
On Techniques to Handle Risk in Speculative Paral-
lel Discrete-Event Simulation

Facoltà di Ingegneria
Ingegneria Informatica (XXXV cycle)

Andrea Piccione
ID number 1422045

Advisor
Prof. Alessandro Pellegrini

Co-Advisor
Prof. Bruno Ciciani

Academic Year 2022/2023

Thesis not yet defended

On Techniques to Handle Risk in Speculative Parallel Discrete-Event Simula-
tion
PhD Thesis. Sapienza University of Rome

© 2023 Andrea Piccione. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: piccione@diag.uniroma1.it

ii

Abstract

In this thesis, the traditional concepts of risk and aggressiveness associated with

speculative parallel/distributed execution of discrete-event simulations are revis-

ited and re-examined, introducing a more general framework of interpretation. It is

shown how these concepts, intrinsic to the speculative nature of parallel/distributed

executions, can and should be addressed in competitive simulation engine imple-

mentations. The spectrum of possibilities related to the exploitation of risk and

aggressiveness is explored from both a methodological and a technological point of

view, on which strong emphasis is placed. We illustrate techniques that improve

performance while providing several guarantees to model developers. In particular,

it is shown how it is possible to combine different synchronisation algorithms to

avoid thrashing phenomena and provide transparent support to the programmer

that avoids known problems or significant performance drops. In general, revisit-

ing the concepts of risk and aggressiveness opens up the possibility of repositioning

concepts from the literature into a broader utilisation framework, which can be

exploited in future lines of research to produce increasingly high-performance sim-

ulation systems.

iii

Contents

1 Introduction 1

1.1 Thesis objectives and Contributions 7

1.2 Reference Implementations and Benchmarks 10

1.2.1 Synthetic Models . 10

1.2.2 Real-world Models . 11

2 Risk in Parallel Discrete-Event Simulation 13

2.1 Discrete Event Simulation Fundamentals 13

2.2 Parallelizing DES . 18

2.2.1 Conservative Synchronisation 22

2.2.2 Optimistic Synchronisation 23

2.3 The Notion of Risk . 24

3 Case Study: The Effect of Risk in Real-World Simulations 28

3.1 Spiking Neural Networks . 28

3.1.1 Background on Spiking Neural Networks 31

3.1.2 Simulation Algorithms for SNN 33

3.1.3 Experimental Comparison of the Approaches 37

3.2 Epidemic Models . 42

3.2.1 Simulation Algorithms for Epidemic Models 45

3.2.2 Benchmark Model . 49

3.2.3 Experimental Comparison of the Approaches 50

3.3 Discussion . 55

Contents iv

4 Literature Survey 58

4.1 Optimism Constraining . 58

4.2 LP Scheduling . 60

4.3 Future Event Sets . 62

4.4 Load Balancing . 63

4.5 Hybrid Synchronisation . 64

4.6 Autonomic Optimisation . 65

4.7 Event Ties . 67

4.8 Approximated Simulation Results . 68

5 Hybrid PDES Synchronisation 71

5.1 Selected Synchronisation Algorithms 72

5.2 Hybrid Speculative Synchronisation 74

5.2.1 Managing Cross-Algorithm Priority Inversion 75

5.2.2 Event Generation and Scheduling Management 77

5.2.3 Dynamic execution mode switching 80

5.2.4 Going Distributed . 83

5.3 Experimental Assessment . 83

5.3.1 Testbed Applications Configuration 84

5.3.2 Experimental Results . 85

5.4 Discussion . 88

6 Risk Management in Stochastic Simulations 92

6.1 Approximate Rollbacks . 93

6.2 The Autonomic Policy . 97

6.3 Experimental Assessment . 101

6.3.1 Computing Platforms . 101

6.3.2 Test-bed Applications . 102

6.3.3 Results . 103

7 Practical Tie-Breaking 112

7.1 Problem Statement . 115

7.2 Practical Tie-Breaking Technique . 118

Contents v

7.2.1 Handling Cross-LP Causality 123

7.2.2 Implementation Details . 124

7.2.3 Relations with Other Tie-Breaking Schemes 125

7.3 Experimental Assessment . 127

7.3.1 Testbed Applications . 127

7.3.2 Experimental Results . 128

7.4 Performance of Event Set Management Strategies 133

7.5 Discussion . 137

8 Conclusions 140

1

Chapter 1

Introduction

Since ancient times, people have used simple models to understand and predict the

behaviour of natural phenomena. For example, ancient Egyptians used models of

the Nile River to predict flooding, and ancient Chinese used models of the lunar

calendar to predict eclipses. Those were the first examples of simulations. Following

the definition in the Merriam-Webster dictionary, a simulation is “the imitative rep-

resentation of the functioning of one system or process by means of the functioning

of another”.

As technology advanced, so did the complexity of simulations. In the 17th

century, scientists such as Galileo and Isaac Newton used mathematical models

to understand and predict the motion of objects. By the 19th century, scientists

and engineers used increasingly sophisticated simulations to understand and design

complex systems, such as steam engines and telegraphs.

Until then, simulations were carried out on pen and paper or with the help of

mechanical devices, which limited the range of tractable models. The advent of

electronic computers in the 1950s and 1960s made it possible to run much more

complex simulations. By the 1970s, computer simulations were used in various

industries, including manufacturing, finance, and transportation.

The advent of the personal computer in the 1980s made it possible for individuals

and small organizations to run simulations, leading to a significant increase in the

number of them being run. Additionally, the development of dedicated computing

infrastructures, such as supercomputers, has made it possible to run large-scale

2

simulations with great detail and accuracy.

Today, computer simulation is an integral part of many industries and scien-

tific research fields. With the continued advancements in computer technology, it

is almost certain that computer simulation will continue to play an increasingly

important role in helping us understand, design, and optimize complex systems.

The fundamental component of a simulation is its model. A simulation model

is a mathematical (or, in general, formal) representation of a real-world system or

process designed to mimic its behaviour over time. It is created using a set of

equations, algorithms, and rules that describe the system’s components, their in-

teractions, and the mechanics governing their behaviour. In essence, the simulation

model is what is actually being evaluated and run during a simulation.

Choosing the right modelling paradigm is an essential step in formulating a

simulation model. A modelling paradigm is the approach used to represent the

modelled system or process. Different modelling paradigms have distinct advantages

and limits in their capabilities to express the characteristics of the system under

study, and each is suited to different types of systems and scenarios.

The choice of the modelling paradigm can significantly impact how a simulation

is run by affecting the types of algorithms and techniques available for its execu-

tion. Additionally, its choice can also impact the complexity and computational

requirements of the simulation, or affect the ability to analyze and interpret the

simulation results. In this work, we will primarily focus on the discrete-event mod-

elling paradigm, but we will show that many findings also hold, in general, for

simulation applications.

Discrete event simulation (DES) is a modelling paradigm that describes the

behaviour of a system over time by mapping it to a series of distinct events that

occur at specific points in time. These events mark an instantaneous change in

the system’s state, and the simulation’s progression is based on the scheduling and

sequencing of these events. This means that the simulation advances to the next

state only when a new event is processed; no changes are assumed to occur in

between events.

3

In DES models, this is not a limitation since the values of variables between

two events are usually irrelevant for system dynamics or can be trivially computed

in case of necessity. With this approach, the simulation time can repeatedly jump

directly to the timestamp of the next scheduled event.

A discrete event simulation model can be simulated using a simple algorithm

that utilizes a priority queue. The algorithm repeatedly extracts the next event

from the queue, processes it causing an advancement in the simulation state, and

then inserts any new events generated during the processing back into the queue.

These basic operations are illustrated in figure 1.1.

Discrete event simulations are deemed useful because they provide a way to

model complex systems that involve many interacting components and changing

conditions over time in a way that is relatively easy to understand and analyze.

This justifies their use in a wide range of applications, for example:

• Logistics: simulating the flow of products through a factory or supply chain

to optimize production schedules and inventory management.

• Transportation: simulating the movement of vehicles, people, or cargo through

a transportation network to optimize routes, traffic flow, and capacity.

• Healthcare: simulating the operation of hospitals and clinics to evaluate staffing

and resource allocation, and to plan for emergency scenarios.

• Finance: simulating the behaviour of financial markets and portfolios to eval-

uate the performance and risk of investments.

• Defense and security: simulating the operation of military units, weapons

systems, and emergency response teams to evaluate readiness and response

plans.

As technology advances, the demand for simulation performance continues to

rise. Simulation studies often require many runs of increasingly large and complex

models, and applications based on DES are no exception. However, due to the

physical limitations of silicon devices, it is impossible to increase the processing

4

State 4

Time 1.2

State 5

Time 2.5

Event

Time 2.5

State 6

Time 6.2

Event

Time 6.2

Event
processing

Event
processing

Event

Time 8.1

Event

Time 7.4

Schedules

Schedules

Event

Time 6.8

Schedules

Event

Time 6.4

Priority queue of events

Next to process

Event
Time 1.2

Schedules

Figure 1.1. The operations of a sequential Discrete Event Simulation

power of a single CPU core significantly. This is why multi-core CPUs are now

commonly used in desktop computers, smartphones, and even Internet of Things

(IoT) devices. High-performance compute nodes use multiple multi-core CPUs, and

supercomputers comprise many such servers, possibly hundreds of them.

Parallelization of simulations is, therefore, a crucial concern. When multiple

runs of the same simulation are needed, for example for model calibration [170],

executing them simultaneously on the same machine is feasible. However, some

applications may require the outcome of a single simulation run in the shortest

amount of time, or the simulation may be too large to fit in a single computer’s

memory or too slow to run on a single machine. These scenarios render necessary

the parallelization of a single simulation run.

For DES applications, the approach to parallelizing these simulations is through

the use of Parallel Discrete Event Simulation (PDES) techniques [38]. This involves

dividing the simulation model’s state into smaller, autonomous components called

Logical Processes (LPs). These LPs can then be partitioned across multiple comput-

ing units and processed in parallel. Each LP can update its state and schedule new

events, possibly to other LPs, independently of the rest of the simulation. However,

indiscriminately executing events in parallel would yield incorrect results because

an LP could execute an event with a particular timestamp before receiving a mes-

sage with a lower timestamp from another LP; it is, therefore, necessary to ensure

that events are executed in a synchronized manner to avoid any causality violations.

This is achieved through the use of synchronization methods between the LPs. At

5

this point in writing, we can simplistically divide synchronization algorithms into

two distinct categories: conservative and optimistic. The former guarantees that no

portion of the simulation state is ever incorrect. The latter admits transient situ-

ations of incorrectness that are corrected a posteriori by reconstructing a previous

correct state.

Pure conservative methods use the concept of Time Windows. With this ap-

proach, the execution of an LP is temporarily paused if the next event to be pro-

cessed has not been verified as correct. For example, in YAWNS (Yet Another

Windowing Network Simulator) [92], each LP can only execute its pending events

as long as their timestamps fall within a periodically computed virtual time win-

dow. This window starts at the minimum timestamp of the last executed event

among all LPs and lasts for a period of virtual time equivalent to the lookahead

value. The lookahead is the minimum amount of virtual time delay that an LP

can schedule for a new event and is determined by the specific characteristics of

the model. For example, in a computer network simulation, the lookahead can be

the minimum simulated link latency. Without the lookahead information, it is not

possible to use purely conservative methods. Research has devised several variants

and improvements of conservative synchronization methods. Still, they all share the

same fundamental property: an LP would execute and schedule (in parallel) only

the events executed and scheduled by the corresponding sequential simulation.

On the other hand, optimistic synchronization methods do not try to maintain

this property. A noteworthy example is the Time Warp protocol [59]. This approach

allows causality violations to occur, but when inconsistencies are detected, the sim-

ulation is restored to a previous state to ensure system consistency. An incorrect

order of event execution is identified when an LP tries to execute an event with

a timestamp smaller than its last executed one. This event, known as a straggler

message, causes the LP to roll back to a previous safe state and undo the effects of

incorrectly executed events. These events are then re-executed in the correct order

of timestamps. Additionally, events generated during the inconsistent simulation

trajectory are undone by sending anti-messages to other involved LPs. The sim-

ulation state is committed periodically when LPs reach consensus on a consistent

6

conservative

NULL
messages

[16]

YAWNS [91]

Breathing
Time

Buckets
[148]

Window
Racer [7] USE [56]

Breathing
Time
Warp
[149] C

an
ce

lB
ac

k
[6

0]

T
im

e
W

ar
p

[5
9]

optimistic

No rollback No antimessages Reduced
aggressiveness

Figure 1.2. Spectrum of PDES Synchronisation Protocols.

virtual time—the so-called Global Virtual Time.

Put differently, conservative methods require lookahead information but not

rollback support, while optimistic methods require rollbacks but not lookahead.

As a matter of fact, the two just-described PDES synchronization algorithms

are at opposite ends of a much more complex spectrum worth exploring. Effec-

tively, the field of PDES has developed various algorithms that prioritize different

simulation properties, possibly giving up some, but not all, of the conservative guar-

antees. Research has shown that there’s no such thing as the best synchronization

method. The best method can only possibly be defined as a function of several

factors such as the simulated model, the available computing resources, and many

other considerations [134].

Reynolds et al. [134] have proposed an interesting distinction between risk and

aggressiveness of these algorithms, where aggressiveness refers to the likelihood

of executing events out of order, and risk relates to the possibility of producing

and transmitting inconsistent events. In this framework, conservative methods are

considered non-risky and non-aggressive, while the Time Warp protocol is deemed

risky and aggressive.

Many variants to the Time Warp protocol have been proposed in the literature,

showing that optimisation possibilities are many, as shown in Figure 1.2. For exam-

ple, the cancelback protocol [60] makes it possible to limit aggressiveness if certain

portions of the simulation are too far from the commit horizon and the system’s

memory pressure is too high. Breathing Time Buckets [148] is a protocol allowing

events to be sent only if they are guaranteed to be valid, thus being risk-free, at the

cost of drastically reduced aggressiveness. This protocol was extended in Breathing

1.1 Thesis objectives and Contributions 7

Time Warp [149], allowing only events generated by those events that are closest

to the commit horizon to be sent in order to reduce the probability of rollbacks. In

USE [56], on the other hand, aggressiveness is controlled by using a global queue

on a single processing node shared between all worker threads and adopting non-

blocking policies for its management. In this way, a temporary binding between

simulation entities and worker threads is realised to improve performance by at-

tempting to reduce the impact of rollback operations.

As has been shown when comparing optimistic and conservative algorithms [13],

the performance of optimistic algorithms depends heavily on the nature of the spe-

cific simulation model executed. For example, it was shown in [2] that the same

simulation model could benefit from different levels of optimism depending on its

configuration. Jefferson [61] also showed how it is possible and desirable to realise

a simulation platform that can exploit different synchronisation protocols simulta-

neously by performing mode switches at runtime. In this way, it is possible to work

on the various attributes of the simulation to maximise performance while limiting

the possible adverse effects of optimism.

In general, the various synchronization protocols that have been proposed in

the literature focus on event generation, management, and execution to control and

limit risk and aggressiveness, for the purpose of improving simulation performance.

We believe that aggressiveness and risk are only two facets of a more significant risk

concept.

1.1 Thesis objectives and Contributions

In summary, the goal of this work is to present a comprehensive framework for

interpreting and managing the risks and aggressiveness associated with PDES tech-

niques. We have two primary objectives in this regard.

The first objective of our work is more methodological and is implied throughout

the thesis. Our aim is to convince the reader that risk in parallel simulation is a

complex concept that is not solely related to the choice between conservative and op-

timistic synchronization. Instead, it encompasses many aspects which, admittedly,

sometimes are not taken in first consideration. The properties of the simulation

1.1 Thesis objectives and Contributions 8

algorithm, the characteristics of the simulated model, and even single specific im-

plementation details of the simulation engine, all contribute to determining the

position of a simulation run in the vast risk space.

The second objective is more technical, where we demonstrate various methods

to manipulate and exploit the level of risk. For example, in Chapter 7, we illustrate

how to reduce risk to increase fidelity with respect to serial simulation executions,

while in Chapter 6, we show a technique to exploit risk to achieve potentially optimal

tradeoffs in accuracy and performance.

The content of this thesis is partially based on the following publications that

appeared in international conferences and journals:

[1] Piccione, A., Principe, M., Pellegrini, A., and Quaglia, F. (2023b). Approxi-

mated rollbacks: Effective state management in stochastic speculative pdes. ACM

Transactions on Modeling and Computer Simulation. Under review.

[2] Piccione, A., Andelfinger, P., and Pellegrini, A. (2023a). Hybrid speculative

synchronisation for parallel discrete event simulation. In Proceedings of the

2023 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,

SIGSIM-PADS ’23, New York, NY, USA. ACM. To appear.

[3] Piccione, A. and Pellegrini, A. (2023). Practical tie-breaking for paral-

lel/distributed simulations. In Proceedings of the 2023 ACM SIGSIM Conference

on Principles of Advanced Discrete Simulation, SIGSIM-PADS ’23, New York,

NY, USA. ACM. Under Review.

[4] Piccione, A. (2022). Comparing different event set management strategies in

speculative pdes. In Proceedings of the 2022 ACM SIGSIM Conference on Prin-

ciples of Advanced Discrete Simulation, SIGSIM-PADS ’22, page 55–56, New

York, NY, USA. ACM.

[5] Andelfinger, P., Piccione, A., Pellegrini, A., and Uhrmacher, A. (2022). Com-

paring speculative synchronization algorithms for continuous-time agent-based

simulations. In 2022 IEEE/ACM 26th International Symposium on Distributed

Simulation and Real Time Applications (DS-RT), pages 57–66. Winner of the

Best Paper Award.

1.1 Thesis objectives and Contributions 9

[6] Pimpini, A., Piccione, A., and Pellegrini, A. (2022). On the accuracy and

performance of spiking neural network simulations. In 2022 IEEE/ACM 26th

International Symposium on Distributed Simulation and Real Time Applications

(DS-RT). Shortlisted for the Best Paper Award.

The author also contributed to the following publications, which, in varying

degrees, have served as inspiration for the findings presented in this thesis:

[1] Du, X., Pimpini, A., Piccione, A., Meng, Z., Siguenza-Torres, A., Bortoli, S.,

Knoll, A., and Pellegrini, A. (2023). Autonomic orchestration of in-situ and in-

transit data analytics for simulation studies. In Proceedings of the 2023 ACM

SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM-

PADS ’23, New York, NY, USA. ACM. Under Review.

[2] Piccione, A., Bernardinetti, G., Pellegrini, A., and Bianchi, G. (2023). Is your

smartphone really safe? a wake-up call on android antivirus software effectiveness.

In Proceedings of the Italian Conference on Cybersecurity, ITASEC ’23, Bari,

Italy. CEUR-WS.org.

[3] Pellegrini, A., Di Sanzo, P., Piccione, A., and Quaglia, F. (2022). Design and

implementation of a fully transparent partial abort support for software transac-

tional memory. Software: Practice and Experience, 52(11):2456–2475.

[4] Pimpini, A., Piccione, A., Ciciani, B., and Pellegrini, A. (2022). Speculative

distributed simulation of very large spiking neural networks. In Proceedings of the

2022 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,

SIGSIM-PADS ’22, page 93–104, New York, NY, USA. ACM.

[5] Piccione, A. and Pellegrini, A. (2020). Agent-based modeling and simulation

for emergency scenarios: A holistic approach. In 2020 IEEE/ACM 24th In-

ternational Symposium on Distributed Simulation and Real Time Applications

(DS-RT), pages 1–9.

[6] Principe, M., Piccione, A., Pellegrini, A., and Quaglia, F. (2020). Approximated

rollbacks. In Proceedings of the 2020 ACM SIGSIM Conference on Principles of

1.2 Reference Implementations and Benchmarks 10

Advanced Discrete Simulation, SIGSIM-PADS ’20, page 23–33, New York, NY,

USA. ACM.

[7] Piccione, A., Principe, M., Pellegrini, A., and Quaglia, F. (2019). An agent-

based simulation api for speculative pdes runtime environments. In Proceedings

of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simu-

lation, SIGSIM-PADS ’19, page 83–94, New York, NY, USA. ACM.

Finally, as part of the commitment to the research community, the author has

also been involved in the reproducibility initiative, for which the following reports

have been produced:

[1] Piccione, A. (2020). Reproducibility report for the paper: Optimizing discrete

simulations of the spread of hiv-1 to handle billions of cells on a workstation.

In Proceedings of the 2020 ACM SIGSIM Conference on Principles of Advanced

Discrete Simulation, SIGSIM-PADS ’20, page 79–81, New York, NY, USA. ACM.

1.2 Reference Implementations and Benchmarks

All the algorithms and methods that we present in this thesis have been implemented

in ROOT-Sim [103], a parallel/distributed discrete event simulator. The source code

of the different implementations can be found online1. Moreover, whenever possible,

we have opted in the Reproducibility of Computational Results supported by the

ACM. The interested reader can refer to the original papers for additional details

on the specific implementations.

We used a combination of synthetic benchmarks and real-world applications to

experimentally evaluate our proposals. These benchmarks are utilized throughout

this thesis, so we will provide a brief overview of them here.

1.2.1 Synthetic Models

As a first testbed application, we have used the classical PHold benchmark [36]. It

is a synthetic model that creates a series of events exchanged between simulation
1https://github.com/ROOT-Sim/core

1.2 Reference Implementations and Benchmarks 11

entities. Its synthetic workload allows for the controlled adjustment of simulation

parameters, such as the number of entities, events’ delay, and distribution of the

workload across the overall simulation.

We have also relied on a variant of PHold, called PHold Memory, which has been

developed according to the specification in [161]. In PHold Memory, in addition to

the conventional busy loop used to simulate the delay of a simulation event, each LP

allocates a sparse state consisting of several linked data structures at the startup

of the simulation. These data structures are synthetic and maintain a member

indicating their size and a buffer filled with random data. During the execution of

an event, the LP examines its sparse state and updates the contents of a subset of

the buffers by writing additional random data. With a certain probability, one of

the linked data structures is released from the simulation state of an object and sent

to a random recipient as an event-message payload. Upon receiving such an event

message, the destination LP installs a copy of the data structure in its simulation

state and maintains its contents according to the logic described above.

PHold Memory enables capturing additional characteristics of simulation mod-

els related to memory utilisation. In particular, an LP can have a different state

layout and content from other LPs (thus mimicking a scenario with several LPs

representing various real-world entities). Furthermore, data exchange mimics the

traditional behaviour of PDES applications, according to which LPs exchange in-

formation. Finally, the overall size of the simulation model (for all its objects) is

kept constant.

1.2.2 Real-world Models

Regarding real-world applications, we have relied on two variants of agent-based

Susceptible-Infected-Recovered (SIR) [67] models that supports the study of the

spread of epidemics in large populations.

The first model focuses on tuberculosis (TBC). The model was developed at

the Barcelona Supercomputing Center (BSC) [87] to study the spread of TBC in

the Barcelona area. The model is based on agents (individuals) circulating in an

area represented by several LPs. Each object models a region of the geographical

1.2 Reference Implementations and Benchmarks 12

area of interest, and the presence of agents in the region is recorded through the

information stored in the state of the LP that models the region. Specifically, the

object maintains a record for each agent currently residing in the corresponding

region. The different agents model individuals who may be in one of five possible

states based on the dynamics of TBC infection: healthy, infected, sick (i.e. with

active TBC), under treatment and cured. The status variables of individuals refer

mainly to their status in the TBC infection cycle and the time spent in these phases.

Other individuals’ parameters are age, native or immigrant origin, possible risk fac-

tors (e.g. smoking) and possible immunosuppression (mainly AIDS). Once a person

has been infected, the presence (or absence) of lung cavitation is also considered.

For our second benchmark, we utilized a simulation model that examines the

spread of contagion in an epidemic, which was initially introduced in [2]. This

model extends the conventional agent-based formulation of the susceptible-infected-

recovered (SIR) model [77]. To enhance understanding of these models, we will pro-

vide further background on memory-less stochastic processes in Section 3.2, where

we will discuss the challenges in simulating them.

13

Chapter 2

Risk in Parallel Discrete-Event

Simulation

Before delving deeper into the topic of risk in PDES, we need to establish and clarify

some foundational concepts. This chapter will present a straightforward yet effective

formalisation of discrete event simulation models. We will then comprehensively

analyse parallelisation techniques and their associated trade-offs. In addition, we

will examine our concept of risk in greater detail.

2.1 Discrete Event Simulation Fundamentals

In modelling discrete event systems, it is quite common to rely on rich formalisation,

such as Discrete Event System Specification (DEVS) [174]. In the present writing,

a different approach will be taken: a more implementation-centric formalisation

will be adopted, which is deemed sufficient for the specific goals of this study. In

particular, we will show that the naive definition of DES given in Chapter 1 already

hides some problems that this work will instead try to address.

Definition 2.1.1 (Discrete-Event Simulation Model). A DES model M is defined

by the quadruple ⟨S, E, δ, e0⟩ where:

• S is the set of possible model states.

2.1 Discrete Event Simulation Fundamentals 14

For example, in a simulation of a point in a 2-D space, S could be the vector

space R4, with each state configuration being a 4-dimensional vector, with the

first two components representing the position and the latter two representing

the velocity of the point.

• E = R≥0 ×D is the set of possible events.

Event timestamps are represented as non-negative real numbers, and D con-

tains the admissible event payloads. In addition, we define the function

time(e) : E 7→ R≥0 that computes the timestamp associated with an event.

For example, in a computer network simulation [75], D could be N2, with

each contained pair representing a network packet; the first component would

indicate the size in bytes while the second component would encode its content.

• δ(s, e) : S × E 7→ S × {(e0, e1, . . . , en) | ek ∈ E} is the model transition

function.

The transition function δ takes the current model’s state and an event as

input and computes the next state and a sequence of new events intended to

be processed in the future.

• e0 ∈ {0} ×D is the initialisation event.

We also assume that ∀sk, sj ∈ S : δ(sk, e0) = δ(sj , e0). Basically, δ ignores

its first argument when computed for the initialisation event. We call this

computation simulation initialisation.

This definition is a short-hand to avoid explicitly defining an initial state and

a sequence of initially scheduled events.

In this context, the simulation initialisation process is able to deal with startup

from arbitrary simulation states. Specifically, if the simulation must start from a

certain state sk and ei, . . . , ej are the events to initially generate, we can simply

impose:

∀sj ∈ S : δ(sj , e0) = (sk, (ei, . . . , ej)) (2.1)

2.1 Discrete Event Simulation Fundamentals 15

The intuition behind this formulation choice is that the initial state sk is com-

puted in the initialisation, which can possibly enclose warm start, cold start or even

arbitrary calibration activities.

The simulation initialisation operation can also encode, for example, model

configuration activities. In case of stochastic models, also the configuration of

pseudo-random number generators can have an effect on the final outcome of the

model. With this formalization, we assume that pseudo-random number generators

(PRNGs) are part of the model specification. Consequently, PRNGs internal state

is part of the simulation state and their initial seeding is handled by the simulation

initialisation as well. This formalisation encapsulates away the variability associ-

ated to a model, with the aim of focusing on the correctness and reproducibility of

a single simulation run.

With these considerations in mind, to capture an execution of a DES model, we

can use the following;

Definition 2.1.2 (Simulation Trajectory). A sequence of simulation states and

events T = (si, ei+1, si+1, . . . , ej , sj) is a simulation trajectory if it satisfies the fol-

lowing two conditions:

• ∀k ∈ {i, . . . , j − 1} : time(ek) ≤ time(ek+1)

the sequence of events (ei+1, . . . , ek) is ordered by non-decreasing timestamp.

• ∀k ∈ {i, . . . , j − 1} : δ(sk, ek+1) = (sk+1, (el, em, . . . , en))

the states sequence (si, si+1, . . . , sj) is generated by applying the transition

function on the sequence of events (ei+1, . . . , ej).

Given a single transition δ(sk−1, ek) = (sk, (el, em, . . . , en)) contained in a simu-

lation trajectory T , we define as outk the sequence of generated events (el, em, . . . , en).

Now, given a simulation trajectory T = (si, ei+1, si+1, . . . , ej , sj), we define the fol-

lowing two multi-sets:

• the nth processed events multiset defined as procn =
⋃n

k=0 {ek}

• the nth generated events multiset defined as genn =
⋃n

k=0 outk

2.1 Discrete Event Simulation Fundamentals 16

Note that with this formalization it’s possible to arbitrarily construct simulation

trajectories. Given a sequence ordered by timestamp of events e1, . . . , en picked

arbitrarily from E, we can be evaluate it over δ starting from an arbitrary state sk.

We would then get this simulation trajectory T∗:

T∗ = (sk, e1, sk+1, e2, . . . , en, sk+n (2.2)

Clearly, when executing M with the intuitive semantics of a correct simulation,

T∗ may never occur — in this case we would call T∗ an inadmissible trajectory.

Put differently, we can use the following definition to determine whether a certain

trajectory is correct with respect to the definition of a certain simulation model M .

Definition 2.1.3 (Simulation Correctness). Finally, a simulation trajectory T =

(s0, e1, s1, e2, s2 . . .) is a correct simulation of model M if it satisfies:

• (s0, out0) = δ(s, e0)

Note that s is irrelevant, given the properties of the simulation initialisation.

• ∀ei ∈ T : ei ∈ (geni−1 − proci−1)

Each event in the trajectory has been generated in the past and has not already

been processed.

• ∀ei ∈ T, ∀eext ∈ (geni−1 − proci−1) : time(eext) ≥ time(ei)

Given an event contained in the trajectory, every other event that could have

been processed has a higher or equal timestamp.

This formalisation is close enough to the operation of a simulation engine. We

must now distinguish between logical time and wall-clock time. The former refers

to the internal time associated with the simulation model, which is indicated by

the timestamps of the events. In contrast, the latter refers to the actual amount

of time the software engine requires to perform the computations involved in the

simulation.

Our formalisation states that a simulation must commence with its initialisation

and must process solely those events produced during the execution of the model.

2.1 Discrete Event Simulation Fundamentals 17

Proper handling of events is fundamental, particularly concerning the logical time

at which they occur. We enforce that the events with the earliest timestamps be

considered first to ensure that all the events may be processed without incurring

causality violations. This approach aligns with the proposal in the seminal paper

in [73], which can produce a conservative-optimal Time Warp simulation and will be

a fundamental building block to parallelise DES, as we shall discuss in Section 2.2.

By our definition, a transition function’s continuous generation of new events

can result in an indefinitely-long simulation trajectory. However, in practical terms,

simulation practitioners are usually only interested in the computation until a cer-

tain logical time t specified in advance. Beyond that point, the computation may

be terminated.

We also note that if a model admits a correct simulation, the transition function

cannot generate events with a lower logical timestamp than the processed event

when evaluated over an event in the simulation trajectory. This makes sense since

violating this property would mean that a future state can influence a past state,

which is absurd for the totality of models imitating the real world.

A different formulation of the transition function may have avoided this problem

altogether. Unfortunately, this is not feasible in practice; a simulation engine cannot

impose and, most importantly, verify constraints on arbitrary model code.

The definition of the DES model introduced earlier highlights other problems

and limitations that must be tackled. The two most significant ones are:

• Multiple, possibly correct simulations are allowed when multiple events have

the same timestamp. In practice, what should a simulation engine do in such

cases?

• The transition function of a correct model is expected to be well-behaved

during the simulation trajectory. However, if, for practical reasons, some

parts of the model execution are approximated, for example, by computing

speculative trajectories, what can we expect from the simulation engine?

These problems arise from the interaction of general simulation algorithms with

arbitrary model implementations. In practice, a model implementation may not

2.2 Parallelizing DES 18

even deliver correct results if its events with the same timestamps are executed in

some unexpected order. This is another facet of risk in simulation: indeed, a risky

simulation engine may ignore the occurrence of same-timestamp events or assume

that the model is always well-behaved, regardless of the events processed, even if

they are possibly outside the correct simulation trajectory.

It is worth mentioning that additional engineering limitations need to be consid-

ered when transitioning such a formal simulation model into a computer program.

One such limitation is the limited precision of the floating point representation

of real-valued timestamps [47]. Although this may appear to be a separate issue

from the formalism of simulation, as we will show, it can significantly impact the

simulation performance and results.

2.2 Parallelizing DES

Simulation studies constitute increasingly sophisticated processes involving large-

scale models and numerous simulation experiments, often computationally inten-

sive. To support the execution of these models, relying on highly parallel and

distributed High-Performance Computing (HPC) systems is imperative. HPC sim-

ulations make use of high-performance computing systems, such as massively par-

allel supercomputers, which enable unprecedented levels of accuracy in models and

make previously intractable problems tractable by exploiting the enormous available

computing power. Such simulation systems can allow for effective what-if analysis,

as alternative scenarios can be explored through multiple concurrent simulations.

Indeed, if from the point of view of computing resources, we are now able

to exploit exascale architectures [28, 29] thanks to extraordinary worldwide re-

sults [71, 41, 83, 141], it is evident that the reference implementation simulation

engines should be aligned to the requirements of the new architectures, something

that has already been done for the previous transition iteration towards petascale

systems [163]. To efficiently do so, the above-mentioned formalisation of the DES

model must be readapted to make model implementations friendly to exascale sim-

ulation engines. Conveniently enough, the traditional partitioning strategy proper

of PDES [38] can be leveraged for this purpose.

2.2 Parallelizing DES 19

To efficiently simulate large models, it is essential to partition the model’s state

into distinct Logical Processes (LPs) to achieve this. Each LP represents an indepen-

dent unit comprised of its own internal state, and the simulation can be advanced

by evaluating the behaviour of all LPs. Through the partitioning of the model into

LPs, inter-LP communication and events computation can be easily distributed on

the computing elements of a parallel machine.

Partitioning the model into LPs may require effort from the model developer.

However, in many cases, the partitioning can be done naturally by modelling each

system’s independent physical process as a single LP. Physical process refers to a

clearly identifiable, independent object, system, or process in the original model.

For example, each server and router could be modelled as a separate LP in a com-

puter network simulation. In some cases, determining the optimal partitioning of

the model into LPs is not so obvious. For instance, in the case of a traffic simula-

tion [172], the most intuitive partitioning may be individual vehicles. Still, the most

efficient partitioning in terms of performance usually involves operating on the road

network, with LPs being roads and intersections [98].

Therefore, selecting LPs in a simulation model can be an interesting task, as it

involves a trade-off between simulation fidelity, computational efficiency, and ease

of programmability. A finer partitioning of the model into LPs may result in more

detailed simulations but also carry a higher event handling overhead. On the other

hand, coarser partitioning may result in less accurate simulations, with more limited

space for parallelisation but lower event handling demands. Nevertheless, in this

thesis, we assume that the models have been partitioned into a reasonable set of

LPs, as our focus is on the simulation algorithms themselves.

The previously established formalisation of a discrete event model can be ex-

panded to accommodate multiple Logical Processes (LPs) rather than a single,

“monolithic” state. A model is now comprised of n LPs (LP0, LP1, . . . , LPn−1), each

identified by its own unique identifier and defined by the quadruple ⟨Sk, Ek, δk, ek
0⟩.

Therefore, for a given LPk we have that:

• Sk is the state space of the logical process.

2.2 Parallelizing DES 20

• Ek = R≥0 × {k} ×Dk, where Dk is the set of possible event payloads.

This is the set of events that the LP can process; the first component of the

triple represents the event timestamp, while the second component encodes

the LP identifier. Compared to the previous formalisation, we have that

E =
⋃n

j=1 Ej . We note that if ∀kEk = E, then the model is uniform, i.e. all

LPs can process the same set of events. While this is common for many models,

a proper general-purpose simulation engine cannot base its organisation on

this assumption.

• δk(s, e) : Sk × Ek 7→ Sk × (e0, e1, . . . , en) | ek ∈ E.

This is the transition function of LPk. It only consumes events destined for

LPk, but can also generate events destined for other LPs.

• ek
0 is the initialisation event of LPk.

In a similar way, we can redefine the concept of simulation trajectory. First,

we define a simulation trajectory as a set of per-LP trajectories, where each LP

trajectory is a sequence Tk = (sk
i , ek

i+1, sk
i+1, . . . , ek

k, sk
k) that satisfies the following

two conditions:

• ∀j ∈ {i, . . . , k − 1} : time(ej) ≤ time(ej+1)

the sequence of events (ei+1, . . . , ek) is ordered by non-decreasing timestamp.

• ∀j ∈ {i, . . . , k − 1} : δ(sj , ej+1) = (sj+1, (el, em, . . . , en))

the states sequence (si, si+1, . . . , sk) is generated by applying the transition

function on the sequence of events (ei+1, . . . , ek).

A global simulation trajectory T can be derived from the various Tk as follows.

The function time(·) used above can be defined as time : E 7→ R, which induces a

strict weak order ≺t on E by setting e1 ≺t e2 if and only if time(e1) < time(e2).

Then, we can define T as:

T =
n−1⊔
k=0

Tk (2.3)

2.2 Parallelizing DES 21

where ⊔ denotes the disjoint sequence union, an extension of the sequence union

operator [130] that preserves the strict weak order ≺t of all elements belonging to

Tk in T .

Note that this definition is not able to generate a unique trajectory T from

the various Tks, because the weak total order defined above implicitly defines the

equivalence e1 ∼ e2 if and only if time(e1) = time(e2). This means that multiple

admissible simulation trajectories T can be obtained from a finite set of per-LP

timelines Tk. This problem has a severe effect on the implementation of a parallel

simulation runtime environment, with an impact also on the guarantees it can pro-

vide to the user and the modeller. These issues will be discussed in more detail in

Chapter 7.

Equation (2.3) defines the simulation trajectory without explicitly defining the

concept of correctness, which was clearly outlined in Definition 2.1.2 for sequential

simulations. While it is possible to adapt the sequential version of correctness, this

approach still results in multiple admissible global timelines T . The most effective

way to define the correctness of T is to compare it with the timeline T̄ generated

from a sequential execution of the same model. This concept is similar to the notion

of linearizability introduced by Herlihy and Wing in [54].

Referring indirectly the concept of linearizability, we can provide an informal

definition of correctness for parallel executions as the existence of an equivalent

correct serial execution. Therefore, as long as a parallel simulation produces a

trajectory that can be generated by a correct serial engine, we can consider it to be

correct.

Later in this work, we’ll show that the existence of a correct simulation trajectory

in the model is a necessary but not sufficient condition for the correctness of a

parallel DES run. The existence of a correct simulation trajectory is only sufficient

to guarantee correctness of a sequential simulation. Depending on the kind of

parallel simulation algorithm, more conditions must be imposed on the behaviour

of model M .

Thus, if we have a global simulation trajectory T of a DES model consisting of

LP0, LP1, . . . , LPn−1, we can conclude that if T was generated by a correct serial

2.2 Parallelizing DES 22

simulation, then the individual trajectories T0, T1, . . . , Tn−1 created by selecting, in

order, the events designated for LP0, LP1, . . . , LPn−1 from T must also be correct.

We note that in this case though, the correctness of an individual LP’s trajectory

at any given point in logical time will depend on the past defined on T which may

include other LPs.

Therefore, a significant problem arises in the way of coordinating the execution of

the LPs to maintain the illusion of a single, sequential simulation. This coordination

is achieved through the use of synchronisation algorithms.

A synchronization algorithm is responsible for ensuring that the LPs are exe-

cuted in a manner that preserves the causality of events. This means that simulation

events occur in the same order as they would in a sequential simulation, thereby

achieving correctness according to our informal definition.

In addition, using a suitable synchronisation algorithm reduces communication

overhead between LPs, leading to a more efficient and scalable simulation. Without

a properly designed algorithm, the communication overhead required for mimicking

the results of a sequential simulation would significantly impact performance; a

naive simulation engine would have to synchronise its processing units every time a

new event is processed.

Therefore, we will now introduce the two main classes of algorithms that allow

the parallel execution of a discrete event simulation model.

2.2.1 Conservative Synchronisation

Conservative synchronisation manages event processing among different LPs such

that the state of the simulation always remains consistent. The process is considered

“conservative” because it ensures that computations are always carried out without

taking any risk, i.e. they are only performed when it is proven safe to do so, even

if this implies that the simulation may not be as efficient as possible.

An essential requirement of conservative synchronisation is the lookahead, which

refers to the amount of future time that the simulation is permitted to foresee when

executing events. Essentially, the lookahead sets a guaranteed minimum interval

of logical time before the next event is allowed to occur on an LP. The purpose of

2.2 Parallelizing DES 23

the lookahead is to ensure that events are executed in the correct order without

explicitly synchronising the simulation after each processed event.

For example, the YAWNS algorithm [94, 91] is a conservative synchronisation

algorithm that uses a window mechanism to ensure the consistency of the simulation

among multiple LPs. The CMB algorithm [16], on the other hand, relies on NULL

messages to notify connected LPs that no new event will be scheduled up to a certain

simulation time—this approach requires knowing LP interconnections beforehand.

The YAWNS window mechanism works by periodically defining a time window,

a logical time interval in the simulation, within which events can be executed. When

an LP executes an event that would advance its local time beyond the end of the

time window, it must wait until the next time window begins. The size of the time

window is determined by the lookahead value, while its start is computed as the

minimum timestamp reached by the LPs in the previous windows. This value is

called Global Virtual Time (GVT) [84].

All the computations done during event processing are final and contribute to

the simulation result. This desirable property comes at the cost of periodic block-

ing synchronisation. Indeed, whenever a time window is nearing its completion,

processing units need to wait for the slowest one, usually using a barrier primitive.

The computation of the GVT also requires another synchronisation step.

This algorithm is a worthy choice if the model exposes a large enough lookahead

value; conversely, if the lookahead value is too small, the synchronisation activities

between time windows will become frequent enough to result in an overhead that

would outweigh every other benefit.

2.2.2 Optimistic Synchronisation

Optimistic synchronisation [59] is a different approach to synchronising the process-

ing of events in parallel discrete event simulations. Unlike conservative synchroni-

sation, which requires LPs to wait for each other before executing events, optimistic

synchronisation allows them to proceed with their events even if they may lead to

inconsistent states, with the assumption that the simulation will eventually converge

to a consistent state.

2.3 The Notion of Risk 24

The critical aspect of optimistic synchronisation is the utilisation of a rollback

mechanism. This mechanism enables LPs to undo their computations if an inconsis-

tency is detected a/posteriori. An inconsistency can occur when a LP has to execute

a straggler event, i.e. an event with a lower timestamp than its last executed event.

The advantage of optimistic synchronisation is that it allows for event processing

to potentially go further in a given span of wall-clock time compared to conservative

synchronisation. Temporary deviations from the correct simulation trajectory are

acceptable because, if needed, the rollback mechanism can restore the simulation to

a previous, presumably correct, state.

Implementing optimistic synchronisation algorithms requires the support of a

rollback mechanism, which can impose significant overhead on the system, both in

terms of performance, memory utilisation and implementation effort [59, 35]. The

rollback mechanism may require LPs states to be periodically checkpointed [104],

or, in the alternative, the model code may need to be instrumented or manually

modified to implement reverse computation capabilities [15].

In addition to the implementation costs, optimistic synchronisation algorithms

can also result in sub-optimal performance if the rollback mechanism is overly

utilised. This can occur in models with tightly connected components [4] or highly

dynamic and difficult-to-balance simulation loads. These factors can cause the

rollback mechanism to be abused, resulting in a situation in which most of the

computing time is spent in checkpoint and restore operations.

2.3 The Notion of Risk

In Chapter 1, we briefly presented the concept of risk and aggressiveness in PDES.

As anticipated, we believe that these two concepts are actually two facets of the

same phenomenon, which for backward compatibility with the literature, we will

generically call risk. Risk, revisited according to the framework of this thesis, is not

to be understood as a phenomenon to be steered clear of but rather a simple dynamic

intrinsic to speculative execution environments that must be carefully managed but

which, at the same time, can be exploited. In particular, it can make it possible

to reduce the time required to obtain results from one (or a set of) simulations by

2.3 The Notion of Risk 25

working on how far these results deviate from what would be obtained–with more

significant time cost–by running a sequential simulation. In particular, we define

the notion of risk as follows.

Definition 2.3.1 (Risk in Speculative Discrete-Event Simulation). Risk is the nat-

ural propensity of a runtime environment for speculative simulation to attempt to

maximise throughput by sacrificing the accuracy of results in a manner as compat-

ible as possible with the modeller’s expectations.

We note immediately that this loose definition of risk fuses together the concepts

of aggressiveness, accuracy and risk identified in the seminal paper [133]. Further-

more, it clearly links the concept of the execution environment with the modeller

since we believe that the development of any synchronisation algorithm, runtime

optimisation, or API should be designed with the ultimate goal of simulation that

we introduced at the beginning of Chapter 1 in mind: to enable the understanding

and prediction of the behaviour of natural phenomena in the simplest possible man-

ner. The author has a strong conviction that without the centrality of the model

and the performance execution of models, any scientific approach will be of little

use.

As mentioned above, our definition of risk is rather loose, leaving room for

multiple interpretations, both conceptual and implementational. This is done on

purpose since the boundaries of the concept of risk can be relatively broad, and

similarly its effects. Indeed, we claim that dealing with risk in parallel simulation

is a worthwhile endeavour even if it has the potential for causing:

• correctness issues, such as deadlocks, crashes, and inconsistent outputs, which

may result from the corruption of the simulation process [93].

• poor simulation performance due to excessive memory usage, wasted work,

inefficient CPU utilisation, and excessive wait times for shared resources [36].

• divergence from the results of the corresponding sequential simulation, i.e.

producing an output which is correct and coherent with the model but not

reproducible by the theoretically equivalent sequential simulation [99].

2.3 The Notion of Risk 26

Although the concept of sacrificing performance in exchange for some degree

of risk may seem enticing, this idea of risk in parallel simulation may not seem

reasonable. One could argue that:

• correctness is a binary property; something is either correct or not. Synchro-

nisation protocols are provably correct; therefore, a correctly implemented

simulation should never encounter such an issue, while an incorrect one is to

be discarded.

• if enough processing cores are used, a parallel simulation will always be faster

than a sequential one, or at least will not be slower.

• it’s redundant to mention divergence as a separate concept since a parallel

simulation that produces different results than a sequential one would be in-

correct, therefore, useless.

Unfortunately, transitioning from theoretical concepts to practical objects is

not always straightforward. In the real world, we are not dealing with abstract

algorithms and properties but with concrete code implementations, real computer

architectures, and real needs.

Regarding performance, experience and research teach that simply using more

cores in a parallel simulation may not always improve performance and that specific

models may even perform worse than the sequential counterpart if their specific

characteristics are not carefully taken into account [2].

As we implied previously, developing a parallel simulation that exactly matches

the results of the sequential simulation is a challenging task and may require an

unnecessary trade-off in performance. Indeed, a divergent simulation can still be

helpful in certain practical situations [120]. Even a completely non-deterministic

simulation—producing different outputs without any change in the input—can suf-

fice for some applications.

Additionally, as our proposed formalisation highlights, a reliable DES model

must only behave correctly along its true simulation trajectory. The outcome of

any other trajectory is not necessarily defined. This challenges high-performance

2.3 The Notion of Risk 27

optimistic PDES engines that may process inconsistent or out-of-order events. To

address this, executing the model’s code inside a sandbox may be necessary to ensure

correctness [23], although this can significantly impact performance or versatility.

Failure to take precautions can result in undefined behaviour, such as divisions

by zero, heap corruption, or deadlocks, for example, when processing events that

require resources not-yet-released by some not-yet-delivered events [93].

In a way, this notion of risk in parallel simulations can be compared to financial

risk. Just like in finance, the user must make informed decisions based on their

available resources, in this case, computing power, and their willingness to tolerate

risk, which corresponds to the requirements of the simulation in terms of accuracy

and performance. Risk is a multidimensional concept that depends on the market—

in our analogy, the simulation model. Similar to financial investments, it is possible

to use all the available resources and underperform by making poor decisions, just

as it might be more advantageous not to use all available resources and allocate

them elsewhere.

In the next Chapter, we will present two compelling use cases for two very

different instances of large-scale simulations that we believe would greatly benefit

from the considerations about risk we have discussed.

28

Chapter 3

Case Study: The Effect of Risk

in Real-World Simulations

To further highlight the importance and opportunities of carefully managing risk, in

this Chapter, we present two case studies that exemplify the potential consequences

if proper caution is not taken. We have selected as use cases two different real-

world simulation models that exhibit very interesting behaviour and come from

very distant domains, namely epidemics and machine-learning/brain simulation.

These use cases are interesting because, depending on their configuration, they

have a behaviour that is easily parallelizable by traditional Time-Warp-based simu-

lations, or they can easily thrash them. Moreover, concerning the brain-simulation

model, the events have a very fine grain, and the interconnections can be extremely

dense, making it hard to simulate optimistically.

Overall, this Chapter introduces some early results obtained on the path to the

construction of the techniques presented in this thesis and showcases some of the

building blocks that will be exploited in later chapters to manage and handle risk.

3.1 Spiking Neural Networks

Spiking Neural Networks (SNNs) have grown significantly in recent years due to

their versatility and expressiveness [43]. This particular type of Artificial Neural

Network (ANNs) is helpful in various domains, including neuroscience, medicine,

3.1 Spiking Neural Networks 29

artificial intelligence, and psychology, as they highly accurately mimic biological

neural networks. Additionally, compared to traditional neural networks, SNNs have

a lower energy consumption when implemented in hardware, which has led to the

development of neuromorphic chips [48, 113, 118]. These chips aim to strike a very

favourable balance between energy efficiency and performance in large-scale parallel

computing systems.

Studying the behaviour of SNNs is typically done through simulations because

analytical treatment is only possible for specific, simplified cases [11]. In SNN

simulations, neurons are modelled individually, and they interact with each other

through the exchange of spikes. The changes in a neuron’s state can result in

the emission of a spike delivered to connected neurons. To maintain consistency,

a neuron’s state can only be updated after it has received all spikes with smaller

timestamps.

SNNs are more complex to work with than traditional ANNs because they en-

code information in a temporal domain, known as the spike train [9]. The output of

an SNN is a series of impulses that convey information through their timing rather

than a set of values computed impulsively, as in other ANNs. Additionally, the con-

nections between neurons can be arbitrary, and a single neuron can receive multiple

spikes in a short simulation window, making SNNs a part of the continuous-time

tightly-coupled models family, which is challenging to simulate [132, 44, 3].

In order to handle the complexity of this type of simulation, the continuous time

is discretized, and conservative methods are used for time-stepped simulations [65,

94, 32]. This involves monitoring the state of the simulation at set intervals and

determining if new events should be generated based on the observed conditions.

The advantage of this approach is that it allows for using existing conservative

methods to efficiently support the simulation on multiple hardware instances [153,

70, 19, 173].

However, the conservative time-stepped approach is not without limitations.

Firstly, simulation algorithms for SNNs generally use a fixed time-step for both

simulation and integration, which can result in approximate results, i.e. the simu-

lation may miss some spikes, even when subthreshold dynamics (the neuron state

3.1 Spiking Neural Networks 30

evolution in the absence of spikes) are linear [51]. Secondly, the time-stepped nature

of SNN simulation algorithms has favoured using easy to compute neuron models,

for instance, by numerical integration with the Euler method. Finally, reducing

the time step to improve the accuracy of results would result in significant perfor-

mance penalties. Recent studies [117, 115], however, have shown that the use of

Parallel Discrete Event Simulation (PDES) methods [35] with optimistic synchro-

nization [59] offers improved performance and accuracy. PDES can efficiently skip

time intervals during which there are no interactions between neurons and capture

the exact simulation time at which a neuron may spike. Additionally, an optimistic

synchronization algorithm such as Time Warp [59] can capture the parallel nature

of SNNs, where groups of neurons may spike at different times.

Here, we evaluate the performance and accuracy of modern time-stepped sim-

ulation algorithms [42] by varying the time step values. Additionally, we compare

these outcomes with a state-of-the-art simulation algorithm for SNN, which utilizes

the Time Warp synchronization algorithm [115]. By working on the risk concept

introduced in this thesis, these results show how it is possible to obtain speculative

simulations that provide superior performance results to traditional techniques that

have been studied for decades, particularly for large networks.

In particular, we intend to show that, although possibly anti-intuitive, the sig-

nificant risk associated with using the time-stepped approach in simulations may be

higher than that obtainable with speculative DES. Specifically, even a basic model

can exhibit a substantial divergence between the sequential and timestep-integrated

simulations. Therefore, the simulation risk is not exclusively related to the choice

between conservative and optimistic synchronization. Every design decision in a

simulation is a tradeoff between performance, correctness, and accuracy. In the

context of spiking neural networks, we contend that the conventional approach is

being employed without the necessary considerations of correctness and accuracy.

Now, we introduce some more background on SNNs, which is necessary for a

better understanding of the work.

3.1 Spiking Neural Networks 31

I(t)
I(t)

Cm

Vr

R+
+

+

+

+

+

+

+

+
+

+

+

-

-

-
-

-

-

-

-

-

V(t)

Figure 3.1. A neuron is enclosed by the cell membrane (the circle). When it receives
a positive input current I(t), it increases the electrical charge inside the cell. The cell
membrane acts like a capacitor in parallel with a resistor, which is in line with a battery
of potential Vr.

3.1.1 Background on Spiking Neural Networks

SNNs utilize spiking neurons that communicate via synapses, transmitting signals

in the form of spikes. Spiking neurons and their connecting synapses are stateful in

nature. These neurons fire only when their membrane potential surpasses a specific

threshold value, leading to the generation of a spike. This spike is propagated to

other neurons connected to the neuron, causing their membrane potential to increase

or decrease over time. However, the spike passes through synapses, which have a

weighted and time-varying nature introducing a transmission delay.

Spiking-neuron models are inspired by the behaviour of biological neurons, which

respond to and communicate through electrical signals, allowing them to be mod-

elled as circuits. The plasma membrane properties of neurons give rise to a mem-

brane capacitance Cm, and the potential V (t) at time t across the membrane trig-

gers the propagation of an action potential when it reaches a threshold value of Vth.

Without stimuli, the membrane potential returns to a resting value Vr. Following

the generation of an action potential (also known as firing or spiking), an enzyme

restores the neuron to its resting state over a period of time, known as the refrac-

tory period τref , during which the membrane does not depolarize and the neuron

is unable to spike.

In order for the membrane potential of a neuron to increase, it requires an

input current I. This current is typically the sum of the stimuli I(t) received from

the neuron’s presynaptic neurons, as well as any external current Iext that may

3.1 Spiking Neural Networks 32

be applied (e.g. for experimental purposes). To clarify, the presynaptic neurons

are those whose outputs are received by the considered neuron, while postsynaptic

neurons are the ones that receive spikes from the neuron.

The subthreshold dynamics of a neuron refer to its behaviour before it reaches

the threshold value for firing a spike. In other words, it describes the membrane po-

tential changes and current flows that happen when the neuron processes incoming

signals but does not generate an output spike. A neuron model usually expresses

them as a set of differential equations.

The most commonly-used neuron model in large SNN simulations is the Leaky

Integrate and Fire (LIF), which is depicted in Figure 3.1. The subthreshold dy-

namics of the neuron are described by Equations (3.1), where V (t) is the membrane

potential and I(t) is the current flowing inside the neuron:

dV (t)
dt

= −V (t) + Vr

τm
+ I(t) + Iext

Cm

dI(t)
dt

= − I(t)
τsyn

(3.1)

The membrane time constant and the synaptic time constant are represented by

the positive constants τm and τsyn, respectively, as described in [9]. Further details

on the meaning of all neuronal parameters can be found in this reference.

Postsynaptic neurons receive spikes with a delay in virtual time, and the synapse

model determines the effect of the spike in terms of the potential delivered to the

postsynaptic neuron. In most PDES simulations, a simple synapse model called

jump synapse is used, which has a fixed transmission delay ttrans and weight w.

When a spike is transmitted through a jump synapse, it immediately increases the

postsynaptic neuron’s V (t) by w.

The exponential synapse, also known as instantaneous raise/exponential decay

synapse, is a more sophisticated synapse model in which spikes cause an instan-

taneous increase in the neuron’s input current rather than acting directly on the

membrane potential. The current’s effects are then gradually applied over time to

the membrane potential, similar to the charging of an electronic capacitor, while

its intensity decreases exponentially. This implies that the neuron may spike at

some future time. If no analytical solution for spike timing is available, it must be

3.1 Spiking Neural Networks 33

Algorithm 1 Time Stepped Simulation Algorithm.
1: t = 0
2: while t < tend do
3: for each neuron do
4: process incoming spikes
5: advance neuron dynamics by dt
6: for each neuron do
7: if V (t) > Vth then
8: reset neuron membrane
9: for each connection do

10: send spike
11: end for
12: end if
13: end for
14: t← t + dt
15: end for
16: end while

determined numerically and enqueued as a future event.

3.1.2 Simulation Algorithms for SNN

This section illustrates the inner workings of the two SNN simulation algorithms

we consider in the assessment we are carrying out for the present case study.

Time Stepped Simulations

The majority of SNN simulations, such as those implemented by the well-known

NEST [42] and Brian [150] simulators, depend on time-stepped algorithms, the

high-level pseudocode for which may be found in Algorithm 1.

This kind of simulation approach is simple. Indeed, all neuron state updates

are evaluated periodically by processing the incoming spikes. These spikes increase

membrane potential, which is again evaluated numerically in the interval dt. After

updating all neurons’ states, the simulation algorithm checks which (if any) have a

membrane potential Vm that has reached the spiking threshold. If so, spikes are sent

from each ready-to-spike neuron to the respective postsynaptic neurons. In order

to account for synapse delays, the typical strategy is to rely on some sort of future

event queue, typically implemented as a circular array [9], that allows keeping track

of what spike should be delivered to what neuron at what time(step) in the future.

The time complexity of this simulation algorithm can be easily computed. The

first inner loop accounts for neuron state updates. If there are n neurons in the

3.1 Spiking Neural Networks 34

network, the loop has an O(n) cost. Considering that the physical time of the

simulation is divided into intervals of the same size, the cost is O(n/ dt) per unit

of physical time. Concerning the second inner loop, if we call f the average firing

rate of neurons per physical-time unit, assuming that, on average, each neuron is

connected to s other neurons, the cost is O(fns). Under general assumptions, it

cannot be stated which of the two components impacts the overall cost more. We

can therefore conclude that the cost of this algorithm per physical-time unit is:

O

(
n

dt
+ fns

)
. (3.2)

In this computation, we have assumed that activities related to the computation

of neuron dynamics and spike delivery are negligible. However, depending on the

specific used neuron model and the complexity of the topology, it might not always

be the case. Anyhow, Equation (3.2) indicates that the overall cost of the time-

stepped simulation grows with the network’s size and the simulation’s precision,

which is exactly one of the key points we assess experimentally in this Chapter.

An additional issue with the time-stepped simulation algorithm is that spike

timings are aligned to a grid defined by the time steps. Therefore, the final result

approximates the actual behaviour of the network, even when the numerical meth-

ods used to compute differential equations can provide much more accurate results.

Similarly, since the check on the threshold is carried out only at the time steps (see

line 7 in Algorithm 1), some spikes may be missed. This is the second key point

that we assess experimentally in this Chapter.

Speculative Discrete-Event Simulations

For speculative DES executions, we consider the organization of the model discussed

in Section 2.2. According to the simulation algorithm described in [115], each neuron

is mapped to a single LP.

Spikes are represented by messages, which are delivered to the destination LP.

Since a single neuron can be connected to multiple neurons, injecting one spike event

for each destination LP could easily thrash the simulation due to the significant time

3.1 Spiking Neural Networks 35

neuroni

j

WCT

WCT13

5

spike
events

k WCT7 17 18

10

16

17

spike
message

17

spike
message

inconsistent timeline: the
retractable message violates
causality ordering.

Rollback Execution:
recovering state at
simulation time 7

neuron

neuron

15

16

retract
message

16

retract
message

16

timeline still consistent: spike at time 17
was not processed yet, so the event can
be simply moved early in the future.

Figure 3.2. Retractable Spikes Naïve Scheme. A neuron can decide to change the time of
a spike already injected in the system. Receiving neurons might have to roll back part
of their execution.

spent on event management. Therefore, cross-neuron communication is supported

by a form of publish/subscribe events: a spiking neuron will inject a single instance

of the spiking event into the system. All destination neurons will subscribe to the

events generated by the source one, and the underlying runtime environment will

deliver a copy of the spiking event, thus significantly reducing the burden on the

messaging subsystem.

According to the traditional Time Warp protocol, events are executed indepen-

dently of their safety. It means that a destination neuron could receive a spike after

the simulation time at which it had to be processed. In this case, the state of the

neuron is rolled back to a previous time instant, and execution is resumed from a

consistent snapshot. During rollback execution, inconsistently-generated spikes are

undone by generating so-called antimessages. An antimessage reception could cause

additional cascading rollbacks.

Given the nature of the spikes, it is impossible to consistently predict the spiking

time given the current state of the neuron. Indeed, a more accurate spiking time

could be determined after the neuron receives an upcoming spike. A simple solution

3.1 Spiking Neural Networks 36

at the model level could be to inject in the system tentative spikes, i.e. events that

could be associated with some per-neuron epoch counter. Every time the neuron

state is updated due to the receipt of an incoming spike, the new spiking time

could be re-computed. A new spiking event (superseding the previous one) could

be injected into the system. Anyhow, this naïve approach is unlikely to scale due

to the large amount of extremely-fine grained simulation events that typically cause

poor performance in Time Warp simulations [36]. The performance degradation of

this scheme stems from the strict decoupling between the model and the runtime

environment in Time Warp simulations. In this scenario, the model cannot inform

the runtime environment that a tentative spiking event should be removed from the

system. The model can only logically discard it once it is delivered for execution.

For this reason, in [115], the authors introduce the concept of retractable events,

i.e. events that the model can mark as tentative. Logically speaking, this support

allows implementing tentative spike events, according to the scheme depicted in

Figure 3.2. After a neuron has sent its spikes, a new event could update the time

of said spikes. This is the case, e.g., of new spikes being delivered to the neuron,

which consequently charges faster, thus reaching the threshold Vth earlier. In this

case, the neuron can inform the receiving neurons that the spike should be dealt

with earlier. At the destination neurons, if the spike has not been processed yet, the

event is moved earlier. Conversely, if it has already been processed, a traditional

rollback operation will restore the neuron state to a consistent timestamp, and the

new spiking time will be considered in the simulation.

The problem with this naïve approach is that the total number of rollbacks can

still be high. Therefore, a straightforward optimization is to deal with retractable

events locally at a single neuron. A neuron locally determines its next firing time

and schedules to itself a tentative spike-firing event. This tentative firing event is

managed as a regular firing event (i.e., the neuron sends the spikes to all destination

neurons upon receiving it) if no change in the firing time occurs. Conversely, if

the neuron model determines a new timestamp for the firing event, the runtime

environment will accordingly act on the message queue. In particular, if the firing

event is not yet processed, it will simply be moved to the appropriate new firing

3.1 Spiking Neural Networks 37

time. In this way, the number of events injected into the system and the total

number of rollbacks is significantly reduced, as the destination LPs will only receive

a spike at the accurate firing time; after that, the firing neuron has correctly received

all presynaptic stimuli.

3.1.3 Experimental Comparison of the Approaches

Concerning time-stepped simulations, we rely on the NEST simulator [42], while

for the discrete-event simulation, we rely on the implementation presented in [115],

which is based on ROOT-Sim [103].

Experimental Setup

The performance experiments were run on an AWS m5.8xlarge machine with 32

vCPUs. These machines are based on Intel Xeon® Platinum 8175M processors,

running Ubuntu 20.04.3 LTS, on kernel version 5.13.0-1025-aws. Each experiment

was run with 32, 24, 16, 8, and 4 worker threads. NEST only has data points for

16 or more worker threads due to a limitation not allowing more than 227 synaptic

connections per worker thread; as such, only ROOT-Sim was run on 4 and 8 workers.

The standard benchmark we have used to run the performance experiments is

inspired by a study on signal propagation in linear integrate-and-fire (LIF) models

[164]. This benchmark [9] considers current-based (CUBA) synaptic interactions in

a network of 300,000 LIF neurons, separated into two populations of excitatory and

inhibitory neurons, forming 80% and 20% of the neurons, respectively. All neurons

are connected randomly using a connection probability of 2%. The CUBA model is

simulated for 10 seconds of simulation time with each simulator while varying the

simulation precision. In NEST, this is achieved by selecting a resolution value. In

ROOT-Sim, the time tolerance is currently built into the model and can be selected

deliberately as long as the hardware constraints allow it.

We have built a synthetic network model consisting of 1,000 neurons for accu-

racy experiments. The network is acyclic, divided into four layers: Input, L1, L2,

and Output. A network topology scheme is found in Figure 3.3. The Input layer

comprises 100 excitatory neurons, which receive a constant input current of 1800pA.

3.1 Spiking Neural Networks 38

Figure 3.3. Schema of the Synthetic Model.

Layers L1 and L2 both comprise two populations of 100 excitatory (L1e/L2e) and

100 inhibitory neurons (L1i/L2i). The Output layer consists of 100 neurons. The

output neurons’ spikes are observed and compared with the ground truth to deter-

mine simulator accuracy. Synapses all have fixed weights of 200pA with a delay

of 1.5ms when excitatory and a weight of −600pA and a delay of 0.8ms when

inhibitory.

The network topology and relevant parameters (initial membrane potential, in-

put current, synaptic weight, synaptic delay) are generated with a script into a

configuration file, which then is loaded by the models of each simulator, as well as

by the script that computes the ground truth, leading to the very same topology

and initial conditions for every single neuron in all three cases.

Table 3.1. Neurons and populations parameter specification.

Populations and inputs
Name Input L1e L1i L2e L2i Output
Population size 100 200 200 200 200 100

Neuron Model
Name Value Description
τm 10 ms Membrane time constant
τref 2 ms Absolute refractory period
τsyn 0.5 ms Postsynaptic current time constant
Cm 250 pF Membrane capacity
Vreset −65 mV Reset potential
Vth −50 mV Fixed firing threshold

3.1 Spiking Neural Networks 39

Table 3.2. Connectivity map for the generated topology.

to
In L1e L1i L2e L2i Out

from In - 0.292 0.192 0.049 0.237 0.169
L1e - - - 0.106 0.254 0.438
L1i - - - 0.409 0.250 0.309
L2e - - - - - 0.491
L2i - - - - - 0.225

Computing the Ground Truth

As noted earlier, the network chosen for the accuracy evaluation is acyclic, and,

conveniently, there is a simple algorithm able to compute its behaviour. Given

such an acyclic network, we compute a topological order of the neurons n0, n1, ...nk;

then, necessarily, the behaviour of a neuron ni will only depend on the behaviour of

neurons n0, n1, ..., ni−1. That implies that once a simulation time limit t has been

selected, it is possible to simulate the neurons one by one, starting from n0 through

nk feeding the output from the neurons to the correct postsynaptic ones. Since there

is no analytical closed-form solution for the spike times for the LIF neuron used in

this network, we still have to resort to numerical methods. We are not concerned

with performance in this case. Therefore, we implemented a Python script carrying

out the described computations with an error factor of 10−9ms.

Accuracy and Performance Results

We report in Tables 3.4 and 3.5 the results obtained running the synthetic model on

ROOT-Sim and NEST, compared to the ground truth results obtained according

to the method described in Section 3.1.3. We have set the timestep/accuracy factor

to 0.1 (Table 3.4) and 0.001 (Table 3.5). The results report the spikes obtained in

the simulation’s first 10 ms. We provide the spiking time and the ID of the neuron

Table 3.3. Synaptic parameter specification.

Name Value Description
wexc 200 pA Excitatory synaptic strengths
winh −600pA Inhibitory synaptic strength
de 1.5 ms Excitatory synaptic transmission delays
di 0.8 ms Inhibitory synaptic transmission delays

3.1 Spiking Neural Networks 40

Table 3.4. Spiking Times for ROOT-Sim and NEST (timestep/error: 0.1). For each result,
we provide the spike time (ms) and the neuron number in brackets. The results relate
to the first 10 ms of simulated time.

Spike No. Ground Truth ROOT-Sim NEST
1 2.999 (900) 3.046 (900) 3.200 (900)
2 3.556 (977) 3.615 (977) 3.900 (975)
3 3.598 (975) 3.630 (975) 3.900 (950)
4 3.787 (970) 3.771 (970) 6.200 (912)
5 5.843 (953) 5.955 (953) 6.300 (952)
6 — 6.215 (927) —
7 — 6.667 (923) —

that generated the spike in the Output layer for each spike.

By the results in Table 3.4, we observe that, for both simulators, the accuracy

is not high. In particular, ROOT-Sim generates spikes at the correct neurons, but

the difference in spiking times is between 1% and 2%, in a significantly reduced

simulation time. Interestingly, this model generates two additional spurious spikes.

Conversely, NEST has a higher error (up to 60%), but more interestingly, it induces

spikes at the wrong neurons, except for the first one. The number of spikes is anyhow

correct. These results are expected. Indeed, given the nature of the synthetic model,

it is clear that a low resolution is unlikely to provide accurate results due to the

strong interaction between excitatory and inhibitory neurons.

The results with a higher resolution, provided in Table 3.5, show that the results

based on ROOT-Sim deliver much higher accuracy. Conversely, NEST results show

that two spikes are missing, spikes are induced at the wrong neurons, and the

accuracy is still low (with an error ranging from 3.7% to 80%). One could wonder

how the two examined simulators may deliver a different accuracy even when using

the same value for the time-step/error. As mentioned in Section 3.1.2, the sources

Table 3.5. Spiking Times for ROOT-Sim and NEST (timestep/error: 0.001). We provide
the spike time (ms) and the neuron number in brackets for each result. The results
relate to the first 10 ms of simulated time.

Spike No. Ground Truth ROOT-Sim NEST
1 2.999 (900) 2.999 (900) 3.110 (900)
2 3.556 (977) 3.556 (977) 3.795 (975)
3 3.598 (975) 3.598 (975) 6.486 (952)
4 3.787 (970) 3.787 (970) —
5 5.843 (953) 5.842 (953) —

3.1 Spiking Neural Networks 41

32241684
Worker Threads

0

5000

10000

15000

20000

W
al
l C

lo
ck

 T
im

e
(s
)

NEST (0.1)
NEST (0.01)
NEST (0.001)
NEST (0.0001)

ROOT-Sim (0.01)
ROOT-Sim (0.001)
ROOT-Sim (0.0001)

Figure 3.4. Performance Comparison.

of inaccuracy are essentially two. Common to both algorithms, the first is due to

computational inaccuracy in spike timings: minor deviations can cause postsynaptic

neurons to emit or miss a spike when they should not have. The second source of

accuracy loss is specific to NEST only, and it is due to how spike detection works.

With the default settings, a spike is detected only if the firing threshold potential is

overcome at one discrete time step. In other words, NEST assumes that a neuron

can never overcome the firing threshold if it has not done so at the beginning and

the end of the time step, which can lead to missing a spike in some edge cases, even

with a single neuron.

As for performance evaluation, we can refer to Figure 3.4, where both simulators

used the standard current-based (CUBA) synaptic interactions benchmark [9] to

simulate 10 seconds of physical time, with varying degrees of accuracy. NEST only

has data for 16 or more workers because it does not allow for more than 227 synaptic

connections per worker thread. While NEST outperforms ROOT-Sim in terms of

speed for low-resolution values (10−1 and 10−2), when running with a resolution

of 10−3, the performance dramatically degrades, leaving the edge to ROOT-Sim,

even when the latter runs on eight workers. With a resolution of 10−4, the NEST

time-to-solution is significantly larger, with the best configuration (using 32 worker

threads), taking over 20, 369 seconds to complete, while ROOT-Sim took 1, 076—

this is 18,92x. This result is expected, as multiplying the resolution tenfold also

multiplies the number of calculations needed. It is reasonable to expect higher

resolutions to be practically unfeasible for sizeable networks.

3.2 Epidemic Models 42

Increasing simulation resolution appears to have a minimal impact on ROOT-

Sim’s performance, allowing it to be increased almost at will without the risk of

running into prohibitive time costs.

3.2 Epidemic Models

Many natural phenomena can be modeled as memoryless stochastic processes in

which transitions occur randomly with exponentially distributed delays in continu-

ous time. Such systems are present in several fields, including biochemistry, genetics,

ecology, epidemiology, and social sciences.

In this section, we will explore two distinct methods for simulating epidemi-

ological models based on memoryless stochastic processes that employ the Next

Reaction Method (NRM)[44], a variant of Gillespie’s Stochastic Simulation Algo-

rithm (SSA)[45]. The two methods under consideration differ in their exploitation

of risk and offer different accuracy and performance tradeoffs.

NRM was originally developed to simulate complex biochemical processes in-

volving numerous concurrent chemical reactions. The method utilizes a stochastic

race mechanism to determine the next reaction, where reactions compete based on

randomly generated delays. The algorithm follows a discrete-event approach, where

potential reactions are represented as timestamped events. The simulation repeat-

edly selects and executes the reaction with the nearest timestamp and adjusts the

rates of other reactions to reflect any changes.

The application of this methodology to epidemiological models is based on recent

results in [55, 167], which showed that it is possible to apply this method to agent-

based models and demographic studies, respectively. Here, stochastic races select

which possible agents’ transition will happen next. During each transition, individ-

uals can access arbitrary portions of the simulation state and affect the transition

rates of other agents.

In our study of the impact of risk on simulation outcomes, this class of models

is of particular interest. Traditionally, optimistic algorithms face challenges when

simulating these models since each transition may involve instant read and write

access to the states of agents located on different processors. Correctly handling

3.2 Epidemic Models 43

these accesses requires linking the progress of the source and destination agents in

simulation time, which may result in rollbacks or idle times. Additionally, Time

Warp’s assumption of completely event-driven interaction among LPs requires that

every read and write access between agents be reflected by an event exchange, which

may incur a significant cost.

One potential workaround to this issue involves discretizing simulated time and

utilizing established conservative methods for time-stepped agent-based simulation.

However, as demonstrated in the previous example about spiking neural networks,

this approach may lead to poor accuracy-performance tradeoffs. As a matter of

fact, prior research has shown that reproducing the results of even a simple cellular

automaton with rate-driven transitions necessitates the use of tiny time steps [70,

19, 173].

Physics-inspired models, like Social Force [53] or Intelligent Driver Model [68],

which are initially defined in terms of ordinary differential equations, can be sim-

ulated through discretization of the logical time dimension, where the time step

represents the numerical integration step. This allows the error to be constrained

by choosing an appropriate integration scheme [157]. However, determining suitable

bounds for the time step size can be challenging, and if the step size is too large,

the error can become significant [169].

We note that the minimum delay of any effect propagating from one agent to

the next is constrained by the step size. Assuming that transitions occur at rate

r, the time until the next transition is exponentially distributed with mean 1/r.

Although a time-driven simulation can imitate such processes, it relies on carrying

out a Bernoulli trial at each time step to determine if a transition occurs. But this

way, the time step size effectively becomes the lower bound on the time between two

transitions. Since simulations often involve the propagation of effects across large

numbers of LPs, small time step sizes may be required to adequately represent the

dynamics of a continuous-time reference model.

We illustrate this issue on a simple cellular model on a 50× 50-cells grid. Cells

carry a binary alive/dead state. Initially, all cells apart from the top-left one are

alive. At a rate of 1, each dead cell causes all its Moore neighbours to die simulta-

3.2 Epidemic Models 44

Figure 3.5. Illustration of the cellular simulation on a 50 × 50 grid. In this intermediate
state, half of the cells are still alive.

neously. The simulation ends once all cells have died. We compare the simulation

end times when executing the model in continuous time as a discrete-event simu-

lation and in a time-stepped fashion. Given the rate of 1, the per-step transition

probability in the time-stepped variant with step size τ is computed via the cumu-

lative distribution function of the exponential distribution as 1 − e−τ . Figure 3.5

illustrates an intermediate state of an example run in which half of the cells are still

alive.

Figure 3.6 shows the evolution of the ratio of dead cells across simulation time.

The data was generated by executing 106 simulation runs for the continuous refer-

ence and each step size. The average simulation end times and their 99% confidence

intervals were 17.5±0.004 for the continuous reference, and 36.7±0.005, 22.0±0.004,

18.6± 0.004 for the step sizes of 0.5, 0.125, and 0.03125.

These results indicate that, using the time-stepped approach, the mean simu-

lation end time always exceeds the reference, reflecting the cumulative delay in-

troduced by the time steps. Even with the smallest time step size of 0.03125, the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

R
a
ti
o
 o

f
d
e
a
d
 c

e
lls

Simulation time

Continuous
Step size: 0.03125

0.125
0.5

Figure 3.6. Ratio of dead cells over time, showing the time-stepped execution deviation
from the continuous reference.

3.2 Epidemic Models 45

deviation was still 6%. Thus, these findings demonstrate the significant deviation

that a time-stepped simulation can introduce when compared to a continuous-time

reference simulation. A more thorough analysis of the effects of discretization in

time on continuous-time simulations is given in [31]. However, our discussion clearly

highlights the effects that risk management, according to our new definition, can

have on simulation results. As we will show later, these effects also directly impact

simulation performance.

3.2.1 Simulation Algorithms for Epidemic Models

In this section, we present the internal dynamics of the simulation techniques being

evaluated in the current case study.

Asynchronous Execution using Time Warp

Simulating large models with tightly-coupled agents on Time Warp typically en-

tails two main classes of events: i) ones implementing the agent-based logic, and ii)

artificial events only required to transition the agent-based model to a Time Warp-

based simulation. The main difference between these two classes of events is their

granularity. Indeed, it can be expected that the first-class events are coarse-grained

because they will implement the interactions among the agents. Conversely, the

second-class events are likely fine-grained to the extent that they might only entail

reading a single state variable. This aspect is critical for Time Warp simulations, as

fine-grained events are likely not paying off the synchronization overhead. Addition-

ally, an interleave of fine- and coarse-grained events could produce a non-negligible

skew in simulation time among simulation objects, likely increasing the rollback

probability and reducing the simulation’s efficiency [36].

The second issue with Time Warp-based simulations directly relates to the high

coupling between agents. Classical Time Warp simulations have been shown to be

efficient [36] when the runtime environment can capture some degree of parallelism

among the different LPs. This is particularly true when only some portions of

the model require sharing timestamped information in a particular simulation time

window. In the case of tightly-coupled agent-based models, this property rarely

3.2 Epidemic Models 46

holds: the different agents have to continuously access their respective states, e.g.

to determine how to interact with each other or collaboratively with the environ-

ment. As mentioned, this kind of access typically employs couples of "request”/

"reply" events. The volume of these events could easily make a parallel/distributed

simulation based on Time Warp synchronization thrash.

The third issue is still related to "artificial" events to access other agents’ data.

As mentioned, these events are simultaneous because they do not produce any actual

advancement in simulation time. Nevertheless, if more than one agent is involved in

these data exchanges, a cycle of simultaneous events could materialize, a condition

hampering the liveness properties of Time Warp-based simulations [61].

There are two primary approaches to address these three main obstacles to an

efficient Time Warp-based simulation. The first strategy is related to exploiting

regions of interactions among agents. As it has been shown in the literature (see,

e.g., [88]), if the goal of an agent-based model is to study emergent behaviour, a good

grade of approximation for parallel/distributed simulations is to partition the model

into "physical regions". Then, it is possible to differentiate the modelling strategy

among inter-region and intra-region interactions, possibly reducing the amount of

cross-region interactions. This is especially true if the degree of coupling across

regions is low. For the Time Warp-based approach, we map regions to LPs. Within

a region, agents can freely interact because we are guaranteed by the synchronization

algorithm that all agents will observe the very same simulation time upon each

event’s execution.

Conversely, agents belonging to different regions must interact via message pass-

ing. Our approximated Time-Warp model allows agents to pick neighbours only

within the same region (i.e., the same LP). Conversely, cross-region interactions

are modelled by relying on agent migrations: once an agent migrates to a different

region, it will build its adjacency graph and start computing infections based on

the states of neighbouring agents.

While this solution significantly reduces the number of "artificial" events injected

into the system, it does not solve the management of potential transitions. As

a candidate solution, an agent could maintain the timestamp of the subsequent

3.2 Epidemic Models 47

reaction within its state. A new discrete event could be injected into the system at

the same timestamp to mark a candidate’s position upon the simulation timeline for

the transition. Upon executing these tentative events, the model could quickly check

the involved agent’s state to determine whether the transition has to occur or has

been overridden by a different transition time. While this approach is quite simple

from a modelling perspective, it would inject a large number of highly fine-grained

events that would unacceptably hamper the simulation’s performance.

Conveniently, this happens to be another use case for retractable events[116].

We introduced them earlier to handle future spikes in spiking neural networks and

we briefly discussed them in Section 3.1.2.

Synchronous Execution using S3A

Synchronous Speculative Stochastic Agents (S3A) is an optimistic algorithm tai-

lored to the challenges of parallelizing the execution of SSA-driven agent-based

simulations [3]. Taking inspiration from the classic Breathing Time Buckets al-

gorithm [147], this synchronous algorithm proceeds in a window-based manner,

allowing each agent to advance at most by one transition per window. Having this

restriction eliminates the need to maintain a history of the agent’s state beyond

a single old and new state. Further, the algorithm is able to limit the scheduling

overhead by allowing agents to access each other’s state directly without mediation

in the form of explicit events.

While it has been shown that S3A could substantially accelerate simulations of

a large-scale epidemic model with highly dynamic topology, its underlying assump-

tions make it hard to benefit from the locality in the agent interactions. This is

clear in scenarios where agents are segregated, with each agent’s interactions limited

to its current compartment [22]. If communication is sufficiently local and different

model portions are thus sufficiently decoupled, the asynchronous execution of Time

Warp may better exploit the model’s inherent concurrency.

The S3A algorithm operates under the assumption that sequences of transitions

may swiftly and unpredictably affect arbitrary agent states throughout the simu-

lation. To account for this assumption, the algorithm maintains a tight coupling

3.2 Epidemic Models 48

among processors to limit the frequency and cost of rollbacks. This is accomplished

through a round-based synchronous approach using global barrier synchronizations.

Since the tight temporal coupling among processors may severely limit the exploita-

tion of a model’s concurrency, each round must be as inexpensive as possible. The

overhead of optimistic algorithms lies in the management of the lists of events, pre-

vious states, and antimessages and the cost of rollbacks. In S3A, state saving is

limited to a single old and current state per agent, similar to synchronous update

schemes for time-stepped cellular automata [151, 127]. Due to the fine-grained state

saving on the level of individual agents, a rollback involves only the inexpensive op-

eration of copying the old state to the current state. Further, the algorithm avoids

the need for antimessages by ruling out transitive causality violations altogether.

We describe the high-level operation of the S3A algorithm based on the pseu-

docode shown in Algorithm 2. For a more in-depth description, see [3]. Agents are

initially distributed to a set of processors. In each round of the algorithm, the pro-

cessors execute local transitions in non-decreasing timestamp order up to a bound

determined as the sum of the global minimum timestamp among all scheduled tran-

sitions and a tunable initial window size τ0. Each transition may involve immediate

read/write accesses to other agents. The key idea of the algorithm is to dynamically

reduce the window size so that at the end of the round, the window contains only

those transitions and accesses that can safely be committed. This is accomplished

by guaranteeing that the final window contains the earliest transition or access for

each agent according to their timestamps, if any. By definition, these transitions or

accesses can never be displaced by another transition or access.

Algorithm 3 shows the dynamic adaptation of the window size during agent

access as part of a transition. The variable earliest_access_ts, initially set to

∞, records the earliest timestamp of access to the agent. If new access arrives with

a timestamp earlier than earliest_access_ts, the new access can be carried out,

displacing any previously recorded access with larger timestamps by immediately

rolling back the agent to its old state. On the other hand, if an earlier access has

been recorded previously, the window size is reduced to exclude the current access

and its associated transition from the current round. Using a global window rules

3.2 Epidemic Models 49

Algorithm 2 Main loop of the S3A algorithm.
1: while !termination_criterion do
2: global_bound ← get_global_min_ts() + τ0
3: for each thread in parallel do
4: execute transitions earlier than global_bound, dynamically reducing
5: global_bound according to Algorithm 3
6: end for
7: barrier()
8: for each agent in active_agents ∪ accessed_agents do
9: if agent.min_access_ts < global_bound then

10: commit transition, enqueue new events
11: else
12: roll agent back to the previous state
13: end if
14: end for
15: barrier()
16: end while

Algorithm 3 Agent state access in S3A.
1: procedure Agent::access(access_ts)
2: agent.lock()
3: if access_ts < agent.min_access_ts then ▷ access is earliest in round so

far
4: if agent.min_access_ts ̸=∞ then
5: roll back agent
6: global_bound← min(global_bound, agent.min_access_ts)
7: end if
8: carry out agent state access
9: agent.min_access_timestamp← access_ts

10: else ▷ access is deferred to a subsequent round
11: global_bound← min(global_bound, access_ts)
12: end if

agent.unlock()
13: end procedure

out transitive effects of displaced or deferred accesses since any previously computed

transitions and accesses with timestamps above the window bound are rolled back

at the end of the round (Algorithm 2, line 10). Similarly, any newly scheduled

transition within a round is deferred to a subsequent round by reducing the upper

window bound to its timestamp.

3.2.2 Benchmark Model

We compare the asynchronous and synchronous parallel simulation algorithms using

a simulation model of the epidemic spread of a contagion. The model is an extension

3.2 Epidemic Models 50

of the agent-based formulation [77] of the classical susceptible-infected-recovered

model. In our model, each agent is situated in one of a configurable number of

regions, each initially populated with the same number of agents. Each agent has 8

neighbours chosen uniformly at random within the same region. Hence, the number

of regions determines the degree of locality in the agent interactions.

For susceptible agents, the infection rate equals the number of infected neigh-

bours. Hence, agents entering or leaving the infected state must notify their neigh-

bours so their transition to the infected state can be rescheduled according to the

changed rate. The transitions to the recovered state and back to the susceptible

state occur with constant rates of 1. Two additional transitions introduce dynamic

changes to the topology defined by the agents’ neighbourhood relations. The first

type of transition changes an agent’s neighbours within its current region uniformly

at random, potentially changing its infection rate or the neighbours’ infection rates

in the process. The second transition type migrates an agent to another region

chosen uniformly at random and links the agent to new neighbours in the selected

region. The rates at which these two types of transitions take place allow us to

control the degree of computational load and agent interaction within each region

on the one hand and the interdependence of transitions across regions on the other

hand. Overall, this system resembles epidemic models as used in real-world epi-

demics studies [49], which aim to capture the effects of the populations’ everyday

as well as long-distance mobility.

3.2.3 Experimental Comparison of the Approaches

The implementations of the benchmark models discussed above are obtained from

the work in [2].

Experimental Setup

We have run our reference implementations on a dual-socket machine, with each

socket equipped with an Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz. The total

amount of RAM is 256 GB.

We have considered two different values for migration rates, namely 0.16 and

3.2 Epidemic Models 51

0.01, mimicking highly-variable and more stable scenarios, respectively. As for the

number of regions considered in our runs, we have considered 128 and 8192 regions,

which account for macro and meso-simulations, respectively. The total number

of agents has been varied between 216 and 224, accounting for medium and large

simulation scenarios, evenly distributed across the available regions at simulation

startup. We have explicitly discarded all configurations providing less than 128

agents per region at the beginning of the simulations.

In the following, we provide data related to the overall performance of the sim-

ulation runs employing both the S3A and the Time Warp algorithms and profiling

data to highlight the reasons behind the performance data. All results are averaged

over three different runs.

Because we employ entirely separate implementations of Time Warp and S3A,

we have identified metrics that allow a fair comparison. We focus on two principal

metrics to conduct a performance comparison: the speedup over a sequential ref-

erence baseline (once again, see [2] for the details) and the throughput expressed

in terms of committed transitions per second of wall-clock time. We consider only

the actual simulation processing time for both metrics, i.e. we do not consider the

initial model setup and final cleanup phases. Both the S3A and Time Warp im-

plementations rely on several data structures and subsystems that might require

non-negligible time before starting the simulation, but optimizing these phases is

beyond the goals of this study.

To study to what degree the performance differences observed in the measure-

ments are fundamental to the synchronization algorithm itself or dependent on

implementation-specific overheads, we also instrumented the simulators to isolate

the costs of the main tasks. The profiling results shed light on the differences in

overheads and enable us to identify avenues for future performance improvements.

The selected profiling metrics are forward execution time and event management

time. The former accounts for the total time spent by both simulators running the

model’s code, i.e. not considering any housekeeping operation. The latter considers

all the housekeeping operations related to event management, such as enqueuing

new events, extracting next events, and executing rollbacks.

3.2 Epidemic Models 52

0.0

1.0

2.0

3.0

4.0

216 218 220 222 224

S
p

e
e

d
u

p

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0.0

1.0

2.0

3.0

4.0

216 218 220 222 224

S
p

e
e

d
u

p

Number of Agents

(a) Speedup.

0

 2×105
 4×105
 6×105
 8×105
 1×106

216 218 220 222 224T
ra

n
s
iti

o
n

s
/s

e
c
o

n
d

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0

 2×105
 4×105
 6×105
 8×105
 1×106

216 218 220 222 224T
ra

n
s
iti

o
n

s
/s

e
c
o

n
d

Number of Agents

(b) Transitions/sec.

Figure 3.7. Performance Results (Migration Rate: 0.01—Regions: 128).

0.0

0.2

0.4

0.6

0.8

1.0

216 218 220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0.0

0.2

0.4

0.6

0.8

1.0

216 218 220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

(a) Time Spent in Forward Execution.

0.0

0.2

0.4

0.6

0.8

1.0

216 218 220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0.0

0.2

0.4

0.6

0.8

1.0

216 218 220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

(b) Time Spent in Event Management.

Figure 3.8. Profiling Results (Migration Rate: 0.01—Regions: 128).

For the Time Warp implementation, we also provide classical measures, namely

the efficiency (in terms of committed events/executed events) and the rollback length

(i.e., the average number of events that are undone every time that a straggler

message is received and a rollback operation is carried out).

Experimental Results

In configurations with 128 regions, the Time Warp implementation generally delivers

poor speedup values. The migration rate and the number of agents play an essential

role, anyhow: with higher migration rates (Figure 3.9), the slowdown is generally

more apparent than with lower rates (Figure 3.7). Similarly, smaller agent counts

deliver better speedups.

Overall, this behaviour is mainly due to the number of agent migrations being

high compared to the number of regions. Migrating frequently causes many expen-

sive rollbacks: as shown in Figure 3.15, efficiency decreases when the agent count

0.0

1.0

2.0

3.0

4.0

216 218 220 222 224

S
p

e
e

d
u

p

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0.0

1.0

2.0

3.0

4.0

216 218 220 222 224

S
p

e
e

d
u

p

Number of Agents

(a) Speedup.

0
 1×105
 2×105
 3×105
 4×105
 5×105
 6×105
 7×105

216 218 220 222 224T
ra

n
si

ti
o

n
s/

se
c
o

n
d

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0
 1×105
 2×105
 3×105
 4×105
 5×105
 6×105
 7×105

216 218 220 222 224T
ra

n
si

ti
o

n
s/

se
c
o

n
d

Number of Agents

(b) Transitions/sec.

Figure 3.9. Performance Results (Migration Rate: 0.16—Regions: 128).

3.2 Epidemic Models 53

0.0

0.2

0.4

0.6

0.8

1.0

216 218 220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0.0

0.2

0.4

0.6

0.8

1.0

216 218 220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

(a) Time Spent in Forward Execution.

0.0

0.2

0.4

0.6

0.8

1.0

216 218 220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0.0

0.2

0.4

0.6

0.8

1.0

216 218 220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

(b) Time Spent in Event Management.

Figure 3.10. Profiling Results (Migration Rate: 0.16—Regions: 128).

0.0

4.0

8.0

12.0

16.0

220 222 224

S
p

e
e

d
u

p

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0.0

4.0

8.0

12.0

16.0

220 222 224

S
p

e
e

d
u

p

Number of Agents

(a) Speedup.

0

 9×105
 2×106
 3×106
 4×106
 5×106

220 222 224T
ra

n
s
iti

o
n

s
/s

e
c
o

n
d

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0

 9×105
 2×106
 3×106
 4×106
 5×106

220 222 224T
ra

n
s
iti

o
n

s
/s

e
c
o

n
d

Number of Agents

(b) Transitions/sec.

Figure 3.11. Performance Results (Migration Rate: 0.01—Regions: 8192).

increases. In configurations with 32 threads, efficiency is as low as 20%. At the

same time, the rollback length can get as high as 350 undone events per rollback,

thus wasting a non-minimal amount of work done in forward execution.

We note that the rollback length directly depends on the checkpoint frequency,

which is controlled by an autonomic agent in ROOT-Sim [104]. This agent takes into

account several internal parameters to tune the checkpoint interval. The relevant

ones for this particular model are the event granularity, which is fine-grained on

average, and the size of the LP state, which grows with the agent count. Therefore,

the autonomic checkpoint strategy is selecting a large checkpointing interval in

an attempt to spend more time in forward processing, trying to favour fine-grained

events against costly checkpoints. Conversely, the high number of migrations lowers

efficiency due to increased straggler messages being generated: going from 99% to

98% in efficiency translates to a doubled rate of rollbacked messages.

Overall, rollbacks are expensive in these configurations exhibiting few and large

regions with many regions interactions. As shown in Figures 3.7 and 3.9, the per-

0.0

0.2

0.4

0.6

0.8

1.0

220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0.0

0.2

0.4

0.6

0.8

1.0

220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

(a) Time Spent in Forward Execution.

0.0

0.2

0.4

0.6

0.8

1.0

220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0.0

0.2

0.4

0.6

0.8

1.0

220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

(b) Time Spent in Event Management.

Figure 3.12. Profiling Results (Migration Rate: 0.01—Regions: 8192).

3.2 Epidemic Models 54

0.0

3.0

6.0

9.0

220 222 224

S
p

e
e

d
u

p

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0.0

3.0

6.0

9.0

220 222 224

S
p

e
e

d
u

p

Number of Agents

(a) Speedup.

0

 5×105
 1×106
 2×106
 2×106
 2×106

220 222 224T
ra

n
s
iti

o
n

s
/s

e
c
o

n
d

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0

 5×105
 1×106
 2×106
 2×106
 2×106

220 222 224T
ra

n
s
iti

o
n

s
/s

e
c
o

n
d

Number of Agents

(b) Transitions/sec.

Figure 3.13. Performance Results (Migration Rate: 0.16—Regions: 8192).

0.0

0.2

0.4

0.6

0.8

1.0

220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0.0

0.2

0.4

0.6

0.8

1.0

220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

(a) Time Spent in Forward Execution.

0.0

0.2

0.4

0.6

0.8

1.0

220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

4 threads
8 threads

16 threads
32 threads

S3A

Time Warp

0.0

0.2

0.4

0.6

0.8

1.0

220 222 224

T
im

e
 (

p
e

rc
e

n
t)

Number of Agents

(b) Time Spent in Event Management.

Figure 3.14. Profiling Results (Migration Rate: 0.16—Regions: 8192).

centage of time spent in event management (that also accounts for rollbacks) is

significantly high. Rollbacks further disrupt execution by indirectly slowing down

other LPs, which would be more likely to generate more straggler events. Time

Warp is effectively trashing in this worst-case scenario: the portion of time spent

running model code is abysmal. As again shown in Figures 3.7 and 3.9, the per-

centage of time spent running events is minimal.

Conversely, S3A provides acceptable speedups. The overhead of synchronous

rounds and contention on atomic operations with lower agent counts becomes ap-

parent. For example, in Figure 3.7aa, with 216 agents, speedups worsen by increasing

the thread count. With 32 threads, each only processes a maximum of ∼ 2000 agent

updates per round. The results, anyhow, show good scaling in the number of agents,

suggesting that S3A performance could grow with larger agents count on larger mul-

ticore CPUs. This trend is endorsed in Figure 3.7b, with transitions throughput

increasing with both the count of agents and cores. Increasing the migration rates

does not impact the speedup results (see Figure 3.9) while transition throughput

improves. For S3A, the results highlight that migrations are less computationally

demanding, as expected.

With higher region counts, namely 8192, the runtime behaviour of S3A is mostly

unchanged—see Figures 3.11 and 3.13. Even the profiling results, shown in Fig-

ures 3.12 and 3.14, are almost identical. This result indicates the stability of S3A

3.3 Discussion 55

 0

 20

 40

 60

 80

 100

216 217 218 219 220 221 222 223 224

E
ffi

c
ie

n
cy

 (
%

)

Number of Agents

4 threads
8 threads

16 threads
32 threads

(a) Efficiency.

 0

 100

 200

 300

 400

216 217 218 219 220 221 222 223 224

R
o

llb
a

c
k
 L

e
n

g
th

Number of Agents

4 threads
8 threads

16 threads
32 threads

(b) Rollback Length.

Figure 3.15. Time Warp Performance Metrics (Migration Rate: 0.01—Regions: 128).

towards the configuration parameters of the model.

Instead, Time Warp sees a substantial improvement in performance, delivering

competitive speedups and transition throughputs. Nevertheless, as shown in Fig-

ure 3.11, the trend seems to worsen with the increase in agent count. We conjecture

that a too-low agent density leads regions to engage in long incorrect speculative

trajectories, leading to infrequent but expensive cascading rollbacks. On the other

hand, a too-high agent density gets closer to the pathological scenario shown earlier

with 128 regions.

With the migration rate set at 0.16, the best performance spot moves to a higher

agent count, as shown in Figure 3.13. Overall, speedups are lower, but these results

suggest a bell-shaped speedup behaviour for Time Warp simulations. Interestingly,

S3A performs similarly to Time Warp in the densest configuration. The safer and

controlled round-based optimistic execution of S3A pays off when a misspeculation

in Time Warp is either too costly (dense regions states/expensive rollbacks) or

frequent (high migration rates/many straggler messages).

3.3 Discussion

The case study presented in this Chapter has considered two very different families

of simulation models (SNNs and agent-based epidemics) executed using different

synchronization algorithms that exemplify multiple choices in the continuum previ-

ously depicted in Figure 1.2.

The results clearly highlight that the factors that affect the performance and

accuracy of the results highly depend on the simulated models’ inner dynamics.

At the same time, the actual lower-level implementation of particular mechanisms

provided by the simulation runtime environment is key to identifying well-balanced

3.3 Discussion 56

solutions to exploit risk to improve accuracy and performance.

The results for the SNN simulation have shown that if the high resolution results

are pursued, traditional time-stepped simulation algorithms cannot provide results

promptly. In contrast, Time-Warp based ones exhibit only a reduced performance

penalty. At the same time, with lower time-step values, time-stepped simulation

outperforms the speculative PDES’ one, but, interestingly enough, the accuracy of

time-stepped algorithms still appears to be considerably lower.

Overall, in the case of SNNs, we have shown that the retractability of events

alone can allow the runtime environment to improve both performance and accu-

racy. In the case of epidemic models, depending on their specific configuration, this

capability alone may not be enough.

The contrasting assumptions made by the two algorithms used in the latter

family of models are the underlying reason for the divergent outcomes. S3A adopts

a strict approach, reducing the local window size and retracting transitions and

agent accesses to avoid transitive errors. This approach is appropriate when inter-

agent communication is unpredictable, global, and occurs with only small delays in

simulation time.

In contrast, Time Warp allows relatively coarse-grained LPs to advance asyn-

chronously in time, which is suitable when the degree of coupling among LPs is low.

Our measurement results have demonstrated that Time Warp performs better when

there is a high degree of locality in inter-agent communication, breaking the model

into loosely coupled LPs. Conversely, S3A is superior for model configurations with

predominantly global communication.

Outside of the two extremes of global and localized communication within small

regions, neither of the approaches fully aligns with the properties of the considered

model. If there is only a modest number of regions, Time Warp must either divide

each tightly coupled region into multiple LPs acting asynchronously or fall back to

sequential execution per region. On the other hand, the synchronous execution of

S3A fails to exploit the locality in the inter-agent communication.

To recap, the following conclusions can be drawn from the experimental study

presented in this Chapter. For an implementation of a simulation runtime envi-

3.3 Discussion 57

ronment to be effective in enabling the modeller to obtain significantly accurate

results, it must be able to capture the model’s dynamics as much as possible and

adapt to the model’s peculiar characteristics. Similarly, such a runtime environ-

ment must provide highly-optimized support to prevent particular model dynamics

from significantly affecting the dynamics of the dynamically adopted synchroniza-

tion algorithm. This means that it is necessary to push simulation methodologies

and techniques to a higher level of adaptability than what has been done so far in

the literature, allowing for a dynamic choice between specific execution modes and

supports depending on the current model dynamics. In addition, it is clear that

depending on the accuracy a modeller expects from the results, different choices can

be made, perhaps aiming to improve performance.

The exploration of risk-related possibilities, as we have defined it in this the-

sis, thus becomes much more multivariate. In the remainder of this thesis, we

will illustrate various methodologies, techniques and implementations that allow us

to explore these facets of risk, playing with precision in results and performance

improvements.

58

Chapter 4

Literature Survey

The literature offers a wealth of work attempting to control or exploit risk in specu-

lative simulations, according to the general definition provided in this thesis. Con-

ducting an exhaustive survey of all the different proposals and methodological nu-

ances that can be found is definitely beyond the scope of this work. However, we

will try to illustrate which main methodologies have been studied in the literature,

sometimes without considering their relation with the concept of risk, and show how

they fit in effectively with our new interpretation of this concept. For a more com-

prehensive and thorough discussion of the possible techniques, we refer the reader

to [35, 38].

In the discussion, we try to group the proposals into homogeneous sets. However,

some of these works often have points of contact with more than one categorisation

chosen for this Chapter.

4.1 Optimism Constraining

The first form of risk management arose from the observation that Time Warp

performance degrades quickly if the probability of rollback in the execution of a

model increases. The incidence of this phenomenon is greater the more skewed the

clocks of the individual LPs that make up the simulation.

The LP clock skew directly affects memory consumption as the speculative por-

tion of the simulation trajectory becomes larger. For this reason, in the early years

4.1 Optimism Constraining 59

of PDES, when computing resources were scarce, over-optimism could also lead to

situations in which a given simulation could become intractable, as the operating

system halts process execution due to memory exhaustion. Thus, an early form of

optimism control was already identified by Jefferson [60], with the introduction of

the cancelback protocol. The cancelback protocol involves the generation of artificial

rollbacks by the runtime environment to force the retrieval of memory buffers tied

to portions of the speculative trajectory (e.g., buffers used for saving states) of those

LPs that are too far ahead of the commit horizon (or rather, ahead of the current

estimate of the GVT). Indirectly, this protocol tends to contain the risk associated

with over-optimism since it prevents the possibility of simulation crashes.

Along the lines of this protocol, the idea of execution throttling was later pre-

sented [154, 64]. The aim of these techniques is not so much to prevent risk effects

from preventing simulation termination, but rather to avoid performance degrada-

tion due to an excessive amount of wasted work. The idea behind these proposals

was to suspend the execution of that subset of LPs that strayed too far from the

commit horizon. In this way, clocks tend to realign, and the probability of rollbacks

decreases, as the probability of an LP being hit by a straggler drops. This is all the

more true the larger the model lookahead.

Elastic Time [146] tries to limit the aggressiveness of optimistic synchronisation

by noting “pulling back” LPs that got too far from the commit horizon, as con-

strained by an elastic. This simple throttling approach implements a Near Perfect

State Information system, i.e. a situation where all the LPs are not “too far” from

the minimum, although there is no requirement for a significant synchronisation

effort.

Bounded Time Warp [158] and window-based throttling [131] limit optimistic

processing by defining a static optimism window. The main problem with these

proposals is the possibility that different simulation models (or even individual

entities in the same model) may require different window sizes for optimal perfor-

mance. An incorrectly sized window can drastically reduce performance. Adaptive

Time Warp [6] controls optimism by forcing a simulation entity that experiences

many rollbacks to freeze for a time BW . Determining BW is complex, often leading

4.2 LP Scheduling 60

to configurations that may not maximise speedup.

Furthermore, as discussed in [158, 131], the value of BW may be different for

each simulation entity. Penalty Based Throttling [131] activates the entities that

receive the fewest antimessages, associating them with a penalty that captures the

number of antimessages received. In a complex simulation, all simulation entities

can have a non-negative penalty at a particular time instant, leading to an excessive

reduction in aggressiveness.

Throttling techniques have also been effectively used to support the Next Sub-

volume Method [63, 25, 166], which is directly related to the use case we have

described in Section 3.2.

4.2 LP Scheduling

The work on throttling has connections with several works related to LP scheduling.

Indeed, suspending the execution of a group of LPs is tantamount to saying that

the scheduler is aware that its choices are related to risk management. Indeed, the

choice of the next event to be executed directly connects with the risk incurred by

the simulation. The scheduler of the runtime environment is, in fact, the privileged

component for managing and exploiting risk. Therefore, more or less explicitly,

we find in the literature many scheduling algorithms that improve performance by

employing event selection that considers their risk. This section presents some of

the key works on this topic. A more extensive discussion, albeit related to a less

developed concept of risk, can be found in [126].

The concept of risk-based scheduling is already present in the seminal paper [73]

introducing the lowest-timestamp first (LFT) scheduler. Indeed, the basis of this

work is the concept that, in a concurrent simulation, it is possible to eliminate the

risk local to a processor by selecting for execution, among all the LPs currently

being handled by the processor, the one that has the next event temporally closest

to the last event processed. This way, LP clocks are only locally aligned, and risk

can only come from remote processors.

After this work, many proposals have dealt with heuristics to schedule entities

based on their rollback behaviour and productive work. Useful work [97] is a per-

4.2 LP Scheduling 61

formance index based on control theory that enables scheduling policies to control

the optimism of a time warp simulation, reduce the rollback frequency, and reduce

memory usage and wasted lookahead computation as a secondary effect. These are

all facets of the risk concept introduced in Section 2.3.

Aggressiveness/Risk Effects-based Scheduling (ARES) [20] controls optimism by

scheduling with a higher priority the simulation entities whose next event has a

lower probability of being eventually rolled back. This is done by selecting a set

of candidate simulation entities with a low probability of being ultimately undone;

then, it chooses an LP among the candidates to minimise the number of new events

to be notified.

Share-Everything PDES [56] exploits a short-framed temporary binding between

simulation entities and worker threads. The proposal uses a per-node global future

event set that can be concurrently exploited to determine the next event closest to

the commit horizon—This is another aspect that we will deal with more explicitly in

Chapter 7. This approach can reduce the incidence of rollbacks and the generation

of stragglers thanks to its controlled aggressiveness.

The body of work on throttling discussed in Section 4.1 also directly relates to

LP scheduling. Indeed, some of these works were based on introducing the concept

of windows. These windows can capture the clock skew, triggering the throttling

of too-far-away LPs. Nevertheless, these windows can also be used to decide which

LPs to schedule, or how to schedule them. Breathing Time Warp [149] combines

Breathing Time Buckets [148] and Time Warp. While Breathing Time Buckets only

allows events to be sent when they are valid (thus with very low aggressiveness),

Breathing Time Warp is based on the principle that events closer to the GVT have

a lower probability of being cancelled. Therefore, N1 events close to the GVT are

optimistically executed, and N2 events after that point are executed using Breathing

Time Buckets. Determining N1 and N2, as well as dynamically modifying their

values to minimise execution time, are aspects not considered in this work.

Adaptive Bounded Time Windows [95] uses the concept of useful work. Win-

dows are sized to maximise speed. Adaptive Time-Ceiling [82] is based on a similar

concept, although window sizes are chosen from a set of discrete values. The hybrid

4.3 Future Event Sets 62

synchronisation algorithm proposed in the considered paper is related to Breath-

ing Time Warp in its combination of a window-based optimistic synchronisation

algorithm with Time Warp.

A fundamental limitation of the proposals mentioned above is that they generally

consider uniform simulation models in which the event granularity is a variable that

can be ignored. The adaptiveness in this class of approaches is based on dynamically

recalculating the length of a simulated time window to include any event suitable

for scheduling. However, if the grain of events has a significant variance, all the

strategies discussed may lead to suboptimal results. Indeed, selecting for execution

an event with an extremely large grain can lead to more work being wasted if the

reception of a straggler cancels it out.

This problem was addressed in [125], where a grain-sensitive scheduling algo-

rithm is proposed. The proposed algorithm algorithm schedules larger-grain events

with a reduced level of optimism, which effectively reduces the risk of wasting sub-

stantial CPU power in the event of a rollback.

4.3 Future Event Sets

If the scheduler is a fundamental component of risk management, the data structures

supporting its execution are equally as important. Indeed, if the LTF scheduler can

manage risk locally, the time required for this management may still generate an

imbalance. For instance, the proposal in [73] requires O(n) time (where n is the

number of LPs bound to a specific processor) to select the next candidate event

for execution. The computational cost of finding the next event falls on the critical

path of the simulation execution, so different data structures may have different

effects on the clock skew of LPs, with respect to the global simulation.

Many data structures have been explored to reduce the next-event query time—

some of them offer (amortised) O(1) access time. Beyond the classical linked list

or min-heap, we find the calendar queue [10], the splay tree [144], or the ladder

queue [152, 50].

The work in [123] presents a Low-Overhead Constant-Time (LOCT) scheduler

that leverages tree-like bitmaps to retrieve scheduled events rapidly. Experiments on

4.4 Load Balancing 63

multithreaded, shared memory architecture demonstrate that the LOCT scheduler

outperforms the ladder queue.

The Non-Blocking Priority Queue in [78, 79] is a data structure with constant

time performance that resembles Calendar Queues. This data structure has been

shown to offer resiliency to conflicts [80], thus reducing the cost of concurrent event

extractions.

In their optimistic parallel simulator [81], Hay and Wilsey [52] investigate the

efficacy of leveraging hardware-based transaction memory (TSX) to manage pending

events. Their research utilising a multi-set data structure reveals that Hardware

Lock Elision beats traditional locking techniques by up to 27%.

As can be seen, the topic of pending-event sets data structure is hot. For a

more thorough comparison and discussion of the performance implications of the

different data structures, we refer the reader to [27, 34, 128, 136].

4.4 Load Balancing

The concept of risk is also related to works dealing with load sharing and load

balancing, such as [8, 46, 82, 95, 105, 162].

In general, these proposals aim to shift the workload associated with individual

LPs between the various processors, be they nodes of a distributed simulation or

the worker threads of a parallel simulation. The stated objective of these proposals

is to improve performance, but in fact, what they do is reduce risk, according to our

new definition. Indeed, by migrating workload, the aim is always to avoid portions

of useful work being replaced by potentially unfruitful work.

Overall, constraining the effects of risk can reduce the number of rollbacks,

thanks to improved exploitation of local synchronisation based on smallest-timestamp

first scheduling.

An interesting work along the line of load balancing is [64]. Here, the authors

study a combination of LP migration and throttling to combat the over-optimism

of Time Warp. The most exciting part of this work is that the authors recognise

that throttling and migrations can be effective only if managed together. Their

4.5 Hybrid Synchronisation 64

proper combination can avoid side effects—wasted processor cycles for pure throt-

tling and network over-utilisation for migrations. In some sense, this work had

already glimpsed that risk is multifaceted concept that should be handled holisti-

cally to provide effective simulation environments.

4.5 Hybrid Synchronisation

In some works, hybrid synchronisation approaches have been proposed that add

optimism to conservative algorithms or slow down optimistic simulations (for a

thorough discussion on the topic, we refer the reader to [24]). SRADS with local

rollback [26] and speculative computing [86] optimistically process unsafe events

locally, thus confining rollbacks to local entities. Breathing Time Buckets [148] is

similar to SRADS but can dynamically vary the conservative time windows based

on global and local event horizons. This technique performs poorly under small

lookahead conditions, and the GVT must be computed with no in-transit messages.

Bounded lag restriction [76] uses the measure of the minimum distance between

entities to decide safe events based on programmer-provided apriori lower bounds

between causally related events. The rollback relaxation [171] and unsynchronised

parallel simulation techniques [129] relax causality constraints for memoryless logi-

cal processes or completely ignore causality violations for queueing models to reduce

the rollback overhead. The final results may be imprecise; in general, these tech-

niques cannot be applied to all classes of simulation models.

In the recent Virtual Time III [61] a unification framework between conservative

and optimistic synchronisation is proposed. This framework considers conservative

algorithms as accelerators to Time Warp, given the non-existent overhead intro-

duced to forward execution. Therefore, Virtual Time III enables some simulation

entities to execute conservatively while others execute optimistically simultaneously.

In this context, some entities are subject to throttling due to the execution in con-

servative mode.

All in all, these works recognise, more or less implicitly, that the simulation

spectrum we previously depicted in Figure 1.2 is apparent and should be leveraged

4.6 Autonomic Optimisation 65

to improve the effectiveness of a simulation runtime environment. This is one of the

major contributions of this thesis, which we shall describe in Chapter 5.

4.6 Autonomic Optimisation

The careful reader will have already realised that our view of risk handling is strongly

associated with the concept of autonomic computing [66]. Indeed, providing the

model with competitive runtime support is impossible without self-optimisation. In-

terestingly, the PDES literature is replete with self-optimisation protocols, although

many of these optimisations focus on very specific aspects of execution dynamics.

One area that has seen a significant proliferation of autonomic self-optimisation

models is state saving. Implicitly, these approaches have been aimed at reducing

the risk that the overall performance would be reduced by increasing the amount of

non-useful work on the critical path of the simulation. Explicitly, they have tried to

fine-tune the value of the checkpointing interval depending on the actual execution

dynamics of the simulation model.

The approach described in [96] selects the best checkpointing interval by relying

on an analytic model based on LP execution time. The underlying assumptions

are that the execution of events is non-preemptive and that the rollback length is

independent of each other. The assumptions of this work can be regarded as weak,

especially in the framework of risk we are discussing. Indeed, the non-preemptability

of events could be itself a source of risk, because due to transient errors in the

speculative trajectory [93] the models’ execution might get stuck in a livelock. The

case study discussed in Section 3.1 has highlighted that the network topology may

bias the rollback length for highly-coupled models.

Under the same assumptions, the work in [135] proposes to observe, in a wall-

clock time(WCT) interval, the number of rollback operations and the number of

executed events (both committed and uncommitted). A numerical sequence of

checkpointing intervals is generated based on these parameters, upon which the

optimal checkpointing interval is selected. This scheme does not consider that the

execution time of different typologies of events can vary.

This aspect is captured in [143], where the Event Sensitive State Saving tech-

4.6 Autonomic Optimisation 66

nique is proposed. This technique emphasises that it is convenient to take a state

snapshot when the granularity of the next event increases. Then, building on the

model in [135], a proper optimal checkpointing interval is selected depending on

the most-occurring class of events. This approach, therefore, tries to reduce the

coasting-forward time by avoiding reprocessing chains of events containing ones

that require a high amount of WCT to be reprocessed.

A different approach is presented in [33], which regulates the checkpointing

interval using a heuristic algorithm based on the periodic re-calculation of a cost

function accounting for the average amount of wall-clock time to perform a state-

saving operation and the cost of the coasting forward phase. This solution, therefore,

explicitly adapts the checkpointing interval in the face of rollback frequency.

An additional approach in [121] proposes to observe LPs’ event history, consid-

ering the variations between the timestamp of two consecutive events, to determine

the best moment for taking a snapshot. The approach considers the interval be-

tween events in simulation time to determine the most likely point a straggler could

hit.

In [122], a cost model is proposed to select the checkpointing position in an

optimised way. It is based on a heuristic which tries to minimise the rollback

length: the system decides to pay the cost of a checkpoint at a certain simulation-

time instant only if the estimation of its possible (future) restore cost is higher.

The work in [104] proposes a fluctuation-resilient approach to both fine-tune the

checkpointing interval and select whether it is more convenient to rely on incremen-

tal or full checkpointing. Once again, the goal is to reduce the amount of unfruitful

work on the critical path, because it directly increases the risk of reducing the over-

all performance, due to increased rollbacks. We base the autonomic checkpointing

strategy used in the experiments of this thesis on this work.

Another decision model can be found in [18]. Here the focus, similarly to [104],

is on the mode used to restore a previous consistent state. In particular, the work

in [18] mixes state restore based on reverse computation [15] and checkpointing [59].

We discussed the autonomic optimisation of state saving as an emblematic ex-

ample of the need for autonomic self-optimisation methods for risk management,

4.7 Event Ties 67

since we will deal with related issues in Chapter 6. However, the needs for self-

optimisation in PDES are more wide-ranging.

4.7 Event Ties

A problematic aspect related to risk introduced in Section 2.2.2 is related to simul-

taneous events, i.e. those scenarios where the runtime environment has to decide

upon what is the next event to schedule, from a pool of simultaneous events.

Handling simultaneous events is an essential topic for DES that has observed

much attention from the community. Interestingly, in the seminal contribution

in [72], the problem of simultaneous events is not considered from the point of view

of models that may suffer from non-commutativity in updating states. In fact,

concerning simultaneous events, Lamport merely states that two contemporaneous

events do not impact on mutual causality. However, while not creating causality

problems, two simultaneous events may lead to correctness issues with respect to

model characteristics, possibly leading to errors in results or crashes in the simula-

tion [93].

In Virtual Time [59], the problem of simultaneous events is already apparent

in the context of optimistic simulation. Indeed, it is shown how, for concurrency

control simulations in distributed databases, it is possible to use the event source

to resolve ties between events.

The work in [142] has dealt with simultaneous events demanding additional bits

of information from the programmer to break ties. In particular, the authors have

replaced the traditional double datatype used in ROSS [12] to represent timestamps

with a data structure that allows explicit control event ordering in the case of ties.

This approach is similar to [137, 69], where a mechanism to sort simultaneous events

based on an extension of the timestamp or user-defined priorities was proposed.

Differently from these proposals, we can rely on the events’ content, thus making

the tie-break more transparent. To some extent, the modeller is allowed to specify a

priority based on the used event type, although this is not necessary for our solution

to work.

A slightly similar path is taken in [85], where the authors extend the concept of

4.8 Approximated Simulation Results 68

virtual time embedding multiple values to preserve determinism over multiple runs.

Differently from [142], the authors of [85] also exploit controllable and deterministic

random-number generators. Therefore, they also allow exploring multiple ordering

of events, thus enabling broader statistical analysis of models. This approach was

also envisaged in prior work such as [108, 109, 110], where the importance of study-

ing the outcome of multiple ordering of simultaneous events was highlighted. This

contribution is slightly different from the work in [168], where the author claims

that it would be correct to present averaged results over all the possible orderings

in case of simultaneous events.

In Virtual Time III [61], the modeler is required to provide a solution to ties

explicitly. The event dispatcher always receives a zSet of events, therefore, the

model must handle the zSet explicitly and process the events based on the model’s

logic.

Although this approach is not entirely transparent, it enables models to account

for the cumulative effects of tied events, which would otherwise require saving the

entire simulation trajectory within the model’s state when ties are broken at the

simulator level.

Breaking an event tie, when the model developer provides no additional infor-

mation, is an operation that brings substantial risk. we will deal with this problem

in Chapter 7.

4.8 Approximated Simulation Results

One of the effects of our definition of risk still uncovered is related to the possibility

of diverging from the results observed in the corresponding sequential simulation.

In the literature, we find solutions that explicitly leverage on this possibility to

improve the overall simulation performance.

Some solutions are based on uncertainty in the occurrence of events [37, 124].

These proposals build a partial order of events that allows the exploitation of tem-

poral uncertainty to reduce the rollback probability. Events are not associated

with a single timestamp but rather with an interval. Overlapping events can be

4.8 Approximated Simulation Results 69

reordered to provide equivalent schedules to avoid executing a rollback operation

upon receiving a straggler message. A similar objective is pursued through symbolic

execution [165], in which a group of uncertain cases are jointly simulated in the

same run to explore possible configuration parameter intervals. The final effect can

be a bias in the evolution of the simulation model trajectory that can ultimately

lead to an approximation of the collected statistics compared to a scenario where a

complete specification is provided by the model.

Still related to uncertainty, some works [106, 175, 139] have addressed the sup-

port for discrete-event simulations under vague information. In particular, these

works propose to approximate the simulation by relying on fuzzy set theory to

handle subjectivity, vagueness or imprecision in estimating activity duration. Prob-

ability distributions are replaced or complemented with fuzzy numbers (typically

triangular and trapezoidal) that allow for representing uncertainty in activity du-

rations. Events are extracted from the input queue relying on a form of ranking

measure [156] that accounts for the fuzziness of the event timestamps. These tech-

niques typically provide approximated simulation results and require ad-hoc simula-

tion support [106] because traditional discrete-event simulation approaches cannot

cope with the specific kind of approximation offered by fuzzy sets.

Another form of approximation for stochastic simulations can be found in [159,

17], where the standard clock technique is proposed. It is a form of uniformisation

that simplifies the execution of Markov and semi-Markov and renewal processes,

providing a formalism for studying discrete-event simulations. The core idea consid-

ers that typical processes modelled in discrete-event simulations entail “beginning”

and “end” events to describe the duration of an activity. The approach draws both

events from a single distribution, and the “nature” of events is later determined by

drawing samples from a uniform distribution. If an event is found unfeasible, it is

discarded. Therefore, there is no longer the need for an actual event queue because

it is sufficient to determine the next-event timestamp and decide what event it is.

While the work in [17] has shown that the approach is suitable for many timestamp

distributions, the overall results could diverge from a traditional discrete-event sim-

ulation, specifically if multiple random processes are simulated at once.

4.8 Approximated Simulation Results 70

Other proposals have studied the tradeoff between relaxing strict causality of the

events and its effects on performance in (speculative) PDES [129, 57]. Essentially,

these solutions skip running some state rollbacks if the effects of processing events

out of strict timestamp order are considered acceptable regarding the final statistics

computed by running the simulation.

All these works suggest that if the modeller can be satisfied with imprecise

results, the notion of risk can be leveraged to reduce the burden on the runtime

environment to enforce strict control of the speculative simulation trajectory, and

therefore deliver improved simulation performance. We will deal with such an aspect

in Chapter 6.

71

Chapter 5

Hybrid PDES Synchronisation

As we mentioned earlier, the spectrum of possible synchronisation algorithms for

PDES (see Figure 1.2) forms a continuum of multiple risk exploitation features.

It is, therefore, apparent that going beyond the mere exploration of this spectrum

requires cooperation between different algorithms.

This innovative approach stems from the evidence that models with different

dynamics lead to different algorithms suffering on the spectrum [13, 2]. The possi-

bility of implementing multiple algorithms within the same simulation environment,

allowing them to be dynamically activated as a function of the model’s dynamics,

brings with it the benefit of avoiding the phenomena of performance collapse of

synchronisation algorithms.

This formulation was first theorised in [61], where it is pointed out that it is

desirable to be able to combine conservative and speculative synchronisation algo-

rithms. In this way, it is possible to take the best of both worlds, thus improving

performance precisely by leveraging the different risk taken by the various algorith-

mic strategies. To the best of our knowledge, what we propose in this chapter is

the first real and practical implementation of what was theorised in [61].

In particular, we will show the strategies required to make different synchroni-

sation algorithms work together. On this journey, we have selected two speculative

algorithms that lie rather far apart in the spectrum of Figure 1.2. This hard choice

requires proper expedients to allow the algorithms to coexist. While we have used

only two, the integration methodology can easily be extended to more algorithms.

5.1 Selected Synchronisation Algorithms 72

5.1 Selected Synchronisation Algorithms

The synchronisation algorithms we picked for integration are the classical Time

Warp [59] and Window Racer [7]. Time Warp exhibits the highest degree of risk

within the spectrum of optimistic synchronisation protocols.

Conversely, Window Racer is a recent synchronous optimistic synchronisation al-

gorithm for shared-memory architectures. Inspired by Steinman’s Breathing Time

Buckets (BTB) [149], Window Racer alternates between an execute and commit

phase. As in BTB, each worker thread is assigned a portion of the simulation enti-

ties. In both algorithms, at the end of the execute phase, a newly determined GVT

decides which state transitions can be committed. However, important differences

lie in the granularity and policy according to which the new GVT is determined.

In BTB, the new GVT is simply the earliest timestamp of any event that crosses

thread boundaries. This permits a clear delineation of the execute and commit

phases, allowing the execute phase to proceed without any worker thread interac-

tion. However, when simulating systems of entities that interact globally and with

short delays, the resulting synchronisation windows can become exceedingly small.

Window Racer alleviates this issue by loosening the entity-to-thread assignment

in the execute phase. Algorithms 4 and 5 show Window Racer’s main loop and

the entity-level locking and GVT negotiation as pseudo code. Each worker thread

maintains a unconditional event list (uel) holding events guaranteed to be committed

at some point throughout the simulation, and an conditional event list (cel) holding

events generated in the current round’s execute phase, some of which may have been

generated in error and may never be committed. At the beginning of the execute

phase, each worker thread considers the local entities’ events in timestamp order.

However, any newly generated events are executed as well, regardless of the target

entity’s thread assignment. Race conditions are ruled out by acquiring a lock on

an event’s target entity before saving the entity’s state, appending the event to a

per-entity event list, and executing the event. This allows threads to execute entire

chains of dependent events without handing the execution off to other threads or

separating the execution into multiple rounds.

Throughout this execution scheme, the threads negotiate the new GVT based

5.1 Selected Synchronisation Algorithms 73

Algorithm 4 Main loop of the Window Racer algorithm.
1: global upperBound← +∞
2: global lowerBound← −∞
3: per-thread cel← PriorityQueue()
4: per-thread uel← PriorityQueue()
5: procedure ProcessWindow()
6: while not reached termination criterion do
7: do atomically:
8: lowerBound← ComputeGlobalMinimumTimestamp()
9: upperBound← lowerBound + τ0

10: done
11: while GetTimestamp(EarliestEvent(uel ∪ cel)) < upperBound do
12: nextEvent← Pop(thread.uel ∪ thread.cel)
13: Lock(nextEvent.entity)
14: if RegisterEvent(nextEvent.entity, nextEvent) then
15: generatedEvents← ProcessEvent(nextEvent)
16: cel← cel ∪ generatedEvents
17: end if
18: Unlock(nextEvent.entity)
19: end while
20: uel← ∅
21: ThreadBarrier()
22: for each entity do
23: if |entity.event_list| = 0
24: or GetTimestamp(LatestState(entity)) < upperBound then
25: entity.event_list← ∅
26: entity.state_list← ∅
27: continue
28: end if
29: Rollback(entity, upperBound)
30: for each event ∈ entity.event_list do
31: if GetGenerationTime(event)< upperBound
32: and GetTimestamp(event) ≥ upperBound then
33: uel← uel ∪ event
34: end if
35: end for
36: entity.event_list← ∅
37: entity.state_list← ∅
38: end for
39: end while
40: ThreadBarrier()
41: end procedure

on entity-level straggler events. When a straggler with timestamp t is encountered,

the target entity is rolled back to its latest state earlier than t, and the new GVT

is updated to exclude the earliest event displaced by the straggler. Through this

process, the value of the global variable holding the estimation of the next GVT

gradually decreases throughout the execution phase, allowing PEs to immediately

cease execution when their earliest event is past the new GVT. The algorithm’s

name is inspired by the threads’ “race” to fit as many events as possible into a

gradually closing synchronisation window.

In the commit phase, threads iterate through all local entities. If necessary, the

entities are rolled back to the GVT, and any events from their event lists created

5.2 Hybrid Speculative Synchronisation 74

Algorithm 5 Entity locking and update of the window bound.
1: procedure RegisterEvent(entity, event)
2: Append(entity.event_list)
3: if GetTimestamp(event) ≥ upperBound then
4: return false
5: end if
6: if GetTimestamp(event) < LatestChangeTimestamp(entity) then
7: refState← GetEarlierState(entity, event)
8: newUpperBound← GetTimestamp(refState)
9: do atomically:

10: upperBound← min(upperBound, newUpperBound)
11: done

Rollback(entity, GetTimestamp(refState))
12: return true
13: end if
14: SaveState(entity)
15: return true
16: end procedure

prior to the GVT but with timestamps beyond the GVT are inserted into the

threads unconditional event list.

5.2 Hybrid Speculative Synchronisation

The Window Racer algorithm presented in [7] uses n threads to carry out the

simulation of k simulation entities cooperatively. Conversely, in the classical Time

Warp implementation [59], there is a binding between a worker thread and a set

of simulation entities—this binding can be fixed or temporary, as in the case of

load-balancing policies such as those presented in [46, 145, 162].

Let us consider for now a single simulation node in which m cores are used to

perform processing and housekeeping tasks. Allowing the coexistence of different

synchronisation algorithms, such as Window Racer and Time Warp, requires that

a number n ≤ m of threads, at a given instant in time, performs the tasks required

by the Window Racer algorithm while the remaining m − n threads execute Time

Warp’s activities.

Given that both synchronisation algorithms can execute a complete simulation

alone, the integration is trivial if there is no interaction between the simulation

entities managed by either algorithm. Conversely, as soon as a simulation en-

tity schedules an event to another entity handled by a thread running the other

algorithm—we name it a cross-algorithm interaction—, care must be taken to en-

sure this interaction does not create any inconsistency in the speculative simulation

5.2 Hybrid Speculative Synchronisation 75

W1 W2

T0 2 5 LVT

T1 0.7 4 LVT
.

.
.

Tn−1 3.4 7 LVT

Tn 2.5 LVT

Tn+1 5.7 LVT

.
.

.

Tm 1.8 LVT

W
R

T
hr

ea
ds

T
W

T
hr

ea
ds

(a) Straggler Before a Window.

W1 W2W2

T0 2 5 LVT

T1 0.7 4 LVT

.
.

.

Tn−1 3.4 7 LVT

Tn 2.5 LVT

Tn+1 5.7 LVT

.
.

.

Tm 1.8 LVT

W
R

T
hr

ea
ds

T
W

T
hr

ea
ds

(b) Straggler In the Middle of a Window.

Figure 5.1. Straggler Messages Invalidating Window Racer Windows.

trajectory. In the following, we describe the methodology to support a correct and

efficient integration between the two synchronisation algorithms for cross-algorithm

interactions.

5.2.1 Managing Cross-Algorithm Priority Inversion

A cross-algorithm event scheduling might require reconstructing a previous simula-

tion state if the event is a straggler for the recipient. If the destination simulation

entity is managed by a Time Warp thread, the scenario poses no harm: a tradi-

tional rollback operation can restore the previous consistent state from which to

restart execution. Conversely, rollbacks are exclusively local to a window in the

original Window Racer algorithm. Therefore, when the processing of a window is

completed, the events associated with that window are immediately committed—

Window Racer does not need a dedicated algorithm to calculate the Global Virtual

Time (GVT) as in the case of Time Warp. A straggler received by a Window

Racer thread from a Time Warp one requires additional information to reconstruct

a previous consistent state.

There are two cases to consider related to straggler reception by a thread running

in Window Racer mode, which demand different management. In the first case (see

Figure 5.1a), the straggler hits before the beginning of the current or a previous

window. In this case, the solution we adopt considers the entire Window Racer

window as an atomic unit of execution. All events are undone and the simulation

restarts from a previous window.

In the second case, the straggler falls within the current window (see Fig-

5.2 Hybrid Speculative Synchronisation 76

ure 5.1b). In this case, there is no need to flush the entire window. Indeed, all

the events executed before the straggler are still (speculatively) correct. Therefore,

in this case, we simply update the window’s upper bound, closing the window at

the straggler’s timestamp. All inconsistent events will be undone.

To support the invalidation of an entire window, we must keep checkpoints also

for previous windows, which was unneeded in the original Window Racer algorithm.

As a first approximation, to support the cancellation of a window, we could take

a snapshot of all simulation entities associated with the n threads executing in

Window Racer mode before a new window starts. This approach achieves correct

execution: should a straggler be received, window cancellation can be supported

by restoring the state of all entities involved. However, this strategy may be sub-

optimal for several reasons. First, windows may be extremely short, thus requiring

many checkpoints. Indeed, as shown in [2], Window Racer performance may suffer if

simulation entities are in significant numbers and have a very high message exchange

rate.

In the Time Warp literature, however, the problem of selecting a checkpointing

interval appropriate to the dynamics of the model has been extensively addressed

(e.g., in [33, 2]). These techniques generally involve the possibility of simulation

model states being organised in arbitrarily complex data structures, e.g. based

on the use of dynamic memory, as in [23, 102]. Therefore, in our integration,

the management of checkpoints is entrusted to an autonomic checkpoint manager

[104] that determines, during the execution of the simulation, which is the most

convenient time instant for capturing a snapshot of the simulation state of an entity.

This strategy brings about an important change to the Window Racer algorithm:

in this way, the need to capture a snapshot before the execution of each event

disappears. However, in this way, it is necessary to introduce the execution of

a coasting forward phase in Window Racer as well to allow the realignment of a

simulation state if a rollback occurs. This strategy applies also to window-local

rollbacks.

Therefore, it is necessary to properly manage the simulation’s Past Event Set

(PES) to properly allow the reprocessing of events if a rollback occurs and a con-

5.2 Hybrid Speculative Synchronisation 77

sistent previous simulation state needs to be reconstructed. Unlike the FES, the

PES needs to maintain per-entity information, as a rollback affects one single en-

tity. Therefore, a different PES is used for each entity. As a data structure, our

integration relies on a doubly-linked list for the PES. The intended use of this data

structure is different from the FES since its purpose is to support the efficient execu-

tion of coasting forward. This operation is linear by nature: once the first event to

be reprocessed by a particular simulation entity has been identified, all subsequent

events must be reprocessed in order. Hence, the advantage of using a list of events

for each simulation entity. 4 • An important aspect of our integration concerns the

calculation of the GVT. Since the simulation involves threads executing the Time

Warp algorithm, it is not possible to disregard classical GVT calculation algorithms

that determine a lower bound of the real GVT value (e.g., [84, 39, 100, 155]). How-

ever, in this GVT calculation, inspecting the PES of all entities is not necessary.

Indeed, it is possible to exploit the concept of window atomicity: all entities man-

aged by Window Racer threads enjoy the automatic GVT reduction inherent in

the Window Racer algorithm. Therefore, it will be necessary to calculate the GVT

reduction between the logical times of all entities managed according to the Time

Warp scheme and the initial timestamp of the last correctly processed Window

Racer window.

5.2.2 Event Generation and Scheduling Management

Another aspect to deal with in integrating the algorithms is managing the genera-

tion of new events and event scheduling activities. In particular, given the different

risk of the Time Warp and Window Racer algorithms, we have decided to organ-

ise future event sets (FES) differently for the threads running the two. For both

algorithms, FESs are priority queues implemented using k-heaps, as they have ex-

perimentally shown good performance in the case of disparate workloads [111]. In

particular, using a k-heap, the extraction of the next event to be executed has worst

case logarithmic cost, which is particularly important in the case of the n threads

executing the Window Racer algorithm.

Indeed, for the n Window Racer threads, a single shared FES is used. While this

5.2 Hybrid Speculative Synchronisation 78

choice requires access synchronisation (e.g. through spinlocks), the advantage lies

in that the n threads can effectively cooperate in the execution of events that fall

within the various windows. Conversely, the Time Warp threads use a single FES for

all the associated simulation entities. This strategy deviates from classical solutions

found in the literature, in which a single queue is provided for each simulation

entity. However, as shown in [111], using a reduced number of queues can lead

to non-negligible performance benefits. The lack of a per-simulation entity FES

requires determining, upon event schedule, what is the proper FES to insert the

newly-generated event into. We support this mapping by using a hash function

that associates the unique id of an entity with the FES that maintains the events

to be processed.

During the execution of events, newly-generated events are subject to different

handling depending on their source, destination, and timestamp. Events generated

by Time Warp threads are immediately delivered to the relevant FES—of course,

if they are stragglers, they will cause a rollback. Nevertheless, if they fall into the

current Window Racer window, they determine an update of the upper bound of

the window—this is the scenario we already depicted in Figure 5.1b. Conversely,

all events generated by a Window Racer thread are inserted in a per-thread output

queue.

Logically, this output queue has a dual purpose. On the one hand, it buffers

events that could be undone should a local rollback to the window cancel the process-

ing of the generated event. On the other hand, it maintains causality information

for all those events sent to Time Warp threads: in the event of a window rollback,

all those messages will have to be cancelled with anti-messages.

At the end of the execution of the window, all entity events handled by Window

Racer threads in the output queue are placed in the cooperative FES of Window

Racer threads. Other messages are retained in the output queue until the GVT

overtakes the entire window. At that point, the traditional fossil collection operation

[59] allows the memory buffers to be retrieved. This dualistic use of the output queue

allows the different degrees of risk, proper of the two Window Racer and Time Warp

algorithms, to be handled correctly.

5.2 Hybrid Speculative Synchronisation 79

Algorithm 6 Window Management Algorithm
1: global windowUpperBound← +∞ ▷ Visible to all worker threads
2: global pastW indows← Stack() ▷ Past committed windows
3: global F ESW R ← PriorityQueue() ▷ Window Racer Future Event Set
4: per-thread F EST W ← PriorityQueue() ▷ Time Warp Future Event Set
5: global rollbackW indow ← false ▷ If set, an older window will be restored
6: procedure ProcessWindow()
7: outputQ← PriorityQueue() ▷ Events generated in the current window
8: while Next(F ESW R) < windowUpperBound OR Next(outputQ) < windowUpperBound do ▷

F ESW R is accessed atomically
9: if Next(outputQ) < Next(F ESW R) then

10: nextEvent←Pop(outputQ)
11: else
12: nextEvent← Pop(F ESW R)
13: end if
14: simEntity ← GetEntityOf(nextEvent)
15: Lock(simEntity) ▷ Mark the simulation entity as being processed by a WR thread
16: if GetTimestamp(simEntity.lastP rocessedEvent) > GetTimestamp(nextEvent.time) then

▷ Straggler detected
17: UnLock(simEntity)
18: if GetOriginPartition(event) = T W then
19: rollbackW indow ← true
20: end if
21: do atomically:
22: if windowUpperBound > GetTimestamp(nextEvent) then
23: windowUpperBound← GetTimestamp(nextEvent)
24: end if
25: done
26: break
27: end if
28: generatedEvents← ProcessEvent(nextEvent) ▷ Calls the model event handler and returns

the generated events
29: UnLock(simEntity)
30: outputQ← outputQ ∪ generatedEvents
31: end while
32: ThreadBarrier() ▷ Window is over
33: if rollbackW indow then
34: outputQ← ∅
35: do
36: windowT oRestore← Pop(pastW indows)
37: while windowT oRestore ≥ windowUpperBound
38: for each simEntity do
39: Rollback(simEntity, windowT oRestore)
40: end for
41: ThreadBarrier()
42: rollbackW indow ← false
43: return
44: end if
45: pastW indows← pastW indows ∪ {windowUpperBound}
46: for each event ∈ outputQ s.t. GetGenerationTime(event) < windowUpperBound do
47: if GetDestinationPartition(event) = T W then
48: F EST W ← F EST W ∪ {event}
49: else
50: F ESW R ← F ESW R ∪ {event}
51: end if
52: end for
53: outputQ← ∅
54: for each entity do
55: Rollback(simEntity, windowUpperBound)
56: FossilCollection(simEntity)
57: end for
58: ThreadBarrier()
59: end procedure

5.2 Hybrid Speculative Synchronisation 80

Overall, the operations carried out by Window Racer threads are reported in

Algorithm 6. The global FES (line 2) is shared among all worker threads cooperating

to process the current window (line 3). The Window Racer threads maintain a per-

thread output queue (line 4) that is used in conjunction with the FES to determine

when the processing of the current window is over and what is the next event to

schedule (lines 5–10). As discussed, the output queue is also used to keep track of

all the generated events (line 22, 24).

Given the cooperative nature of Window Racer, we must ensure that a single

simulation entity is not concurrently executed by two different worker threads. To

this end, we employ a locking mechanism based on atomic read-modify-write in-

structions that ensure that only a single worker thread will take care of an entity if

two events are extracted concurrently—lines 12, 14, 23.

If a straggler message is received, the worker thread managing the entity hit

by the straggler will reduce the window size (lines 13–19). The update of the

upper bound must be done atomically, because multiple threads may be managing

stragglers at the same time. In the case of concurrent update, the minimum among

all the new tentative values should be stored. Therefore, we rely on a Compare-

and-Swap based retry loop, thus implementing a non-blocking update.

The window is completely processed when the next event to be processed is

scheduled at a timestamp beyond the window’s upper bound (line 5). At this point,

the threads should deliver the events still present in the output queue to the FES

(lines 27–31). The presence of the synchronisation barrier (line 26) is a legacy of

the original Window Racer algorithm, but is not strictly necessary.

5.2.3 Dynamic execution mode switching

An important aspect of managing a hybrid synchronisation mechanism such as

the one proposed in this work is the possibility of dynamically switching from one

execution mode to another. Indeed, as was shown in [2], depending on the dynamics

of the simulation model, different synchronisation modes may prove to be successful.

Clearly, in a general simulation, it is possible for these dynamics to change, just as

it is possible for different parts of the model to behave differently. Therefore, to

5.2 Hybrid Speculative Synchronisation 81

Algorithm 7 Mode Switch from Time Warp to Window Racer
global need_switch
global switching_thread_id
global warp_threads_count
global racer_threads_count
procedure DoSwitch()

if NOT need_switch then
return

end if
if ThreadType() = W ARP OR NOT ThreadId() = switching_thread_id then

return
end if
ThreadBarrier()
if ThreadId() = switching_thread_id then

if ThreadType() = W ARP then
warp_threads_count← warp_threads_count− 1
racer_threads_count← racer_threads_count + 1
SetThreadType(RACER)

else
warp_threads_count← warp_threads_count + 1
racer_threads_count← racer_threads_count− 1
SetThreadType(W ARP)

end if
need_switch← F alse

end if
ThreadBarrier()

end procedure

maximise performance, it is desirable that the number n of threads running in a

given mode changes during the same simulation.

The different nature of the two synchronisation algorithms considered in this

work requires certain precautions to make this transition effective. Let us first

consider the simplest case in which a thread executing in Time Warp mode must

switch to Window Racer mode. The organisation of FESs described above requires

that, in the transition, a Time Warp thread inserts all future events of its FES into

the one shared between all threads executing in Window Racer mode.

However, the transition from Time Warp to Window Racer mode must be per-

formed to minimise the invasiveness concerning Window Racer execution. If a Time

Warp thread merely modifies the FES of Window Racer threads, artificial rollbacks

may be introduced related to this platform-level operation. On the other hand, its

windowed nature allows the upper bound to be exploited to discriminate between

messages that may generate a rollback and those that certainly do not. The thread

that wants to migrate from Time Warp to Window Racer execution, therefore, can

adopt the scheme shown in Algorithm 7.

Initially, the migrating thread signals the start of the transition so that the

5.2 Hybrid Speculative Synchronisation 82

Window Racer threads are forced to wait at the end of the current window. It then

checks the upper bound value of the current window. If this value is less than the

time of the next event in its FES, all the events to be processed belong to the next

window. Therefore, the thread moves its events into the Window Racer FES.

Conversely, if its next event has a timestamp less than the upper bound, we

are in the scenario described above in Figure 5.1. In this case, if the thread were

to insert new events into the Window Racer queue, it could generate a priority

inversion concerning the activities of the n threads executing in Window Racer

mode. Therefore, the Time Warp thread in migration appropriately exploits the

risk of Time Warp, as shown in Algorithm 7: it will continue to process events in

the FES as long as the logical time of the next event does not exceed the upper

bound of the current window. The termination of the procedure is guaranteed by

the signalling flag, which forces the Window Racer threads to wait for the conclusion

of the mode transition.

This migration approach could lead to high costs if not handled correctly. In-

deed, the pool of Window Racer threads may have to wait a long time for the transi-

tioning Time Warp thread to complete its realignment. Therefore, when choosing a

thread to switch from Time Warp mode to Window Racer mode, selecting a thread

that is further along in logical time than the current window is crucial. If no such

thread exists, the choice should fall on the one with the next event closest in logical

time to the end of the current window. However, we emphasise that this aspect, as

well as the choice of when to make the transition and the number of Time Warp

threads involved, requires the definition of an autonomic policy outside this work’s

scope.

Switching from Window Racer execution mode to Time Warp requires more care.

Threads executing in Window Racer mode have no inherently bound simulation

entities: events associated with a given entity can be cooperatively executed by

multiple threads in alternation. If a Window Racer thread is to turn into a Time

Warp thread, it becomes necessary to manage the output queue discussed above

appropriately. Including all current messages in the output queue in the various

FESs would not be consistent with its handling as described above. Conversely, we

5.3 Experimental Assessment 83

place all events destined for an entity running on Time Warp threads (including

the thread performing the mode change) in the corresponding FESs. On the other

hand, the output queue is assigned to a Window Racer thread1, which will carry on

its management in a manner consistent with what is described in Section 5.2.2.

5.2.4 Going Distributed

So far, we have focused on managing event processing by considering only one node.

Using our hybrid synchronisation scheme in a distributed setup is straightforward.

Indeed, Window Racer was born as an algorithm for parallel but not distributed

systems. Conversely, Time Warp is inherently capable of handling the causality

violations that may arise from a distributed execution. Therefore, the hybrid scheme

we have described can be immediately used on distributed deployments due to the

presence of Time Warp.

Considering windows as atomic processing units ensures that, unlike the original

proposal in [7], if a straggler message is received prior to a window, it will be

cancelled entirely.

In a distributed deployment, therefore, the fact that there are multiple concur-

rent instances of the Window Racer algorithm running on multiple nodes does not

require making these instances aware of the presence of the others. If a straggler

message is received by a pool of Window Racer threads, they will work together to

restore an earlier state of the window affected by the straggler, resuming execution.

5.3 Experimental Assessment

In this section, we detail the setup and the results of the experimental assessment

we carried out for our proposal.

Our analysis was conducted using a machine equipped with two AMD® EPYC™

7452 processors @ 2.9 GHz, each consisting of 32 physical cores and 64 hyperthreads,

for a total of 64 physical cores and 128 hyperthreads—hyperthreads were turned off
1We currently pick a random Window Racer thread for this purpose: the envisaged autonomic

policy could determine the best-suited target, depending on the current load.

5.3 Experimental Assessment 84

in the experimental assessment. The machine is equipped with 256 GB of RAM.

All experimental results are averaged over 20 different runs.

5.3.1 Testbed Applications Configuration

For the PHold benchmark, we have simulated a total of 131,000 simulation entities

that have been mapped to a variable number of threads in multiple runs. The

entities are divided into a dense and a loose partition, the former composed of 1000

entities and the latter of the remaining 130,000. When an entity has to randomly

select a destination for an event, with a 50% probability it will pick a random

destination in the dense partition. Otherwise, it will pick a random destination

in the loose partition. This way, we can mimic a scenario where a part of the

simulation has a higher load.

The dense partition is assigned for execution to Window Racer threads, while

Time Warp threads execute the loose partition. Depending on the number of

threads, there could be a significant skew on the logical clocks of the entities that

could increase the rollback probability. The dense partition is the one that suffers

most from rollbacks because they have a denser concentration of events that a single

straggler can undo.

Regarding the epidemiologic agent-based model, the SIRS variant is considered,

where recovered agents eventually revert to the vulnerable state. Each agent in our

model is located in one of an adjustable number of fully connected domains, each

of which has the same initial number of agents. Each agent has eight randomly

selected neighbours in the same area, so the number of areas affects how localised

agent interactions are.

Transition delays are drawn from exponential distributions with fixed or dynamic

rates. The infection rate for susceptible agents is proportional to the number of

infected neighbours. As a result, agents entering or leaving the infected state must

notify their neighbours to reschedule their transition to the infected state based on

the new rate. Transitions from the recovered state to the susceptible state occur

at a constant rate of 1. Two other transitions introduce dynamic changes to the

topology defined by the neighbourhood relationships of the agents. The first type

5.3 Experimental Assessment 85

of transition randomly changes an agent’s neighbours within its current region,

potentially changing its infection rate or the infection rates of its neighbours. The

second type of transition involves the movement of an agent.

The second type of transition randomly moves an agent to another region and

connects the agent to new neighbours in the new region. The rates at which these

two types of transition occur allow us to control the degree of computational load

and agent interaction within each region, as well as the interdependence of transi-

tions between regions. Overall, this system is similar to epidemic models used in

real-world epidemic studies [49], which attempt to capture the effects of daily and

long-distance mobility of populations.

5.3.2 Experimental Results

In Figure 5.4, we show the speedup over the corresponding sequential simulation

for the PHold benchmark, using a total of 16, 24 and 32 threads empowering the

two integrated algorithms. The plots depict the performance variation as the num-

ber of threads responsible for simulating the high-activity partition changes. The

two curves correspond to the high-activity partition simulated by the TW or WR

threads. In some configurations, simulation runs are more than 10 times slower

than the corresponding serial execution. The dashed line represents the configura-

tion where the high-activity LPs are uniformly distributed among processing threads

to balance the computational load. With our knowledge of the chosen models, this

can be accomplished statically and accurately.

In the imbalanced model, the total execution time changes drastically depend-

ing on the workload partitioning to the threads. Noteworthy, when using TW and

WR for the high-activity partition, a single configuration exhibits the best perfor-

mance, independently of the total thread count. A less apparent observation is that

the optimally partitioned configurations surpass the load-balanced configuration in

performance. This is because, despite achieving better load balance, the communi-

cation of the high-activity partition becomes dispersed into more threads, resulting

in less-efficient event management operations.

The important result is that, with PHold, the best static configuration is always

5.3 Experimental Assessment 86

found using only TW threads. Nevertheless, thrashing phenomena are observed

for the TW algorithm if the thread count is too high. This is because when fewer

LPs are bound to a TW thread, the system becomes over-optimistic, and the high-

activity partition is subject to more rollbacks. The rollback cost is much higher for

the high-activity partition, as more work is wasted. In contrast, the WR algorithm

is less sensitive to increased concurrency in the high-activity partition because WR

threads can effectively leverage the reduced aggressiveness to decrease the rollback

occurrence in the simulation. Apparently, WR threads are more resilient to tighter

simulation interactions, but their average throughput is lower. This is evidenced by

configurations equipped with WR achieving peak performance with more threads.

Figure 5.5 reports the SIR-model speedup for the same thread configurations.

As can be seen, the scenario is significantly different: we consistently achieve im-

proved performance over the sequential simulation when WR threads manage the

high-activity partition. This is because the cost of rollbacks is higher, and the LP

interactions in the high-activity partition are highly dynamic and tightly coupled.

In this scenario, TW becomes excessively optimistic, causing significant clock skew-

ing and leading to worse performance. The more cautious approach of WR can

achieve better returns from optimism, reducing the overall number of rollbacks.

In summary, Figure 5.3 demonstrates that for the PHOLD model, the parti-

tioned TW configurations yielded the best performance, whereas, in the SIR model,

the hybrid configurations performed the best. However, with 32 threads, all config-

urations were more or less on par. The SIR model has a high degree of coupling,

so even with 24 threads, we achieved a speedup comparable to what was attained

with 16 threads. This indicates that we were nearing the parallelisation limit for

the model, at least using our current techniques. Interestingly, the load-balanced

TW compensated for its inefficiencies through sheer processing power. Neverthe-

less, we can deduce that the hybrid approach is considerably more efficient for the

SIR model, especially when using fewer threads.

To provide further insight into these findings, we have illustrated the total num-

ber of rollbacks experienced by the TW and WR thread pools throughout the sim-

ulation in Figure 5.6. The results show that the WR configuration experiences

5.3 Experimental Assessment 87

8 16 24 3250

60

70

80

90

100
Ef

fic
ie

nc
y

(%
)

PHOLD model

8 16 24 3250

60

70

80

90

100 SIR model

Processing threads

High activity with TW High activity with WR Load balanced TW

Figure 5.2. Efficiency, picking the best partitioning

8 16 24 32
2

3

4

5

6

Pr
oc

es
sin

g
tim

e
(s)

PHOLD model

8 16 24 32

6

8

10
SIR model

Processing threads

High activity with TW High activity with WR Load balanced TW

Figure 5.3. Scaling, picking the best partitioning

significantly fewer rollbacks overall. This is due to the algorithm’s avoidance of

over-optimism, resulting in a lower probability of a WR thread engaging in an in-

correct speculative trajectory. In contrast, the configuration using only TW threads

experiences a much higher rate of rollbacks.

Figure 5.7 demonstrates that the high-activity partition managed by TW is

responsible for the increased number of rollbacks in TW-only configurations. In

contrast, the very same partition managed by WR generates a minimal amount of

antimessages. However, the WR threads must wait at the end of windows, leading

to blocking synchronisation when committing new windows. Therefore, considering

the better performance provided by the hybrid configuration, it can be inferred that

the time spent by TW threads in incorrect trajectories and sending antimessages is

superior but roughly comparable to the time spent by WR in blocking wait.

The last finding is validated by the simulation efficiency shown in Figure 5.2,

5.4 Discussion 88

demonstrating that the hybrid approach outperforms the other strategies for both

the evaluated models. Efficiency is determined by computing the proportion of

committed events in relation to the overall number of executed events, expressed as

a percentage. It is once again evident that the WR’s less aggressive characteristics

significantly decrease rollback occurrences, albeit at the expense of idle periods on

processing threads. In particular, in a model such as SIR, with a limited degree

of parallelism that can be captured in the high-activity portion of the model, the

hybrid synchronisation method can achieve remarkably high levels of efficiency.

These plots over time show that, even for a simplified epidemic model, we ob-

serve a dynamicity in behaviour that an autonomic policy can potentially exploit.

From this overall experimentation, we can draw the following observations. Evenly

distributing the computational workload among threads in a uniformly synchro-

nised simulation may not always be optimal, as communication costs, even within

the same machine, can influence its effectiveness. Partitioning the simulation in

uneven ways can bring measurable performance benefits and allows using different

synchronisation algorithms that better adapt to the model’s dynamics.

From this overall experimentation, we can draw the following observations. De-

pending on the model dynamics, Window Racer and Time Warp can adequately

capture the model’s parallelism under different conditions. In all cases, there is an

optimal static configuration that depends on the model characteristics. Since the

workload dynamics can change over time, we emphasise that this optimal static

configuration may also vary. Therefore, the autonomic policy we envisaged in this

Chapter is fundamental because it can capture the best-suited parallelism level in

certain simulation phases, and tune the configuration to deliver better performance.

5.4 Discussion

The experimental results that we have shown clearly demand the introduction of an

autonomic policy that can allow for the proper selection of the number of threads

running the Window Racer and the Time Warp algorithms, depending on the work-

load of the model. Furthermore, an additional dimension of optimisation could

entail dealing with multiple pools of Window Racer threads, thus exploring how

5.4 Discussion 89

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Processing threads for the high activity partition

0

5

10

15

20

Sp
ee

du
p

w
.r.

t.
se

ria
l

High activity with TW High activity with WR Load balanced TW

(a) 16 threads

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Processing threads for the high activity partition

0

5

10

15

20

Sp
ee

du
p

w
.r.

t.
se

ria
l

High activity with TW High activity with WR Load balanced TW

(b) 24 threads

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Processing threads for the high activity partition

0

5

10

15

20

Sp
ee

du
p

w
.r.

t.
se

ria
l

High activity with TW High activity with WR Load balanced TW

(c) 32 threads

Figure 5.4. PHold Performance

multiple FESs for the Window Racer part may affect the simulation performance.

Although we delegate the study of an autonomic policy for runtime selection of

the best configuration in relation to model dynamics to a future line of research,

the work we have presented in this Chapter emphasises once again that a general-

purpose runtime environment cannot be realised without self-optimisation tech-

niques. The effects of autonomic risk management policies will be shown in action

in Chapter 6, albeit in a different context.

Finally, as mentioned earlier, the integration methodology presented in this

chapter can easily be extended to other synchronisation algorithms. The introduc-

tion of new optimistic algorithms appears immediate: the presence of Time Warp

makes this operation painless. Indeed, since it is the algorithm that runs the most

5.4 Discussion 90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Processing threads for the high activity partition

0

2

4

6

Sp
ee

du
p

w
.r.

t.
se

ria
l

High activity with TW High activity with WR Load balanced TW

(a) 16 threads

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Processing threads for the high activity partition

0

2

4

6

Sp
ee

du
p

w
.r.

t.
se

ria
l

High activity with TW High activity with WR Load balanced TW

(b) 24 threads

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Processing threads for the high activity partition

0

2

4

6

Sp
ee

du
p

w
.r.

t.
se

ria
l

High activity with TW High activity with WR Load balanced TW

(c) 32 threads

Figure 5.5. SIR Performance

significant risk, it is also the one with the vastest requirements to recover from incor-

rect trajectory portions. Therefore, as we have done for Window Racer, it is always

possible to correct the problems of other less aggressive algorithms by exploiting

Time Warp’s capabilities.

On the other hand, additional pieces of information must be included should we

want to introduce conservative algorithms, as theorised in [61]. The fundamental

one is the concept of lookahead. Indeed, by introducing a lookahead value (ei-

ther provided by the modeller or estimated by the execution environment), it will

be possible to expand the autonomic decision-making model by also considering

the possibility of entirely avoiding the cost of supporting the corrective actions of

speculative algorithms.

5.4 Discussion 91

3 4 5 6 7
Wall-clock time (s)

0

100

200

300

400

500

600

Ro
llb

ac
ks

 (c
ou

nt
/s

)

Time Warp Time Warp (dense partition)

(a) Best Time Warp-only configuration

2 3 4 5 6
Wall-clock time (s)

0

100

200

300

Ro
llb

ac
ks

 (c
ou

nt
/s

)

Time Warp Window Racer

(b) Best hybrid configuration

Figure 5.6. SIR Rollbacks over time: 24 threads

3 4 5 6 7
Wall-clock time (s)

0

200

400

600

800

Ge
ne

ra
te

d
an

tim
es

sa
ge

s (
th

ou
sa

nd
s/

s) Time Warp Time Warp (dense partition)

(a) Best Time Warp-only configuration

2 3 4 5 6
Wall-clock time (s)

0

5

10

15

Ge
ne

ra
te

d
an

tim
es

sa
ge

s (
th

ou
sa

nd
s/

s) Time Warp Window Racer

(b) Best hybrid configuration

Figure 5.7. SIR Antimessages sent over time: 24 threads

92

Chapter 6

Risk Management in Stochastic

Simulations

One of the facets of risk is to allow diverging from the correct simulation trajectory.

As we have discussed extensively, in the case of Time Warp, the aim is to contain

or correct the effects of risk to avoid incorrect simulation results.

However, in the case of stochastic simulations, this risk may be acceptable.

Indeed, stochastic simulations provide results that approximate what happens in

reality—the use of probability distributions already introduces a certain degree of

approximation. Therefore, the question arises as to whether it is possible to accept

a certain level of risk, thus deviating from the result of a more precise simulation

and providing higher performance.

In this direction, the recent work in [120] has shown how it is possible to obtain

simply from the model developer information related to how much risk it is willing

to tolerate, i.e. how much a stochastic model can bear divergences in the simulation,

while still providing acceptable results. It is clear that the modeller’s intervention

is essential in this context: different simulation models, or even different studies

based on the same model, may have different accuracy requirements. Therefore, it

is necessary to allow the execution environment to obtain information on the degree

of accuracy of interest to manipulate the risk inherent in the executions correctly.

However, the modeller is mainly interested in the model aspects. Therefore,

he can only provide information on the degree of accuracy he expects from the

6.1 Approximate Rollbacks 93

simulation results. Basing execution environment choices solely on this information

could be counterproductive.

Indeed, the modeller may select a degree of detail (or approximation) such that

the level of risk is too high. As we showed in Chapter 5, depending on the dynamics

of the model, the degree of acceptable risk from the point of view of performance

may vary significantly. Therefore, as theorised in Chapter 5, it is crucial to develop

autonomic self-optimising policies that allow the execution environment to correct

execution dynamics to manage risk appropriately.

In this chapter, we show how it is possible to extend the work in [120] to make

the choices made by the runtime environment aware of the degree of risk being

observed in the execution of the model. Referring to more classical concepts in the

literature, the risk manipulation we implement in this chapter concerns both the

accumulated error in the simulation results and the aggressiveness of the simulation

itself. In our new definition of risk, these two concepts are subsumed into one.

6.1 Approximate Rollbacks

The technique proposed in [120] is named approximate rollbacks. It stems from the

observation that the typical way to support the rollback operation of an LP is to

precisely reconstruct its last correct state. Optimisations to this approach (e.g.,

[119, 15, 18]) were mainly involved in reducing its cost.

Conversely, the work in [120] took an orthogonal approach to the cost reduction

for rolling back the LP to a past state based on risk tolerance in simulation. The

fundamental idea of this work is that it is not necessary to precisely reconstruct

a previous simulation state of a stochastic simulation, provided that the accuracy

is compatible with the goals of the simulation study. Therefore, an approximate

rollback is based on the idea that we may obtain sufficiently-accurate simulation

results even if the LP affected by a causality error resumes its execution from a

state that is a reasonable approximation of the one that should have been restored.

The central concept behind approximate rollbacks is that the state of an LP can

be partitioned into core and non-core portions. The core portion allows reconstruct-

ing the whole state in an approximated way, so only the core portion can be dealt

6.1 Approximate Rollbacks 94

with in state saving and restore operations. Of course, the possibility of devising

a part of the LP state as the core is application-dependent; hence the approximate

rollback technique requires a bit more intervention from the application programmer

in terms of interaction with the state management logic offered by the optimistic

runtime environment. To reduce the need for intervention by the programmer, ap-

proximate rollbacks provide a state-management architecture that allows saving the

core-state portion transparently and supports an application-level callback which,

starting from a saved core-state portion, will approximately reconstruct the whole

state when a rollback occurs. Our architecture also offers the possibility to dy-

namically change the identification of the core-state portion, further optimising the

execution of the approximate rollback technique when the LP state dynamically

changes in shape and semantics.

Our architectural proposal still enables the coexistence of approximate rollback

phases and traditional non-approximate ones based on the precise reconstruction

of past states. Also, approximate rollbacks leave the simulation model with the

possibility to switch between the two at runtime. The final effect is to enable the

simulation model to choose what phases of the simulation run can tolerate approx-

imations and what cannot. This choice can depend on the runtime observation

of the actual state of an LP and its evolution trajectory so that the approximate

mode can be enabled or disabled depending on whether specific predicates hold or

not. Ultimately, activating or deactivating this support can be based on the passage

of logical time and the desire not to allow more than a certain percentage of the

elapsed logical time to be handled with approximate rollbacks.

The benefit of this approach is mainly related to the performance improvement

that can be observed thanks to the reduction in the overhead related to state saving/

restore proper of optimistic simulations. Of course, the drawback is a (possible) loss

in simulation results’ accuracy. Nevertheless, this loss of accuracy can be tolerated

in many scenarios specifically related to stochastic simulations, where we typically

estimate the properties of the simulated system through statistical techniques.

One of these scenarios is model calibration [30], during which selected parame-

ters are varied within reasonable bounds until a sufficient correspondence between

6.1 Approximate Rollbacks 95

one or several model output variables and respective measurements is obtained.

This phase could require running many simulations so that a performance improve-

ment in a single simulation run can result in a non-negligible time reduction of

the overall calibration process. Similarly, and for the same reasons, also sensitivity

analysis [140] could benefit from approximate rollbacks.

Of course, the benefits of approximate rollbacks depend on the actual simula-

tion dynamics, so some models (or model’s execution phases) might provide better

performance when run in precise mode. To account for this specific aspect, we

introduce an autonomic policy that determines at runtime, based on the current

model dynamics, what is the best-suited execution mode. In this way, the model

developer is only required to mark the core portions of the simulation state. The

runtime environment will then self-tune its internal operations to improve the sim-

ulation performance.

The approximate rollback technique deals with the capability of a speculative

PDES application to resume its execution after a rollback bringing an LP back to

logical time T , from a state s̃ not fully matching the original state s observed in

forward execution at the same time T .

Let us denote with V T (x) the virtual time of a state x and I(x) the correct

information stored in the state variables forming the state x. Let us also call s̃← s

the relation between two states s̃ and s such that s̃ represents the restoration of s

after a rollback. Then, the approximate rollback technique can be described through

the following expression:

s̃← s⇒ (V T (s̃) = V T (s)) ∧ (I(s̃) ⊆ I(s)) . (6.1)

By Equation 6.1, the logical time of the two states s̃ and s involved in the s̃← s

relation is identical. At the same time, s is a superset of the correct information

maintained in s̃. In other words, the approximate rollback technique restores a

state with some missing correct information. Still, no added information (i.e., no

added state variable) in s̃ was not initially present in s. This aspect is crucial from

the point of view of model implementation since the application programmer knows

that after an approximate rollback, they will never need to deal with a state variable

6.1 Approximate Rollbacks 96

value not already observed in forward execution.

Concerning model execution, the relation I(s̃) ⊆ I(s) implies that to create

a snapshot that can be used to restore s̃, we can log fewer data compared to s

when observing s in forward execution. While this is typical of incremental state-

saving techniques, approximate rollbacks do not relate data saved in the log to

write operations occurring in forward execution: we only need to skip parts of s to

create the log used to restore s̃. This also means that we do not need any tracing

mechanism (based on, e.g., software instrumentation) to track state updates to

reduce the log size. Also, we do not need to re-traverse the incremental log chain

backwards to rebuild s. We simply restore the saved core information of s, namely

I(s̃) rather than I(s), which enables restoring s̃ in place of s.

Another implication of the relation I(s̃) ⊆ I(s) is that the approximate state

s̃ does not guarantee to precisely record the history of the events processed at the

LP up to the restoration time T . Indeed, parts of the information stored by the

events in the initially-observed state s are no longer available after rolling back to

s̃. This behaviour contrasts with the sparse state-saving technique, which reduces

the total amount of logged state information but allows reconstructing a precise

state via the coasting forward operation. Indeed, the coasting forward phase can

regenerate a simulation state precisely recording the whole history of events that

have been processed without a causality violation, including all intermediate events

between the last correct checkpoint and the timestamp T of the last-correct event.

Avoiding this type of precise state reconstruction makes the state restoration time

upon a rollback independent of the granularity of the events.

Overall, large states and coarse-grain events (possibly updating large portions of

the state) are no longer a concern when employing approximate rollbacks, especially

when I(s̃) is a significantly reduced subset of I(s). On the other hand, large state

sizes and coarse-grain (write-intensive) events represent a challenging scenario for

all the other techniques, including reverse computation. Indeed, coarse-grain events

with many updates on the state will likely lead to coarse-grain backward computing

steps, independently of whether the backward computing phase is based on reverse

event handlers [15] or reverse reconstruction of memory-location values [18].

6.2 The Autonomic Policy 97

A final point must be discussed, related to the following question: «once we

restore s̃ (instead of s), are we able to guess the missing piece of information between

I(s) and I(s̃)?». Considering stochastic simulation as the target, the answer is

yes. In particular, we can complement the restoration of s̃ with the invocation of

an application-level callback that takes s̃ and changes it to (possibly) reduce the

distance between I(s) and I(s̃). Overall, denoting with CF this callback function,

we have that the final state restored at time T in an approximate rollback is CF (s̃).

Of course, introducing CF to support the approximate reconstruction of the state

from which to resume the simulation after a rollback adds some runtime overhead to

the state reconstruction process. However, we still avoid the dependence between

the cost of the approximate state reconstruction and the amount of rolled-back

events.

At this point, we can provide another indication of how to build s̃, which is the

core of s, to make the callback function CF effective: s̃ should include information

on what parts of the state are missing between s and s̃. However, the missing pieces

are a “do not care” and will be regenerated (approximately) by the callback function

CF . It is left in the hand of the model developer to determine what information is

suited for the approximate reconstruction via CF and what is more relevant to the

simulated stochastic process—this part should be maintained in the core of s.

6.2 The Autonomic Policy

As already mentioned, approximate rollbacks aim to reduce the burden on the

simulation runtime environment for supporting/performing a rollback operation.

When the simulation state s is much larger than the approximate state s̃, i.e. when

core memory is a tiny fraction of the overall simulation state, the cost to save/restore

a previous simulation state can be expected to be small. At the same time, to

correctly resume the simulation, the runtime must invoke CF , whose execution

time might be non-minimal, especially if the simulation model state has arbitrarily

complex invariants to be respected.

Therefore, we propose an autonomic policy that allows switching between the

precise and approximate modes at runtime, based on model-related dynamics. The

6.2 The Autonomic Policy 98

goal of this policy is to support effective, transparent decision-making at the level of

the simulation runtime environment. In particular, the simulation model developer

is still required to enable the approximate mode and to explicitly mark the core

portions of the simulation state, but then the runtime environment can quickly

switch between the two execution modes to reduce the overall performance penalty.

Of course, if required, the modeller can still explicitly switch to precise execution

to ensure the correctness of some phases of the simulation run, thus bypassing any

autonomic decision by the runtime environment. Hence, our autonomic policy can

only operate along any phase where the approximate mode is permitted.

We base our autonomic policy on two analytical models that describe the per-

event overhead, i.e. the per-event time spent in activities required to support the

restoration of a previous consistent state. Our models capture that if no rollback

is ever executed, the state-saving overhead is wasted time, subtracted from fruitful

forward event processing. First, we define the per-event overhead when executing

in precise mode as follows:

OHP = sδs

χ
+ Pr

(
sδr + δc

χ− 1
2

)
(6.2)

where s is the average size of the simulation state, δs is the average cost to log

a single byte of the simulation state, δr is the average cost to restore it, χ is the

checkpointing interval, Pr is the rollback probability, and δc is the average time to

process an event during the coasting forward phase (i.e., the silent execution). This

model complies with what is already proposed by the literature in the context of

precise rollbacks supported via state saving [135].

Equation (6.2) captures that, for each event processed in forward execution, we

pay the cost to take a periodic checkpoint sδs distributed over the events that fall

in the checkpointing interval χ. With a certain probability Pr, we also pay the cost

to restore a previous simulation state. This cost accounts for restoring the previous

consistent state (sδr) and the coasting forward phase, which on average requires

replaying half of the events in a checkpointing interval [33]. We explicitly consider

the cost δc for the re-execution of events because, due to their silent execution

nature, the granularity of replayed events can be smaller than when in forward

6.2 The Autonomic Policy 99

execution because event messages are not actually delivered.

Similarly, we define the per-event overhead when executing in approximate mode

as follows:

OHA = αsδs

χ
+ Pr

(
αsδr + R + δc

χ− 1
2

)
(6.3)

where, beyond the previously defined variables, R is the average cost to execute

the restore function CF and α is the fraction of state marked as core by the model

developer, i.e. such that s̃ = αs. Equation (6.3) captures that, when running

in approximate mode, we pay a reduced state saving cost because we do not log

the whole simulation state (αsδs), but in case of a rollback, the state-restore cost

increases proportionally to the cost R for executing the CF function.

The checkpointing interval χ must be properly set for the two overheads to

be comparable. In particular, independently of the execution mode, an optimal

checkpointing interval χopt must be selected. This ensures that the computed over-

heads do not depend, even indirectly, on a suboptimal execution strategy which,

for example, requires replaying more events than needed when running the coasting

forward phase. In this way, OHP and OHA can be evaluated using χP
opt and χA

opt,

respectively. To select the proper value of χopt, we borrow from classical optimal

checkpointing interval selection strategies, such as the one presented in [74]. In

particular, χopt can be computed as:

χopt =
⌈√

ω

Prδc

⌉
(6.4)

where ω can be set to 2sδs for the precise scenario, and to 2αsδs for the approxi-

mate scenario. Equation (6.4) captures that the checkpointing interval should be

increased if the state-saving cost is high, but not too much to pay a higher coasting-

forward cost in case of a rollback1. Moreover, it accounts for the fact that the

rollback behaviour itself can be affected by variations in the checkpoint interval. Of

course, any other optimal checkpointing interval selection algorithm (see, e.g., [33])

can be suitably employed.

Once the proper values χP
opt and χA

opt are determined, we can compare OHP and
1In any case, a classical upper bound on the checkpoint interval needs to be used—like the value

40 selected in various works [135, 5]—in order to avoid negative interference with fossil collection.

6.2 The Autonomic Policy 100

OHA. Our autonomic policy makes a decision on the best-suited execution mode

by computing:

β = OHP

OHA
(6.5)

so that the approximate execution mode is selected if β > 1, or more conservatively

if β > 1.2 or a higher value that expresses a given minimal percentage of execution

speed improvement by the approximate rollback technique.

We note that our autonomic approach has the objective of determining if the

approximate strategy that the application layer would like to use can result effec-

tive for what concerns performance. Hence, we exploit equations (6.2) and (6.3)

according to the following sequence of steps:

1) we enable an execution phase with approximate rollback when the application

requests it—this phase allows us to estimate at runtime all the values of the

parameters required to compare approximate and precise rollbacks according

to the above equations;

2) we select the best performing of the two solutions—according to the ratio in

equation (6.5).

However, if the precise mode is selected as the best-performing one, but the run-

time dynamics of the LP (e.g. the rollback frequency) change along the simulation

lifetime, we might no longer have all the necessary information to recompute the

cost model for the approximate execution mode—in fact, the parameter R cannot be

estimated when running in precise mode. To overcome this problem, we periodically

re-execute the sequence of the above two steps along the simulation lifetime—hence

re-using again the approximate technique for a while. We are therefore able to select

again the best rollback mode after all the parameters required for the model-based

decision are available.

To also account for changes in the simulation dynamics at runtime, we employ

an exponential moving average to update the estimations of all the model variables.

In our experiments, we have set the constant smoothing factor to 0.125, but this

value should be fine-tuned depending on the velocity at which the model outcome

changes.

6.3 Experimental Assessment 101

To reduce the burden of obtaining granularity measures (δs, δr, δc) while the

simulation execution proceeds, we suggest relying on clock cycle counts rather

than wall-clock time seconds. The availability of such counts is nowadays quite

widespread on off-the-shelf computer architectures, e.g. relying on the Time Stamp

Counter accessed via the rdtscp instruction on x86 architectures, or the processor

Cycle Counter accessed via the PMCCNTR register available since ARMv6 on ARM

architectures.

We finally note that the immediate consequence of the way we instantiate the

overhead models is that our autonomic policy is local to every LP. In particular, at

any given wall-clock time instant, a subset of the LPs can run in precise mode while

others are in approximate mode. This is a desirable property of our autonomic policy

because it allows accounting for imbalanced models, in which state reconstruction

approximation can differ depending on the dynamics of each single simulation model.

This approach indirectly allows for different execution phases in the simulation run,

where a single LP can initially benefit, e.g., from an approximate execution, while

later it is better supported by the precise mode.

6.3 Experimental Assessment

This section presents an experimental study to evaluate our approximate rollback

technique. We first describe the computer platforms used for the experiments. Then

we provide details of the simulation applications used as a test bed and their results.

6.3.1 Computing Platforms

We performed the simulations related to our experimental analysis using three dif-

ferent bare-metal architectures. These three architectures were chosen as represen-

tatives of different types of computing nodes that can support high-performance

simulations. The first is a Dell Precision 5820 Tower workstation, equipped with an

Intel® Core™ i9-10900X CPU @ 3.70GHz, consisting of 10 physical cores and 20

hyperthreads, with 16 GB of RAM. The second is a server machine equipped with

two Intel® Xeon™ e5-2699v4 processors @ 2 .0 GHz, each consisting of 22 physical

6.3 Experimental Assessment 102

cores and 44 hyperthreads, for a total of 44 physical cores and 88 hyperthreads.

It has 256 GB of RAM. The third architecture is a computing node of a super-

computer (belonging to Cineca’s Galileo 100 cluster), equipped with two Intel®

CascadeLake™ 8260 processors @ 2.4 GHz, each equipped with 24 physical cores,

for a total of 48 physical cores (hyperthreads are disabled). The galileo machine is

equipped with 384 GB of RAM.

6.3.2 Test-bed Applications

We have modified the TBC model described in Section 1.2 to explicitly take ad-

vantage of approximate rollbacks during speculative execution. In our reworking

of this model, individuals are implemented according to the agent-based modelling

specification described in [112]. This way, agents belonging to different states are

mapped to different hash tables, and only a subset of the hash tables belongs to

the core memory. In particular, we have identified healthy and recovered agents as

core-memory agents. These agents are always accurately restored in the approxi-

mate rollback operation. Less-relevant agents, i.e. those belonging to the infected,

under treatment and sick states, are approximate. The core retains only the cor-

responding counter for them, but no individual-specific information (e.g., age, sex)

is checkpointed and restored in the approximate rollback. The loss of this infor-

mation on rollback and its stochastic reconstruction via CF leads to a deviation

of population characteristics (such as the percentage of individuals within specific

age ranges, the percentage of outsiders and the percentage of individuals with other

diseases) from the values set at the start of the simulation. In other words, for

a given simulation run, an approximate rollback leads to a slight variation in the

sample of individuals moving through the area, which can lead to changes in the

disease statistics.

We configured the TBC epidemiological model to conduct a micro-simulation of

a medium-sized metropolitan city. Specifically, we used 16,384 LPs, each covering

a square region of 5.8m2, for a total simulated area of 96km2. The total number of

agents managed by the model is 1.6 million. The agents move randomly around the

city area so that each LP handles, on average, 100 agents—a population density of

6.3 Experimental Assessment 103

16,000 people per square kilometre. This configuration resembles the data for the

city of Barcelona in 2019. At the start of the simulation, 95.59% of the population

is healthy, 4.28% is infected, 0.12% is cured, and the remaining 0.01% are sick

or untreated people. Despite the significantly small number of infected persons,

the agents are externally dynamic. Their frequent movement leads the simulated

environment to a pandemic, with clear recurring phases of peak infection and low

disease spread. We simulated a total of 10,000 days of evolution in the SIR model.

In our experiments with the TBC model, we also consider manual switches

among the execution modes. This means we have coded manual policies to deter-

mine when to rely on approximate or precise execution. This allows us to compare

the results obtained using the autonomic policy discussed in Section 6.2 against the

results that could be obtained by exploiting domain knowledge from the modeller.

With the manual policy, the switches from the approximate to the precise phase

(and vice versa) take place according to a threshold related to the number of agents

in the sick state. This choice is because if the number of sick agents increases, their

impact is more easily captured by a stochastic configuration. Conversely, in the

case of a small number of agents in this state, their precise characterisation is more

relevant for studying the evolution of contagion.

To perform the manual switch we used two different configurations. In the

first one (referred to as manual A in the plots), transitions from the precise to the

approximate execution mode take place if more than half of the residing agents in

an LP belong to the core memory. Conversely, in the second (referred to as manual

B in the plots), transitions from the precise to the approximate execution mode take

place if less than half of the residing agents in an LP belong to the core memory.

6.3.3 Results

The results we present in this section are averaged, for each point, over 30 different

runs using different seeds. The checkpoint interval χ is set to the optimal value in

all the configurations according to the performance models we discussed in Section

6.2.

As it will be shown, the results curves have a dynamic and non-linear trend.

6.3 Experimental Assessment 104

1 4 8 12 16 22 33 44
Worker threads

0

2

4

6

8

10

12

14

Re
la

tiv
e

sp
ee

du
p

w.
r.t

. p
re

cis
e

m
od

e
(%

)

1 4 8 12 16 22 33 44
Worker threads

4

6

8

10

12

14

M
em

or
y

us
ag

e
(G

B)
1 4 8 12 16 22 33 44

Worker threads

75

80

85

90

95

100

Ef
fic

ie
nc

y
(%

)

Approximated-0.25 Approximated-0.5 Approximated-0.75 Approximated-1.0 Precise

(a) Speedup w.r.t. precise
mode

(b) Memory usage (c) Efficiency

Figure 6.1. PHOLD results on server

This phenomenon is related to the hardware configuration of the used machines. In

particular, in the case of the server and galileo architectures, the processors use an

interconnect between cores based on two loops. As soon as the execution begins to

use the second ring, a fluctuation in results is observed, which is slowly amortised.

This phenomenon is related to the increase in the hardware synchronisation cost for

enabling the execution of cache coherency protocols between cores. The high mem-

ory pressure of optimistic simulations exacerbates this effect. For all the runs that

have been carried out on server and galileo hyperthreading was turned off. Hence

no phenomena related to hardware contention on individual cores are observed.

Conversely, in the case of the workstation platform, the results appear less noisy.

This is because the single processor has a mesh interconnect [21], designed for more

general workloads, which amortises the cost of cache coherency protocols. In these

settings, results were also collected with hyperthreading active.

Figures 6.1, 6.2 and 6.3 show the results for the different configurations of the

PHold Memory model obtained on the three different computing infrastructures

used for the experimentation. The shown configurations report the fraction of the

LP state which is considered non-core. In the rollback phase, this fraction is subject

to reconstruction via CF .

As it can be seen from the results, the approximate rollback technique is able

to provide performance improvements over the precise rollback mode (see Fig-

6.3 Experimental Assessment 105

1 2 4 6 8 10 20
Worker threads

0

5

10

15

20

25

Re
la
tiv

e
sp
ee

du
p
w.
r.t
. p

re
cis

e
m
od

e
(%

)

1 2 4 6 8 10 20
Worker threads

6

8

10

12

M
em

or
y
us
ag

e
(G

B)
1 2 4 6 8 10 20

Worker threads

70

75

80

85

90

95

100

Ef
fic

ie
nc

y
(%

)

Approximated-0.25 Approximated-0.5 Approximated-0.75 Approximated-1.0 Precise

(a) Speedup w.r.t. precise
mode

(b) Memory usage (c) Efficiency

Figure 6.2. PHOLD results on workstation

ures 6.1a, 6.2a, 6.3a). Also, the performance gain provided by the approximate

rollback technique tends to increase along two directions: 1) when the fraction of

the LP state that can be rolled back through approximation increases and 2) when

the number of threads in the underlying PDES engine increases.

These observations outline how the approximate rollback technique introduces

a new dimension—based on CF combined with partial checkpointing including the

core state portion—which can (a) permit the exploitation of performance tradeoffs

not explorable via other literature techniques, and (b) provide a reduced impact of

state saving and/or rollback operations on the critical path of the forward execu-

tion, which can generate the favourable throttling effects identified by the seminal

work in [119]. As for the latter assertion, a faster state saving and/or rollback

technique provides more effective support for a better mutual alignment of the LPs

along virtual time (in fact, none of them delays too much their evolution along

virtual time when either taking a checkpoint or rolling back), disfavouring the in-

crease of the incidence of rollback. With PHold Memory, this is actually offered by

the approximate technique. In fact, the experimental data (see Figures 6.1c, 6.2c

and 6.3c) show how increasing the number of threads running the application—

hence increasing the degree of actual parallelism—yields to a more limited decrease

of the efficiency of the simulation run when the approximate rollback technique is

6.3 Experimental Assessment 106

1 4 8 12 16 20 24 36 48
Worker threads

0

2

4

6

8

10

Re
la

tiv
e

sp
ee

du
p

w.
r.t

. p
re

cis
e

m
od

e
(%

)

1 4 8 12 16 20 24 36 48
Worker threads

6

8

10

12

14

M
em

or
y

us
ag

e
(G

B)
1 4 8 12 16 20 24 36 48

Worker threads

60

65

70

75

80

85

90

95

100

Ef
fic

ie
nc

y
(%

)

Approximated-0.25 Approximated-0.5 Approximated-0.75 Approximated-1.0 Precise

(a) Speedup w.r.t. precise
mode

(b) Memory usage (c) Efficiency

Figure 6.3. PHOLD results on galileo

used2.

It is also evident (see Figures 6.1b, 6.2b, 6.3b) that approximate rollbacks allow

significant memory savings. This can additionally favour the speed of the execution

because of the effects related to better locality and cache exploitation. In the litera-

ture, these have been shown to be a first-level aspect for performance improvement

in speculative PDES [40, 14, 160, 89, 101].

As for the TBC model, its results outline additional interesting aspects. In

particular, they allow us to compare the autonomic selection of the best-suited

rollback mode (approximate vs precise) to both (i) the traditional precise mode

and (ii) the “manual” mode, where the programmer forces in what parts of the

simulation execution approximate rollbacks should be activated.

The performance data with TBC are shown in Figures 6.4, 6.5, and 6.6, where

we see how our autonomic proposal can provide improvements in the execution

speed (up to 10%) even under the scenario of non-relevant rollback incidence. In

fact, the efficiency of TBC runs mostly keeps above 90%, and is anyhow higher than

85% even for larger thread counts—in general, this tends to reduce the possibilities

of optimisation at the level of the checkpointing and state restoration layer. At the

same time, the advantages of the autonomic policy also appear when comparing it
2We recall that the efficiency is the ratio between the number of committed events and the total

number of processed events, including the ones that are eventually rolled back.

6.3 Experimental Assessment 107

1 4 8 12 16 22 33 44
Worker threads

-15

-10

-5

0

5

10

Re
la
tiv

e
sp
ee

du
p
w.
r.t
. p

re
cis

e
m
od

e
(%

)

1 4 8 12 16 22 33 44
Worker threads

6

8

10

12

14

16

M
em

or
y
us
ag

e
(G

B)
1 4 8 12 16 22 33 44

Worker threads

86

88

90

92

94

96

98

100

Ef
fic

ie
nc

y
(%

)

Autonomic Manual A Manual B Precise

(a) Speedup w.r.t. precise
mode

(b) Memory footprint (c) Efficiency

Figure 6.4. TBC results for the server

with the manual strategies. One of these strategies shows reasonable performance

improvement over the precise rollback mode, while the other shows definitely worse

performance. The autonomic policy prevents this performance degradation at all,

avoiding that specific decisions on when (and for what LP) to keep the approximate

mode active made by the programmer can actually create problems in performance.

The need for mixing approximate and precise rollbacks (along time and across

different objects) according to the autonomic choice (hence avoiding the exclusive

usage of approximate rollbacks) is also motivated by the results in Figure 6.7. They

show the distribution of simulated agents with respect to LPs. As can be observed,

this distribution is almost uniform, except for the objects at the edge. This phe-

nomenon is related to the mobility of the agents, who choose their target region

among the adjacent objects. As shown in Figure 6.8, this behaviour causes some

workload imbalance (between 1% and 4%). This figure highlights the stripes of the

simulated region assigned to each worker thread of the simulation platform.

This imbalance, however, is also observable in some central stripes of the sim-

ulated region, as a side effect of the imbalance at the edge and as a result of the

movement of the agents along the simulation. Given that in TBC the efficiency

is higher compared to PHold Memory, and the cost for the execution of CF is

greater—since more complex tasks need to be carried out in the TBC model—for

LPs with a bit higher frequency of rollback, it can result in more effective to setup

6.3 Experimental Assessment 108

1 2 4 6 8 10 20
Worker threads

-20

-10

0

10

20

Re
la

tiv
e

sp
ee

du
p

w.
r.t

. p
re

cis
e

m
od

e
(%

)

1 2 4 6 8 10 20
Worker threads

5

6

7

8

9

10

11

12

13

M
em

or
y

us
ag

e
(G

B)
1 2 4 6 8 10 20

Worker threads

92

93

94

95

96

97

98

99

100

Ef
fic

ie
nc

y
(%

)

Autonomic Manual A Manual B Precise

(a) Speedup w.r.t. precise
mode

(b) Memory footprint (c) Efficiency

Figure 6.5. TBC results for the workstation

the precise rollback mode. This choice is actually made by the autonomic policy. In

fact, as shown in Figure 6.9, LPs that are at the edge of a region of space—which

are the ones more prone to receiving straggler event messages—are those that spend

the most time in precise mode when using the autonomic policy.

As for memory usage, the mixed exploitation of approximate and precise roll-

backs occurring with the autonomic policy makes the amount of used memory a bit

closer to the precise mode with respect to what we noted for the PHold Memory

model. However, there is no evident negative impact on the final performance.

Concerning the accuracy of the results, in Figures 6.10 and 6.11, we show the

trend of the global simulation state for the 10,000-day scenario that was simulated.

As it can be seen, the model run in precise mode shows the clear pandemic trend

of the infection, characterised by sequences of infection waves.

If the window of interest is short (Figure 6.10), we observe that all configurations

can provide a comparable trend in which the succession of two waves of contagion is

evident. The contagion bell-distributions have different shapes and durations, which

is understandable, given the approximation. Interestingly, the manual approach, in

which the model’s programmer determines when to switch from approximate to

precise execution, can provide the closest results to the precise model. This is un-

derstandable since the model developer is the one who has the most knowledge of the

application domain and can exploit the model’s best dynamics. However, according

6.3 Experimental Assessment 109

1 4 8 12 16 20 24 36 48
Worker threads

-20

-15

-10

-5

0

5

Re
la

tiv
e

sp
ee

du
p

w.
r.t

. p
re

cis
e

m
od

e
(%

)

1 4 8 12 16 20 24 36 48
Worker threads

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

M
em

or
y

us
ag

e
(G

B)

1 4 8 12 16 20 24 36 48
Worker threads

86

88

90

92

94

96

98

100

Ef
fic

ie
nc

y
(%

)

Autonomic Manual A Manual B Precise

(a) Speedup w.r.t. precise
mode

(b) Memory footprint (c) Efficiency

Figure 6.6. TBC results for the supercomputer node

0 128x
0

128

y

50

100

Average num
ber of agents

Figure 6.7. The number of agents present in average in the TBC model cells

to Figure 6.4a, such knowledge not necessarily enables a significant improvement in

simulation performance, as the execution dynamics may be adverse.

When the window of interest for the simulation is larger (Figure 6.11), the

execution mode based on the autonomic policy is still able to capture the simulation

dynamics of the precise mode execution. This is because (also according to the

above discussion) it excludes excessive negative effects on the simulation precision

caused by LPs which would tend to rely on approximate state reconstruction too

frequently. At the same time, the autonomic policy avoids excessive inconsistencies

that would be caused by less effective manual settings imposed by the programmer

for the usage of the approximate rollback technique. This is because the autonomic

6.3 Experimental Assessment 110

0 128x
0

128

y

199000

202000

Average num
ber of agents handled by thread

(a) 8 threads: ∼ 1% unbalance

0 128x
0

128

y

70000

74000

Average num
ber of agents handled by thread

(b) 22 threads: ∼ 4% unbalance

Figure 6.8. Average agents load partitioned on processing threads

0 128x
0

128

y

0

6
Messages rollbacked

1e6

0%

100%

% of time in precise mode

(a) 8 worker threads

0 128x
0

128

y

0

5

Messages rollbacked

1e6

0%

100%

% of time in precise mode

(b) 22 worker threads

Figure 6.9. Time spent per LP in approximated/precise mode with the autonomic policy

policy captures when the impact of the usage of CF tends to become excessive.

Overall, approximate rollbacks—and their employment in combination with the

model-based autonomic policy for the selection and configuration of the best-suited

rollback mode—appear to be an innovative effective solution.

6.3 Experimental Assessment 111

0

1

Pr
ec

ise

0

1

Au
to

no
m

ic

0

1

M
an

ua
l A

0 200 400 600 800 1000
0

1
M

an
ua

l B

Ag
en

ts
 (i

n
m

illi
on

s)

Simulated day

Healthy Infected Sick Treated Treatment

(a) 22 cores

0

1

Pr
ec

ise

0

1

Au
to

no
m

ic

0

1

M
an

ua
l A

0 200 400 600 800 1000
0

1

M
an

ua
l B

Ag
en

ts
 (i

n
m

illi
on

s)
Simulated day

Healthy Infected Sick Treated Treatment

(b) 44 cores

Figure 6.10. TBC precision: 1000 simulated days.

0

1

Pr
ec

ise

0

1

Au
to

no
m

ic

0

1

M
an

ua
l A

0 2000 4000 6000 8000 10000
0

1

M
an

ua
l B

Ag
en

ts
 (i

n
m

illi
on

s)

Simulated day

Healthy Infected Sick Treated Treatment

(a) 22 cores

0

1

Pr
ec

ise

0

1

Au
to

no
m

ic

0

1

M
an

ua
l A

0 2000 4000 6000 8000 10000
0

1

M
an

ua
l B

Ag
en

ts
 (i

n
m

illi
on

s)

Simulated day

Healthy Infected Sick Treated Treatment

(b) 44 cores

Figure 6.11. TBC precision: 10000 simulated days.

112

Chapter 7

Practical Tie-Breaking

Simultaneous events [58] are a significant problem for discrete-event simulation

(DES). In the physical world, the occurrence of simultaneous events is something

that the physical system can handle autonomously by its very nature. When at-

tempting to translate the workings of the physical world into a simulation model,

the modeler finds itself having to handle simultaneous events explicitly.

If simultaneous events are not additive and commutative, processing them in a

different order may lead to different simulation results. In some cases, the choice of

an incorrect order may be a source of risk because the model may incur error condi-

tions that cause it to fail. This concept is well understood in the parallel/distributed

simulation community [93], but in the case of simultaneous events, such error phe-

nomena can also occur in purely sequential simulations.

The only way to ensure that a simulation is correct in the case of simultaneous

events is to entrust the modeler, through the use of a tie-breaking function, with

the task of finding a correct ordering for the invariants of the portion of the world

one is trying to simulate. For example, in [61], the authors theorize the need to

handle sets of events at the model level. By providing the event dispatcher with a

set, it is possible to ask the model to deal with them in a manner consistent with

its characteristics.

In the case of optimistic parallel/distributed simulations [59], this approach may

be hard to implement. The speculative nature of forward execution may still lead to

handling sets of events when they are not fully formed because an antimessage could

113

be received before the corresponding positive one. However, in the case of sequential

simulation, this method may be sufficient to handle correctness, except for the case

when some events in a set with the same timestamp generate a new simultaneous

event. From a practical point of view, this interaction pattern is important, as it

allows implementing sensing capabilities in the models, which are relevant, e.g., for

agent-based simulation [1]. This is so relevant that, a seminal Time-Warp work

introduced the concept of query messages to solve the dichotomy between event

sets and the need to access portions of the simulation state in read-only [62].

The scenario in which the modeler has provided a tie-breaking function capable

of correctly handling simultaneous events may be ideal. The assumption that such

a function is available can only materialize when the simulation model is stable,

complete, and correct. Indeed, in the life cycle of a simulation model [107, 138], the

modeler may need to delay the implementation of such a function as they are focused

on developing the core dynamics of the model. Similarly, if the model is subject

to evolutionary maintenance, or if the model is incorporated into a simulation of

simulations in an attempt to reuse existing models in larger models, it is possible

that the coding of the tie-breaking function is no longer correct and needs to be

modified, which may be time-consuming. In this case, the modeler may decide to

suspend the use of the current tie-breaking function in order to redesign it.

In this dynamic view of models, a substantial difference materializes between

parallel and sequential execution of the same model. Indeed, sequential models,

even in the presence of simultaneous events, may have the characteristic of being

able to exhibit deterministic executions. Conversely, when the model is executed

on parallel/distributed architectures, two different executions may lead to different

results if simultaneous events are not handled properly. This is also true when

the same seed is used to configure pseudo-random number generators for stochastic

simulations.

This situation is clearly problematic. The modeler may need to execute a non-

minimal number of identically-configured runs to compare simulation results for de-

bugging or performance evaluation purposes. For parallel/distributed simulations,

developers of runtime environments are therefore obliged to explicitly handle simul-

114

LPi 2 55 LVT

LPj 3.5 LVT

Figure 7.1. Lack of Total Ordering: the two events at logical time 5 should “happen”
at the same time, therefore it is unspecified which of the two should be dequeued first
from the FES.

taneous events even if the modeler has not provided a model-oriented tie-breaking

function.

In this Chapter, we present a practical tie-breaking function that guarantees

the reproducibility of executions. The major contribution of our proposal lies in the

fact that, unlike the solutions presented in the literature, our approach also allows

for domain information to be considered transparently in the simulation model.

Thus, the ordering provided by our approach is such that indecision between two

simultaneous events only occurs when, even at the application level, the model

cannot distinguish between two different events.

In particular, as we shall show, when compared to sequential execution, our

proposal is such that any indecision on the ordering between two events in a paral-

lel/distributed execution only occurs when the sequential model would also have to

decide on ordering two perfectly-identical events. Moreover, our proposal provides

the same ordering of events if the model runs sequentially or in parallel, even if

optimistic approaches are adopted.

Therefore, using our approach, deterministic executions can be achieved even

in the case of parallel/distributed executions in the absence of tie-breaking func-

tions at the model level. Our approach considers the complex instance of concur-

rent simulation based on optimistic synchronisation. In this context, our proposal

may suffer from incomplete information related to the delay in receiving certain

events. However, this phenomenon is inherent in the concept of speculative simu-

lation aggressiveness and can therefore be solved by techniques already present in

the literature [62].

7.1 Problem Statement 115

A

B

LP0

LP1

LP2

(a) Simulated Scenario.

LP0 0.7 4 WCT

LP1 0.9 3 LVT

LP2
22 LVT

(b) First Possible Execu-
tion.

LP0 0.7 3 WCT

LP1 0.9 4 LVT

LP2
22 LVT

(c) Second Possible Execu-
tion.

Figure 7.2. Inconsistent Runs in a Parallel/Distributed Simulation.

7.1 Problem Statement

In a DES, whether sequential or parallel, the simulation state is updated by the

execution of events that are the atomic unit of processing. An event has an all-or-

nothing nature: it must be executed entirely or not at all.

Therefore, the simulation state undergoes a set of updates each time an event is

processed. As already formalized in Chapter 2, for a simulation in a certain state

sk, the execution of an event ek at simulation time tk can be seen as the application

of a transition function δ that produces a state update, i.e.:

δ(sk, ek) = (sk+1, (ea, eb, ec, . . .)) (7.1)

In this reformulation we will omit the events (ea, eb, ec, . . .) generated by the

transition function since they aren’t needed. We will also assume that s0 is the

state induced by the initialisation transition – the initial simulation state. Then,

we can iteratively apply the function δ to obtain a sequence of processed events that

will eventually lead to a final state:

s∗ = δ(en, . . . , δ(e2, δ(e1, δ(e0, s0)))) (7.2)

The order in which events are executed is decisive for attaining a terminal state

of the simulation of interest. Given a sequence of events e1, e2, . . . , en, reversing the

execution of two events ei, ej with i ̸= j can cause an alteration in the trajectory

of the simulation. Indeed, if the events ei and ej are not commutative with respect

to the function f , i.e. if δ(ej , δ(ei, sh)) ̸= δ(ei, δ(ej , sh)), it is easy to observe that

7.1 Problem Statement 116

after a sequence of m events we have that:

sm = δ(em, . . . , δ(ej , δ(ei, . . . , δ(e1, δ(e0, s0))))) ̸=

s′m = δ(em, . . . , δ(ei, δ(ej , . . . , δ(e1, δ(e0, s0)))))
(7.3)

The classical approach to DES requires the presence of a data structure called

the future event set (FES), which is typically implemented as a priority queue.

Therefore, a query can be performed on the FES to extract the highest-priority

event. Due to the temporal nature of simulations, the priority can be immediately

associated with the minimum time in the FES.

Simultaneity of events refers to the context in which, at a certain timestamp t̄,

there are at least two events to be processed. Therefore, the presence of e1 and e2

associated respectively with timestamps t1 = t2 = t̄ poses a problem concerning the

extraction operation from the FES, since e1 and e2 do not have a strict total ordering

with respect to logical time. This scenario is shown in Figure 7.1. We consider the

problem of tie-breaking as the need to reconstruct a deterministic order over all

events, even when two or more are associated with the same timestamp. Formally,

this problem can be defined as follows:

Definition 7.1.1 (Tie-Breaking Oracle). The operation of extracting the next event

from the Future Event Set is entrusted to an oracle O which determines the next

event e to be executed to obtain a final simulation state s∗ consistent with the

behaviour of the real-world system being simulated.

It is evident that it is impossible to disregard the model’s dynamics to define the

oracle O. This is the reason why it has been recognized in the literature [61] that

the modeler must provide a tie-breaking function allowing to correctly implement

O even when the events are not commutative. However, this oracle O may not be

available for the above reasons related to the simulation development cycle or model

evolution/composition. Nevertheless, from the point of view of model execution

support, it is necessary to define some deterministic total ordering on the events in

the FES.

We note that, as a necessary condition, the output of a correct simulation, in

7.1 Problem Statement 117

which tie-breaks are handled, must be deterministic. In this scenario, sequential

simulations suffer less than parallel/distributed simulations. Indeed, determinism

is a common property of FES implementations; however, if the data structure em-

ployed for the FES is randomized, then even a serial simulation may typically be

non-deterministic. Nevertheless, the deterministic ordering occurring during a se-

quential simulation might not necessarily represent the characteristics of the physical

system being investigated.

Therefore, in the case of sequential simulation, Definition 7.1.1 can be relaxed

by introducing the concept of partial oracle P according to the following

Definition 7.1.2 (Partial Tie-Breaking Oracle). The operation of extracting the

next event from the Future Event Set is entrusted to a partial oracle P , which

determines the next event e to be executed so as to obtain a sequence of events

{e0, e1, . . . , en} to reach a final state of simulation s̃∗ such that e0 ≺ e2 ≺ . . . ≺ en,

where the ≺ operator behaves according to the total order defined by the event

timestamps plus some FES implementation dependant criteria to break ties deter-

ministically.

Clearly, it is likely that s̃∗ ̸= s∗—hence the partiality of the oracle P . Any-

how, Definition 7.1.2 has an important property related to the reproducibility and

repeatability of executions. Since the oracle P chooses a sequence of events in a

deterministic manner, two different executions configured in exactly the same way

will lead to the same final state of simulation s̃∗. Any pseudo-random number gen-

erator seeds in the case of stochastic models must also be included in the model

configuration.

We argue that, in the case of parallel/distributed simulations, the realisation

of the partial oracle P , according to Definition 7.1.2, is complicated and also not

useful. In fact, the behaviour of P depends on the characteristics of the sequential

simulation implementation; in other words, it is biased in a way not representative of

the model dynamics. Still, we are left with the problem of parallel non-deterministic

simulations. Indeed, two different parallel executions may lead to the scenario shown

in Figure 7.2. Here, we are depicting an extremely simple scenario where two users

(modeled as two distinct LPs) contact the same service over a network. Both

7.2 Practical Tie-Breaking Technique 118

requests arrive at the same timestamp (t = 2). Assuming that the server has a

delay of 1 virtual second to process a request, the order according to which they

are received affects the response time. Imagine that user A can tolerate a delay

of up to 2 seconds, while user B can tolerate a delay of up to 3 seconds. In the

case of the scenario in Figure 7.2b, the outcome of the simulation would be that

the configuration does not respect the model’s invariants, while in the execution

in Figure 7.2c, the solution would be acceptable. To exemplify the partial oracle

strategy’s bias, we note that one serial execution engine might consistently and

deterministically generate the output shown in Figure 7.2b, while another serial

engine could consistently and deterministically replicate the situation depicted in

Figure 7.2c.

The processing and commit order of events depends on many factors external

to the simulation, such as scheduling dynamics at the operating system level or

network latencies. Therefore, in order to be able to guarantee the reproducibility of

executions even in parallel/distributed simulations, it is necessary to find a strategy

that does not rely on local implementation properties such as the partial oracle P

of Definition 7.1.2.

7.2 Practical Tie-Breaking Technique

Our proposal is born from the intuition that, if two events are indistinguishable by

the simulation model, they can be executed in any order without affecting the final

state of the simulation. The same concept also holds for sequences of indistinguish-

able events.

To better formulate our intuition, we provide a definition of ties that is compat-

ible with the logical framework discussed in Section 7.1. Let e be a generic event

injected in the system, associated with the timestamp te at which the event must

be executed. A tie follows the definition below.

Definition 7.2.1 (Scheduling Equivalence). Two events e1 and e2 are scheduling

equivalent, namely e1 ∼ e2, if te1 = te2 .

The goal of the Partial Oracle P discussed in Definition 7.1.2 is therefore to

7.2 Practical Tie-Breaking Technique 119

enhance the scheduling equivalence from Definition 7.2.1 by enforcing its own or-

dering ≺ that comes from the rules enforced by P . The body of work discussed

in Section 4.7 has effectively tried to extend this notion of scheduling equivalence

by defining an ordering ≺P that can be applied to a set of events ei such that

tei = tej∀i ̸= j.

The simplest definition of ≺P that has been considered in the early literature

and in various early implementations of PDES runtime environments extends the

previous definition of events, in various forms. In particular, we can consider an

event e as a tuple e = ⟨te, ce, se, de⟩, where c is the event class (also referred to as

event type), s is the sender of the event and d is its destination. We can practically

assume that we can build some (lexicographic) ordering on ce, se, and de. Indeed,

in many implementations, these elements of the tuple are already numbers, but it

is straightforward to define some mapping to N or R that can define an ordering

over the values. Then, we can enhance Definition 7.2.1 as follows:

Definition 7.2.2 (Enhanced Scheduling Equivalence). Two events e1 and e2 are

scheduling equivalent, namely e1 ∼ e2, if te1 = te2 , ce1 = ce2 , se1 = se2 , de1 = de2 .

There are two important implications of Definition 7.2.2. First, such a definition

of equivalence may create a bias with respect to the choices that the tie-breaking

Oracle O of Definition 7.1.1 might make. Indeed, regardless of the ordering of the

elements, P could choose differently from O since, by definition, P is unaware of

the dynamics of the model. However, for our practical purposes, this bias might

be tolerable: P is not intended to be a correct replacement of O, but an acceptable

approximation if O is not available.

The strongest implication, however, is that ≺P defined in accordance with Defi-

nition 7.2.2 is a weak total order. Therefore, using ≺P defined in this way does not

solve the problem at all since it is still possible to find two events e1 ∼ e2 such that

the scheduler of the runtime environment is unable to make a deterministic choice,

even if their processing order could impact the simulation trajectory. Since the goal

of our approach is to support reproducibility and replicability, Definition 7.2.2 is

not sufficient.

There are two important implications of Definition 7.2.2. First, it is evident

7.2 Practical Tie-Breaking Technique 120

that such a definition of equivalence may create a bias with respect to the choices

that the tie-breaking Oracle O of Definition 7.2.2 might make. Indeed, regardless

of the fact that there is an ordering on the elements, this could be different from

that of O since, by definition, the enhanced scheduling equivalence is unaware of

the dynamics of the model. However, for our practical purposes, this bias might be

tolerable: the provided order is not intended to be a correct replacement of O, but

an acceptable approximation if O is not available.

As mentioned, several of the works discussed in Section 4.7 have addressed this

problem by implicitly providing an extension of Definition 7.2.2 that allows this

problem to be addressed. In particular, it is possible to construct an ordering

≺P that imposes a deterministic ordering by extending the definition of the event

e. Indeed, we can consider an event e as a tuple e = ⟨te, ce, se, de, be⟩, where be

are arbitrary bits provided by the model developer that implicitly describes the

priority of e over other tying events. Abiding by this definition, we can construct

an improved ordering ≺P leveraging the following definition.

Definition 7.2.3 (User-Defined Enhanced Scheduling Equivalence). Two events e1

and e2 are scheduling equivalent, namely e1 ∼ e2, if te1 = te2 , ce1 = ce2 , se1 = se2 ,

de1 = de2 , be1 = be2 .

At first sight, this definition should solve the problem of ties. Indeed, the mod-

eller can set the value of be arbitrarily, thus deciding what is the precedence between

events. However, in our reference scenario, this strategy is highly objectionable for

two reasons. The first concerns transparency towards the modeller: if they are

asked to provide additional information to define an Oracle P that succeeds in re-

solving any remaining ties, the authors of this work then wonder why this strategy

is better than explicitly requesting that the Oracle O be realised directly. Indeed,

as discussed in [61], the qualities of O are clearly superior to those of P , from a

modelling perspective. Reasoning on this aspect, a solution defining an event e as

the simpler tuple e = ⟨te, be⟩ may also be a better solution, as it would eliminate

the artificial bias introduced by Definition 7.2.2. Moreover, in our reference sce-

nario, we consider the model as an evolving object, so the properties according to

which be should be valued could easily change. This is therefore not a practical,

7.2 Practical Tie-Breaking Technique 121

LP0 1.9 LVT

LP1
3.53.5 LVT

LP2 1.7 LVT

Figure 7.3. Simultaneous events generated by different LPs.

life-cycle-oriented approach to models.

As mentioned, this problem related to transparency towards the modeller was

addressed in [85] by deciding to entrust the values of be to a pseudo-random number

generator with special properties. In this way, it is both possible to explore alterna-

tive simulation trajectories and obtain reproducible executions, without bothering

the modeler.

We follow an alternative path in our proposal as we reason about indistinguisha-

bility between events. Two events are actually indistinguishable if they expose the

exact same information to the simulation model. To better formulate this concept,

we redefine an event e as the tuple e = ⟨te, pe⟩, where pe is the event’s payload,

intended as the collection of all the event properties observable by the model. We

can then define indistinguishable events as follows.

Definition 7.2.4 (Indistinguishable Events). Two events e1 and e2 are indistin-

guishable, namely e1 =? e2, if te1 = te2 , and pe1 = pe2 .

According to this definition, two events are indistinguishable when their times-

tamps and payloads are bit-wise identical. We do not consider the pair of LPs

involved and the event’s class as a necessary part of the event payload, as, in the

general case, they may not be needed by the model logic. Moreover, if we take into

account indistinguishable events, it is not important to make a deterministic choice

as to which events execute first on different LPs: indeed, given the concurrent na-

ture of Time Warp, it is sufficient to provide local guarantees—we discuss aspects

of cross-LP causality in Section 7.2.1.

By relying on Definition 7.2.4, we can build an ordering ≺P with interesting

properties. First and foremost, we emphasise that this ordering is not a strict total

order. At first sight, this may appear to be a limitation, e.g. when compared

7.2 Practical Tie-Breaking Technique 122

with the proposal in [85]. However, as discussed above, our ordering is not able

to distinguish between two events if they are, indeed, indistinguishable. From a

practical point of view, therefore, it is interesting to ask what anomalies at the

model level such indistinguishability may entail. Our thesis is that the following

property holds.

Property 7.2.1. Regardless of the order in which a sequence of indistinguishable

events is processed, the result of the simulation is unchanged.

If, for a sequence of events, changing their processing order changes the result of

the simulation, that implies that at least a pair of events e1, e2 in the sequence are

distinguishable by the model. In other words, a model could use the difference in the

observed information in e1, e2 to order them deterministically. This choice would

be part of the perfect oracle O, but in its absence, we’ll show that a simulation

engine can always take a deterministic, although biased, choice.

Finally, by relying on Definition 7.2.4, we can build a total ordering ≺L in the

following way:

Definition 7.2.5 (Lexicographic Tie-breaking). Given two events e1 and e2, e1 ≺L

e2 ⇔ te1 ≤ te2 ∨ (te1 = te2 ∧ pe1 ≤ pe2

From the point of view of the simulation engine, the payload comparison does not

need to understand the semantics of its content, i.e.: a simple bit-wise comparison

is sufficient to always break ties. We observe that, if e1 ≺L e2 ∧ e2 ≺L e1 if and

only if e1 =? e2; in other words, our total order is unable to order two events only

if they are indistinguishable. This means that ≺L defines an order of events that

deterministically induces the same simulation trajectory.

Our approach also has the valuable property of being independent of the ini-

tialisation order of the LPs. On the contrary, employing an ordering based on any

scheduling equivalence defined above can result in a scenario where the initialisa-

tion order determines the order of tied events scheduled by LPs during initialisation.

This makes the outcome of the whole simulation dependent on the order of evalua-

tion of LPs.

7.2 Practical Tie-Breaking Technique 123

LP0 B LVT

LP1
C
A LVT

Figure 7.4. Zero-Lookahead Cycle.

Model developers sometimes unknowingly rely on the ordering implicitly guaran-

teed by some scheduling equivalence property, which can lead to models that subtly

depend on this behaviour to function correctly. For instance, in an agent-based

model, an agent departure and return may be scheduled at two randomly-sampled

times t and t + δt, respectively. If δt = 0, this would mean that the logical depen-

dence of the two events is encoded only in their scheduling order. In more complex

interactions, this can lead to difficult-to-debug issues where the model works cor-

rectly in a sequential simulation but crashes in parallel execution.

By using our tie-breaking strategy, we can ensure that a model functions cor-

rectly in both sequential and parallel execution modes. If the sequential simulation

that uses our tie-breaking strategy runs correctly, then—assuming that specula-

tive simulation trajectories do not cause irreparable side effects [93]—the parallel

execution will also be correct.

7.2.1 Handling Cross-LP Causality

To understand the implications of our tie-breaking strategy, we have to discuss the

implications of our approach when cross-LP interactions are observed. There are

two cases of interest here. The first is depicted in Figure 7.3, where one LP is the

target of two simultaneous events generated by two different LPs.

The tie-breaking methodology we introduced leaves no doubt in this case. If

differences between events can be identified, the ordering will be well-defined and

reproducible. If the events are indistinguishable, then we can apply Property 7.2.1;

therefore the order in which these events are executed is irrelevant: the simulation

results will be unchanged.

A more interesting implication of our practical tie-breaking methodology relates

to zero-lookahead cycles. Let us consider the scenario depicted in Figure 7.4. Here

there is a circular causal dependence A→ B → C, which involves two different LPs.

7.2 Practical Tie-Breaking Technique 124

Let us consider the most difficult problem, i.e. the one in which events A and C

have empty payloads. We observe that for a correct simulation, we must have that

A ≺L B and B ≺L C. Also, our ordering ≺L defined according to Definition 7.2.5

is not able to make a choice, i.e.: A =? C, so we must also have B =? C and B =? A.

According to our defined total order, C would not be a straggler for A. Therefore,

C’s execution will still be subsequent to A. This property can be generalised, thus

stating that, if an LP has executed an event e1 and subsequently receives an event

e2 =? e1, the reception of e2 must not cancel the execution of e1. Apparently, this can

be regarded as contrary to the concept of reproducible and repeatable execution.

Once again, thanks to Property 7.2.1, we consider the two executions (e1 before e2

and e2 before e1) to be perfectly equivalent with respect to the final result of the

simulation.

If, on the other hand, the two events are distinguishable, then a deterministic

order can be imposed to decide if the execution is consistent or not. The reasoning

we have just set out applies to zero-lookahead cycles, and by extension, it can

be applied to any form of zero-lookahead events. Therefore, we can exploit the

definition of indistinguishability between events to solve the management of zero-

lookahead events locally as well.

Interestingly, Property 7.2.1 can also be applied to relax the implementations

of the data structures used for the FES. Indeed, should A and C be reprocessed

silently due to the receipt of a straggler, it is irrelevant whether they are reprocessed

in the order A, C or in the order C, A. This is a strong implication of Property 7.2.1:

indeed, should the events be reprocessed in the order C, A we would be faced with

a causality violation that can be ignored.

7.2.2 Implementation Details

One advantage of our proposed tie-breaking strategy is that it can be evaluated

completely locally to the LP, therefore making it suitable for parallel and distributed

simulations. Implementing this approach in an existing simulation engine only

requires a few changes. In conservative simulations, the scheduling policy needs to

be expanded so as to consider the bit-wise comparison of the payloads in case of

7.2 Practical Tie-Breaking Technique 125

event ties. In optimistic simulations, it is also necessary to include the extended tie-

breaking logic in the straggler detection mechanism. No other significant changes

are needed.

In addition, when developing and debugging a model, having the ≺L ordering

of events defined according to Property 7.2.1 can be useful in identifying causality

violations and ensuring that the model schedules events only in the future. Although

arbitrary, the repeatable and reproducible ordering imposed by our tie-breaking

strategy can help the model developer to detect tricky same-timestamp dependency

cycles and other causality issues. Moreover, as we highlight in Section 7.2.3, the

modeller has a simple way to alter the arbitrariness of the ordering.

One important caveat to note with this tie-breaking method is that in practical

implementations, especially in low-level languages like C, the determinism of bit-

wise comparisons can be skewed by uninitialised data contained in the event payload.

This issue can arise due to several reasons such as the model failing to initialise some

members of the event payload, the presence of padding bytes in the event payload

structure, or the model writing uninitialised bytes in the event payload.

Although addressing these issues may demand effort from the model developer,

there are several straightforward strategies that can be useful for their mitigation.

For example, padded data structures can be detected at compile time using GCC’s

-Wpadded flag. During debugging, tools such as Valgrind [90] can be employed

to verify whether a tie has been broken due to uninitialised bytes. Programming

languages may offer additional alternative solutions to some of the issues mentioned

earlier. For example, in C++, a padding-free comparison can be implemented using

template meta-programming techniques such as those provided by the Boost.PFR

library.

7.2.3 Relations with Other Tie-Breaking Schemes

Breaking ties by comparing event payloads bit-wise is effective but may result in

an event order that is not meaningful model-wise. Indeed, as discussed above,

modellers are accustomed to the use of event classes to handle potential ties.

However, this problem can be solved easily. Indeed, it is sufficient for the mod-

7.2 Practical Tie-Breaking Technique 126

eller to insert into the model payload the additional information (such as the event

class) that it intends to be used to break the ties. By doing so, we can elegantly

solve the problem outlined earlier with the agent-based model by assigning two dif-

ferent classes to depart and return events. Our experience with model development

suggests that prioritising specific event classes over others can already solve most

of the issues related to tied events.

From this discussion, it is therefore clear that our practical tie-breaking approach

is not at odds with other system-level solutions to solve this problem. In fact, it is

a generalisation of them. Indeed, any of the strategies based on Properties 7.2.1–

7.2.3 (and any proposal discussed in Section 4.7) can be re-implemented within an

ordering defined according to our strategy.

However, there are two ways to materialise these relations. The simplest involves

realising the change at the runtime environment level: the environment developer

can transparently insert within events any information they wish to be considered by

the tie-breaking approach we have presented. With this strategy, different properties

can be guaranteed transparently to the modeller.

However, we consider this possibility problematic, as it inserts a bias of which the

modeller may be unaware, as many of the methods in Chapter 4.7 do. Our strategy

is free from bias originated by simulation engine details. If the model ignores the

characteristics of our tie-breaking policy, it does not impose a meaningful order on

the members of its events payloads. In this case, we experience an unchecked order

bias, but at least it is characterized and encoded in how the model generates events.

Therefore, the second way is to make the use of specific strategies non-transparent

to the modeller. In this way, it is the modeller who will be able to include in the

event payload as much information as they deem useful for ordering the events. In

this way, it is possible to create simulation environments that are anyhow correct

and support repeatable and replicable executions. The model developer still has

control over the choices made by the simulator. In this sense, the practicality of our

approach is greater, as it allows transparent and non-transparent approaches to be

combined in a single implementation.

7.3 Experimental Assessment 127

Table 7.1. Model configurations.

Model #LPs Remote events Committed events
PHOLD 221 10% ∼ 527M
ETIES-easy 65536 50% ∼ 393M
ETIES-hard 131072 10% ∼ 1100M
TBC 16384 ∼ 80% ∼ 739M

7.3 Experimental Assessment

Our evaluation focuses on two aspects: the performance impact and the effect on

model accuracy when compared to a version of the simulator that treats tied events

as part of the same equivalence class, resulting in their execution in any order they

are delivered.

The experimental evaluation was run on a machine equipped with two Intel®

Xeon™ e5-2699v4 processors @2.0 GHz, each consisting of 22 physical cores and 44

hyperthreads, for a total of 44 physical cores and 88 hyperthreads. It has 256 GB

of RAM, even though the maximum size of the resident set utilised by the runs is

approximately 42GB.

7.3.1 Testbed Applications

Beyond the benchmarks introduced in Section 1.2, we have also adopted additional

models previously presented in [85]. We have evaluated the models using configu-

rations similar to those in [85]. Table 7.1 provides an overview of the four model

configurations. Each point in each configuration is the average of 20 runs, with

the highest observed coefficient of variation being approximately 0.05, indicating

reasonably reliable results.

The event-ties (E-TIES) model is a synthetic benchmark that aims to investigate

how simulation engines handle large volumes of tied events. It operates in rounds

that are triggered every unit of virtual time. In each round, each logical process

starts one or more chains of tied events. If an LP receives an event as part of a

chain, it can extend it by sending another event or terminate it if a pre-configured

length is reached. Additionally, if an LP A terminates a chain and happens to

be the first chain initiated in that round by another logical process B, then A

7.3 Experimental Assessment 128

sends an event to B to schedule the next round, effectively closing the chain. This

guarantees progress in the model and creates long logical dependence chains that

should adequately stress a tie-breaking implementation. In this model, we use the

current chain length as the event class, ensuring that tied events are ordered by

their position in their respective chains.

We examined two E-TIES configurations with distinct features, as presented in

Table 7.1. The easy configuration was designed such that in each round, each LP

only initiates a single chain of events with a maximum length of two. On the other

hand, the hard configuration involves each LP producing three chains of length five,

which results in far more demanding tie-breaking activities.

For each configuration, we show four different plots. In order from left to right,

we have:

1. the event processing time in seconds, which does not include initialisation and

finalisation costs;

2. the speedup computed over the corresponding serial configuration;

3. the efficiency computed as the percentage of committed events over the total

number of executed events;

4. the cost per event, divided between the actual event processing and event

extraction costs. These measures are expressed in nanoseconds, computed

using the rdtsc instruction of the x86 instruction set.

We point out that, in ROOT-Sim, both the serial and parallel engines eagerly

insert scheduled events in the Future Event Set; therefore, event insertion operations

are already included in the event processing costs.

7.3.2 Experimental Results

The results for the PHold model are shown in Figure 7.5. It is clear that there is no

significant difference in behaviour between the two configurations. As expected, the

tie-breaking logic is not stressed to a measurable point, even though the number of

LPs is non-minimal. This is because timestamp deltas are drawn from an exponen-

tial distribution, and the randomisation of timestamps across 64-bit floating point

7.3 Experimental Assessment 129

2 5 8 11 14 18 22
Worker threads

0

100

200

300

400

500

600

Ti
m

e
(s)

2 5 8 11 14 18 22
Worker threads

0

2

4

6

8

10

12

14

Sp
ee

du
p

w
.r.

t.
m

at
ch

ed
 se

ria
l

2 5 8 11 14 18 22
Worker threads

70

75

80

85

90

95

100

Ef
fic

ie
nc

y
(%

)

2 5 8 11 14 18 22
Worker threads

0

200

400

600

800

1000

1200

Ev
en

t m
an

ag
em

en
t c

os
ts

 (n
s)

No tiebreak Serial Tiebreak Cost per event processing Cost per event extraction

Figure 7.5. Results for PHold model

2 5 8 11 14 18 22
Worker threads

0

50

100

150

200

250

Ti
m

e
(s)

2 5 8 11 14 18 22
Worker threads

0

2

4

6

8

10

12

14

Sp
ee

du
p

w
.r.

t.
m

at
ch

ed
 se

ria
l

2 5 8 11 14 18 22
Worker threads

70

75

80

85

90

95

100

Ef
fic

ie
nc

y
(%

)

2 5 8 11 14 18 22
Worker threads

0

200

400

600

800

1000

1200

Ev
en

t m
an

ag
em

en
t c

os
ts

 (n
s)

No tiebreak Serial Tiebreak Cost per event processing Cost per event extraction

Figure 7.6. Results for event-ties model, easy configuration

samples is sufficient to avoid event ties. In addition, we should note that even with

our tie-breaking policy, given the nature of PHold, tied events would be considered

logically concurrent. Therefore, this model may not be the best choice to evaluate

the characteristic of our tie-breaking policy. We want to note that the serial runtime

shows unusually high event extraction costs, which is unsurprising given that the

ROOT-Sim serial engine is optimised for smaller-scale models.

In contrast, the E-TIES model presents a more diverse trend, even in its easy

configuration (Figure 7.6), highlighting the cost of using a tie-breaking strategy.

Ignoring ties provides a significant advantage, especially at low core counts, yet

both configurations exhibit good performance. Nevertheless, the overall speedup

indicates a favourable trend for the tie-breaking configuration. Possibly, the config-

uration without tie-breaks cannot scale further because the parallelism of the model

is already being vastly exploited.

By analysing the costs, we can draw two noteworthy observations. First, the

serial execution of E-TIES easy exhibits lower event processing costs than PHold,

despite its more complex logic. This could be attributed to the fact that, in execu-

7.3 Experimental Assessment 130

2 5 8 11 14 18 22
Worker threads

0

100

200

300

400

500

600

700

Ti
m

e
(s)

2 5 8 11 14 18 22
Worker threads

0

2

4

6

8

10

12

14

Sp
ee

du
p

w
.r.

t.
m

at
ch

ed
 se

ria
l

2 5 8 11 14 18 22
Worker threads

70

75

80

85

90

95

100

Ef
fic

ie
nc

y
(%

)

2 5 8 11 14 18 22
Worker threads

0

200

400

600

800

1000

1200

Ev
en

t m
an

ag
em

en
t c

os
ts

 (n
s)

No tiebreak Serial Tiebreak Cost per event processing Cost per event extraction

Figure 7.7. Results for event-ties model, hard configuration

2 5 8 11 14 18 22
Worker threads

0

100

200

300

400

500

Ti
m

e
(s)

2 5 8 11 14 18 22
Worker threads

0

2

4

6

8

10

12

14

Sp
ee

du
p

w
.r.

t.
m

at
ch

ed
 se

ria
l

2 5 8 11 14 18 22
Worker threads

70

75

80

85

90

95

100

Ef
fic

ie
nc

y
(%

)

2 5 8 11 14 18 22
Worker threads

0

200

400

600

800

1000

1200

Ev
en

t m
an

ag
em

en
t c

os
ts

 (n
s)

No tiebreak Serial Tiebreak Cost per event processing Cost per event extraction

Figure 7.8. Results for TBC model

tions of E-TIES without the tie-breaking logic, event insertion in the heap usually

requires few operations as the events end up placed at the end of the heap. Likewise,

in tie-breaking executions, the chain position identifier is used as the event type.

Most newly-scheduled chain events do not happen before those in the queue, result-

ing in event insertions that require only a limited number of operations. Conversely,

in PHold, timestamps are sampled from an exponential distribution; therefore, they

are better distributed across an interval of logical time. As a result, logarithmic heap

costs are observed since heap bubbling operations are necessary during insertions.

The other interesting fact is the vast difference in event extraction costs, which

could explain the observed performance gap between the two parallel configurations.

To further prove this, efficiency is mostly conserved between the two configurations,

with only a slight increase in the number of rollbacks, possibly due to the stricter

causality requirement imposed by our event ordering.

The results from the more demanding version of E-TIES, shown in Figure 7.7 re-

inforce these findings, showing that ignoring ties results in even better performance.

As more events are tied, extraction costs increase significantly, strengthening the

7.3 Experimental Assessment 131

0.0

0.8

1.6

Se
ria

l

0.0

0.8

1.6

Se
ria

l n
o

TB

0.0

0.8

1.6

22
 th

re
ad

s

0 200 400 600 800 1000
0.0

0.8

1.6

22
 th

re
ad

s n
o

TB

Ag
en

ts
 (i

n
m

illi
on

s)

Simulated day

Healthy Infected Sick Treated Treatment

Figure 7.9. Evolution of the TBC model

argument that queue management is the main factor affecting performance. Never-

theless, the speedup shows that both configurations scale well with a larger model.

At the same time, the efficiency confirms that the lower performance of tie-breaking

runs is not due to an increase in rollbacks.

To conclude the first part of our evaluation, we observe that the experimental

results from the TBC model, reported in Figure 7.8, suggest that tie-breaking may

have a limited impact on performance for real-world models. While a noticeable

difference can be observed at lower thread counts, the added cost of tie-breaking is

effectively parallelised away with higher core count configurations.

The evaluation of PHold and TBC shows that our proposal has a negligible cost

when there are few or no event ties but a high cost when ties are prevalent. We

have shown that this is not due to parallelisation inefficiencies but rather because

7.3 Experimental Assessment 132

the FES of the simulation engine is effectively doing more work in the attempt to

provide the correct event extraction ordering.

This increased cost is inevitable when using a priority queue that relies on el-

ement comparisons. This is because it requires at least one operation involving a

logarithmic number of comparisons with respect to the events in the queue. Even if

the model developer writes an efficient event comparison function, the cost of event

inspection would still be much higher than timestamp comparison, which often re-

quires only a few machine instructions. Furthermore, existing priority-queue data

structures that do not involve direct timestamp comparisons are unsuitable for this

purpose. For example, in a calendar queue, all tied events would end up in the same

bucket, resulting in disastrous linear extraction times.

In other words, it seems that if the aim is running a simulation full of tied events,

trying to obtain parallel deterministic executions may result in far more stress on

queue management operations. As a solution, it may be possible to alleviate this

burden by assigning the responsibility of reordering messages with the same times-

tamp to the straggler detection system. Although this approach is interesting, our

initial investigations suggested that the associated cost of more frequent rollbacks

trumps any other performance gain.

Moving onto the second part of our evaluation, we consider how the lack of

tie-breaking affects a model’s dynamics. For this analysis, we utilise the output

produced by the TBC model. To extract the relevant data from the simulation,

each LP in TBC schedules an event at regular intervals, which saves the count of

the five classes of agents to a buffer that belongs to the LP’s state. Upon simulation

completion, the agent counts from each LP are merged by timestamp to produce a

comprehensive evolution timeline of agent states.

The outcomes depicted in Figure 7.9 demonstrate no notable variation in the

results among the different types of executions. This may lead one to believe that

tie-breaking is insignificant in real-world scenarios. However, two factors should be

considered. First, this model was chosen for its resistance to ties, enabling non-

tie-broken executions to run without errors. Secondly, each model run produced

slightly different trajectories, even with an identical pseudo-random generator seed.

7.4 Performance of Event Set Management Strategies 133

In contrast, runs with tie-breaks are entirely deterministic for the same pseudo-

random seed. As mentioned, deterministic simulation runs are valuable, particularly

during model debugging.

As previously noted, models that do not heavily utilise tie-breaking logic do

not experience a significant decrease in performance. Thus, it may be beneficial to

maintain the enhanced tie-breaking feature enabled anyway.

7.4 Performance of Event Set Management Strategies

As we have mentioned earlier, a considerable amount of time is spent managing the

event set when tie-breaking rules are enforced, and there is a non-negligible number

of ties. Therefore, it is interesting to briefly study the effect of using different strate-

gies for handling sets of events. As we will show, the effects of different strategies

open up to a new dimension of risk management. Therefore, in this section, we also

emphasise that a single component of a simulation runtime environment (the event

set) can directly amalgamate multiple nuances of risk.

The concept of the event set is such a key concept for discrete-event simulation

that it had appeared in the scientific literature since the early days of discrete-

event simulation [114], when this technique was still the prerogative of operations

research. Without an event set, it is impossible to realise any execution environment

for discrete event simulation, regardless of the mechanisms used to support its

execution.

The risk implications related to the event set arise from the strategy used to im-

plement it, which can directly affect the LP clock skew, as it is essential to perform

the operations to handle this data structure on the critical path of the simulation.

This aspect of risk is additional to that already discussed in connection with the

solution of ties. Furthermore, depending on the organisation of the execution envi-

ronment and the paradigm supporting the simulation, the event set may become a

shared structure, with the consequent need to guarantee correctness in accesses.

When using optimistic synchronisation, the ES has to maintain also already-

processed events. Indeed, a rollback operation may restore a previous simulation

state, thus requiring the reprocessing of past events. Therefore, when relying on

7.4 Performance of Event Set Management Strategies 134

speculative synchronisation, it is possible to divide future and past events into two

(logical) different data structures, namely the FES and the PES, which we already

introduced in Chapter 5.

Previous literature results have shown that if the execution grain of events is

relatively fine, the ES can become the bottleneck of a PDES system [36]. To com-

pensate for these issues (and also deal explicitly with concurrency), multiple data

structures have been proposed in the literature—we have already surveyed them in

Section 4.3. As it has been shown experimentally [27, 34, 128, 136], different data

structures offer different performance guarantees depending on the model dynamics

or the event distribution. While some data structures are typically better suited for

larger models, there is no clear winner.

Nevertheless, here we advocate that there is an additional axis of intervention

in managing the event set that has not been sufficiently explored in the literature.

Indeed, typical PDES runtime environment implementations (see, e.g., [12, 81])

rely on a per-LP ES or FES/PES. The consensus on this organisation probably

stems from a direct correspondence between the theoretical model of discrete-event

simulation and the resulting implementation. However, we believe it is useful to

shed light on the implications of risk, considering this time in the nuance of poor

simulation performance due to inefficient CPU utilisation and excessive wait times

for shared resources (see Section 2.3).

Moreover, since there is a clear division between the concept of FES and PES

in Time Warp, it is also possible to assume the use of different data structures for

these subsets of the ES. This section aims not to provide an exhaustive scrutiny of

all possible combinations. Instead, we want to show how even simple choices that

differ from those identified in the literature can significantly impact the simulation

performance.

Given the high core count provided by modern multi/many-core systems, it

could be beneficial to rethink the classical use of data structures used to implement

ES, regardless of which data structure is employed. For example, a good (to the best

of our knowledge, unexplored) strategy could be maintaining a single per-thread ES.

Here, we consider two main ES management strategies and data structures that

7.4 Performance of Event Set Management Strategies 135

combine the abovementioned ones. The first relies on two separate per-LP data

structures that keep the FES and the PES. The FES is implemented as a min-heap,

while the PES is a singly-linked list. Newly processed events are extracted from

the FES data structure and pushed back into the PES. Upon a rollback operation,

invalidated events from the PES are moved back to the FES.

To ensure a locally-causal execution, i.e. to implement the Lowest Timestamp

First (LTF) scheduling strategy [35], a worker thread has to observe all the FES

queues of the LPs it is currently managing. In this scenario, the expected scheduling

time is O(n log(k)), where n is the number of LPs managed by the worker thread and

k is the number of elements of the targeted FES min-heap. Instead, the expected

runtime cost for inserting an event is O(log(k)). The same cost is incurred for

invalidating an event from the PES of an LP.

The second approach maintains the per-LP PES, but each worker thread now

keeps all the future events of its managed LPs in a single FES using a min-heap

queue. Each worker thread can implement an LTF scheduling policy by simply

observing its own FES. This operation costs O(log(nk)) since only a single (al-

though larger) queue has to be managed. This improvement comes at the expense

of insertions and invalidations of events, which cost O(log(nk)) as well.

The experiments we report here have been carried out on a c5a.16xlarge AWS

instance, equipped with an unspecified AMD EPYC™ processor exposing 64 vC-

PUs. We have used the classic PHold model set up as a benchmark so that all

configurations commit approximately 230 events per run. We have used two con-

figurations of the model. The first is a small configuration involving only 128 LPs.

The second is a larger one, encompassing 16,384 LPs. The goal of this study is

therefore to see how different strategies to implement the ES affect the simulation

throughput, when the model’s scale varies.

The results for the small configuration can be observed in Figure 7.10. When

simulating 128 LPs, the per-LP solution can marginally outperform the per-thread

solution. As illustrated in Figure 7.12, the benefit is minimal – a maximum of 4%

– but consistently observable. It’s reasonable to disregard the data with thread

counts exceeding 32 since both configurations underperform after that threshold.

7.4 Performance of Event Set Management Strategies 136

64524028164
Worker Threads

0

25

50

75

100

125

150

175

200

W
al

l C
lo

ck
 T

im
e

(s
)

PHOLD model with 128 LPs
Per-LP ES
Per-thread ES

Figure 7.10. Results with PHold Model—128 LPs.

This outcome aligns with our expectations since the Amazon instance used in

the experiment offers 64 vCPUs backed by 32 physical CPU cores. By binding

worker threads to CPUs, configurations beyond the 32nd thread would execute on

both hyperthreads of a few physical cores, leading to an uneven distribution of

processing power among worker threads.

With this limited number of LPs, PHold follows a nearly serial simulation path:

rollbacks frequently occur, favouring the first strategy’s lower event invalidation

cost. The advantage is minor since rollback costs are dominated by state restoration

and anti-events operations. However, certain use cases may involve simulating a

number of LPs similar to the number of threads; in such situations, having a single

FES per LP might be worth considering.

Figure 7.11 presents the findings for the larger configuration. Both solutions

scale with 16,384 LPs in this case, but the per-thread ES strategy outperforms the

per-LP strategy. The first strategy exhibits super-linear scaling, mainly because

the scheduling costs increase linearly with the number of assigned LPs per worker

thread. For instance, with four threads, event scheduling operations must check

4,192 queues, while with 32 threads, that number becomes 512.

As indicated in Figure 7.12, the per-thread ES strategy achieves a speedup

as high as 21 when dealing with a lower number of worker threads, and still an

impressive 44% at the other end of the scale.

7.5 Discussion 137

64524028164
Worker Threads

0

25

50

75

100

125

150

175

200

W
al
l C

lo
ck
 T
im

e
(s
)

~3000
PHOLD model with 16384 LPs

Per-LP ES
Per-thread ES

Figure 7.11. Results with PHold Model—16,384 LPs.

64524028164
Worker Threads

100

101

Sp
ee

du
p

~21

~1.44

~1.03 ~0.96

Speedup of the per-thread ES versus the per-LP ES
128 LPs
16384 LPs

Figure 7.12. Speedup.

Once again, the effect of hyperthreading on the simulation performance is no-

ticeable. It is more evident for the per-LP ES strategy, which is outperformed by

the 28-thread configuration when run with 36 threads.

7.5 Discussion

The simple yet effective tie-breaking technique we have presented in this Chapter

enables replicable and repeatable executions of concurrent simulations in a way sim-

ilar to what would be observed in a sequential execution using the same technique.

Our approach is easy to implement for both model developers and simulation engine

designers.

7.5 Discussion 138

Although our strategy may not be the optimal solution from a modelling point

of view, it still serves as a fundamental tool to implement a suitable model-specific

tie-breaking strategy. Our experimental results showed that the cost of using our

technique is negligible for models with infrequent event ties. Most importantly,

we demonstrated that, in any case, our technique does not hinder parallel scaling

properties.

Additionally, we have shown that there may be cases where the entire tie-

breaking logic is unnecessary, even for real-world models. However, we argue that

for such models, the cost of tie-breaking is negligible, and therefore, we recommend

enabling it.

We also provided insights on the performance implications for models with many

ties. A relevant aspect is related to the implementation of the event set. In partic-

ular, the number of operations executed by the selected data structure can severely

affect the performance. This result suggests that the event set can be related to the

notion of risk. We have therefore investigated possible strategies to manage event

sets.

The results of this investigation have highlighted that the body of literature on

data structure for the event set possibly lacks a dimension for exploration. While

much emphasis has been placed on the specific data structure used, less emphasis

has been placed on how these structures can be used together to support a single

simulation.

Our exploratory results confirm that a good ES data structure is essential for

performance, as also indicated by the results related to the tie-breaking strategy,

but they highlight that their usage pattern also plays a crucial role.

We believe that this is a research line that deserves much attention. Indeed,

there could be other sources of risk to take into account that may have a direct

impact on the overall simulation performance. As highlighted in this chapter, we

envisage the possibility of relying on non-FIFO data structures to implement the

ES. The implications on simulation dynamics may reveal interesting results.

As a side note, it is worth mentioning that even small details like thread pinning,

in conjunction with a suboptimal utilisation of hyperthreading, can result in varying

7.5 Discussion 139

levels of risk exposure. In this case, configurations with 36 threads, for the most

part, performed worse, possibly due to an imbalance in processing power available

to the worker threads, leading to a slightly increased frequency of rollbacks.

Additionally, as highlighted in Chapter 6, employing autonomic self-optimisation

is paramount to delivering competitive simulations in the face of highly-dynamic

workloads. The same strategy could be applied to the management of the ES,

mainly if the number of ties dynamically changes over different phases of the sim-

ulation. Indeed, we may design simulation environments that can switch the set’s

organisation and the actual data structure at runtime. Clearly, the involved costs

might be significantly high: making the wrong decision could hamper the overall

performance. According to our revisited notion of risk, this could be an additional

source.

140

Chapter 8

Conclusions

In this thesis, we addressed the problem of risk management in PDES. In doing

so, we have attempted to reinterpret various concepts from the classical literature

within a single conceptual framework named, precisely, risk.

Clearly, we do not expect the work we have done over the past three years to be

complete: to gather under one umbrella the vast amount of simulation techniques

that have been proposed is a grand challenge. Nevertheless, we believe that we have

contributed in our own small way to repositioning, consolidating and bridging in

new ways several concepts now established by the scientific community.

First and foremost, however, we are designers, engineers and developers of high-

performance execution environments whose goal is to provide modellers with the

highest possible performance from a given hardware architecture. The conceptual

framework we have provided is therefore steeped in technical aspects and strongly

geared towards the modeller.

This aspect is close to our heart since, in our little experience, we have observed

an internal dichotomy within the simulation community between those who deal

directly with models and those who, in the end, are concerned with supporting

their execution. For example, in Chapter 3, we observed how the most popular

methodologies for the simulation of Spiking Neural Networks lead to potentially

inaccurate results and possibly higher computational costs. However, at the same

time, there is a proliferation of high quality models used in multiple real-world

studies that have been adapted to simulation paradigms that maybe weren’t the

141

best fit for the application. We have observed the same phenomenon in other fields,

such as demography or traffic simulation.

During this thesis work, we identified two critical aspects that make high-

performance simulation still niche compared to real-world applications. The first

is related to the lack of uniformity in approaches: the landscape is exceptionally

vast, and often very specific problems are attempted to be solved with elegant and

ingenious solutions. However, as we have shown in this thesis, an optimal solution

for a particular problem can be highly suboptimal for other application contexts.

Therefore, we believe that a critical step in enabling solutions already in the

literature to become appealing to model developers requires an effort to standardise

approaches. This is the driving force behind the proposal in Chapter 5. We believe

that, with a technological and methodological effort, it is possible to arrive in the

years to come at a unified simulation methodology that allows, for any type of

model, never to obtain speedups of less than 1.

The other obstacle to the widespread adoption of novel simulation techniques

proposed by the research community is related to the nature of the experiments

typically conducted. To better convey the idea, we report in Figure 8.1 some results,

still awaiting publication, collected on a workstation-class machine. The setup is

similar to that discussed in Chapter 5. With 10 total cores to play with, even in an

unbalanced PHOLD configuration, a decent speedup of 5 is achieved by both our

proposed hybrid algorithm and pure Time Warp implementation.

If we make the same comparison using the SIR model, we do not see any points

plotted for the Time Warp curve: no configuration can achieve a speedup higher

than one. The extreme adoption of synthetic models may lead to conclusions that

are not entirely correct on the goodness of some proposals since the results may be

strongly divergent when exercised with real models.

In general, we consider the scarcity of real-world benchmark model suites and

the excessive adoption of synthetic models in configurations that are too simple to

simulate to be two competing factors to the low adoption of more advanced simula-

tion techniques, as these are not really exercised in disparate real-world scenarios.

In our own small way, we have always tried to compare our solutions with real

142

1 2 3 4 5 6 7 8
Processing threads for the dense partition

1

2

3

4

5

6

Sp
ee

du
p

w.
r.t

. s
er

ia
l e

xe
cu

tio
n

Dense TW Dense WR

(a) PHOLD

2 3 4 5 6 7 8
Processing threads for the dense partition

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sp
ee

du
p

w.
r.t

. s
er

ia
l e

xe
cu

tio
n

Dense TW Dense WR

(b) SIR

Figure 8.1. Synthetic benchmarks: running on a Intel® Core™ i9-10900X

models, however often related to the same domain. Regardless of the good results

presented in the chapters of this thesis, it was the experimental comparison with

real models that allowed us to achieve that level of optimisation, whether static or

autonomic, that made all the difference.

Although our risk concept is probably not immediately actionable, the technical

innovations we have presented certainly are. We have presented several methods

for manipulating the level of risk in parallel simulations, which enable us to achieve

very good tradeoffs between accuracy and performance by reducing or exploiting

risk.

Our experiments, which encompassed both synthetic and real-world applica-

tions, have illustrated the significant impact of simulation engine design choices on

the level of risk and demonstrated the efficacy of our technical contributions. We

believe these contributions will be helpful in the simulation community and provide

new avenues for future research.

Overall, the journey we took to get to the writing of this thesis was tiring but

enjoyable. Some of the topics we have tried to address innovatively may suggest

143

new lines of research that, we believe, will lead to good results if they are guided

by extensive experimental comparison with real models. We hope that the reader

of these contributions will share our vision and embark on new research. The risk

is to discover hundreds of new facets of PDES.

144

Bibliography

[1] Sameera Abar, Georgios K Theodoropoulos, Pierre Lemarinier, and Gregory

M P O’Hare. 2017. Agent Based Modelling and Simulation tools: A review of

the state-of-art software. Computer Science Review 24 (2017), 13–33. https:

//doi.org/10.1016/j.cosrev.2017.03.001

[2] Philipp Andelfinger, Andrea Piccione, Alessandro Pellegrini, and Adelinde

Uhrmacher. 2022. Comparing Speculative Synchronization Algorithms for

Continuous-Time Agent-Based Simulations. In Proceedings of the 26th Interna-

tional Symposium on Distributed Simulation and Real Time Applications (DS-

RT ’22). IEEE, Piscataway, NJ, USA, 57–66. https://doi.org/10.1109/

DS-RT55542.2022.9932067

[3] Philipp Andelfinger and Adelinde Uhrmacher. 2021. Optimistic Parallel Sim-

ulation of Tightly Coupled Agents in Continuous Time. In Proceedings of

the 2021 IEEE/ACM 25th International Symposium on Distributed Simula-

tion and Real Time Applications (DS-RT). IEEE, Piscataway, NJ, USA, 1–9.

https://doi.org/10.1109/DS-RT52167.2021.9576156

[4] Philipp Andelfinger and Adelinde M Uhrmacher. 2023. Synchronous Specula-

tive Simulation of Tightly Coupled Agents in Continuous Time on CPUs and

GPUs. Simulation: Transactions of the Society for Modeling and Simulation

International (2023).

[5] Laurent R G Auriche, Francesco Quaglia, and Bruno Ciciani. 1998. Run-time

selection of the checkpoint interval in time warp based simulations. Simulation

Practice and Theory 6 (1998), 461–478.

Bibliography 145

[6] Duane Ball and Susan Hoyt. 1990. The Adaptive Time-Warp Concurrency Con-

trol Algorithm. In Distributed Simulation (PADS ’90), David Nicol (Ed.). Soci-

ety for Computer Simulation, San Diego, CA, USA, 174–177.

[7] Blind Authors. 2023. Zero Lookahead? Zero Problem. The Window Racer

Algorithm. In Proceedings of the 2023 ACM SIGSIM Conference on Principles

of Advanced Discrete Simulation (SIGSIM-PADS ’23). ACM, New York, NY,

USA. Under Review.

[8] Azzedine Boukerche and Sajal K Das. 1997. Dynamic load balancing strategies

for conservative parallel simulations. In Proceedings of the eleventh workshop on

Parallel and distributed simulation (Lockenhaus, Austria) (PADS ’97). IEEE

Computer Society, Piscataway, NJ, USA, 20–28. https://doi.org/10.1145/

268826.268897

[9] Romain Brette, Michelle Rudolph, Ted Carnevale, Michael Hines, David Bee-

man, James M Bower, Markus Diesmann, Abigail Morrison, Philip H Goodman,

Frederick C Harris, Jr, Milind Zirpe, Thomas Natschläger, Dejan Pecevski,

Bard Ermentrout, Mikael Djurfeldt, Anders Lansner, Olivier Rochel, Thierry

Vieville, Eilif Muller, Andrew P Davison, Sami El Boustani, and Alain Des-

texhe. 2007. Simulation of networks of spiking neurons: a review of tools and

strategies. Journal of computational neuroscience 23, 3 (Dec. 2007), 349–398.

https://doi.org/10.1007/s10827-007-0038-6

[10] Randy Brown. 1988. Calendar Queues: a Fast O(1) Priority Queue Imple-

mentation for the Simulation Event Set Problem. Commun. ACM 31 (1988),

1220–1227.

[11] N Brunel. 2000. Dynamics of sparsely connected networks of excitatory and

inhibitory spiking neurons. Journal of computational neuroscience 8, 3 (May

2000), 183–208. https://doi.org/10.1023/a:1008925309027

[12] Christopher D Carothers, David Bauer, and Shawn Pearce. 2002. ROSS: A

high-performance, low-memory, modular Time Warp system. Journal of parallel

Bibliography 146

and distributed computing 62, 11 (Nov. 2002), 1648–1669. https://doi.org/

10.1016/S0743-7315(02)00004-7

[13] Christopher D Carothers and Kalyan S Perumalla. 2010. On Deciding Between

Conservative and Optimistic Approaches on Massively Parallel Platforms. In

Proceedings of the 2010 Winter Simulation Conference, Björn Johansson, Sanjay

Jain, and Jairo Montoya-Torres (Eds.). IEEE, Piscataway, NJ, USA, 678–687.

https://doi.org/10.1109/WSC.2010.5679119

[14] Christopher D Carothers, Kalyan S Perumalla, and Richard M Fujimoto.

1999. The effect of state-saving in optimistic simulation on a cache-coherent

non-uniform memory access architecture. In Proceedings of the 1999 Winter

Simulation Conference, P A Farrington, H B Nembhard, D T Sturrock, and

G W Evans (Eds.). WSC’99, Vol. 2. IEEE, Piscataway, NJ, USA, 1624–1633.

https://doi.org/10.1109/WSC.1999.816902

[15] Christopher D Carothers, Kalyan S Perumalla, and Richard M Fujimoto. 1999.

Efficient Optimistic Parallel Simulations Using Reverse Computation. ACM

Transactions on Modeling and Computer Simulation 9, 3 (July 1999), 224–253.

https://doi.org/10.1145/347823.347828

[16] Kanianthra Mani Chandy and Jaydev Misra. 1979. Distributed Simulation:

A Case Study in Design and Verification of Distributed Programs. IEEE

Transactions on Software Engineering SE-5, 5 (Sept. 1979), 440–452. https:

//doi.org/10.1109/tse.1979.230182

[17] Chun-Hung Chen and Yu-Chi Ho. 1995. An approximation approach of the

standard clock method for general discrete-event simulation. IEEE Transactions

on Control Systems Technology 3, 3 (Sept. 1995), 309–317. https://doi.org/

10.1109/87.406978

[18] Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2017. Trans-

parently Mixing Undo Logs and Software Reversibility for State Recovery in

Optimistic PDES. ACM Transactions on Modeling and Computer Simulation

27, 2 (May 2017), 1–26. https://doi.org/10.1145/3077583

Bibliography 147

[19] Gennaro Cordasco, Rosario De Chiara, Ada Mancuso, Dario Mazzeo, Vittorio

Scarano, and Carmine Spagnuolo. 2013. Bringing together efficiency and effec-

tiveness in distributed simulations: The experience with D-Mason. Simulation

89, 10 (Oct. 2013), 1236–1253. https://doi.org/10.1177/0037549713489594

[20] Vittorio Cortellessa and Francesco Quaglia. 2000. Aggressiveness/Risk Effects

Based Scheduling in Time Warp. In Proceedings of the 2000 Winter Simulation

Conference, Jeffrey A Joines, Russel R Barton, Keebom Kang, and Paul A

Fishwick (Eds.). IEEE, Piascatawy, NJ, USA, 409–417. https://doi.org/

10.1109/WSC.2000.899746

[21] Miles Dai. 2021. Reverse Engineering the Intel Cascade Lake Mesh Intercon-

nect. Master’s thesis. Massachusetts Institute of Technology.

[22] Faryad Darabi Sahneh, Caterina Scoglio, and Piet Van Mieghem. 2013. Gen-

eralized Epidemic Mean-Field Model for Spreading Processes Over Multilayer

Complex Networks. IEEE/ACM Transactions on Networking 21, 5 (Oct. 2013),

1609–1620. https://doi.org/10.1109/TNET.2013.2239658

[23] Samir Das, Richard M Fujimoto, Kiran Panesar, Don Allison, and Maria Hy-

binette. 1994. GTW: A Time Warp System for Shared Memory Multiproces-

sors. In Proceedings of the 1994 Winter Simulation Conference, Jeffrey D Tew,

Mani S Manivannan, Deborah A Sadowski, and Andrew F Seila (Eds.). Soci-

ety for Computer Simulation International, San Diego, CA, USA, 1332–1339.

https://doi.org/10.1109/WSC.1994.717527

[24] Samir R Das. 1996. Adaptive Protocols for Parallel Discrete Event Simu-

lation. In Proceedings of the 28th conference on Winter simulation (Coron-

ado, California, USA) (WSC ’96). IEEE Computer Society, USA, 186–193.

https://doi.org/10.1145/256562.256602

[25] Lorenzo Dematté and Tommaso Mazza. 2008. On Parallel Stochastic Sim-

ulation of Diffusive Systems. In Computational Methods in Systems Biol-

ogy, Monika Heiner and Adelinde M Uhrmacher (Eds.). LNCS, Vol. 5307.

Bibliography 148

Springer, Berlin, Heidelberg, Germany, 191–210. https://doi.org/10.1007/

978-3-540-88562-7_16

[26] Phillip M Dickens and Paul F Reynolds, Jr. 1990. SRADS with Local Rollback.

In Distributed Simulation (PADS ’90), David Nicol (Ed.). Society for Computer

Simulation, San Diego, CA, USA, 161–164.

[27] Tom Dickman, Sounak Gupta, and Philip A Wilsey. 2013. Event pool struc-

tures for PDES on many-core Beowulf clusters. In Proceedings of the 1st ACM

SIGSIM Conference on Principles of Advanced Discrete Simulation (Montr©al,

Québec, Canada) (SIGSIM PADS ’13). Association for Computing Machinery,

New York, NY, USA, 103–114. https://doi.org/10.1145/2486092.2486106

[28] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio,

Jean Claude Andre, David Barkai, Jean Yves Berthou, Taisuke Boku, Bertrand

Braunschweig, Franck Cappello, Barbara Chapman, Xuebin Chi, Alok Choud-

hary, Sudip Dosanjh, Thom Dunning, Sandro Fiore, Al Geist, Bill Gropp, Robert

Harrison, Mark Hereld, Michael Heroux, Adolfy Hoisie, Koh Hotta, Zhong Jin,

Yutaka Ishikawa, Fred Johnson, Sanjay Kale, Richard Kenway, David Keyes,

Bill Kramer, Jesus Labarta, Alain Lichnewsky, Thomas Lippert, Bob Lucas,

Barney MacCabe, Satoshi Matsuoka, Paul Messina, Peter Michielse, Bernd

Mohr, Matthias S Mueller, Wolfgang E Nagel, Hiroshi Nakashima, Michael E

Papka, Dan Reed, Mitsuhisa Sato, Ed Seidel, John Shalf, David Skinner, Marc

Snir, Thomas Sterling, Rick Stevens, Fred Streitz, Bob Sugar, Shinji Sumimoto,

William Tang, John Taylor, Rajeev Thakur, Anne Trefethen, Mateo Valero, Aad

Van Der Steen, Jeffrey Vetter, Peg Williams, Robert Wisniewski, and Kathy

Yelick. 2011. The international exascale software project roadmap. The inter-

national journal of high performance computing applications 25, 1 (2011), 3–60.

https://doi.org/10.1177/1094342010391989

[29] Jack Dongarra, Steven Gottlieb, and William T C Kramer. 2019. Race to

Exascale. Computing in science & engineering 21, 1 (Jan. 2019), 4–5. https:

//doi.org/10.1109/MCSE.2018.2882574

Bibliography 149

[30] Klaus Eckhardt, Nicola Fohrer, and Hans-Georg Frede. 2005. Automatic model

calibration. Hydrological processes 19, 3 (Feb. 2005), 651–658. https://doi.

org/10.1002/hyp.5613

[31] Peter G Fennell, Sergey Melnik, and James P Gleeson. 2016. Limitations

of discrete-time approaches to continuous-time contagion dynamics. Physical

Review E. Covering statistical, nonlinear, biological, and soft matter physics 94,

5-1 (Nov. 2016), 052125. https://doi.org/10.1103/PhysRevE.94.052125

[32] Alois Ferscha and Satish K Tripathi. 1994. Parallel and distributed simulation

of discrete event systems. Technical Report. University of Maryland at College

Park. https://doi.org/10.5555/193923

[33] Josef Fleischmann and Philip A Wilsey. 1995. Comparative Analysis of Periodic

State Saving Techniques in Time Warp Simulators. In Proceedings of the 9th

Workshop on Parallel and Distributed Simulation (PADS ’95). IEEE Computer

Society, Piscataway, NJ, USA, 50–58. https://doi.org/10.1145/214282.

214298

[34] Romain Franceschini, Paul-Antoine Bisgambiglia, and Paul Bisgambiglia. 2015.

A comparative study of pending event set implementations for PDEVS sim-

ulation. In Proceedings of the Symposium on Theory of Modeling & Simula-

tion: DEVS Integrative M&S Symposium (Alexandria, Virginia) (DEVS ’15).

Society for Computer Simulation International, San Diego, CA, USA, 77–84.

https://doi.org/10.5555/2872965.2872976

[35] Richard M Fujimoto. 1990. Parallel Discrete Event Simulation. Commun. ACM

33, 10 (Oct. 1990), 30–53. https://doi.org/10.1145/84537.84545

[36] Richard M Fujimoto. 1990. Performance of Time Warp Under Synthetic Work-

loads. In Distributed Simulation (PADS ’90), David Nicol (Ed.). Society for

Computer Simulation International, San Diego, CA, USA, 23–28.

[37] Richard M Fujimoto. 1999. Exploiting Temporal Uncertainty in Parallel and

Distributed Simulations. In Proceedings of the 13th Workshop on Parallel and

Bibliography 150

Distributed Simulation (PADS ’99). IEEE Computer Society, Washington, DC,

USA, 46–53. https://doi.org/10.1109/PADS.1999.766160

[38] Richard M Fujimoto. 2000. Parallel and Distributed Simulation Systems. Wiley,

Hoboken, NJ, USA.

[39] Richard M Fujimoto and Maria Hybinette. 1997. Computing Global Virtual

Time in Shared-Memory Multiprocessors. ACM Transactions on Modeling and

Computer Simulation 7 (1997), 425–446. https://doi.org/10.1145/268403.

268404

[40] Richard M Fujimoto and Kiran S Panesar. 1995. Buffer management in shared-

memory time warp systems. In Proceedings of the 9th Workshop on Parallel

and Distributed Simulation (Lake Placid, NY, USA) (PADS’95, Vol. 25). IEEE

Comput. Soc. Press, Piscataway, NJ, USA, 149–156. https://doi.org/10.

1109/pads.1995.404306

[41] Fabrizio Gagliardi, Miquel Moreto, Mauro Olivieri, and Mateo Valero. 2019.

The international race towards Exascale in Europe. CCF Transactions on High

Performance Computing 1, 1 (May 2019), 3–13. https://doi.org/10.1007/

s42514-019-00002-y

[42] Marc-Oliver Gewaltig and Markus Diesmann. 2007. NEST (NEural Simu-

lation Tool). Vol. 2. Scholarpedia, Chapter 4. https://doi.org/10.4249/

scholarpedia.1430

[43] Samanwoy Ghosh-Dastidar and Hojjat Adeli. 2009. Spiking neural networks.

International journal of neural systems 19 (2009), 295–308. https://doi.org/

10.1142/S0129065709002002

[44] Michael A Gibson and Jehoshua Bruck. 2000. Efficient Exact Stochastic Sim-

ulation of Chemical Systems with Many Species and Many Channels. The

journal of physical chemistry. A 104, 9 (March 2000), 1876–1889. https:

//doi.org/10.1021/jp993732q

Bibliography 151

[45] Daniel T Gillespie. 1976. A general method for numerically simulating the

stochastic time evolution of coupled chemical reactions. Journal of compu-

tational physics 22, 4 (Dec. 1976), 403–434. https://doi.org/10.1016/

0021-9991(76)90041-3

[46] David W Glazer and Carl Tropper. 1993. On Process Migration and Load Bal-

ancing in Time Warp. IEEE Transactions on Parallel and Distributed Systems

4, 3 (March 1993), 318–327.

[47] David Goldberg. 1991. What every computer scientist should know about

floating-point arithmetic. ACM Comput. Surv. 23, 1 (March 1991), 5–48.

https://doi.org/10.1145/103162.103163

[48] Samuel Greengard. 2020. Neuromorphic chips take shape. Commun. ACM 63,

8 (July 2020), 9–11. https://doi.org/10.1145/3403960

[49] Gerrit Großmann, Michael Backenköhler, and Verena Wolf. 2020. Importance

of Interaction Structure and Stochasticity for Epidemic Spreading: A COVID-19

Case Study. In Quantitative Evaluation of Systems, Marco Gribaudo, David N

Jansen, and Anne Remke (Eds.). Lecture Notes in Computer Science, Vol. 12289.

Springer International Publishing, Cham, Switzerland, 211–229. https://doi.

org/10.1007/978-3-030-59854-9_16

[50] Sounak Gupta and Philip A Wilsey. 2014. Lock-free Pending Event Set Man-

agement in Time Warp. In Proceedings of the 2nd ACM SIGSIM Conference on

Principles of Advanced Discrete Simulation (Denver, Colorado, USA) (SIGSIM

PADS). ACM, New York, NY, USA, 15–26. https://doi.org/10.1145/

2601381.2601393

[51] Alexander Hanuschkin, Susanne Kunkel, Moritz Helias, Abigail Morrison, and

Markus Diesmann. 2010. A general and efficient method for incorporating precise

spike times in globally time-driven simulations. Frontiers in neuroinformatics 4

(Oct. 2010), 1–19. https://doi.org/10.3389/fninf.2010.00113

[52] Joshua Hay and Philip A Wilsey. 2015. Experiments with Hardware-based

Transactional Memory in Parallel Simulation. In Proceedings of the 3rd ACM

Bibliography 152

SIGSIM Conference on Principles of Advanced Discrete Simulation (London,

United Kingdom) (SIGSIM PADS ’15). ACM, New York, NY, USA, 75–86.

https://doi.org/10.1145/2769458.2769462

[53] Dirk Helbing and Péter Molnár. 1995. Social force model for pedestrian dynam-

ics. Physical Review E, covering statistical, nonlinear, biological, and soft matter

physics 51, 5 (May 1995), 4282–4286. https://doi.org/10.1103/physreve.

51.4282

[54] Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: a correctness

condition for concurrent objects. ACM Transactions on Programming Languages

and Systems 12 (1990), 463–492. https://doi.org/10.1145/78969.78972

[55] Xavier R Hoffmann and Marián Boguñá. 2019. Memory-induced complex con-

tagion in epidemic spreading. New journal of physics 21, 3 (March 2019), 033034.

https://doi.org/10.1088/1367-2630/ab0aa6

[56] Mauro Ianni, Romolo Marotta, Davide Cingolani, Alessandro Pellegrini, and

Francesco Quaglia. 2018. The Ultimate Share-Everything PDES System. In

Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced

Discrete Simulation (SIGSIM-PADS ’18). ACM, New York, NY, USA, 73–84.

https://doi.org/10.1145/3200921.3200931

[57] Alonso Inostrosa-Psijas, Veronica Gil-Costa, Mauricio Marin, and Gabriel

Wainer. 2018. Semi-asynchronous approximate parallel DEVS simulation of

web search engines. Concurrency and computation: practice & experience 30, 7

(April 2018), e4149. https://doi.org/10.1002/cpe.4149

[58] David Jefferson and Henry Sowizral. 1982. Fast concurrent simulation using

the Time Warp mechanism. Part I. local control. Technical Report N-1906-AF.

The Rand Corporation, Santa Monica, CA, USA.

[59] David R Jefferson. 1985. Virtual Time. ACM Transactions on Programming

Languages and Systems 7, 3 (July 1985), 404–425. https://doi.org/10.1145/

3916.3988

Bibliography 153

[60] David R Jefferson. 1990. Virtual time II: Storage Management in Conservative

and Optimistic Systems. In Proceedings of the 9th Symposium on Principles

of Distributed Computing (PODC ’90). ACM, New York, NY, USA, 75–89.

https://doi.org/10.1145/93385.93403

[61] David R Jefferson and Peter D Barnes. 2022. Virtual Time III, Part 1: Unified

Virtual Time Synchronization for Parallel Discrete Event Simulation. ACM

Transactions on Modeling and Computer Simulation 32, 4 (Sept. 2022), 1–29.

https://doi.org/10.1145/3505248

[62] David R Jefferson, B Beckman, F Wieland, L Blume, and Michele Diloreto.

1987. Time Warp Operating System. In Proceedings of the eleventh ACM Sym-

posium on Operating systems principles (Austin, Texas, USA) (SOSP ’87). As-

sociation for Computing Machinery, New York, NY, USA, 77–93. https:

//doi.org/10.1145/41457.37508

[63] Matthias Jeschke, Alfred Park, Roland Ewald, Richard Fujimoto, and

Adelinde M Uhrmacher. 2008. Parallel and Distributed Spatial Simulation of

Chemical Reactions. In Proceedings of the 22nd Workshop on Principles of Ad-

vanced and Distributed Simulation (PADS ’08). IEEE, Piscataway, NJ, USA,

51–59. https://doi.org/10.1109/PADS.2008.20

[64] Kevin Jones and Samir R Das. 1998. Combining optimism limiting schemes in

time warp based parallel simulations. In 1998 Winter Simulation Conference.

Proceedings, Medeiros, D.J. and Watson, Edward F. and Carson, John S. and

Manivannan, Mani S. (Ed.). WSC ’98, Vol. 1. IEEE, Piscataway, NJ, USA,

499–505 vol.1. https://doi.org/10.1109/WSC.1998.745027

[65] J Kent Peacock, J W Wong, and Eric G Manning. 1979. Distributed simulation

using a network of processors. Computer Networks (1976) 3, 1 (Feb. 1979), 44–

56. https://doi.org/10.1016/0376-5075(79)90053-9

[66] Jeffrey O Kephart and David M Chess. 2003. The Vision of Autonomic Com-

puting. Computer 36, 1 (Jan. 2003), 41–50. https://doi.org/10.1109/MC.

2003.1160055

Bibliography 154

[67] William Ogilvy Kermak and Anderson Gray McKendrick. 1927. A contribution

to the mathematical theory of epidemics. Proceedings of the Royal Society of

London. Series A, Containing Papers of a Mathematical and Physical Character

115, 772 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118

[68] Arne Kesting, Martin Treiber, and Dirk Helbing. 2010. Enhanced intelli-

gent driver model to access the impact of driving strategies on traffic capac-

ity. Philosophical Transactions of the Royal Society A. Mathematical, phys-

ical, and engineering sciences 368, 1928 (Oct. 2010), 4585–4605. https:

//doi.org/10.1098/rsta.2010.0084

[69] Ki Hyung Kim, Yeong Rak Seong, Tag Gon Kim, and Kyu Ho Park. 1997.

Ordering of simultaneous events in distributed DEVS simulation. Simulation

practice and theory 5, 3 (March 1997), 253–268. https://doi.org/10.1016/

s0928-4869(96)00009-2

[70] Mariam Kiran, Paul Richmond, Mike Holcombe, Lee Shawn Chin, David

Worth, and Chris Greenough. 2010. FLAME: simulating large populations of

agents on parallel hardware architectures. In Proceedings of the 9th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS). IFAA-

MAS, Richland, SC, USA, 1633–1636. https://doi.org/10.5555/1838206.

1838517

[71] Douglas Kothe, Stephen Lee, and Irene Qualters. 2019. Exascale Computing

in the United States. Computing in science & engineering 21, 1 (Jan. 2019),

17–29. https://doi.org/10.1109/MCSE.2018.2875366

[72] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM 21 (1978), 558–565. https://doi.org/10.1145/

359545.359563

[73] Yi-Bing Lin and Edward D Lazowska. 1991. Processor Scheduling for Time

Warp Parallel Simulation. In Advances in Parallel and Distributed Simulation

(PADS ’91), David Nicol, Richard M Fujimoto, and Vijay Madisetti (Eds.).

Society for Computer Simulation, San Diego, CA, USA, 11–14.

Bibliography 155

[74] Yi-Bing Lin, Bruno R Preiss, Wayne M Loucks, and Edward D Lazowska. 1993.

Selecting the checkpoint interval in time warp simulation. ACM SIGSIM Sim-

ulation Digest 23, 1 (July 1993), 3–10. https://doi.org/10.1145/174134.

158460

[75] Jason Liu. 2009. Parallel Discrete-Event Simulation. Vol. 35. Wiley, Hoboken,

NJ, USA, 12. https://doi.org/10.1002/9780470400531.eorms0639

[76] Boris D Lubachevsky. 1989. Efficient Distributed Event-Driven Simulations of

Multiple-loop Networks. Commun. ACM 32, 1 (Jan. 1989), 111–123. https:

//doi.org/10.1145/63238.63247

[77] Charles M Macal. 2010. To Agent-based Simulation from System Dynamics. In

Proceedings of the 2010 Winter Simulation Conference, Björn Johansson, Sanjay

Jain, and Jairo Montoya-Torres (Eds.). IEEE, Piscataway, NJ, USA, 371–382.

https://doi.org/10.1109/WSC.2010.5679148

[78] Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and Francesco Quaglia.

2016. A Lock-Free O(1) Event Pool and Its Application to Share-Everything

PDES Platforms. In Proceedings of the 20th International Symposium on Dis-

tributed Simulation and Real Time Applications (DS-RT ’16). IEEE, Piscataway,

NJ, USA, 53–60. https://doi.org/10.1109/DS-RT.2016.33

[79] Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and Francesco Quaglia.

2016. A Non-Blocking Priority Queue for the Pending Event Set. In Proceedings

of the 9th EAI International Conference on Simulation Tools and Techniques

(Prague, Czech Republic) (SIMUTOOLS). Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering (ICST), Brussels, Bel-

gium, 46–55.

[80] Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and Francesco Quaglia.

2017. A Conflict-Resilient Lock-Free Calendar Queue for Scalable Share-

Everything PDES Platforms. In Proceedings of the 2017 ACM SIGSIM Con-

ference on Principles of Advanced Discrete Simulation (Singapore, Republic of

Bibliography 156

Singapore) (SIGSIM-PADS ’17). Association for Computing Machinery, New

York, NY, USA, 15–26. https://doi.org/10.1145/3064911.3064926

[81] D E Martin, P A Wilsey, R J Hoekstra, E R Keiter, S A Hutchinson, T V

Russo, and L J Waters. 2003. Redesigning the WARPED simulation kernel

for analysis and application development. In Proceedings of the 36th Annual

Simulation Symposium (SIMSYM ’03). IEEE, Piscataway, NJ, USA, 216–223.

https://doi.org/10.1109/SIMSYM.2003.1192816

[82] Yukinori Matsumoto and Kazuo Taki. 1992. Adaptive Time-Ceiling for Effi-

cient Parallel Discrete Event Simulation. Technical Report TR-0798. Institute

for New Generation Computer Technology.

[83] Satoshi Matsuoka. 2021. Fugaku and A64FX: the First Exascale Supercom-

puter and its Innovative Arm CPU. In Proceedings of the 2021 Symposium on

VLSI Circuits. IEEE, Piscataway, NJ, USA, 1–3. https://doi.org/10.23919/

VLSICircuits52068.2021.9492415

[84] Friedemann Mattern. 1993. Efficient Algorithms for Distributed Snapshots and

Global Virtual Time Approximation. J. Parallel and Distrib. Comput. 18 (1993),

423–434. https://doi.org/10.1006/jpdc.1993.1075

[85] Neil McGlohon and Christopher D Carothers. 2021. Toward Unbiased De-

terministic Total Orderings Of Parallel Simulations With Simultaneous Events.

In Proceedings of the 2021 Winter Simulation Conference, Sojung Kim, Ben

Feng, Katy Smith, Sara Masoud, Zeyu Zheng, Claudia Szabo, and Margaret

Loper (Eds.). IEEE, Piscataway, NJ, USA, 1–15. https://doi.org/10.1109/

WSC52266.2021.9715459

[86] Horst Mehl. 1991. Speed-up of Conservative Distributed Discrete Event Simu-

lation Methods by Speculative Computing. In Proceedings of the Multiconference

on Advances in Paralleland Distributed Simulation (PADS ’91), Vijay Krishna

Madisetti, David Nicol, and Richard M Fujimoto (Eds.). Society for Computer

Simulation, San Diego, CA, USA, 163–166.

Bibliography 157

[87] Cristina Montañola-Sales, Joan Francesc Gilabert-Navarro, Josep Casanovas-

Garcia, Clara Prats, Daniel López, Joaquim Valls, Pere Joan Cardona, and

Cristina Vilaplana. 2015. Modeling tuberculosis in Barcelona. A solution to

speed-up agent-based simulations. In Proceedings of the 2015 Winter Simulation

Conference, Levent Yilmaz, W K V Chan, I Moon, T M K Roeder, C Macal,

and M D Rossetti (Eds.). IEEE, Piscataway, NJ, USA, 1295–1306. https:

//doi.org/10.1109/WSC.2015.7408254

[88] Cristina Montañola-Sales, Bhakti S S Onggo, Josep Casanovas-Garcia,

Jose María Cela-Espín, and Adriana Kaplan-Marcusán. 2016. Approaching par-

allel computing to simulating population dynamics in demography. Parallel

computing 59 (Nov. 2016), 151–170. https://doi.org/10.1016/j.parco.

2016.07.001

[89] Federica Montesano, Romolo Marotta, and Francesco Quaglia. 2022. Spa-

tial/Temporal Locality-based Load-sharing in Speculative Discrete Event Sim-

ulation on Multi-core Machines. In Proceedings of the 2022 ACM SIGSIM Con-

ference on Principles of Advanced Discrete Simulation (Atlanta, GA, USA)

(SIGSIM-PADS ’22). Association for Computing Machinery, New York, NY,

USA, 81–92. https://doi.org/10.1145/3518997.3531026

[90] Nicholas Nethercote and Julian Seward. 2003. Valgrind: A Program Super-

vision Framework. Electronic notes in theoretical computer science 89 (2003),

44–66. https://doi.org/10.1016/S1571-0661(04)81042-9

[91] David M Nicol. 1993. The Cost of Conservative Synchronization in Parallel

Discrete Event Simulations. J. ACM 40, 2 (April 1993), 304–333. https:

//doi.org/10.1145/151261.151266

[92] David M Nicol. 1996. Principles of conservative parallel simulation. In Proceed-

ings of the 28th conference on Winter simulation, John M Charnes, Douglas J

Morrice, Daniel T Brunner, and James J Swain (Eds.). IEEE Computer Society,

Piscataway, NJ, USA, 128–135. https://doi.org/10.1145/256562.256591

[93] David M Nicol and Xiaowen Liu. 1997. The Dark Side of Risk (What your

Bibliography 158

Mother Never Told you About Time Warp). In Proceedings of the 11th Workshop

on Parallel and distributed simulation (PADS ’97). IEEE Computer Society,

Washington, DC, USA, 188–195. https://doi.org/10.1145/268826.268920

[94] David M Nicol, Chris C Micheal, and Patrick Inouye. 1989. Efficient Aggre-

gation Of Multiple LPs In Distributed Memory Parallel Simulations. In Pro-

ceedings of the 1988 Winter Simulation Conference, Edward A MacNair, Ken-

neth J Musselman, and Philip Heidelberg (Eds.). IEEE, Piscataway, NJ, USA.

https://doi.org/10.1109/wsc.1989.718742

[95] Avinash C Palaniswamy and Philip A Wilsey. 1993. Adaptive Bounded Time

Windows in an Optimistically Synchronized Simulator. In Proceedings of the

Third Great Lakes Symposium on VLSI (VLSI ’93). IEEE Computer Soci-

ety, Washington, DC, USA, 114–118. https://doi.org/10.1109/GLSV.1993.

224467

[96] Avinash C Palaniswamy and Philip A Wilsey. 1993. An Analytical Comparison

of Periodic Checkpointing and Incremental State Saving. In Proceedings of the

7th workshop on Parallel and Distributed Simulation (PADS ’93). ACM Press,

New York, New York, USA, 127–134. https://doi.org/10.1145/158459.

158475

[97] Avinash C Palaniswamy and Philip A Wilsey. 1994. Scheduling Time Warp

Processes Using Adaptive Control Techniques. In Proceedings of the 2004 Win-

ter Simulation Conference, Jeffrey D Tew, Mani S Manivannan, Deborah A

Sadowski, and Andrew F Seila (Eds.). IEEE, Piscataway, NJ, USA, 731–738.

https://doi.org/10.1109/WSC.1994.717422

[98] Alessandro Pellegrini, Sebastiano Peluso, Francesco Quaglia, and Roberto Vi-

tali. 2016. Transparent Speculative Parallelization of Discrete Event Simu-

lation Applications Using Global Variables. International journal of paral-

lel programming 44, 6 (Dec. 2016), 1200–1247. https://doi.org/10.1007/

s10766-016-0429-2

[99] A Pellegrini and F Quaglia. 2013. A study on the parallelization of terrain-

Bibliography 159

covering ant robots simulations. In Euro-Par 2013: Parallel Processing Work-

shops, Dieter Mey, Michael Alexander, Paolo Bientinesi, Mario Cannataro,

Carsten Clauss, Alexandru Costan, Gabor Kecskemeti, Christine Morin, Laura

Ricci, Julio Sahuquillo, Martin Schulz, Vittorio Scarano, Stephen L Scott, and

Josef Weidendorfer (Eds.). LNCS, Vol. 8374. Springer, Heidelberg, Germany,

585–594. https://doi.org/10.1007/978-3-642-54420-0_57

[100] Alessandro Pellegrini and Francesco Quaglia. 2014. Wait-free Global Virtual

Time Computation in Shared Memory Time Warp Systems. In Proceedings of the

26th International Symposium on Computer Architecture and High Performance

Computing (SBAC-PAD ’14). IEEE, Piscataway, NJ, USA, 9–16. https://

doi.org/10.1109/SBAC-PAD.2014.38

[101] Alessandro Pellegrini and Francesco Quaglia. 2015. NUMA Time Warp. In

Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced

Discrete Simulation (London, United Kingdom) (SIGSIM PADS’ 15). ACM,

New York, NY, USA, 59–70. https://doi.org/10.1145/2769458.2769479

[102] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2009. Di-

DyMeLoR: Logging only Dirty Chunks for Efficient Management of Dynamic

Memory Based Optimistic Simulation Objects. In Proceedings of the 23rd Work-

shop on Principles of Advanced and Distributed Simulation (PADS ’09). IEEE,

Piscataway, NJ, USA, 45–53. https://doi.org/10.1109/PADS.2009.24

[103] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2012. The

ROme OpTimistic Simulator: Core Internals and Programming Model. In

Proceedings of the 4th International ICST Conference on Simulation Tools

and Techniques (SIMUTOOLS). ICST, Brussels, Belgium, 96–98. https:

//doi.org/10.4108/icst.simutools.2011.245551

[104] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2015. Auto-

nomic State Management for Optimistic Simulation Platforms. IEEE Trans-

actions on Parallel and Distributed Systems 26 (2015), 1560–1569. https:

//doi.org/10.1109/TPDS.2014.2323967

Bibliography 160

[105] S Peluso, D Didona, and F Quaglia. 2012. Supports for transparent object-

migration in PDES systems. Journal of Simulation 6, 4 (Nov. 2012), 279–293.

https://doi.org/10.1057/jos.2012.13

[106] Giuseppe Perrone, Aurelio Zinno, and Noto La Diega. 2001. Fuzzy discrete

event simulation: A new tool for rapid analysis of production systems under

vague information. Journal of intelligent manufacturing 12, 3 (June 2001), 309–

326. https://doi.org/10.1023/A:1011213412547

[107] Luiz Felipe Perrone. 2014. On the evolution toward computer-aided simula-

tion. In Modeling and Simulation-Based Systems Engineering Handbook, Daniele

Gianni, Andrea D’Ambrogio, and Andreas Tolk (Eds.). CRC Press, Boca Raton,

FL, USA, 95–118. https://doi.org/10.1201/b17902-6

[108] P Peschlow and P Martini. 2006. Towards an efficient branching mecha-

nism for simultaneous events in distributed simulation. In Proceedings of the

20th Workshop on Principles of Advanced and Distributed Simulation (Singa-

pore) (PADS’06). IEEE, Piscataway, NJ, USA, 133–133. https://doi.org/

10.1109/pads.2006.36

[109] Patrick Peschlow and Peter Martini. 2007. A discrete-event simulation tool

for the analysis of simultaneous events. In Proceedings of the 2nd Interna-

tional ICST Conference on Performance Evaluation Methodologies and Tools

(Nantes, France). ICST, Bruxelles, Belgium, 1–10. https://doi.org/10.

4108/nstools.2007.2019

[110] Patrick Peschlow and Peter Martini. 2007. Efficient analysis of simultaneous

events in distributed simulation. In Proceedings of the 11th International Sympo-

sium on Distributed Simulation and Real-Time Applications (DS-RT’07). IEEE,

Piscataway, NJ, USA, 244–251. https://doi.org/10.1109/ds-rt.2007.21

[111] Andrea Piccione. 2022. Comparing Different Event Set Management Strate-

gies in Speculative PDES. In Proceedings of the 2022 ACM SIGSIM Conference

on Principles of Advanced Discrete Simulation (SIGSIM-PADS ’22). ACM, New

York, NY, USA, 55–56. https://doi.org/10.1145/3518997.3534993

Bibliography 161

[112] Andrea Piccione, Matteo Principe, Alessandro Pellegrini, and Francesco

Quaglia. 2019. An Agent-Based Simulation API for Speculative PDES Runtime

Environments. In Proceedings of the 2019 ACM SIGSIM Conference on Prin-

ciples of Advanced Discrete Simulation (Chicago, IL, USA) (SIGSIM-PADS).

ACM, New York, NY, USA, 83–94. https://doi.org/10.1145/3316480.

3322890

[113] Matthew D Pickett, Gilberto Medeiros-Ribeiro, and R Stanley Williams. 2013.

A scalable neuristor built with Mott memristors. Nature materials 12 (2013),

114–117. https://doi.org/10.1038/nmat3510

[114] M Pidd. 1984. Computer Simulation for Operational Research in 1984.

In Developments in Operational Research, R W Eglese and G K Rand

(Eds.). Pergamon Press, Oxford, UK, 19–30. https://doi.org/10.1016/

B978-0-08-031829-5.50007-5

[115] Adriano Pimpini, Andrea Piccione, Bruno Ciciani, and Alessandro Pelle-

grini. 2022. Speculative distributed simulation of very large Spiking Neural

Networks. In Proceedings of the 2022 SIGSIM Conference on Principles of Ad-

vanced Discrete Simulation (SIGSIM PADS). ACM, New York, NY, USA, 93–

104. https://doi.org/10.1145/3518997.3531027

[116] Adriano Pimpini, Andrea Piccione, and Alessandro Pellegrini. 2022. On the

Accuracy and Performance of Spiking Neural Network Simulations. In 2022

IEEE/ACM 26th International Symposium on Distributed Simulation and Real

Time Applications (DS-RT) (DS-RT ’22). IEEE, Piscataway, NJ, USA, 96–103.

https://doi.org/10.1109/DS-RT55542.2022.9932062

[117] Mark Plagge, Christopher D Carothers, Elsa Gonsiorowski, and Neil Mcglo-

hon. 2018. NeMo: A Massively Parallel Discrete-Event Simulation Model for

Neuromorphic Architectures. ACM Transactions on Modeling and Computer

Simulation 28 (2018), 1–25. https://doi.org/10.1145/3186317

[118] Chi-Sang Poon and Kuan Zhou. 2011. Neuromorphic Silicon Neurons and

Bibliography 162

Large-Scale Neural Networks: Challenges and Opportunities. Frontiers in neu-

roscience 5 (2011), 108. https://doi.org/10.3389/fnins.2011.00108

[119] Bruno R Preiss, Wayne M Loucks, and Ian D Macintyre. 1994. Effects of

the checkpoint interval on time and space in time warp. ACM Transactions

on Modeling and Computer Simulation 4, 3 (July 1994), 223–253. https:

//doi.org/10.1145/189443.189444

[120] Matteo Principe, Andrea Piccione, Alessandro Pellegrini, and Francesco

Quaglia. 2020. Approximated Rollbacks. In Proceedings of the 2020 ACM

SIGSIM Conference on Principles of Advanced Discrete Simulation (Miami,

FL, Spain) (SIGSIM-PADS ’20). ACM, New York, NY, USA, 23–33. https:

//doi.org/10.1145/3384441.3395984

[121] Francesco Quaglia. 1998. Event History Based Sparse State Saving in Time

Warp. In Proceedings of the twelfth workshop on Parallel and distributed sim-

ulation (PADS ’98). IEEE Computer Society, Piscataway, NJ, USA, 72–79.

https://doi.org/10.1145/278008.278018

[122] Francesco Quaglia. 2001. A Cost Model for Selecting Checkpoint Positions in

Time Warp Parallel Simulation. IEEE Transactions on Parallel and Distributed

Systems 12 (2001), 346–362. https://doi.org/10.1109/71.920586

[123] Francesco Quaglia. 2015. A Low-overhead Constant-time Lowest-timestamp-

first CPU Scheduler for High-performance Optimistic Simulation Platforms.

Simulation Modelling Practice and Theory 53 (April 2015), 103–122. https:

//doi.org/10.1016/J.SIMPAT.2015.01.009

[124] Francesco Quaglia and Roberto Beraldi. 2004. Space uncertain simulation

events: some concepts and an application to optimistic synchronization. In Pro-

ceedings of the 18th Workshop on Parallel and Distributed Simulation (PADS).

IEEE, Piscataway, NJ, USA, 181–188. https://doi.org/10.1109/PADS.

2004.1301299

[125] F Quaglia and V Cortellessa. 2000. Grain sensitive event scheduling in time

warp parallel discrete event simulation. In Proceedings Fourteenth Workshop on

Bibliography 163

Parallel and Distributed Simulation (PADS ’00). IEEE, Piscataway, NJ, USA,

173–180. https://doi.org/10.1109/PADS.2000.847163

[126] Francesco Quaglia and Vittorio Cortellessa. 2002. On the processor schedul-

ing problem in time warp synchronization. ACM Transactions on Modeling

and Computer Simulation 12 (2002), 143–175. https://doi.org/10.1145/

643114.643115

[127] Steven F Railsback and Volker Grimm. 2019. Agent-Based and Individual-

Based Modeling: A Practical Introduction, Second Edition. Princeton University

Press, Princeton, NJ, USA.

[128] Dhananjai M Rao and Julius D Higiro. 2019. Managing Pending Events in

Sequential and Parallel Simulations Using Three-tier Heap and Two-tier Ladder

Queue. ACM Transactions on Modeling and Computer Simulation 29, 2 (March

2019), 1–28. https://doi.org/10.1145/3265750

[129] Dhananjai M Rao, Narayanan V Thondugulam, Radharamanan Radhakr-

ishnan, and Philip A Wilsey. 1998. Unsynchronized Parallel Discrete Event

Simulation. In Proceedings of the 1998 Winter Simulation Conference, Debo-

rah J Medeiros, Edward F Watson, John S Carson, and Mani S Manivannan

(Eds.). WSC ’98, Vol. 2. IEEE, Piscataway, NJ, USA, 1563–1570. https:

//doi.org/10.1109/WSC.1998.746030

[130] Mike Reape. 1989. A logical treatment of semi-free word order and bounded

discontinuous constituency. In Fourth Conference of the European Chapter of the

Association for Computational Linguistics (EACL ’89). Association for Compu-

tational Linguistics, Manchester, England, 103–110. https://doi.org/10.

3115/976815.976829

[131] Peter L Reiher, Frederick Wieland, and David Jefferson. 1989. Limitation

of Optimism in the Time Warp Operating System. In Proceedings of the 21st

Winter Simulation Conference, Edward A MacNair, Kenneth J Musselman, and

Philip Heidelberger (Eds.). ACM, New York, NY, USA, 765–770. https://

doi.org/10.1145/76738.76834

Bibliography 164

[132] Craig W Reynolds. 1987. Flocks, herds and schools: A distributed behavioral

model. ACM SIGGRAPH Computer Graphics 21 (1987), 25–34. https://doi.

org/10.1145/37402.37406

[133] Paul F Reynolds. 1988. A Spectrum of Options for Parallel Simulation. In

Proceedings of the 20th Winter Simulation Conference, Michael A Abrams, Pe-

ter L Haigh, and John C Comfort (Eds.). ACM, New York, NY, USA, 325–332.

https://doi.org/10.1109/WSC.1988.716181

[134] Paul F Reynolds, Chrisopher F Weight, and J Robert Fidler, II. 1989. Com-

parative Analyses Of Parallel Simulation Protocols. In 1989 Winter Simu-

lation Conference Proceedings, Edward A MacNair, Kenneth J Musselman,

and Philip Heidelberg (Eds.). IEEE, Piscataway, NJ, USA, 671–679. https:

//doi.org/10.1109/WSC.1989.718741

[135] Robert Rönngren and Rassul Ayani. 1994. Adaptive checkpointing in Time

Warp. In Proceedings of the 8th Workshop on Parallel and Distributed Simulation

(PADS ’94). ACM, New York, NY, USA, 110–117. https://doi.org/10.

1145/182478.182577

[136] Robert Rönngren and Rassul Ayani. 1997. A comparative study of parallel

and sequential priority queue algorithms. ACM Transactions on Modeling and

Computer Simulation 7 (1997), 157–209.

[137] Rassul Rönngren and Michael Liljenstam. 2003. On event ordering in par-

allel discrete event simulation. In Proceedings 13th Workshop on Parallel and

Distributed Simulation (PADS ’99). IEEE Comput. Soc, Piscataway, NJ, USA,

1–8. https://doi.org/10.1109/pads.1999.766159

[138] Andreas Ruscheinski and Adelinde Uhrmacher. 2017. Provenance in mod-

eling and simulation studies — Bridging gaps. In Proceedings of the 2017

Winter Simulation Conference, Wai Kin (Victor), Andrea D’Ambrogio, Gre-

gory Zacharewicz, Navonil Mustafee, Gabriel Wainer, and Ernest Page (Eds.).

IEEE, Piscataway, NJ, USA, 872–883. https://doi.org/10.1109/WSC.2017.

8247839

Bibliography 165

[139] Naimeh Sadeghi, A Robinson Fayek, and S P Mosayebi. 2013. Developing a

fuzzy discrete event simulation framework within a traditional simulation engine.

In Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual

Meeting (NAFIPS ’13). IEEE, Piscataway, NJ, USA, 1102–1106. https://

doi.org/10.1109/IFSA-NAFIPS.2013.6608554

[140] Andrea A Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica

Cariboni, Debora Gatelli, Michaela Saisana, and Stefano Tarantola. 2008. Global

sensitivity analysis: The primer. Wiley-Blackwell, Hoboken, NJ. https://

doi.org/10.1002/9780470725184

[141] David Schneider. 2022. The Exascale Era is Upon Us: The Frontier supercom-

puter may be the first to reach 1,000,000,000,000,000,000 operations per second.

IEEE Spectrum 59, 1 (Jan. 2022), 34–35. https://doi.org/10.1109/MSPEC.

2022.9676353

[142] Markus Schordan, Tomas Oppelstrup, Michael Kirkedal Thomsen, and Robert

Glück. 2020. Reversible languages and incremental state saving in optimistic

parallel discrete event simulation. In Reversible Computation: Extending Hori-

zons of Computing. Springer International Publishing, Cham, 187–207. https:

//doi.org/10.1007/978-3-030-47361-7_9

[143] Sven Sköld and Robert Rönngren. 1996. Event sensitive state saving in time

warp parallel discrete event simulations. In Proceedings of the 28th conference

on Winter simulation (Coronado, California, United States) (WSC ’96). ACM

Press, New York, New York, USA, 653–660. https://doi.org/10.1145/

256562.256779

[144] Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Self-adjusting Binary

Search Trees. J. ACM 32, 3 (July 1985), 652–686. https://doi.org/10.1145/

3828.3835

[145] Tapas K Som and Robert G Sargent. 2000. Model Structure and Load Bal-

ancing in Optimistic Parallel Discrete Event Simulation. In Proceedings of the

Bibliography 166

14th Workshop on Parallel and Distributed Simulation (PADS ’00). IEEE, Pis-

cataway, NJ, USA, 147–154. https://doi.org/10.1109/PADS.2000.847158

[146] Sudhir Srinivasan and Paul F Reynolds. 1998. Elastic Time. ACM Trans-

actions on Modeling and Computer Simulation 8, 2 (April 1998), 103–139.

https://doi.org/10.1145/280265.280267

[147] Jeffrey S Steinman. 1991. SPEEDES: Synchronous Parallel Environment for

Emulation and Discrete Event Simulation. In Advances in Parallel and Dis-

tributed Simulation (PADS ’91), Vijay K Madisetti, David Nicol, and Richard M

Fujimoto (Eds.). Society for Computer Simulation, San Diego, CA, USA, 1111–

1115.

[148] Jeffrey S Steinman. 1992. SPEEDES: A Multiple-Synchronization Environ-

ment for Parallel Discrete-Event Simulation. International Journal in Computer

Simulation 2 (1992), 251-286.

[149] Jeffrey S Steinman. 1993. Breathing Time Warp. Simuletter 23, 1 (July 1993),

109–118. https://doi.org/10.1145/174134.158473

[150] Marcel Stimberg, Romain Brette, and Dan F M Goodman. 2019. Brian 2,

an intuitive and efficient neural simulator. eLife 8, e47314 (Aug. 2019), e47314.

https://doi.org/10.7554/eLife.47314

[151] Wen Jun Tan, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois

Knoll. 2021. Causality and Consistency of State Update Schemes in Synchronous

Agent-based Simulations. In Proceedings of the 2021 ACM SIGSIM Conference

on Principles of Advanced Discrete Simulation (Virtual Event, USA) (SIGSIM-

PADS ’21). ACM, New York, NY, USA, 57–68. https://doi.org/10.1145/

3437959.3459262

[152] Wai Teng Tang, Rick Siow Mong Goh, and Ian Li-Jin Thng. 2005. Ladder

Queue: An O(1) Priority Queue Structure for Large-scale Discrete Event Sim-

ulation. ACM Transactions on Modeling and Computer Simulation 15, 3 (July

2005), 175–204. https://doi.org/10.1145/1103323.1103324

Bibliography 167

[153] Seng Chuan Tay, Gary S H Tan, and Karthik Shenoy. 2003. Algorithms

and analyses: piggy-backed time-stepped simulation with ’super-stepping’. In

Proceedings of the 2003 Winter Simulation Conference, Stephen E Chick, Paul J

Sánchez, David Ferrin, and Douglas J Morrice (Eds.). Informs, Catonsville, MD,

USA, 1077–1085. https://doi.org/10.5555/1030818.1030961

[154] Seng Chuan Tay, Yong Meng Teo, and Siew Theng Kong. 1997. Speculative

parallel simulation with an adaptive throttle scheme. In Proceedings of the 11th

Workshop on Parallel and Distributed Simulation (Lockenhaus, Austria) (PADS

’97). IEEE Computer Society, Piscataway, NJ, USA, 116–123. https://doi.

org/10.1145/268826.268909

[155] Tommaso Tocci, Alessandro Pellegrini, Francesco Quaglia, Josep Casanovas-

Garcia, and Toyotaro Suzumura. 2017. ORCHESTRA: An Asynchronous Wait-

free Distributed GVT Algorithm. In Proceedings of the 21st International Sym-

posium on Distributed Simulation and Real Time Applications (DS-RT ’17).

IEEE, Piscataway, NJ, USA, 1–8. https://doi.org/10.1109/DISTRA.2017.

8167666

[156] Liem Tran and Lucien Duckstein. 2002. Comparison of fuzzy numbers using

a fuzzy distance measure. Fuzzy Sets and Systems 130, 3 (Sept. 2002), 331–341.

https://doi.org/10.1016/S0165-0114(01)00195-6

[157] Martin Treiber and Venkatesan Kanagaraj. 2015. Comparing numerical in-

tegration schemes for time-continuous car-following models. Physica A: Sta-

tistical Mechanics and its Applications 419 (Feb. 2015), 183–195. https:

//doi.org/10.1016/j.physa.2014.09.061

[158] Stephen J Turner and Ming Qiang Xu. 1991. Performance Evaluation of the

Bounded Time Warp Algorithm. In Proceedings of the 6th Workshop on Parallel

and Distributed Simulation (PADS ’92), Marc A Abrams and Paul F Reynolds,

Jr (Eds.). Society for Computer Simulation, San Diego, CA, USA, 117–126.

[159] Pirooz Vakili. 1991. Using a standard clock technique for efficient simulation.

Bibliography 168

Operations Research Letters 10, 8 (Nov. 1991), 445–452. https://doi.org/

10.1016/0167-6377(91)90021-G

[160] Roberto Vitali, Alessandro Pellegrini, and Giornata Cerasuolo. 2012. Cache-

Aware Memory Manager for Optimistic Simulations. In Proceedings of the

5th International Conference on Simulation Tools and Techniques (SimuTools

’12). ICST, Brussels, Belgium, 129–138. https://doi.org/10.4108/icst.

simutools.2012.247766

[161] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. 2009. Bench-

marking Memory Management Capabilities within ROOT-Sim. In Proceed-

ings of the 13th International Symposium on Distributed Simulation and Real

Time Applications (Singapore) (DS-RT). IEEE, Piscataway, NJ, USA, 33–40.

https://doi.org/10.1109/DS-RT.2009.15

[162] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. 2012. Load

sharing for Optimistic Parallel Simulations on Multi Core Machines. ACM

SIGMETRICS Performance Evaluation Review 40 (Dec. 2012), 2–11. https:

//doi.org/10.1145/2425248.2425250

[163] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. 2012. Towards

Symmetric Multi-threaded Optimistic Simulation Kernels. In Proceedings of the

26th Workshop on Principles of Advanced and Distributed Simulation (PADS

’12). IEEE, Piscataway, NJ, USA, 211–220. https://doi.org/10.1109/PADS.

2012.46

[164] Tim P Vogels and Larry F Abbott. 2005. Signal Propagation and Logic Gating

in Networks of Integrate-and-Fire Neurons. The Journal of neuroscience: the

official journal of the Society for Neuroscience 25, 46 (Nov. 2005), 10786–10795.

https://doi.org/10.1523/JNEUROSCI.3508-05.2005

[165] Minh Vu, Lisong Xu, Sebastian Elbaum, Wei Sun, and Kevin Qiao. 2022. Ef-

ficient Protocol Testing Under Temporal Uncertain Event Using Discrete-event

Network Simulations. ACM Transactions on Modeling and Computer Simulation

32, 2 (March 2022), 1–30. https://doi.org/10.1145/3490028

Bibliography 169

[166] Bing Wang, Bonan Hou, Fei Xing, and Yiping Yao. 2011. Abstract Next

Subvolume Method: a logical process-based approach for spatial stochastic sim-

ulation of chemical reactions. Computational biology and chemistry 35, 3 (June

2011), 193–198. https://doi.org/10.1016/j.compbiolchem.2011.05.001

[167] Tom Warnke, Oliver Reinhardt, Anna Klabunde, Frans Willekens, and

Adelinde M Uhrmacher. 2017. Modelling and simulating decision processes of

linked lives: An approach based on concurrent processes and stochastic race.

Population studies 71, sup1 (Oct. 2017), 69–83. https://doi.org/10.1080/

00324728.2017.1380960

[168] Frederick Wieland. 1997. The threshold of event simultaneity. In Proceed-

ings of the 11th workshop on Parallel and Distributed Simulation (Locken-

haus, Austria) (PADS ’97). IEEE Computer Society, USA, 56–59. https:

//doi.org/10.1145/268826.268901

[169] Frans J Willekens. 1999. The Life Course: Models and Analysis. In Population

Issues: An Interdisciplinary Focus, Leo J G van Wissen and Pearl A Dykstra

(Eds.). Springer, Dordrecht, The Netherlands, 23–51. https://doi.org/10.

1007/978-94-011-4389-9_2

[170] Pia Wilsdorf, Anja Wolpers, Jason Hilton, Fiete Haack, and Adelinde M

Uhrmacher. 2022. Automatic Reuse, Adaption, and Execution of Simulation

Experiments via Provenance Patterns. ACM Transactions on Modeling and

Computer Simulation 33, 1-2 (Sept. 2022), 1–27. https://doi.org/10.1145/

3564928

[171] Philip A Wilsey, Avinash C Palaniswamy, and Sandeep Aji. 1994. Rollback Re-

laxation: A Technique for Reducing Rollback Costs in Optimistically Synchro-

nized Parallel Simulators. In Proceesings of the 1994 International Conference on

Simulation and Hardware Description Languages (ICSHDL ’94), David Rhodes

and Philip A Wilsey (Eds.). Society for Computer Simulation, San Diego, CA,

USA, 143–148.

[172] Jiajian Xiao, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois

Bibliography 170

Knoll. 2018. Exploring Execution Schemes for Agent-Based Traffic Simulation

on Heterogeneous Hardware. In Proceedings of the 22nd International Sympo-

sium on Distributed Simulation and Real Time Applications (DS-RT ’18). IEEE

Computer Society, Piscataway, NJ, USA, 1–10. https://doi.org/10.1109/

DISTRA.2018.8601016

[173] Jiajian Xiao, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois

Knoll. 2019. A Survey on Agent-based Simulation Using Hardware Accelerators.

ACM Comput. Surv. 51, 6 (Jan. 2019), 1–35. https://doi.org/10.1145/

3291048

[174] Bernard P Zeigler, Tag Gon Kim, and Herbert Praehofer. 2000. Theory of

Modeling and Simulation. Academic Press, London, UK.

[175] Hong Zhang, C M Tam, and Heng Li. 2005. Modeling uncertain activity

duration by fuzzy number and discrete-event simulation. European journal of

operational research 164, 3 (Aug. 2005), 715–729. https://doi.org/10.1016/

j.ejor.2004.01.035

