divide by its

inverse.

Population-level parameters. Then there are population-level parameters, that

all neurons in a given population share. These parameters are computed at run

time and are stored in neuron_helper_t structs, of which there are 8, one struct per

population, visible to the whole thread and allocated on non-rolled-back memory.

Since they are computed in a deterministic manner, there would be no race conditions

even if the struct was global even across threads, since even in case of a double write

access, the data written would be the same. The neuron_helper_t structs contain:

Iext, A0, A2, Icond, self_spike_time. The last two parameters are mentioned here

for the first time. Icond is defined in Equation 6.7.

Icond := I(t) | lim
V (t)→Vth

dV
dt = 0 (6.7)

An I(t) > Icond is needed to overcome the threshold value and spike, when

V (t)→ Vth. This means that having I(t) > Icond is the necessary condition for a

non-self-spiking neuron to spike in the future (for some t′ > t). Self-spiking neurons

will have an Icond < 0. Thus, Icond has two functions: first, if Icond < 0 we know that

a neuron is self-spiking; second—and most importantly—, it gives us a sufficient

condition to say that the neuron will not spike in the future: a non-self-spiking

neuron that has I(now) < Icond will surely not spike in the future, as I(t) naturally

decays towards 0; as such, the necessary condition for firing will never be met in

the future (unless a new spike is received, but that is for a future event). Another

6.1 The neuron implementation 55

extremely important aspect that Icond is useful for is computing an upper bound

for the ∆t after which the neuron will spike: once we have checked that, in a

non-self-spiking neuron, I(now) > Icond, we can compute ∆t | I(now + ∆t) = Icond.

We know that this ∆t surely exists because I(t) is decaying towards 0 and Icond > 0.

We can compute ∆t simply by solving Equation 6.6 for t, posing If = Icond. We

obtain Equation 6.8.

∆t = − ln
(

Icond
I(now)

)
τsyn (6.8)

Once we have ∆t we have an upper bound to the spike time, and we can even

determine whether a neuron spikes or not in the given interval of time. We have two

cases: either V (now + ∆t) ≥ Vth, or not. If we are in the first case, then the neuron

spikes at a time tspk ∈ [now, now+ ∆t], otherwise the neuron does not spike. Indeed,

since Icond is needed to overcome Vth with V (t), we also know that any I(t) > Icond

is sufficient to keep V (t) > Vth. As such, if there is a time t∗ ∈ [now, now + ∆t]

for which V (t∗) > Vth, this will stay true for at least as long as I(t) > Icond,

i.e. for all t ∈ [t∗, now + ∆t]. Thus, if V (now + ∆t) ≥ Vth, Vth is crossed once in

[now, now+∆t], and we have that tspk = min({t∗ ∈ [now, now+∆t] | V (t∗) > Vth}).

Otherwise, we never cross Vth and neuron does not spike.

Once ∆t is computed, we check whether V (now + ∆t) ≥ Vth, and if so, a binary

search is conducted in the interval [now, now + ∆t] to find the spike time tspk.

The other parameter, self_spike_time, indicates how long a self-spiking neuron

takes to spike in total absence of synaptic inputs (i.e. I(t) = 0). It is computed upon

initializing a population’s n_params struct if A2 > Vth i.e. if the neurons of the

population are self-spiking (checking that Icond < 0 would have been equally valid).

self_spike_time is useful for computing the next spike time of self-spiking neurons:

while non-self-spiking neurons can exploit the procedure explained above, self-spiking

neurons cannot. As such, self_spike_time is used as a step to move the time window

to find the spike time for self-spiking neurons: I(t) decays towards 0 whether it is

positive or negative. If positive, then the spike time will come faster, and will more

likely be contained in the interval [now, now+ self_spike_time], if negative, it will

take longer. In both cases, if V (now+self_spike_time) < Vth, the interval window

6.1 The neuron implementation 56

is slid to the right by self_spike_time, becoming [now + self_spike_time, now +

2self_spike_time] and so on, until V (now+k ∗ self_spike_time) ≥ Vth, at which

point the search will take place in the interval [now+(k−1)self_spike_time, now+

k ∗ self_spike_time]. In a nutshell, self_spike_time represents a reasonable step

size to conduct the search for the spike time, when no upper bound is available.

Neuron state. Finally, the neuron state holds the dynamic variables of the

neuron, and as such is allocated on dynamic, monitored memory: times_fired,

membrane_potential, I, last_fired, last_updated. The field membrane_potential holds

V (last_updated), and I holds I(last_updated). The other fields are self-explanatory.

An additional last field is helper, which holds a pointer to the neuron_helper_t

struct of the population the neuron belongs to. This pointer is needed to know where

the population-level parameters are, and is necessarily dynamic even if unmonitored

memory would have been enough: a small price to pay.

Evolving through time

The neuron’s evolution through time is dictated by two main functions: bringTo-

Present and getNextFireTime.

bringToPresent takes care of physically updating the neuron state from a past

time, to the now time tnow. It is the first function called both from NeuronHandle-

Spike and NeuronWake. It first checks whether the neuron is in refractory period.

If it is, the function handles it by computing when it will end: if it ends after

(or at) the current virtual time tnow, then V (t) is set to Vr, I(t) is updated using

Equation 6.6, using the difference between tnow and last_updated as ∆t; then

last_updated is set to tnow, and the function ends. If the refractory period ends

at a time tr_end ∈ [last_updated, tnow), then the update takes place in two phases:

from last_updated to tr_end, and then from tr_end to tnow. Thus, first the refractory

period is handled, setting V (t) to Vr, and updating I(t) using Equation 6.6 with ∆t

the difference between the tr_end and last_updated, then the evolution is computed

again normally, updating V (t) using Equation 6.3 and I(t) using Equation 6.6, both

with ∆t = tnow − tr_end, then last_updated is set to tnow, and the function ends. If

6.1 The neuron implementation 57

instead the neuron is not in refractory period, the evolution is computed by simply

using the correct equations to compute V (tnow) and I(tnow), last_updated is set to

tnow, and the function ends. It is immediately noticed that the function does not

contemplate the possibility of spiking, this is because this would mean scheduling

an event in the past, which is impossible. Scheduling of spikes is taken care of when

waking up or handling a spike, which schedule spikes for the future. As such, there

cannot be unscheduled past spikes.

Between bringToPresent and getNextFireTime, the effects of the spike are

applied to the neuron: I(t) is incremented by the intensity of the spike. Then

getNextFireTime is called.

getNextFireTime is the function that, under the assumption of receiving no spikes

in the future, computes whether and when the next spike will happen. It is the

second function called in NeuronHandleSpike and in NeuronWake. Please note that

the role of Icond as explained in 6.1.1-Population Level Parameters is vital to this

explanation. First of all, the function checks whether the neuron is self-spiking, and

if it is not, it checks whether I(tnow) < Icond: if it is the case, the neuron will never

spike and the function returns. If the neuron is self-spiking or I(tnow) > Icond, then

the function moves on to check whether the neuron is still in refractory period: if it

is, V is set to Vr, and I(tr_end) is computed according to the closed form equation.

Once the refractory period is out of the way, the paths of neurons and self-spiking

neurons separate: if the neuron is self-spiking, the spike time is found using a function

that uses self_spike_time as a step to look into the future, as mentioned above.

For non-self-spiking neurons, it is checked once again if I(tr_end) < Icond, and once

again if this happens, the neuron will never spike and the function ends. Otherwise,

the spiking time upper bound tupper = max(tnow, tr_end) + ∆t is computed, using

Equation 6.8 to compute ∆t. Then V (tupper) is computed using Equation 6.3, and—

because of what was explained earlier when introducing Icond—it checks whether

V (tupper) < Vth: if so, the neuron will never spike and the function returns. However,

if V (tupper) ≥ Vth, then we know (again, because of the reasoning in 6.1.1) that the

neuron spikes at some time tspk ∈ [tnow, tupper]. Now that we have an the interval of

time in which we know a spike has happened, binary search is employed to find tspk

6.2 The networks 58

and return it.

Once the fire time of the next spike is known (if any), a hypothetical spike is

scheduled through MaybeSpikeAndWake for the computed time.

6.1.2 Poisson neurons

Poisson neurons were implemented because they were used as thalamic input to

Potjans and Diesmann’s network. Poisson neurons are simply neurons that spike

according to a Poisson distribution, given a fixed spiking rate. In our implementation

they have no state, as the spiking rate is the same for all Poisson neurons and globally

defined. The function implemented to emulate a Poisson neuron is PoissonWake:

when NeuronHandleSpike or NeuronWake are called with target a Poisson neuron,

PoissonWake is called. Since Poisson neurons cannot receive input, the only time

NeuronHandleSpike is invoked with target a Poisson neuron, is at time 0 when

starting the simulation. One needs to make sure Poisson neurons are never the

targets of another neuron’s spike, otherwise their behaviour would be compromised.

Inside PoissonWake, the interval ∆t after which the neuron will spike is computed

by extracting a value from an exponential distribution with rate 1
λthal

.

Since in the Potjans and Diesmann’s model thalamic input was transient, with

only 10 milliseconds of activity time every second, this was embedded in the Poisson-

Wake function, which also takes care of computing the correct time to schedule the

spike, knowing that for each second, the neuron is asleep for 700ms, then awake form

10ms, and again asleep for 290ms: as an example, if ∆t = 82 (with Virtual Time in

milliseconds), then we have 8 skipped cycles (for a total of 80ms of activity) and

then 2 more milliseconds of activity to be waited; if we are at time 0, then the spike

will be scheduled at tspk = 8702. Spike scheduling happens via MaybeSpikeAndWake

that allows to wake up the neuron to schedule the next spike.

6.2 The networks

In this section, the networks used to test our work are introduced.

6.2 The networks 59

6.2.1 Potjans and Diesmann’s Local Cortical Microcircuit

Potjans and Diesmann (in [13], 2014) developed a model of the local cortical

microcircuit. They did so by using extensive experimental data on the circuitry of

striate cortex. At the time of their research, there were a great deal of Local Cortical

Microcircuit models, but there was a mismatch between simulated and activity

measured in-vivo. The research mostly focused on developing networks with different

types of neurons. However, simply changing the neuron implementations with more

complex ones yielded no improvement. As such, they believed the error was in the

adopted connectivity map, rather than in the neuron models. The two scientists set

out to create a connectivity map that “integrates the 2 major connectivity maps

from anatomy and electrophysiology and furthermore incorporates insights from

photostimulation and electron microscopy studies”, and did so by algorithmically

combining the two maps “by correcting for the different experimental procedures”.

Figure 6.1. Potjans and Diesmann’s Model definition. Excitatory populations are repre-
sented by triangles, and inhibitory populations are circles.
Source: [13]

The network Potjans and Diesmann came up with comprises 4 layers of cortex,

named 2/3, 4, 5, and 6, each with an excitatory and an inhibitory neuron population.

Layers are connected to one another according to the “connection probability of a

connection” that “defines the probability that a neuron in the presynaptic population

forms at least 1 synapse with a neuron in the postsynaptic population. A connectivity

map is defined by the 64 connection probabilities between the 8 considered cell types”.

6.2 The networks 60

Table 6.1. Neurons and populations parameter specification.

Populations and inputs

Name L2/3e L2/3i L4e L4i L5e L5i L6e L6i Th

Population size, N 20683 5834 21915 5479 4850 1065 14395 2948 902

External inputs, kext 1600 1500 2100 1900 2000 1900 2900 2100 n/a

Neuron Model

Name Value Description

τm 10 ms Membrane time constant

τref 2 ms Absolute refractory period

τsyn 0.5 ms Postsynaptic current time constant

Cm 250 pF Membrane capacity

Vreset −65 mV Reset potential

Vth −50 mV Fixed firing threshold

θ 15 Hz Thalamic firing rate during input period

The synapses in the model are static. The number of neurons per population are

chosen according to [4]. Furthermore, every layer can receive a background input

in the form of a continuous current, and input from an external thalamo-cortical

neuron population. The thalamic neurons are implemented as Poisson neurons with

a fixed spiking rate. In Figure 6.1 is the very representation of the network that

Potjans and Diesmann drew.

Table 6.1 contains the neuron parameters: population size for each population,

external inputs for e each population, and the neuron’s physical properties. Table

6.2 contains the connectivity map and the synaptic connection parameters.

In their work, Potjans and Diesmann found that when simulated, the model

using their integrated connectivity map yielded “cell-type specific spontaneous and

stimulus-evoked activity in good agreement with experimentally observed activity”.

Indeed their model is still extremely relevant, with its implementation being part of

the examples in the NEST simulator, and has been replicated in 2018 by Shimoura

et al. [15] in an implementation for the Brian simulator.

It is this latter implementation the one against which we tested our work. Our

6.2 The networks 61

Table 6.2. Connectivity and Synaptic parameter specification.

Connectivity

from

L2/3e L2/3i L4e L4i L5e L5i L6e L6i Th

to L2/3e 0.101 0.169 0.044 0.082 0.032 0.0 0.008 0.0 0.0

L2/3i 0.135 0.137 0.032 0.052 0.075 0.0 0.004 0.0 0.0

L4e 0.008 0.006 0.050 0.135 0.007 0.0003 0.045 0.0 0.0983

L4i 0.069 0.003 0.079 0.160 0.003 0.0 0.106 0.0 0.0619

L5e 0.100 0.062 0.051 0.006 0.083 0.373 0.020 0.0 0.0

L5i 0.055 0.027 0.026 0.002 0.060 0.316 0.009 0.0 0.0

L6e 0.016 0.007 0.021 0.017 0.057 0.020 0.040 0.225 0.0512

L6i 0.036 0.001 0.003 0.001 0.028 0.008 0.066 0.144 0.0196

Name Value Description

w ± δw 87.8± 8.8 pA Excitatory synaptic strengths

g −4 Relative inhibitory synaptic strength

de ± δde 1.5± 0.75 ms Excitatory synaptic transmission delays

di ± δdi 0.8± 0.4 ms Inhibitory synaptic transmission delays

6.2 The networks 62

model was implemented by replicating the topology Potjans and Diesmann proposed,

tracing the Python code that Shimoura et al. wrote for Brian, as far as initializing

the network goes.

6.2.2 Other networks

Two more made up networks have been implemented for testing. The first is

a network with 2 neurons, N0 and N1, which we will call Test Network A. N0

receives a constant input current, and N1 receives the output of N0 as input. The

purpose of this network was to test correctness of our implementation and see how

precisely the behaviours in the different simulators matched.

Table 6.3. Connectivity map for Test Network B.

to

L1e L1i L2e L2i L3e L3i

from In 0.292 0.192 0.049 0.237 0.169 0.115

L1e 0.224 0.293 0.106 0.254 0.438 0.099

L1i 0.135 0.025 0.409 0.25 0.309 0.271

L2e 0.165 0.177 0.122 0.032 0.491 0.3

L2i 0.448 0.319 0.08 0.207 0.225 0.201

L3e 0.395 0.123 0.265 0.215 0.476 0.174

L3i 0.223 0.276 0.358 0.028 0.065 0.188

The second network, Test Network B, is a network made of 1000 Leaky Integrate

and Fire neurons, which is divided into one input layer and three “passive” layers,

each of which has two populations, one excitatory and one inhibitory. The input

layer has 100 excitatory LIF neurons, each of which receives a constant current input,

and each of the three layers has 200 excitatory and 100 inhibitory LIF neurons. It

employs a connectivity map (in Table 6.3) to connect the populations with each

other. Its purpose was simply to model a smaller network that was faster to simulate,

and then compare the data for correctness.

6.3 Correctness 63

Figure 6.2. Spiking rates (Hz) for 1000 neurons model on our framework.

6.3 Correctness

To validate the framework’s behaviour and model implementation, the aforemen-

tioned models have been executed both on our simulator and Brian.

The two neuron model was used to validate the implementation of the single

neuron. The supply of the constant input current to N0 was simulated by setting

N0’s Iext to 1800 pA and synaptic weight to 200 pA, to allow N1 to spike using solely

the input from N0. Then the network was run and the results were compared: with

all the tested configurations, the neurons spiked about 1% less than their counterpart

when running on our simulator compared to Brian. This is likely because of the

error introduced by the approximate resolution of the differential equation in Brian.

This result shows that the implementation of the neurons is correct, both when

receiving input through Iext and when receiving spikes from other neurons, and the

implementation of the framework is also correct when input spikes are in order.

The 1000 neuron model was used to validate ensemble behaviour of the network

and the behaviour on differently timed spikes. Once again, the same network was

run on our implementation and on Brian. A boxplot of spiking frequencies of every

population is reported. As a reminder, the 1000 neuron model was split into one

input population of 100 neurons and 3 layers, each with one excitatory population

6.3 Correctness 64

Figure 6.3. Spiking rates (Hz) for 1000 neurons model on Brian.

of 200 neurons and one inhibitory population of 100 neurons. The boxplots of the

executions are reported in Figure 6.2 and 6.3. As we can see from the figure, the

boxplots of spiking frequencies closely resemble one another. The difference is likely

a consequence of the randomized initialization of the network topology, with the

small size of the network not being enough to amortize randomness, along with

the 1% difference introduced by precision. This shows how the framework and LIF

model implementation of the neurons are correct even when a greater number of

neurons is simulated, and with neurons handling spikes coming in varied patterns

from many other neurons.

Finally, Potjans and Diesmann’s model was used to test Poissonian neuron

behaviour, and most importantly behaviour on a large scale. Furthermore as it is the

model used to compare performance, it was of vital importance to make sure that

the model was correct. Once again, the model has been run on both our simulator,

and the result compared with that of Shimoura et al. and Potjans and Diesmann’s

using boxplots of spiking rates. The plots for our simulation is found in Figure 6.4,

while that of Shimoura et al., obtained by running on Brian, is found in Figure 6.5.

Lastly, the boxplot of the original paper, obtained by running on NEST, is in Figure

6.6.

6.3 Correctness 65

Figure 6.4. Spiking rates (Hz) for Potjans and Diesmann’s model on our framework.

Figure 6.5. Spiking rates (Hz) for Potjans and Diesmann’s model on Brian. Source: [15]

Figure 6.6. Spiking rates (Hz) for Potjans and Diesmann’s model on NEST. Source: [13]

6.4 Performance 66

The boxplots once again reassure us that the model implementation is correct,

and yields results coherent with both implementations of the model. Poissonian

neurons are also implemented correctly.

6.4 Performance

Performance was evaluated by simulating our implementation of Potjans and

Diesmann’s Local Cortical Microcircuit model. Tests were carried out on a NUMA

machine with 4 AMD Opteron 6168 CPUs with 12 cores each, for a total of

48 cores and 8 NUMA nodes, with a total of 126GB RAM. When running the

model, the Iext was normalized for each population based on its member count.

Figure 6.7. WCT elapsed to simulate 10 seconds, in

relation to the worker threads.

Two tests were executed with

our approach to gather run

times and speedups: 10 seconds

runs and then 20 seconds runs,

executed with worker thread

counts (and, as such, core

counts) multiples of 3, starting

from 3 all the way to 48. The

variation in Wall Clock run time

when changing the number of

worker threads has been plotted

and is presented in Figures 6.7

and 6.8, for 10 and 20 seconds

of simulation time respectively. A speedup graph could not be plotted because of the

enormous time that running this computation with only one worker thread would have

required, which made timing the execution with a single core impossible in reasonable

amounts of time. The speedup can nonetheless be easily deduced from the presented

graphs: we are in presence of a superlinear speedup up until 9 worker threads are used.

This is likely because of the Operating System distributing threads onto different

NUMA nodes, which generates less contention on the RAM bus. After 9 threads the

speedup continues, but is then linear or sub-linear: the proposed approach exhibits

6.4 Performance 67

ht

Figure 6.9. Speedup with respect to single-threaded on Brian.

weak scaling. This behaviour is even more evident in Figure 6.8, in which the running

time is much higher for lower numbers of worker threads, but rapidly falls off to

amounts easily comparable to those of Figure 6.7 when using higher thread counts.

It is also worth emphasizing that since the network initialization is parallel too, the

part of the computation that is not parallelizable is so minuscule that its effects on

scalability are negligible.

Figure 6.8. WCT elapsed to simulate 20 seconds, in

relation to the worker threads.

The performance was com-

pared with that of Shimoura

et al.’s [15] implementation of

Potjans and Diesmann’s model,

which is based on Brian. The

simulation was run to 10 sec-

onds virtual time on a single

core as, notwithstanding the

claimed OpenMP capabilities,

execution reverted to single core

even when instructed to run

with multiple threads. This is

probably because Brian’s ability

to transparently render code multi-threaded depends on the possibility of running

6.4 Performance 68

(a) CPU and RAM usage for 48 worker threads (b) CPU and RAM usage for Brian single thread execution

Figure 6.10. Plots of CPU% and RAM% usage for our framework and Brian.

it in its cpp_standalone mode. As such, Brian’s performance can be used as a

baseline to compute the speedup of our approach. The resulting graph is presented

in Figure 6.9. We can see how, while Brian is faster on single thread, our approach

consistently speeds up with respect to Brian’s performance, when increasing the

worker thread count.

CPU usage and RAM usage were also monitored during the various runs, and

have been plotted. The plots can be found in Appendix A, while in Figure 6.10

only the plots of CPU and memory usage from the run with 48 worker threads are

reported, alongside the plots of Brian’s CPU and memory usage.

From the various plots we can see how in our approach the memory usage

stabilizes after an initial phase. The end of the network initialization phase can be

recognized thanks to the dip in CPU usage, as all cores synchronize before starting

the simulation: it is the only synchronization point in the whole run. During network

initialization RAM usage grows rapidly, as the various data structures supporting

the execution are initialized and populated; the topology alone is fairly large, easily

occupying more than 15GB of memory. Then at the same point in which the

6.4 Performance 69

first, bigger dip in CPU usage is found, RAM usage slows down: in this phase the

simulation has started and the—slower, albeit still steep—rise in memory usage is

the consequence of memory allocation for messages. During this phase, CPU usage

can be seen dropping, as threads are waiting on the RAM. Once this other “message

allocation” phase, RAM usage stabilizes and does not grow much for the rest of the

run.

One could argue that RAM usage is still around 3x that of Brian, however this is

the price to pay to achieve scalability thanks to Parallel Discrete Event Simulation

and Time Warp: both state checkpoints and messages consume their share of memory.

It should also be noted, however, that the current implementation was built in a

very limited amount of time for such a complex application, which means that there

is room for improvement. Improving RAM usage would also mean faster memory

operations, leading to shorter run times. Furthermore, this kind of RAM usage

is still very manageable, especially for HPC systems, that are the main target of

this work: the huge speed boost brought about by the ability to heavily parallelize

execution through optimistic synchronization, all the while hiding the underlying

inherent complexity of the runtime, is the real objective and advancement sought in

this work.

70

Chapter 7

Conclusions

In this dissertation, the path towards making high performance simulation of

spiking neural networks accessible to all researchers was discussed, and our work in

which promising steps have been taken to make it a reality, presented.

Thanks to this work, a modeller that knows nothing about Parallel Discrete

Event Simulation can embark on the task of developing a Spiking Neural Network

model for PDES and manage to achieve great performance, while only ending up

knowing “something” about PDES, if at all. In particular, thanks to the APIs

presented in Chapter 5, the user is guided through the development of the model in

a way that forces it to be heavily parallelizable, achieving promising performances

akin to those seen in Chapter 6, with weak scaling.

We have seen how the sheer complexity of simulating a continuous-time system

such as SNNs using PDES can be masked through “hypothetical” events that are

only executed if some condition holds (specifically, if no other event was delivered to

the LP between the scheduling and handling of one such event), leading to easier

handling of time continuity by the model.

Now what are the next steps to take? Firstly, while the RAM usage is already

acceptable, using techniques to further reduce the memory footprint is key to

improving processing speed. One example could be an ad-hoc memory manager

for the kind of allocations that SNNs perform, which are usually small in size and

in huge numbers. Another aspect that can see improvements is the event queues:

while currently heaps are used, a properly configured calendar queue could easily

71

outperform heaps.

Another important aspect might be that of, like Brian, asking the user for just

the differential equations representing the model, and simulating from that. This is

however a complex aspect that would probably need its own work.

More aspects regard the management of neurons as populations: while currently

neurons are treated as LPs, many—possibly related—neurons could be clustered

and managed as a single LP. With the adoption of proper load balancing this might

lead to better performance. This however should be further explored. Similarly,

both before and at run-time, populations made of neurons that interact more closely

with one another could be identified and be grouped together, which would further

reduce the incidence of causality violations both in multi-thread and on multinode

systems.

This work represents but a tiny step towards the greater goal of High Performance

Simulation of Spiking Neural Networks, but will hopefully be one of the many small

steps in the right direction.

72

Appendix A

CPU and Memory Footprint

(a) CPU and RAM usage for 3 worker threads (b) CPU and RAM usage for 6 worker threads

73

(c) CPU and RAM usage for 9 worker threads (d) CPU and RAM usage for 12 worker threads

(e) CPU and RAM usage for 15 worker threads (f) CPU and RAM usage for 18 worker threads

74

(g) CPU and RAM usage for 21 worker threads (h) CPU and RAM usage for 24 worker threads

(i) CPU and RAM usage for 27 worker threads (j) CPU and RAM usage for 30 worker threads

75

(k) CPU and RAM usage for 33 worker threads (l) CPU and RAM usage for 36 worker threads

(m) CPU and RAM usage for 39 worker threads (n) CPU and RAM usage for 42 worker threads

76

(o) CPU and RAM usage for 45 worker threads (p) CPU and RAM usage for 48 worker threads

77

Bibliography

[1] L.F Abbott. Lapicque’s introduction of the integrate-and-fire model neuron

(1907). Brain Research Bulletin, 50(5–6):303–304, Nov 1999.

[2] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla,

N. Imam, Y. Nakamura, P. Datta, G. Nam, B. Taba, M. Beakes, B. Brezzo,

J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha. Truenorth:

Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic

chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 34(10):1537–1557, 2015.

[3] Mark W Barnett and Philip M Larkman. The action potential. Practical

Neurology, 7(3):192–197, 2007.

[4] T. Binzegger. A quantitative map of the circuit of cat primary visual cortex.

Journal of Neuroscience, 24(39):8441–8453, Sep 2004.

[5] Nicholas T. Carnevale and Michael L. Hines. The NEURON Book. Cambridge

University Press, USA, 2006.

[6] Richard M. Fujimoto. Parallel discrete event simulation. Commun. ACM,

33(10):30–53, October 1990.

[7] Marc-Oliver Gewaltig and Markus Diesmann. Nest (neural simulation tool).

Scholarpedia, 2(4):1430, 2007.

[8] David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst.,

7(3):404–425, July 1985.

Bibliography 78

[9] Leslie Lamport. Time, clocks and the ordering of events in a distributed system.

July 1978.

[10] Wolfgang Maass. Networks of spiking neurons: The third generation of neural

network models. Neural Networks, 10(9):1659–1671, Dec 1997.

[11] OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung,

Przemysław Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq

Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub

Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman,

Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,

Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with Large Scale Deep

Reinforcement Learning. arXiv e-prints, page arXiv:1912.06680, December

2019.

[12] Alessandro Pellegrini. Parallelization of Discrete Event Simulation Models.

Studi e Ricerche. Sapienza Università Editrice, November 2015.

[13] Tobias C. Potjans and Markus Diesmann. The Cell-Type Specific Cortical

Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network

Model. Cerebral Cortex, 24(3):785–806, 12 2012.

[14] F. Rosenblatt. The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6):386–408, 1958.

[15] Renan O. Shimoura, Nilton L. Kamiji, Rodrigo F.O. Pena, Vinicius L. Cordeiro,

Cesar C. Ceballos, Romaro Cecilia, and Antonio C. Roque. [re] the cell-type

specific cortical microcircuit: Relating structure and activity in a full-scale

spiking network model. Zenodo, May 2018.

[16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,

George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

Panneershelvam, Marc Lanctot, and et al. Mastering the game of go with deep

neural networks and tree search. Nature, 529(7587):484–489, Jan 2016.

Bibliography 79

[17] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,

Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,

Thore Graepel, and et al. A general reinforcement learning algorithm that

masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144,

Dec 2018.

[18] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian

Bolton, and et al. Mastering the game of go without human knowledge. Nature,

550(7676):354–359, Oct 2017.

[19] Marcel Stimberg, Romain Brette, and Dan FM Goodman. Brian 2, an intuitive

and efficient neural simulator. eLife, 8:e47314, August 2019.

[20] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. Assessing load

sharing within optimistic simulation platforms (invited paper). 12 2012.

[21] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. Load sharing for

optimistic parallel simulations on multi core machines. ACM SIGMETRICS

Performance Evaluation Review, 40:2–11, 08 2012.

	Introduction
	Spiking Neural Networks
	Neural Networks at a Glance
	Spiking Neural Networks
	The Leaky Integrate and Fire Spiking Neuron

	Parallel Discrete Event Simulation
	Discrete Event Simulation
	Systemic Approach to DES
	Components of DES
	DES Kernel logic

	Parallel Discrete Event Simulation
	The Synchronization Problem
	Optimistic Synchronization
	Additional Supports for Simulation.

	Related Work
	Brian
	Neuron
	NEST

	Simulating Large Spiking Neural Networks
	The module
	Interfaces
	Data structures
	The simulation flow

	Experimental Assessment
	The neuron implementation
	Leaky Integrate and Fire
	Poisson neurons

	The networks
	Potjans and Diesmann's Local Cortical Microcircuit
	Other networks

	Correctness
	Performance

	Conclusions
	CPU and Memory Footprint
	Bibliography

