
Sapienza Università di Roma

Dottorato di Ricerca in Ingegneria Informatica

XXVI Ciclo – 2014

Efficient Protocols for Replicated Transactional

Systems

Sebastiano Peluso

Sapienza Università di Roma

Dottorato di Ricerca in Ingegneria Informatica

XXVI Ciclo - 2014

Sebastiano Peluso

Efficient Protocols for Replicated Transactional

Systems

Thesis Committee

Prof. Francesco Quaglia (Co-Advisor)
Prof. Paolo Romano (Co-Advisor)
Prof. Leonardo Querzoni

Reviewers

Prof. Pascal Felber
Prof. Fernando Pedone

Author’s address:
Sebastiano Peluso
Dipartimento di Ingegneria Informatica, Automatica e Gestionale
Sapienza Università di Roma
Via Ariosto 25, I-00185 Roma, Italy
e-mail: peluso@dis.uniroma1.it

www: http://www.dis.uniroma1.it/∼peluso

To my family...

Acknowledgments

The first person who I want to thank is my friend and valuable colleague
Diego Didona. This is because I had the incentive to start my doctoral stud-
ies thanks to his desire to always do all the best in his work. In addition
the hard work that we carried out together for our Master’s thesis and the
support he gave to me during my first PhD year were essential, and this dis-
sertation would not probably exist without the initial collaboration with him.

On the other hand I think that no appropriate words are sufficient to thank
my two advisors prof. Francesco Quaglia and prof. Paolo Romano, but I do
my best to thank them anyway. I am so lucky to know Francesco and Paolo
and I am really proud of having worked with them. Both luck and pride are
the best words to describe what these two extraordinary persons did for me. I
talk about luck because it is thanks to their hard work, their full availability,
the way they taught me to face problems and the desire of always seeking a
solution to any problem, that I successfully achieved the goals of my doctor-
ate. Furthermore, I am proud because I learnt from them something I could
have learnt from few people in the world: Francesco and Paolo taught me that
honesty and love for the science have to be the only principles regulating the
activities in our work. Only thanks to the honesty you can really show your
true value, and only thanks to the love for science you can obtain good results.
Thank you guys!

About love and honesty, I have to thank those who first taught me how
much love and honesty are important in our life. Thank Maria Rosaria (my
mother), Antonio (my father), Andrea and Gianluca (my brothers and best
friends). The results of this dissertation and all I have in my life are the
outcome of what I learn from all of you everyday. I say thanks because every
single word in this document has been supported by your sweat and tears, and
by your smiles.

In addition, big thanks are for my “big family” too: Maria, Gaetano,
Franca, Salvatore, Lina, Stefano, Miryam and Marialavia.

iii

I am also grateful to prof. Pascal Felber and prof. Fernando Pedone for
having accepted to serve as external reviewers of this dissertation, and to
prof. Leonardo Querzoni for the support during the evolution of this thesis.

I thank my research group in Italy by starting from the leader and scientific
father of the group: prof. Bruno Ciciani. Bruno shaped the group as a family,
and this was so important in order to have a great environment to work in.
Therefore thank my friends and colleagues of the group, i.e., Pierangelo Di
Sanzo, Roberto Palmieri, Alessandro Pellegrini, Diego Rughetti and Roberto
Vitali, you always made me happy even during the hardest workdays.

Special thanks go to Roberto Palmieri and Marina Sadini for the support
they gave to me during the period I wrote this dissertation and at the begin-
ning of my new american adventure.

I would like to thank all people worked with me during the period I spent
in Lisbon (Portugal): special thanks go to prof. Lúıs Rodrigues, and thank my
colleagues Nuno Carvalho, Maria Couceiro, Oksana Denysyuk, Diego Didona,
João Fernandes, João Leitão, João Paiva, Liliana Rosa and Pedro Ruivo.

Finally I sincerely thank those who had a place in my life and supported
and bore my mood in their own way during my doctoral studies. Therefore
thank Canzanella family (Mario, Antonietta, Giulio and Silvia) and my friends
Margherita D’Errico and Michela D’Errico.

Sebastiano Peluso

Abstract

Over the last years several relevant technological trends have significantly in-
creased the relative impact that the inter-replica synchronization costs have
on the performance of transactional systems. Indeed, the emergence of tech-
nologies like Transactional Memory, Solid-State Drives and Cloud computing
has exacerbated the ratio between the latencies of replication coordination
and transaction processing. The requirements of these environments harshly
challenge state of the art techniques for replication of transactional systems,
raising the need for rethinking existing approaches to this problem.

This dissertation advances the state of the art on replicated transactional
systems by presenting a set of innovative replication protocols designed to
achieve high efficiency even in such challenging scenarios.

More in detail, four transactional replication protocols are proposed, which
tackle the aforementioned issues from various angles. The first two cope with
full replication scenarios, and exploit orthogonal techniques, such as specula-
tion and transaction migration, which allow for amortizing, in different ways,
the impact of distributed coordination on system performance. The other
two proposals explicitly cope with the issue of scalability, by introducing the
first genuine partial replication techniques that support abort-free read-only
transactions while ensuring, respectively, One-Copy Serializability and Ex-
tended Update Serializability. The core of these protocols is a distributed
multi-version concurrency control algorithm, which relies on a novel logical
clock synchronization mechanism to track, in a totally decentralized (and con-
sequently scalable) way, both data and causal dependency relations among
transactions. The trade-offs arising across the different presented solutions are
also discussed and experimentally evaluated by integrating them into state of
the art academic and industrial transactional platforms.

i

Most of the material presented in this dissertation can also be found in the
following papers:

1. Sebastiano Peluso, Pedro Ruivo, Paolo Romano, Francesco Quaglia and
Lúıs Rodrigues
When Scalability Meets Consistency: Genuine Multiversion Update-Serializable
Partial Data Replication
In Proc. of the 32nd IEEE International Conference on Distributed Com-
puting Systems (ICDCS), pages 455–465. Macau, China, June 2012.

2. Sebastiano Peluso, João Fernandes, Paolo Romano, Francesco Quaglia
and Lúıs Rodrigues
SPECULA: Speculative Replication of Software Transactional Memory
In Proc. of the 31st IEEE International Symposium on Reliable Dis-
tributed Systems (SRDS), pages 91–100. Irvine, California, USA, Octo-
ber 2012.

3. Sebastiano Peluso, Paolo Romano and Francesco Quaglia
SCORe: a Scalable One-Copy Serializable Partial Replication Protocol
In Proc. of the ACM/IFIP/USENIX 13th International Conference on
Middleware (Middleware), pages 456–475. Montréal, Québec, Canada,
December 2012.

4. Danny Hendler, Alex Naiman, Sebastiano Peluso, Paolo Romano, Francesco
Quaglia and Adi Suissa
Exploiting Locality in Lease-Based Replicated Transactional Memory via
Task Migration
In Proc. of the 27th International Symposium on Distributed Computing
(DISC), pages 121–133. Jerusalem, Israel, October 2013.

5. Hugo Pimentel, Paolo Romano, Sebastiano Peluso and Pedro Ruivo
Enhancing locality via caching in the GMU protocol
In Proc. of the 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pages 473–482. Chicago, IL,
USA, May 2014.

Contents

Abstract i

1 Introduction 1
1.1 The Need for Rethinking Transactional Replication 2
1.2 Outline of Innovative Contributions 6

2 State of the Art 9
2.1 Primary Copy . 11
2.2 Update Everywhere . 13

2.2.1 Active Replication . 14
2.2.2 Deferred Update Replication 16

3 Model of the Target Systems and Preliminary Definitions 21
3.1 Distributed Processes and Communication Primitives 21
3.2 Data Model . 23
3.3 Transaction Model . 25

3.3.1 History and Direct Serialization Graph 26
3.4 Consistency Model . 27

3.4.1 Extended Update Serializability 28
3.4.2 Serializability . 29
3.4.3 Opacity . 30

4 Exploiting Speculation to Overlap Computation and Distributed
Coordination in Fully Replicated Systems 33
4.1 Correctness Criteria . 35
4.2 The SPECULA protocol . 35

4.2.1 Protocol Overview . 35
4.2.2 High Level Software Architecture 37
4.2.3 Speculative Execution of Transactions 39
4.2.4 Speculative Execution of Non-Transactional Code . . . 48
4.2.5 Correctness Arguments 49

4.3 Experimental Evaluation . 50

iii

5 Reducing Full Replication Costs by Leveraging Transactions
Migration 55
5.1 Overview of ALC . 57
5.2 Lilac-TM . 58

5.2.1 Fine-Grained Leases . 60
5.2.2 Transaction Forwarder 63
5.2.3 Distributed Transaction Dispatching 66

5.3 Correctness Arguments . 68
5.4 Experimental Evaluation . 69

6 Changing the Viewpoint: a Scalable Multi-Version Protocol
under Genuine Partial Replication 75
6.1 The GMU protocol . 77

6.1.1 Transaction execution phase 79
6.1.2 Transaction commit phase 83
6.1.3 Garbage Collection . 87
6.1.4 Failure Handling and Dynamic Process Groups 87
6.1.5 On the support for read operations 88

6.2 Correctness Proof . 89
6.2.1 Unidirectional flow of information 90
6.2.2 No-update-conflict-misses 93

6.3 On the Data Freshness . 96
6.4 Experimental Evaluation . 99

7 Additional Tradeoffs in the Design of Multi-Version GPR Pro-
tocols 105
7.1 The SCORe Protocol . 107

7.1.1 Overview . 107
7.1.2 Handling of Read and Write Operations 109
7.1.3 Commit Phase . 112
7.1.4 Garbage Collection and Fault-Tolerance 115

7.2 Correctness Proof . 115
7.3 Experimental Evaluation . 117

8 Concluding Remarks 123

Bibliography 127

Chapter 1

Introduction

The explosion of web applications’ usage is allowing companies to easily break
the wall of national boundary, making their services available to any user in
the world. On the one hand, the popularity and the productivity of those
services increases significantly due to this ease and wide deployment. On the
other hand, the IT systems behind these services have to face the challenge of
processing an ever growing volume of requests.

Despite the different types of requests, almost all workloads trigger the
execution of procedures for querying (i.e., read interactions) or manipulating
(i.e., write interactions) common application state. In this context, a cru-
cial, and long studied, problem is handling concurrent data manipulations
efficiently and preserving the consistency of application state, despite multiple
simultaneous requests.

Another objective is to keep the service usable, i.e. guaranteeing low user
perceived latency, while yielding high service throughput. In addition, since
a lot of companies and enterprises base their success on the IT market, or in
general, they rely on systems for enlarging their user base, computing systems
should meet dependability requirements and ensure the survival of both data
and services in case of failures.

Concurrent data accesses are widely managed by means of the transaction
abstraction, a well established technique in Database Management Systems
(DBMS) that has recently emerged also in the context of parallel program-
ming via the transaction memory paradigm. In this way, applications enclose
accesses on shared data, e.g. write and read operations on tables in a database,
or simple objects in main memory, within the boundaries of so called transac-
tions. Then the concurrency control module is responsible for ensuring that,
despite their parallel activation, transactions appear as if they were executed
in isolation and atomically (i.e., either all or none of a transaction’s opera-
tions take effect), thereby allowing only safe and consistent transitions of the

1

2 CHAPTER 1

application state [12].

On the other hand, data and service replication is a widely adopted tech-
nique for dependability, and it is recognized as a practical and effective way
for enhancing the availability and fault-tolerance of computer systems. User
perceived latency can be reduced by exploiting application locality or by mi-
grating data closer to the requests’ source.

Replication applied to transactional systems has been already successfully
consolidated in the literature as the reference methodology for building avail-
able, fault-tolerant and high performance data management systems. How-
ever, current replication protocols for transactional systems do not represent
a definitive solution when new requirements arise due to novelties in the ar-
chitectural trends. The following Section 1.1 discusses (i) the most relevant
trends currently driving the process of reorganizing the architecture of transac-
tional systems and (ii) the major shortcoming of state of the art transactional
replication protocols in combination with these new trends.

1.1 The Need for Rethinking Transactional Repli-
cation

During the last years we have seen an evolution of the technological features
associated with computing systems and infrastructures, which entailed the
need for a reassessment of several solutions specifically tailored for settings
and environments that do not match anymore the current ones.

Concerning transactional replication, in fact, there are factors that are
concurring to a remarkable reduction of the ratio between effective trans-
actional execution time and replica synchronization time, thus assigning to
replication protocols a predominant role in the transactions lifetime. These
factors are determined by architectural evolutions that involve the computa-
tional resources and the storage components, as well as the system scale, and
they have an impact on both the dividend and divisor of the aforementioned
quotient. If on one hand transactional executions became more lightweight,
because transactions are increasingly used as a means for synchronization in
concurrent programming (thus often requiring the accesses to few locations
in main memory), and the advent of new storage components made the local
execution of even classical transactional profiles faster, on the other hand the
replicas synchronization became more expensive due to the trend of increasing
the systems scale in order to meet dependability requirements of applications,
thus entailing a potential growing number of replicas to be contacted per
transaction execution.

Therefore, in this dissertation, three relevant technological changes have
been identified, which have posed to the systems designers the need for re-

1.1. The Need for Rethinking Transactional Replication 3

thinking transactional replication due to the aforementioned exacerbation of
synchronization costs over transactions execution costs. These are (i) the
multi-core paradigm that has led to the advent of the Transactional Memory
(TM) programming paradigm, (ii) the Solid-State Drive technology that has
allowed the implementation of faster storage components and (iii) the scaling
of the systems, also enabled by the flexibility of the cloud computing paradigm.

The multi-core paradigm is definitely one of the most disruptive among
them. In the last decade, in fact, we have seen the proliferation of multi-
processor and multi-core architectures due to physical constraints which place
limits on the processor clock: boosting applications performances can no longer
be achieved exploiting the increase of processors clock speed and consequently
the so called multi-core revolution [48] started.

This architectural evolution raised the challenge of how to effectively ex-
ploit the computational power of multi-core processors. As a consequence
parallel programming, traditionally confined to the niche of high performance
computing, stepped into the realms of mainstream application development.

However, parallel programming brings about a number of additional sources
of complexity, which can hamper not only applications’ performance, but also
their development cost, reliability and time to market. Factors that are essen-
tial in a market as competitive as the current one.

These considerations have motivated, over the last years, an intense re-
search activity aimed at investigating novel programming paradigms capable
of simplifying the development of parallel applications.

One of the most crucial issues to tackle when developing parallel appli-
cations is related to how to manage concurrent manipulations to the shared
state of the application. The challenge here is to identify mechanisms capable
of ensuring adequate consistency levels while being: (i) simple and familiar for
the programmers, (ii) highly efficient and scalable, (iii) resilient to failures.

In fact, traditional lock-based solutions have well-known pitfalls: on one
hand simplistic coarse-grained locking schemes can drastically reduce the par-
allelism of the applications [2], while on the other hand more sophisticated
fine-grained locking schemes are complex to design, reason about, verify and
debug; in addition, composability [46], an essential principle at the basis of
modern software engineering, when using fine-grained locking cannot be easily
achieved in a way that avoids deadlocks and dataraces [2].

The Transactional Memory programming paradigm, first introduced by
Herlihy and Moss [50] and then proposed in its software version, i.e. Soft-
ware Transactional Memory (STM) [32] by Shavit and Touitou [90], is gain-
ing momentum as a promising alternative to locks in concurrent programming.
In particular, Transactional Memory middlewares provide programmers with
the well-known concept of transaction, thus freeing them from the burden of
dealing with lower level details underlying synchronization among concurrent

4 CHAPTER 1

operations.

However apart from being a useful concurrent programming abstraction in
stand-alone multi-core applications, STMs are very attractive in the context
of enterprise systems. In fact, traditional enterprise systems are structured
according to a multi-tier architecture in which the logic resides on a replicated
middle-tier and relies on back-end relational databases to ensure not only data
persistency, but also consistency in presence of concurrent data manipulations.
As a result, since centralized DBMSs represent an evident scalability bottle-
neck in this kind of architectures, emerging alternative system configurations
that make use of in-memory caching at the middle-tier are adopted, alleviat-
ing the frequency of accesses to the back-end but raising also the issue of how
to ensure the consistency of state concurrently observed/manipulated. For
this reason STM technologies have in fact been recently integrated in repli-
cated caching frameworks (see, e.g., FénixEDU system [17] and Infinispan [65])
due to the main feature of providing an in-main-memory transactional envi-
ronment. In addition, this last described feature combined with simple and
generic interfaces make the distributed STM flexible enough to be employed as
a key building block for data management in large-scale cloud infrastructures.

Spanning on the recent technological innovations, another potential rup-
ture point is related to the evolution of storage components that recently
are directly affecting systems performance. In particular we are observing
the advent of Solid-State Drive (SSD) technology that is starting to mas-
sively replace the well known magnetic-based technology used in the classical
Hard Disk Drives (HHD). SSDs do not employ any moving mechanical com-
ponent, e.g. magnetic platters and actuator arms, thus offering reduced access
time/latency and random I/O performance of orders of magnitude better than
the one of conventional hard drives.

As a consequence, this evolutionary trend is having a relevant impact for
systems, such as DBMSs, that massively generate access requests to the stor-
age components: for these systems the execution costs of transactions would
be dramatically reduced, at a speed close to that of accessing data directly in
main-memory (resulting in a behavior typical of transactional memories).

Another dominant trend is surely the scaling of the systems in order to
meet the services requirements of handling an ever-growing user base. These
systems, in fact, may replicate application state even across geographically
distributed sites and redirect requests to the closest sites or on the basis of
the load distribution in order to try to reduce the user-perceived latency and
hence to improve user experience. For instance cloud computing is an exam-
ple of technology that enables building scalable services through the so called
scale-out model by utilizing the elastic pool of computing resources. However
as services migrate to these types of large-scale architectures, they force the
data management community to face the challenge of designing transactional

1.1. The Need for Rethinking Transactional Replication 5

and storage systems that are capable to scale despite the potentially high com-
munication delays, due to the relevant number of replicas to be synchronized
during the updates of the transactional state.

Therefore this evolution entails the deployment of large-scale transactional
systems in which severe overheads obstruct the feasibility of adopting classical
distributed concurrency control schemes due to the high cost of assuring the
coherence among replicated data across all the sites: the replica coordination
during the execution of a transaction can be very expensive if compared to the
effective execution time of that transaction, and communication costs have a
high impact on the transactions’ lifetime, thus limiting scalability.

For this reason, to avoid paying the penalty of synchronizing concurrent
transactions across all data sites, some distributed data platforms are based on
design approaches consisting in the adoption of relaxed data-consistency mod-
els, such as eventual consistency [27] and non-serializable isolation levels [11],
or restricted transactional semantics, such as single object transactions [58]
and static transactions [4]. If on one hand these schemes have been shown to
yield significant performance advantages with respect to classic strongly con-
sistent transactional paradigms, on the other hand they add complexity for
the programmers, who have to reason on the correctness of complex applica-
tions in presence of weak consistency guarantees and/or may need to identify
non-trivial work-around solutions to circumvent the limitations of constrained
programming paradigms.

Therefore recent architectural evolutions, i.e. multi-core architectures, solid
state storage systems and large-scale systems, have generated a significant
change in both the structural (e.g. workload types) and non-functional (e.g. per-
formance/response time) characteristics of transactional processing: (i) there
are new applications of the classical transactional paradigm that have widened
the nature of transactional operations [82, 41], e.g. a means to synchronize
computational threads/processes, which become much simpler, e.g. a couple
of read and write to a variable in main-memory vs. a complex SQL query
evaluation; (ii) the execution times of transactional profiles already adopted
in conventional database management systems are noticeably reduced when
these systems are deployed on new generation storage components; (iii) the
time required for synchronization among the nodes of a distributed transac-
tional system on transactions execution can be noticeably high due to the high
number of replicas that need to agree on the transactions’ updates.

For this reason the just outlined technological metamorphosis of the com-
puting systems should be seriously considered as a double-sided weapon from
the point of view of a system designer: the common benefit in the reduc-
tion of the effective execution time associated with a sequence of transactional
operations does not necessarily entail an equivalent reduction of the overall
transactions’ handling time in production distributed environments; on the

6 CHAPTER 1

contrary this process exacerbates the impact of the costs related to existing
replication protocols, thus inexorably limiting scalability of complex large-scale
transactional systems.

A proof of a real demand to overcome this issue is supported by several
studies on the exploitation of a set of techniques adopted to reduce the im-
pact of replicas coordination in transactions execution. On one hand specula-
tive techniques are explored to overlap the transactions computation and the
replicas synchronization in order to alleviate the replication costs in workload
dominated by short-lived transactions [84, 69]. On the other hand, different
replication techniques are designed in order to maintain low the replication
latency even in large-scale systems via the exploitation of Genuine Partial
Replication (GPR) [86] as well as the reliance on weak communication prim-
itives, e.g. no total order on messages delivery, and per-node commit grants,
i.e. leases, in presence of application locality well partitioned among repli-
cas [18].

The proposals of this dissertation leverage on the aforementioned tech-
niques, from speculation, leases management and transactions migration to
GPR, and advance the literature of replicated transactional systems by pro-
viding efficient protocols that, either in full replication or in partial replication
scenarios, are able to reduce the ratio between replicas synchronization and
transactions execution in common real deployments.

In the following all the innovative contributions proposed in this disserta-
tion are detailed.

1.2 Outline of Innovative Contributions

In the light of the aforementioned architectural trends, this dissertation intro-
duces novel replication protocols for distributed transactional systems, which
allow for significantly reducing the communication and replication costs in-
curred for ensuring data consistency.

The proposed solutions constitute a set of distributed concurrency control
schemes for transactional processing, i.e. from database systems to transac-
tional memories, and they encompass both full data replication and partial
data replication environments.

In the context of full replication, typically adopted in small clusters, two
techniques are exploited to enhance the efficiency of the state of the art repli-
cation protocols: speculative execution and transactions migration. With the
former one this dissertation proposes a speculative transactional replication
protocol that tries to maximize the overlapping of local execution and trans-
action replication in order to nullify the communication costs in case of advan-
tageous scenarios of low user interaction and high computation demand with

1.2. Outline of Innovative Contributions 7

the interleaving of both transactional and non-transactional workload. With
the latter one this dissertation proposes a lease-based replication protocol in
which the transactional processing takes advantage from the application local-
ity to reduce the costs of consensus on transactions outcome among replicas.
In particular, in common scenarios of temporal locality, the protocol is able to
get close transactional computation and data ownership via fine-grained lease
management and transactions migration.

In the context of partial replication, typically adopted for large-scale sys-
tems as well as large data-sets, two techniques are exploited to minimize the
number of contacted replicas per processed transaction: multiversioning and
genuine replication protocols (GPR). In particular, the data multi-version
model, which optimizes the execution in the common case of read-dominated
workloads, is combined with a genuine replication scheme streamlined to re-
duce the amount of messages exchanged for update transactions. In fact, on
one hand, multiversioning makes read-only transactions abort-free while on
the other hand, GPR confines the set of nodes that participate to a given
transaction to the ones replicating data accessed from that transaction. This
dissertation proves the effectiveness of this approach by proposing two transac-
tional replication protocols that explore different trade-offs in the consistency
criteria provided for read-only transactions, while guaranteeing fully serializ-
able update transactions. The first proposal in this context, in fact, copes
with data freshness by permitting specific “serialization anomalies” to arise
for read-only transactions and in case of non-conflicting update transactions.
As it will be discussed, these anomalies are expected to be irrelevant for most
of the real-life application contexts. The second proposal, instead, departs
from weaker consistency criteria, and ensures serializability for both read-only
and update transactions, by trading data freshness.

The remainder of this dissertation is organized as follows. Chapter 2 de-
scribes the state of the art in the context of transactional systems replication.
Chapter 3 details the type of systems targeted by the presented protocols
and provides the definitions and all the concepts and terms that will be used
throughout the dissertation. Chapters 4 and 5 present and evaluate the so-
lutions targeting full replication, while Chapters 6 and 7 detail the solutions
proposed for partial replication. More in detail:

− Chapter 4 presents the SPECULA protocol, which exploits speculative
techniques to enhance the efficiency of transactional processing in full
replication;

− Chapter 5 presents the Lilac-TM protocol, which reduces the impact of
replication by exploiting leases management and transactions migration;

− Chapter 6 presents the GMU protocol, which provides a scalable multi-

8 CHAPTER 1

version solution for genuine partial replication (GPR) by guaranteeing
the so called Extended Update Serializability isolation level;

− Chapter 7 explores the additional tradeoffs in the design of scalable
multi-version schemes for genuine partial replication (GPR) and presents
the SCORe protocol, which, unlike GMU, is able to guarantee One-Copy
Serializability by trading data freshness.

Finally Chapter 8 discusses the achieved results and concludes the dissertation.

Chapter 2

State of the Art

Software based replication has been widely studied in the literature of dis-
tributed systems since it is an effective way to enhance system availability [99].
However replication is far from being a single ready-to-use technique especially
in the context of databases, or, more in general, transactional systems: since
replication is crucial both for performance and fault-tolerance, there is an
eternal dispute between consistency and efficiency. On one side, manipulating
data in a consistent way is an important requirement to free the application
programmers from dealing with errors caused by concurrency and distribution;
on the other side, traditional eager replication techniques adopted to achieve
that goal have been proved to have serious limitations [99, 38] in terms of per-
formance, e.g. due to overhead, deadlocks, lack of scalability. This is because
classical eager replication approaches entailed the synchronous update of every
replica in the system on each operation executed by a transaction, according
to a deterministic processing scheme, so to ensure that the state trajectories
of the replicas remain correctly aligned.

Therefore, supported by the seminal work on the dangers of replication [38]
or more recent results in which it was informally argued that even in absence of
network unpredictability [13, 37] the designers have to choose between low la-
tency and consistency [1], the research focus has also shifted to lazy replication
models in which typically only one replica is updated synchronously, i.e. the
one in charge of processing the request from the client, while all the remaining
ones are lazily updated, i.e. asynchronously, only after the requesting client has
been notified about the completion of the requested transaction/operation.

If this last approach certainly offers a greedy way to reduce the replication
costs and hence the latency perceived by the end users, it limits the failure re-
siliency degree. Also, in case of execution of conflicting requests, replicas may
reach inconsistent states, and this requires the execution of complex (whether
possible) a posteriori reconciliation/compensation logics (a.k.a. eventual con-

9

10 CHAPTER 2

sistency) [27]. Other asynchronous replication techniques avoid the need for
complex compensation logics, but may not support multi-operation [58] or
general-purpose [103] transactions.

However the set of design choices in this context is not binary and it en-
compasses a spectrum from the most conservative eager approaches to the
most optimistic lazy ones. In addition even consistency is not an on/off pa-
rameter, and a number of strong consistency semantics exist in literature [3],
such as One-Copy Serializability [12], Snapshot Isolation [11, 33], Opacity [40],
Update Serializability [3], to name a few. Furthermore, there are also other
consistency levels that can be considered reasonable for certain types of appli-
cations with the purpose of reducing the user perceived latency, e.g. Causal
Consistency or Parallel Snapshot Isolation [62, 63, 91, 5].

For instance as shown by the work in [54], being consistent does not nec-
essarily mean embracing a eager technique. Moreover during the last years a
set of techniques have been proposed to reduce potential efficiency problems
related to consistent replication [54, 99, 74, 24, 86, 89]. They have shown, in
fact, that updating synchronously all replicas does not entail (i) choosing a
linear replicas interaction [99, 54] (i.e. one message per operation with com-
munication costs that grow up linearly with the size of transactions), or (ii)
adopting deadlock-prone communication primitives (i.e. no assumptions on
the order of messages delivery) [99, 74, 24], or (iii) always updating all repli-
cas in the system without creating a selective mapping between a datum and
a subset of nodes in the system (e.g. partial replication) [86, 89].

Indeed effective solutions that do not give up consistency have shown that
updates can be applied synchronously even with a constant per-transaction
interaction among replicas and a total order can be enforced on the delivery of
messages so that every replica observes the same sequence of messages delivery
and hence distributed deadlocks scenarios are avoided [74].

For this reason, the solutions proposed in this dissertation follow the con-
stant per transaction interaction model, where a constant number of messages
is used to synchronize the replicas for a given transaction, unless remote com-
munications are required to execute read operations on data that are not
available locally. In addition, only synchronous replication approaches are
considered, in order to guarantee that replicas are updated atomically and to
avoid the aforementioned drawbacks related to asynchronous replication.

Therefore the remaining part of this Chapter gives an overview of the
replication techniques framed precisely in this latter context and the works
adopting these techniques, by making a comparison with the design choices
made in the solutions proposed by this dissertation. It differentiates between
two main replication schemes that are characterized by the roles assumed by
the replicas with respect to the possibility of directly executing updates on
copies of the transactional state, i.e. Primary Copy vs. Update Everywhere.

2.1. Primary Copy 11

For the latter type of replication it is discriminated whether a transaction is
fully executed by all replicas, i.e. Active Replication, or by only one, which then
broadcasts the transaction’s updates to the other replicas, i.e. Deferred Update
Replication. The overall description encompasses also protocols that exploit
speculation to reduce the user-perceived latency and the ones that exploit
partial replication to enhance scalability, all with a bias for solutions providing
strong levels of consistency and by ruling out lazy replication approaches.

2.1 Primary Copy

The Primary Copy replication technique [99], also known as Primary Backup
or Passive Replication [98], provides a simple scheme for maintaining up-to-
date replicas of the system via an order univocally determined by the so called
primary copy. Every datum is associated with a specific site or node that is
the primary copy of the datum and that is the only node in charge to process
update requests for the datum. Therefore whenever a client issues an update
on a datum d, the request is first sent to the primary copy of d, which processes
the update and replicates the outcome to all the other replicas. Even if this
approach allows all nodes to process read operations, there is always at most
one node that executes updates on a given datum and therefore there is no need
to execute an agreement among replicas for determining a common outcome
on the execution of two conflicting operations. In fact all the replicas apply
the changes on a datum according to the order determined by the primary
copy of that datum.

Whenever a request from the client is a transaction, it is sent to the primary
node that is in charge of actively processing transactions and of sending the
transactions’ updates to all the backup nodes. Typically transactions are
processed entirely on the primary and, only if they can commit, their updates
are sent to the backups.

The communication primitive that this scheme relies on can be a simple
FIFO channel [98], so that the order of delivery of messages on the backups
follows the order of dispatch on the primary, and the updates can be applied
on all nodes in the order in which they are committed on the primary. In
case the primary does not adopt any further communication for a committed
transaction after having sent the commit of that transaction to all backups,
there can be the risk of data loss since the primary sends the reply to the client
before it is sure that backups are able to apply the updates. On the contrary,
if a second voting phase follows the replication of the updates for a transac-
tion, the overall scheme also guarantees durability. For instance, if at most f
nodes can fail in the system, the primary can wait for an acknowledgement
from f + 1 backups before replying to the client. Alternatively the primary

12 CHAPTER 2

can broadcast the commit of a transaction via a Uniform Reliable Broadcast
service (URB) [43], to be sure that whenever a node delivers a commit message
then all the other non-faulty nodes must do the same.

Despite the simplicity of the approach, the Primary Backup mechanism
has some relevant drawbacks due to the high reconfiguration costs when the
primary fails. Further, Primary Backup is not prone to scale since the compu-
tation capacity on the primary can become the bottleneck. In fact, to behave
correctly even in case the primary fails, the mechanism has to be able to (i)
elect a new primary via a leader election facility [36] and (ii) guarantee that
updates sent by the new primary will be globally ordered with respect to the
updates sent by the old faulty primary, e.g. via a View Synchronous Broadcast
service [22].

Alternative approaches were proposed to alleviate the scalability issue es-
pecially for read-dominated workloads. The work in [85], in fact, proposed
a variant of the classical Primary Backup replication in which backups are
allowed to process read-only transactions, i.e. transactions that do not issue
write operations, in a uncoordinated and independent way with respect to
the underlying concurrency control scheme, thanks to the data multi-version
support.

The Primary Backup scheme was applied successfully also in the context
of in-memory database systems (IMDB) [16] to ensure high availability of an
IMDB with a low replication overhead. In this approach, the authors adopted
an innovative middleware-level distributed algorithm exploiting assumptions
properly valid for IMDB, thus reducing to two communication steps the la-
tency needed to commit update transactions.

Another example of usage of the Primary Backup scheme is found in [96]
in which the authors proposed two implementations of that replication scheme
tailored for Java objects: one using the Java remote invocation method (RMI)
to implement a simple and fast replication scheme for shared objects; the other
one, called replica-proxy, that improves the performance of the first one by
implementing a more complex mechanism that only relies on Java network
packages.

An effective approach to overcome the scalability issues of Primary Backup
for all types of workloads could be combining the cheap transaction execution
mode locally to the primary with the possibility of all nodes to execute trans-
actions as they were simultaneously the primary node. Therefore, in an ideal
scenario in which a client can issue a request to any node because it is sure
that the contacted node is the primary copy of all the data to be accessed by
its request, would result in a Primary Backup solution in which every node can
act as a primary by having the same advantages offered by Primary Backup
replication, e.g. no distributed coordination on commit.

Unfortunately the aforementioned scenario can be only ideal because we

2.2. Update Everywhere 13

cannot be sure that a request from a client completely matches the mapping
from accessed data to primary copies so that a transaction can always be ex-
ecuted locally at the contacted node and in an uncoordinated fashion. Never-
theless a recent work [18] on replication in the context of software transactional
memories [90] proved that the described ideal scenario can be dynamically cre-
ated by exploiting the application locality and with the usage of the so called
asynchronous leases. That work proposed an Asynchronous Lease-based Cer-
tification (ALC) scheme in which every node is able to acquire on-demand a
set of leases on a set of data S to validate and commit a transaction optimisti-
cally executed locally on S, so that the node becomes the primary copy of S
until another node requires a lease on S or a subset of S.

The advantages of this approach are clear in case the applications exhibit
temporal locality partitioned among nodes: the probability to commit a trans-
action without distributed coordination with the other replicas can be high,
and in case a transaction can commit locally at a node and that node already
has all the necessary leases, the updates can be simply broadcast to all the
other nodes via URB.

Clearly, whenever a transaction completes the execution on a node and
that node does not own all the necessary leases to commit the transaction, a
distributed coordination phase is activated to move the leases from the current
owners (if any) to the requesting one, and to ensure that all the nodes agree
on the new leases configuration.

This dissertation proposes a replication scheme that uses as base replica-
tion idea the same one adopted by ALC, and a novel replication protocol that
is able to improve ALC via fine-grained management of leases and transactions
migration (Chapter 5).

2.2 Update Everywhere

Unlike Primary Copy replication and as its name suggests, in the Update
Everywhere replication scheme [99] every node of the distributed system is
in charge to process operations and therefore there is no distinction between
primary and backup nodes. The first proposal of this approach [87], also named
State Machine approach, defined a general scheme to implement fault-tolerant
services by replicating the server nodes and coordinating the client interaction
with the server replicas. It formalized a service as a set of state variables
representing its state and a set of commands to perform transitions on its
state. The resulting abstract component named state machine, constitutes
the main unit to be replicated by relying on:

− a communication service used by the nodes to coordinate the replication
of the state machine;

14 CHAPTER 2

− a support for deterministic execution (if needed) of commands on the
nodes.

The advantages of this approach are multiple, but the most important is
related to fault-tolerance and availability of the services. Since there are no
special roles among nodes, the scheme is able to provide full failure masking to
the clients because the failure of a node does not directly affect the availability
of the service since it does not entail additional costs of reconfiguration in
order to elect new special node(s) in charge of executing operations (or in
general updates). Furthermore, the possibility to enable all nodes to actively
execute commands, makes the State Machine approach prone to scalability, by
avoiding the bottleneck of the primary typical of the Primary Copy approach.

The prize to pay for having this flexibility is coordinating the distributed
computation among replicas so that even if clients submit conflicting requests,
i.e. to execute at least two commands on a same state variable and where at
least one of them is an update, all the replicas behave correctly and advance
their state deterministically and in the same way.

The two widely established schemes to implement the Update Everywhere
approach for transactional processing differ for when replica coordination is
carried out along time while processing the transaction. This directly affects
whether a transactional execution has to behave deterministically or not, and
if all nodes are required to actively process a transaction. In the following the
two mechanisms are detailed, namely Active Replication and Deferred Update
Replication.

2.2.1 Active Replication

The Active Replication scheme [98, 14], besides allowing all nodes to process
requests from the clients, forces all nodes to process every update request to
ensure replication. In particular the replication of the outcome of a request is
achieved by actively replicating the request for processing on all nodes.

The challenge in this scheme is guaranteeing that all nodes execute the
same sequence of requests and produce the same state transitions. There-
fore, following the general guidelines of the State Machine approach, Active
Replication requires both a coordination mechanism among replicas to enforce
deterministic delivery guarantees of requests, and a support for deterministic
execution of the requests that does not violate the constraints imposed by the
coordination layer.

A request is not broadcast from a client to a particular node but it tar-
gets nodes as a group, and requests are sent via an Atomic Broadcast (AB)
layer [28] to ensure determinism. This means that requests are delivered to all
nodes in the same total order and the processing needs to follow that order,

2.2. Update Everywhere 15

so that for the same sequence of input commands replicas produce the same
sequence of state changes as result.

The main advantages of this scheme are the ones inherited by the general
State Machine approach, namely simplicity (because the scheme does not dis-
tinguish special roles for the nodes), scalability improvement if compared to
Primary Copy (because all nodes are able to process requests), and complete
failure masking.

On the other hand Active Replication has the drawback of the determin-
istic scheduling of commands on all replicas, which may limit parallelism.
Besides scheduling of commands, the commands themselves need to be im-
plemented so as to ensure determinism, i.e. multiple executions of the same
command on the same state must produce the same output.

Since determinism is achieved because conflicting requests are finalized
in the same order on all nodes, in case semantic information about the com-
mands are known, Active Replication can also be implemented by using weaker
coordination services that require nodes’ agreement only on the order of com-
mands that are dependent semantically. For instance, allowing two requests
that commute to be processed in different order on two nodes, enables the
usage of implementations of Generalized Consensus [60] as coordination layer
and it can increase parallelism.

For transactional processing, Active Replication is typically adopted under
the constant interaction mode [99] according to which a transaction is sub-
mitted via AB at its beginning and then processed deterministically on all
nodes. The deterministic behavior locally at each node can be achieved either
via sequential execution of the totally ordered transactions delivered or, in
case of lock-based local concurrency control schemes, via a preventive locks
acquisition on the data to be accessed by following the transactions delivery
order [55, 92], or any other deterministic locking strategy [68, 69].

Therefore the total execution latency for a transaction is given by the
latency to reach an agreement for the ordering of that transaction plus the
latency necessary to guarantee the transaction is correctly serialized after all
the (conflicting) transactions previously delivered by the AB service, as well
as the transaction’s execution time.

Since this may result in excessive costs especially when the time required to
execute a transaction is negligible with respect to the aforementioned overall
overheads required to guarantee its deterministic replication [84], speculative
techniques are often employed to reduce the user-perceived latency in Active
Replication approaches [55, 56, 64, 68, 69, 70, 77]. Whether requiring an a
priori knowledge on the accessed data, e.g. [55], or not, e.g. [69], these proto-
cols rely on an optimistic early knowledge given by the spontaneous network
order of messages to overlap transactions execution and coordination. This
is achieved by relying on an Optimistic Atomic Broadcast service (OAB) [75]

16 CHAPTER 2

that can early deliver messages as soon as they arrive (typically after a single
communication step) by optimistically guessing that the final order will match
the arrival order.

These speculative techniques are specifically designed for enhancing scala-
bility and performance of distributed transactional systems, and can be con-
sidered orthogonal to the key innovative idea behind one of the proposals of
this dissertation, which exploits speculation to prevent threads from blocking
till the completion of the replica coordination phase (Chapter 4). Unlike ex-
isting solutions, the protocol proposed in this dissertation allows that both
transactional and non-transactional code blocks can be (speculatively) exe-
cuted, and entails a mix of state recoverability techniques at both data-layer
and application levels.

The proposals presented in Chapters 6 and 7 of this dissertation are also
related to a recent work [92] that combines the determinism of Active Repli-
cation with the scalability of partial data replication. The scheme proposed
in [92] extends the Active Replication approach by allowing the partitioning of
a transaction execution flow on multiple nodes to follow the distributed data
mapping.

2.2.2 Deferred Update Replication

The Deferred Update Replication [74], also known as Certification-based Repli-
cation, is another Update Everywhere replication scheme specifically tailored
for transactional processing. As in Active Replication, every node is in charge
of processing transactions but, unlike Active Replication, nodes do not need
to handle the entire processing of all the requests from the clients. In fact,
a transaction can be processed in a non-deterministic way on the first node
contacted by a client and, as the technique’s name suggests, propagation of
the transactions updates to the replicas is deferred until the completion of the
execution.

Therefore, as soon as a client requests the execution of a transaction to a
given node, the node executes the transaction optimistically by returning to
the client the values of the read operations and buffering in a private memory
area the outcome of the write operations. The output of a transaction should
not be externalized at this stage because its execution advances optimistically
without taking care of conflicts with concurrent transactions on other nodes.
Then at commit time, namely whenever the transaction requests the commit,
the results of the local processing are replicated on all nodes. The replication
does not necessarily entail the application of the updates, which can only
happen if all the involved nodes determine a successful completion of the
transaction.

The decision on whether committing a transaction or not can be made

2.2. Update Everywhere 17

either locally at each node, without any further exchange of messages, or
only locally at the transaction’s originating node and then propagated to the
other replicas. Therefore two types of Deferred Update Replication are dis-
tinguished.

The former one, named non-voting [99], requires both a deterministic prop-
agation of the updates and a deterministic processing upon the delivery of the
updates on a node, so that every node can decide independently of the other
nodes and all nodes produce the same outcome, i.e. either commit or abort,
for a given transaction. In this case the replication relies on an AB service
in order to guarantee a global total order of the committing transactions and
it requires that also all the outcomes of the optimistic execution of a trans-
action are sent via AB [28], i.e. the ones of both read operations (read-set)
and write operations (write-set) [74]. As a consequence all nodes process the
same sequence of delivered transactions by accessing both the read-set and the
write-set and can make the same decisions by relying on a same deterministic
function: typically a transaction T can commit if there are no other trans-
actions T ′ delivered before T and that have updated a datum d after T has
read d. However, less pessimistic certification functions can be implemented
in order to reduce the transactions abort rate [31].

The latter one, named voting [99], does not require a deterministic prop-
agation of the updates so that a further voting phase is required among the
nodes to determine the outcome of a transaction, i.e. either commit or abort.
The replication and the voting phase can be typically implemented by using
a 2PC atomic commitment protocol [12], so that the transaction’s originating
node can decide after having gathered the local decisions from all the other
participants. As in the previous non-voting scheme the decision has to be made
regarding the other concurrent conflicting transactions and needs to determine
a final committing order. Despite its simplicity, this scheme is deadlock-prone
because without a priori enforcement of a total order on the replication, there
can be two concurrent and conflicting transactions that are prepared by the
2PC in two different order on two participants.

Therefore a variant of this approach was proposed [53] that relies on an AB
service for replication but, unlike the non-voting one, this is only used with
the purpose of determining a total order on the commits. Therefore, still the
transaction’s originating node is the only one that can make the final decision
and it has to propagate the decision via a further communication step typically
relying on an URB service [43]. The only advantage of this last approach is
that the read-sets have not to be sent via AB because only the originating
node is in charge to decide, and therefore there can be a gain when compared
to the non-voting scheme in workloads dominated by read-intensive update
transactions [25], i.e. update transactions that execute a large number of read
operations.

18 CHAPTER 2

Also for the Deferred Update approach, the costs of distributed consensus
for determining the outcome of a transaction can be excessive, especially when
the time required to execute a transaction locally is negligible with respect to
the overall latency for the deterministic replication of its updates [100]. There-
fore speculative techniques are employed in order to amortize the latency of
the Atomic Broadcast. An example is the protocol in [20] that early validates
transactions as soon as they are optimistically delivered and without waiting
for the final order established by the OAB, so that the updates of a trans-
action optimistically validated on a node can be made speculatively visible
to other transactions starting on that node. Nevertheless, the execution flow
that issued the request of a commit is still required to be stopped till the OAB
service determines the definitive delivery order of that commit and the asso-
ciated transaction is validated according to that order. On the other hand,
the speculation-based solution presented in this dissertation overcomes this
problem and boosts the optimism by allowing a thread to proceed with the
execution after it issued a commit request and without synchronously waiting
for the completion of that request (Chapter 4). The protocol, in fact, is able to
take a cross-layer approach in which both transactional and non-transactional
code blocks can be (speculatively) alternated.

The aforementioned Deferred Update techniques are both effective in case
of full replication, namely when a node stores a copy of the whole data-set. On
the contrary, in case of partial replication, additional care has to be taken to
commit a transaction since a single node has only a partial view of the current
transactional state. When considering partial replication schemes, literature
proposals can be classified depending on (i) whether they can be considered
genuine, and on (ii) the specific consistency guarantees they provide. The
genuineness of a communication protocol [44] is an important requirement
that enables scalability because it entails that only nodes that are interested
in the content of a message m execute steps of the protocol on m. This means
that a transactional protocol for partial replication is genuine when a node
executes steps for a transaction T (including the exchange of messages) only
if that node stores data that are accessed by T .

The works in [9, 89] provide non-genuine protocols where the commitment
of a transaction requires interactions with all the sites within the replicated
system. In particular, to guarantee Snapshot Isolation, entailing that every
transaction can safely execute on a consistent snapshot of the transactional
state, they requires that all nodes are aware about the execution of all trans-
actions. In [9], in fact, the replication protocol requires that a transaction
broadcasts in total order its begin event to all nodes, so that the transaction
establishes on every node an upper bound on the commits visible to its read
operations; on the other hand, the protocol in [89] adopts a complementary
approach by enforcing that the commits of update transactions are commu-

2.2. Update Everywhere 19

nicated to all nodes, so that every node can keep track in the same way the
history of changes on the transactional state.

If on one hand both solutions give up genuineness, on the other hand
they guarantee another property that is considered as another first class re-
quirement in this dissertation: every transaction is always allowed to observe
a consistent transactional state. This allows to drastically simplify the de-
velopment of concurrent applications because it prevents, for instance, that
even transactions that abort can generate, during their execution, unexpected
exceptions due to the reading of a non correct state. Moreover read-only trans-
actions (i.e. transactions that do not execute write operations) do not have
to undergo additional distributed validation procedures after their execution
because they can safely commit.

This last requirement is not ensured by existing protocols for Genuine
Partial Replication (GPR) [86]. To guarantee One-Copy Serializability [12],
in fact, the protocol in [86] executes a transaction optimistically on the origi-
nating node by buffering write operations and by allowing that only the values
committed on a node before the first read operation was executed on that node
are visible to the transaction. Then at commit time, the transaction (whether
it is read-only or not) is validated as in the classical Deferred Update Repli-
cation but only on the nodes that store data accessed by the transaction. In
particular, a commit message is sent via Genuine Atomic Multicast [44] and
only the nodes storing data in the transaction’s read-set execute the validation
procedure while the other ones storing the data to be updated wait for a set
of votes from the validating nodes.

Therefore as in the voting replication type, GPR entails a replication phase
that relies on a total order service followed by a voting phase, because even
if the validation procedure is deterministic, it is possible that different nodes
produce different commit decisions for the same transaction due to the partial
view they have on the history of commits.

This technique is improved by the protocol in [88] because it avoids the
usage of the Atomic Multicast service by relying on the Atomic Broadcast
service within each replication group, i.e. a group of nodes that replicate a
certain datum d. This has the advantage of a less expensive communication
layer without the adoption of any assumption on the intersection of replication
groups [44] that is required for the implementation of Genuine Atomic Multi-
cast in asynchronous systems. The price to pay is the implementation of a less
permissive validation procedure that has to abort every pair of concurrent and
conflicting transactions in order to guarantee One-Copy Serializability. This
is because the commit requests of two concurrent and conflicting transactions
can be delivered to different nodes in different order if nodes belong to dif-
ferent replication groups. Moreover, this protocol also offers the possibility
to avoid the distributed validation of read-only transactions at the additional

20 CHAPTER 2

cost of an asynchronous communication procedure that spreads on all nodes
the status of the committed updates [88], hence by impairing the genuineness.

Compared to the aforementioned solutions for partially replicated transac-
tional systems, this dissertation proposes two GPR protocols, i.e. GMU and
SCORe (in Chapters 6 and 7 respectively), which avoid to enforce the dis-
tributed validation of read-only transactions, since every read operation is
always provided with a consistent transactional state.

Other solutions for partial replication that follow the Deferred Update
approach and are related to the proposals of this dissertation, can be found
in [8, 91]. They both enhance scalability by providing a GPR protocol that
guarantees a weaker type of Snapshot Isolation [11], and they spare read-only
transactions from expensive distributed validations. Both Jessy and Walter
protocols, presented respectively in [8] and [91], improve scalability by allowing
two different transactions to observe two non-compatible serialization orders
of committed update transactions, by ensuring respectively Non-monotonic
Snapshot Isolation and Parallel Snapshot Isolation (PSI). But unlike the GMU
protocol presented in this dissertation, these protocols do not restrict the
aforementioned anomaly to only aborted or read-only transactions, because
they do not guarantee serializability of the committed update transactions.
On the contrary GMU guarantees that committed update transactions are
fully isolated, and this is an important requirement since those transactions
manipulate the state of the system in a non-reversible way.

In addition, Walter serializes transactions at the moment in which transac-
tions start. This design choice can impact the freshness of the data visible by
long-running transactions, compared for instance to Jessy and GMU, which
attempt to advance the reading snapshot of transactions along their execution.
If on one hand this creates similarities with the SCORe protocol in this disser-
tation, on the other hand SCORe trades-off data freshness in order to achieve
a much stronger consistency criterion than PSI, namely Executing One-Copy
Serializability [3].

Chapter 3

Model of the Target Systems
and Preliminary Definitions

This Chapter presents the target system models for the proposals of this dis-
sertation. The type of distributed system and communication primitives are
defined in Section 3.1, while Section 3.2 specifies how data are maintained on
the nodes of the distributed system. In Section 3.3 the definition of transac-
tion and history are provided, and the notion of direct serialization graph on a
history is defined. Finally Section 3.4 defines the correctness criteria targeted
by the protocols presented in this dissertation.

3.1 Distributed Processes and Communication Prim-
itives

A classic distributed system model composed of Π = {p1, . . . , pn} nodes (also
called processes) is considered. Nodes communicate through message passing
and do not have access to either a shared memory or a global clock. Messages
may experience arbitrarily long (but finite) delays, and no bound on relative
site speeds or clock skews is assumed. Further the classic crash-stop failure
model is considered: sites may fail by crashing, but do not behave maliciously.
A site that never crashes is correct; otherwise it is faulty.

Because of the well-known result of Fischer, Lynch and Paterson (FLP),
which implies that in an asynchronous distributed system the problem of con-
sensus cannot be solved in the presence of even a single faulty node [34], the
system is supposed to be eventually synchronous, namely there exists a time
t after which nodes can communicate with one another in a bounded length
of time. In addition, due to the result in [21], at least a majority of nodes are
considered correct, unless specified differently.

21

22 CHAPTER 3

This is to provide the system with a View Synchronous Group Communi-
cation Service (GCS) [22] that integrates two complementary services: group
membership and multicast communication. Informally, the role of the mem-
bership service is to provide each participant in a distributed computation
with information about which process is active (or reachable) and which one
is failed (or unreachable). Such information is called a view of the group
of participants. It is assumed that the GCS provides a view-synchronous
primary-component group membership service [10], which maintains a sin-
gle agreed view of the group at any given time and provides processes with
information on whether they belong to the primary component.

The multicast communication service allows a member to send a message
to the group of participants with different reliability and ordering properties.
It is assumed the availability of two communication services: Uniform Reliable
Broadcast (URB) [43], to guarantee an agreement on the set of messages de-
livered, and Optimistic Atomic Broadcast (OAB), to guarantee an agreement
on the order of messages delivered, like Atomic Broadcast (AB) [75, 56], and
with the possibility of exploiting an early delivery before the establishment of
the final agreement on the order.

The former broadcast service is defined by the primitives UR-broadcast(m)
to send a message m and UR-deliver(m) to deliver a message m, and it guar-
antees the following properties:

− Validity. If a correct process p broadcasts a message m, then p eventually
delivers m.

− Integrity. No message is delivered more than once and if a process de-
livers a message m with sender p, then m was previously broadcast by
process p.

− Uniform Agreement. If a message m is delivered by some process then
m is eventually delivered by every correct process.

The latter broadcast service is defined by the primitives AB-broadcast(m)
to send a message m and AB-deliver(m) to deliver a message m according
to a global final total order. In addition it also provides the primitive Opt-
deliver(m) to deliver a message m optimistically. Other than guaranteeing
the properties of URB, OAB also ensures the following:

− Global Order. If some process AB-delivers some message m before mes-
sage m′, then a process AB-delivers m′ only after it has AB-delivered
m.

− Local Agreement. If a process Opt-delivers a message m then it eventu-
ally AB-delivers m.

3.2. Data Model 23

− Local Order. A process first Opt-delivers a message m and then it AB-
Delivers m.

It is also supposed that the delivery order of messages exchanged by the
URB service or by the OAB service does not violate causality relation among
messages. In particular both these communication services guarantee the fol-
lowing property:

− Causal Order. If any process delivers a message m′, then that process
must have before delivered every message m such that m→ m′.

The relation → is the happened-before relation among messages [59] and
it is defined as follows. For any two messages m and m′, m → m′ iff one of
the following conditions is verified:

− Some process broadcast m′ after having broadcast m.

− Some process delivers m and the it broadcasts m′.

− There is a message m′′ such that m→ m′′ and m′′ → m′.

The system also provides the nodes with primitives to send and receive
point-to-point messages on reliable channels via the primitive send(m) and
receive(m) and such that for any two correct processes pi and pj , if pi sends
message m to pj then pj eventually receives m.

3.2 Data Model

Each node pi stores a (either partial or full) copy of data, for which, with no
loss of generality, a simple key-value model is assumed. Each data item d is
a sequence of versions ver = 〈val, vid〉, all associated with a key k represent-
ing d’s identifier, and ordered according to the order of the write operations
committed on d. The fields val and vid of a version ver are respectively a
value of d and a logical identifier associated with the commit of ver. How vid
is represented depends on the replication protocol being used: in particular it
can be a logical scalar timestamp (or scalar clock), i.e. an integer non-negative
number, or a logical vector timestamp (or vector clock), i.e. an array of integer
non-negative numbers. For the sake of clarity in the presentation, throughout
the dissertation it is always supposed that the size of every vector clock is
equal to |Π|, i.e. it is equal to the maximum number of nodes in the system.
In practice more efficient techniques can be adopted to represent vector clocks
information, e.g. the one proposed for dynamic distributed systems in [61, 97].

Given a sequence of versions associated with d and stored on a node pi,
the values of vid have a monotonically decreasing field going from the most

24 CHAPTER 3

recent committed version to the oldest one. More in detail, in case vid is a
scalar clock, the field is the only integer value of vid, while in case vid is a
vector clock, the field is the integer value at entry i of vid, i.e. vid[i].

Throughout the dissertation the binary relation ≤ is used to define an
order for both scalar values and vector clock values. In case of scalar values the
relation is the standard less-than-or-equal relation defined for natural numbers.
On the contrary, in case of vector clock values the relation has the meaning
defined as follows. For each pair of vector clock values v1, v2, the pair 〈v1, v2〉
is in ≤, by also writing v1 ≤ v2, if ∀i, v1[i] ≤ v2[i]. If there exists also an
index j such that v1[j] < v2[j], where < is the standard less relation defined
for natural numbers, then v1 < v2 holds.

For protocols adopting speculative techniques to commit a transaction T
there is the necessity to commit at least twice a write operation on d by T ,
e.g. upon a speculative commit and a final commit. Therefore, to support
this type of executions, the data model includes an additional sequence of
versions having the same characteristics of the previous one but representing
the versions written by means of speculative (non-definitive) commits. To
differentiate the two sequences, two additional fields are associated with a key
k: k.lastF inal that identifies the sequence of finally committed versions and
that points to the last committed one among them; k.lastSpec that identifies
the sequence of speculatively committed versions and that points to the last
committed one among them.

Data are subdivided across m partitions, and each partition is replicated
across r nodes (in other words, r represents the replication degree for each
data item). The set Γ = {g1, . . . , gj , . . . , gm} denotes the set of m groups of
nodes, where gj is the group replicating the j-th data partition. Each group is
composed of exactly r nodes (to ensure the target replication degree), of which
at least a majority is assumed to be correct. In order to maximize flexibility of
the data placement strategy, groups are not required to be disjoint (they can
have nodes in common), and a node may participate to multiple groups, as
long as

⋃
j=1...m gj = Π. In addition groups(pi) denotes the set of groups which

pi belongs to, and replicas(S) denotes the set of nodes that replicate the data
partitions containing all the keys k ∈ S, called also owners of S. Note that
this model allows for capturing a wide range of data distribution algorithms,
such as schemes, currently very popular in NoSQL transactional data stores,
which rely on consistent hashing [58, 52] based distribution policies in order
to: i) minimize data transfer upon joining/leaving of nodes [26]; ii) ensure
the achievement of predetermined replication degrees; iii) avoid distributed
lookups to retrieve the identities of the group of nodes storing the replicas of
the requested data items.

In this dissertation two data replication modes are considered: partial
replication and full replication. In the former the replication degree r is less

3.3. Transaction Model 25

than the number of nodes |Π| and therefore a node pi ∈ Π does not maintain
a full copy of the entire transactional data set. This means that as soon as
a transaction in execution on a node pi has to access the value of a datum
d that is not maintained by pi, it has to issue a remote operation in order
to retrieve the datum from one of the current owners of d. On the contrary,
in the latter mode, the replication degree r is always equal to the number of
nodes |Π|, so that every node maintains a full copy of the whole transactional
data set. Therefore, unlike partial replication, the full one has the advantage
of always allowing read operations on transactional data without entailing
remote communications.

3.3 Transaction Model

Transactions are modeled as a set of begin, read, write, commit and abort
operations on transactional data, and they define a total order in which these
operations are executed; therefore a transaction is sequential by nature and
no multiple operations of a same transaction can be executed simultaneously
(i.e. concurrently). Transactions that do not execute any write operation are
called read-only transactions, otherwise they are called update (or equivalently
write) transactions.

Since the data model entails one or more versions for the same datum d,
every operation of a transaction is mapped to a version in the transactional
system. In general, a read operation can be mapped to versions produced by
uncommitted or even aborted transactions, as well as committed ones, but for
the majority of concurrency control schemes presented in the dissertation, a
read operation can only return a committed value. The only exception is for
the speculative concurrency control scheme presented in Chapter 4, in which
a transaction makes visible its modifications at a point in time that follows its
execution but precedes the completion of its commit.

The k-th write operation of transaction Ti on a datum x, with k = 1, 2, . . .,
is denoted with wi(xi.k), meaning that Ti has created the new version xi.k of x.
Since any concurrency control scheme presented in this dissertation relies on
a data model where Ti creates (i.e. makes available for the other transactions)
only the version xi.n produced by its last write operation on x, the notation
wi(xi) is always adopted to denote a write operation of transaction Ti on x
where:

wi(xi) ≡ wi(xi.n), n = max{k : ∃xi.k}

.

As a consequence, a read operation of transaction Tj on x is denoted with
rj(xi), meaning that Tj has read version xi created by Ti.

26 CHAPTER 3

The last operation of a transaction Ti is either a commit operation, de-
noted as ci to indicate that Ti is completed successfully, or an abort operation,
denoted as ai otherwise, and there is at most one commit or abort per trans-
action. In addition the first operation of a transaction is the begin, denoted as
bi to indicate that Ti starts its execution at that point in time.

On every node in the system transactions can be executed concurrently and
the execution flow of a transaction Ti is identified by a thread th. The solutions
proposed in this dissertation do not allow for the execution of so called nested
transactions [67, 29, 94], and therefore if the begin bj of a transaction Tj on
a thread th follows an operation oi of a transaction Ti, then bj follows either
ci or ai. On the contrary threads can interleave the execution of transactions
and non-transactional code.

3.3.1 History and Direct Serialization Graph

A history is the formalization of an execution of transactions on a transactional
system. In particular a history H over a set of transactions T is constituted
by the following two parts:

− a partial order of the events E that reflect the operations of transactions
in T ;

− a version order � that is the total order defined by the creation of the
versions for each datum d.

Each event in H corresponds to the execution of an operation of a trans-
action in T , e.g. wi(xi), ri(xj), ci, bi, ai for Ti, Tj ∈ T , and for simplicity in
the exposition an operation wi(xi) (respectively ri(xj), ci, bi, ai) is treated as
an event in H.

The partial order E is such that:

− it preserves the order of the operations within a transaction;

− for any datum x and a pair of different transactions Ti, Tj , the event
rj(xi) is always preceded by the event wi(xi) (but this does not mean
that wi(xi) is the last write operation on x before the execution of rj(xi));

− for any datum x and transaction Tj , if the event rj(xi) is preceded by
the event wj(xj.k) and no other write event on x is in between rj and wj

then xi = xj.k.

This means that E cannot reverse the order of operations within a transac-
tion, it must ensure that a read operation returns a version that was previously
created and transactions are forced to observe the versions created by their
own write operations.

3.4. Consistency Model 27

The version order � defines the order of versions committed on an object
x such that xi � xj iff version xi has been committed before version xj .

As defined in [3], the direct serialization graph on a history is considered
to define the consistency criteria targeted by the protocols presented in the
dissertation as well as their correctness proofs.

A direct serialization graph DSG(H) on a history H is a graph with a
vertex VTi for each transaction Ti in H and an edge VTi −→ VTj for each pair
of conflicting transactions Ti, Tj in H. In particular two transactions are
conflicting if they both access a common datum and at least one of those
accesses is a write operation. The DSG(H) contains three types of edges
depending on the three types of conflicts, also called dependencies, that two
transactions Ti, Tj can have in H:

− Tj directly read-depends on Ti. DSG(H) contains the read-dependency

edge VTi

wr−→ VTj because there exists a datum x such that both wi(xi)
and rj(xi) are in H.

− Tj directly write-depends on Ti. DSG(H) contains the write-dependency

edge VTi

ww−−→ VTj because there exists a datum x such that both wi(xi)
and wj(xj) are in H, and xi precedes xj according to the order defined
by � in H.

− Tj directly anti-depends on Ti. DSG(H) contains the anti-dependency
edge VTi

rw
� VTj because there exists a datum x such that both ri(xk)

and wj(xj) are in H, and xk precedes xj according to the order defined
by � in H.

Unlike the definition provided in [3], DSG(H) is not restricted to only
committed transactions inH, but it also considers aborted and executing ones.
On the contrary, to specify that the direct serialization graph has vertexes for
only committed transactions in H, the notation DSG(Hc) is used.

3.4 Consistency Model

This Section reports the definitions of the correctness guarantees that are
targeted by the proposals presented in this dissertation. This is because,
having as main objective the efficiency of the replication protocols, some of the
proposed concurrency control schemes seek a tradeoff between consistency and
efficiency by exploring intermediate transactions isolation levels. Furthermore,
even though some schemes explicitly target the well known isolation level of
Serializability, they rely on different design choices concerning relevant related
consistency criterion, such as preservation of real-time order [71, 40] or of
specific consistency guarantees for aborted transactions [40].

28 CHAPTER 3

The description is arranged from weaker consistency levels to stronger
ones, and every definition follows the definitions of the Adya’s thesis in [3];
this holds also for the definition of Opacity that has been reformulated in this
dissertation in terms of properties on DSG(H) graph.

3.4.1 Extended Update Serializability

Extended Update Serializability, also referred to as EUS in this dissertation,
was originally defined in its weaker form, i.e. Update Serializability, by the
work in [45], in terms of view serializability. Then it was later re-formulated by
Adya [3] with the isolation level (E)PL-3U in terms of properties on the direct
serialization graph and with the possibility to be extended to also executing
transactions.

EUS is a flexible isolation level because it demands different guarantees for
update and read-only transactions. In particular, while the committed update
transactions are forced to appear as executed serially to always perform correct
transitions of the transactional state, read-only transactions, or even executing
and aborted ones, are demanded to observe a consistent state generated by
one of the possible serialization orders of committed update transactions.

In particular, following the definition in [3], a history H guarantees EUS
if H proscribes the anomalies G1a, G1b, G1c and Extended G-update, which
are defined as follows:

− G1a. H contains the operations wi(xi), rj(xi) and ai. This means that
transactions Tj has read a version written by an aborted transaction Ti.

− G1b. H contains the operations wi(xi.k), rj(xi.k), and wi(xi.k) is not the
last write wi(xi) of Ti on x. This means that transaction Tj has read an
intermediate non-committed value of x.

− G1c. The DSG(Hc) graph built on the history Hc derived from H by
removing aborted and executing (i.e., ongoing) transactions contains an
oriented cycle of all dependency edges.

− Extended G-update. The DSG(Hupc
Ti

) graph built on the committed write
transactions inH plus transaction Ti inH contains an oriented cycle with
one or more anti-dependency edges.

Informally speaking, proscribing G1a and G1b means that every transac-
tion can only observe a value that was committed at some point in time. In
addition proscribing G1c and Extended G-update means that for any trans-
actions Ti, Tj there is an unidirectional flow of information from Ti and Tj ,
and if Ti depends on Tj it does not miss the effects of Tj and of all commit-
ted update transactions that Tj depends or anti-depends on, according to the
no-update-conflict-misses property [3].

3.4. Consistency Model 29

The graph considered in the Extended G-update anomaly only includes
committed write transactions and at most one additional transaction Ti be-
longing to one among the following categories: aborted, executing or read-only
transactions. Therefore, EUS does not exclude that the DSG built on all the
executed (or even only committed) transactions contains an oriented cycle with
one or more anti-dependency edges. As a consequence, EUS allows scenarios
such that for a pair of read-only (or also executing and aborted) transactions
T1 and T2, there are two committed write transactions T3 and T4 such that:
(i) T1 depends on T3 but misses the effects of T4, and (ii) T2 depends on T4

but misses the effects of T3. Notice that can happen only if T3 and T4 are not
conflicting because EUS proscribes the anomaly G1c.

Therefore, roughly speaking, under EUS:

− committed write transactions appear as executed sequentially;

− every transaction always observes a consistent state;

− two read-only or executing/aborted transactions may observe two states
produced by two non-compatible sequences of committed transactions,
which differ in the serialization order of non-dependent transactions.

As a consequence, the only discrepancies in the serialization orders observ-
able by read-only, executing and aborted transactions are imputable to the re-
ordering of update transactions that neither conflict (directly or transitively)
on data, nor are causally dependent. In other words, the only discrepancies
perceivable by end-users are associated with the ordering of logically indepen-
dent concurrent events, which has typically no impact on the correctness of a
wide range of real-world applications [3].

3.4.2 Serializability

Serializability isolation level is the target correctness criterion for classical
transactional systems, e.g. database managements systems, and it guaran-
tees that committed transactions appear as executed serially, i.e. sequentially
without overlapping in time. Formally, reporting the definition provided in [3]
in terms of conflict-equivalence, a history H guarantees Serializability if H
proscribes the anomalies G1a, G1b, G1c and G2, the latter defined as follows:

− G2. The DSG(Hc) graph built on the history Hc derived from H by
removing aborted and executing (i.e. ongoing) transactions contains an
oriented cycle having one or more anti-dependency edges.

Therefore, a history H is serializable if the direct serialization graph built
on the committed transactions in H does not contain any oriented cycle, and
supposing that transactions always observe committed values.

30 CHAPTER 3

In a replicated system, usually the designers are interested in a form of
Serializability called One-Copy Serializability [12], also 1CS, such that despite
the replication of data and the distribution of transactions executions, all the
committed transactions appear as executed serially and on a single copy of the
transactional system. Since in this dissertation all the proposed concurrency
control schemes allow transactions T to only externalize (to make visible) the
last write operation executed on a datum x on all the replicas of x and when-
ever T successfully commits, then the same conditions used for Serializability
are adopted to check that a history H satisfies One-Copy Serializability.

Furthermore, a proposal in this dissertation (Chapter 7) targets 1CS (or
equivalently Serializability) extended to also aborted and executing transac-
tions. In particular, a history H guarantees Executing 1CS, also E1CS, if H
proscribes the anomalies G1a, G1b, G1c and G2 where the direct serialization
graph considered in the definition of the anomalies is DSG(H). Therefore
E1CS demands DSG(H) having all transactions in H to not contain any ori-
ented cycle.

This is a stronger form of 1CS (or equivalently Serializability) because, like
EUS, all transactions are forced to observe a consistent transactional state and,
unlike EUS, for any pair of transactions Ti and Tj (even executing or aborted
ones), the states observed by Ti and Tj are generated by two prefixes of the
same sequential history equivalent to H.

Allowing all transactions to observe consistent states is an important prop-
erty for avoiding that applications executing in non-sandboxed environments,
e.g. STMs [2], may behave erroneously upon observing non-serializable histo-
ries.

3.4.3 Opacity

The Opacity consistency criterion [40] is the reference correctness level for in-
memory transactional systems or STMs [90]. The definition of this criterion
is reported because the concurrency control schemes presented in this disser-
tation are targeted also for in-memory transactional systems and for some of
them the reference correctness level locally at each node is precisely Opacity
(Chapter 5).

Unlike the original definition provided in [40], in this dissertation Opacity
has been reformulated in terms of properties on the direct serialization graph.
In particular a history H guarantees Opacity if (i) H proscribes the anomalies
G1a, G1b, G1c and G2 where the direct serialization graph considered in the
definition of the anomalies is DSG(H), and (ii) for any pair of transactions
Ti and Tj in H if Ti ≺H Tj then DSG(H) does not contain an oriented path
from Tj to Ti. The ≺H relation is the happened-before relation [59] or the
real-time order between two transactions in an history H, and Ti ≺H Tj holds

3.4. Consistency Model 31

if the commit operation ci of Ti precedes the begin operation bj of Tj in H.
Therefore Opacity requires that (i) all operations of every committed trans-

action appears as executed at some single indivisible point between the begin
and the commit of the transaction, (ii) operations performed by aborted trans-
actions are not visible, and (iii) every transaction always observes a consistent
transactional state.

Chapter 4

Exploiting Speculation to
Overlap Computation and
Distributed Coordination in
Fully Replicated Systems

This Chapter aims at addressing the issue of reducing the impact of the repli-
cation protocol on the overall transaction execution time for fully replicated
systems via SPECULA [76], namely a replication protocol that exploits spec-
ulative techniques in order to achieve complete overlapping between repli-
cas synchronization and transaction processing activities. In SPECULA each
transaction is executed on a single node, thus avoiding any form of synchro-
nization till it enters its commit phase. Unlike conventional transactional repli-
cation protocols, in SPECULA the commit phase is executed in a non-blocking
fashion: rather than waiting till the completion of the replica-wide synchro-
nization phase, the results (i.e. the write-set) generated by a transaction that
successfully passes a local validation phase are speculatively committed in a
local multi-version data container, making them immediately visible to future
transactions generated on the same node (either by the same or by a different
thread).

To further motivate the potential benefits of a protocol like SPECULA,
the impact of state of the art transactional replication mechanisms is showed
when they are adopted in today’s transactional systems, where the cost of
computation can be considered negligible if compared to the cost of data repli-
cation. In particular a Distributed Transactional Memory platform (DTM) is
evaluated, by using a standard benchmark for Software TM (STM) systems,
namely STMBench7 [41], which was deployed on a cluster of up to 8 nodes,
each one equipped with 2 quad-core Xeon processors at 2.13GHz and 8GB

33

34 CHAPTER 4

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 3 4 5 6 7 8

To
ta

l v
s.

 lo
ca

l e
xe

cu
tio

n
tim

e
ra

tio

Number of nodes

STMBench7 Write Dominated

Figure 4.1: Total vs. local execution time ratio in a replicated STM

of RAM and interconnected via a Gigabit Ethernet. The replication scheme
adopted is the classical deferred update/certification-based scheme [74] opti-
mized for DTMs [24], where the outcome of a transaction is replicated on all
nodes in the cluster via an Atomic Broadcast service and after an optimistic
local execution. The plot in Figure 4.1 shows that, even in complex bench-
marks comprising long-running transactions, like STMBench7, the duration
of the transaction commit phase (which is dominated by the latency of the
distributed replica synchronization scheme) is normally 10x-150x longer than
the local transaction execution time.

By removing the replica synchronization phase from the critical path of
transactions’ execution, SPECULA allows threads to pipeline the computa-
tion of sequences of transactional and/or non-transactional code fragments,
which are processed speculatively. If the outcome of the AB-based transaction
certification scheme is positive, namely in absence of conflicts with concurrent
remote transactions, SPECULA attains complete overlapping between pro-
cessing and communication, with obvious benefits in terms of performance.
In presence of misspeculations, SPECULA detects data and flow dependen-
cies, squashing any affected speculative execution in a completely transpar-
ent fashion. In order to support the rolling-back of multiple speculatively
committed transactions, and to reverse the effects of speculatively executed
non-transactional code, SPECULA relies on three main mechanisms: i) contin-
uations [57], i.e. an abstraction that allows to save/restore threads’ stack and
point in computation; ii) a speculative multi-versioned STM (called SVSTM)
that avoids blocking on read/write operations and guarantees One-Copy Se-
rializability (1CS) [12] for committed transactions, as well as serializability of
the snapshots observed by all the transactions (even those that are eventually
aborted to preserve 1CS); iii) undo-logging techniques to restore the state of
the non-transactional heap.

4.1. Correctness Criteria 35

A fully fledged Java-based prototype of SPECULA has been implemented,
and, in order to achieve full transparency for applications, this relied on au-
tomatic, class-loading-time code instrumentation to inject code necessary to
generate undo-logs for the update of objects residing in the non-transactional
heap, and to orchestrate the usage of continuations. In addition, SPECULA’s
runtime automatically detects non-reversible operations (such as calls to na-
tive code), transparently injecting forced synchronization points that block
speculation in order to guarantee the correct execution of such operations.

SPECULA has been evaluated by using both micro-benchmarks and stan-
dard STM benchmarks. The experimental study shows that SPECULA allows
achieving up to one order of magnitude speedups when compared with a base-
line non-speculative transactional replication protocol.

The remainder of this Chapter is structured as follows. Section 4.1 de-
scribes the consistency criterion guaranteed by SPECULA. The SPECULA
protocol is presented in Section 4.2 while Section 4.3 reports the results of the
experimental analysis.

4.1 Correctness Criteria

The global consistency criterion for SPECULA is One-Copy Serializability
(1CS) which guarantees that the history of the finally committed transactions
executed by any node in Π is equivalent to a serial history as it was executed
on a single node (see Section 3.4.2). At the level of each single (non-replicated)
node, SPECULA guarantees a correctness criterion analogous to the Opacity
(see Section 3.4.3) criterion (which, having been specified assuming a non-
speculative transaction execution model, cannot be straightforwardly applied
to SPECULA). Specifically, SPECULA ensures that the snapshot observable
by any transaction T is equivalent to that generated by a sequential history
of transactions, independently of whether T is eventually aborted or commit-
ted. Just like Opacity, this criterion prevents any anomaly that may arise
by observing system states that could never be generated in any serializable
transaction history, and which could lead, in non-sandboxed environments like
STMs, to arbitrary behaviors (such as infinite loops or crashes).

4.2 The SPECULA protocol

4.2.1 Protocol Overview

Analogously to classical certification-based replication schemes, e.g. [74, 72],
in SPECULA transactions are processed locally on their origin nodes without
relying on inter-replica synchronization facilities till they enter the commit

36 CHAPTER 4

!"#$%&'#

T1: Begin T1: TryCommit T1: Commit

!"#$%&'#

T2: Begin T2: TryCommit T2: Commit

!"#$%&'#

T1: Begin T1: SpecCommit

()%*+)#$',-.$+-%/#

!"#$%&'#

T2: SpecCommit T1: FinalCommit T2: FinalCommit T2: Begin

()%*+)#$',-.$+-%/#

/%/0!"#$%&'#

/%/0!"#$%&'#

gain

idle idle

idle

()%*+)#$',-.$+-%/#

()%*+)#$',-.$+-%/#

(a) Execution example using CERT

!"#$%&'#

T1: Begin T1: TryCommit T1: Commit

!"#$%&'#

T2: Begin T2: TryCommit T2: Commit

!"#$%&'#

T1: Begin T1: SpecCommit

()%*+)#$',-.$+-%/#

!"#$%&'#

T2: SpecCommit T1: FinalCommit T2: FinalCommit T2: Begin

()%*+)#$',-.$+-%/#

/%/0!"#$%&'#

/%/0!"#$%&'#

gain

idle idle

idle

()%*+)#$',-.$+-%/#

()%*+)#$',-.$+-%/#

(b) Execution example using SPECULA

Figure 4.2: Execution examples

phase. However, unlike conventional schemes, if a transaction invokes commit
and passes the local validation stage (that verifies the absence of conflicts
with any concurrent transaction committed so far), it is locally committed in
a speculative manner and the global AB-based transaction certification stage
is executed in an asynchronous fashion. This avoids blocking a thread th that
issued a commit for a transaction T until the outcome of T ’s global certification
is determined. Conversely, T ’s write-set is speculatively committed in the
local STM, making it visible to subsequently starting local transactions, and
th is allowed to execute immediately any subsequent non-transactional and
transactional code block.

This mechanism can lead to the development of two types of causal depen-
dencies with respect to speculatively committed transactions: speculative flow
dependencies and speculative data dependencies. A speculative flow depen-
dency is developed whenever a thread executes code (either of transactional
or non-transactional nature) after having speculatively (but not yet finally)
committed some transaction. A speculative data dependency arises whenever
a read operation of a transaction returns a value created by a speculatively
committed transaction. Furthermore, a thread is said to execute speculatively
if it has developed either a speculative data dependency or a speculative flow
dependency. A speculative dependency from a speculatively committed trans-
action T is removed whenever the final outcome (commit/abort) for T is de-
termined.

In case of an abort event for a speculatively committed transaction, the
above dependencies can lead to cascading abort of speculatively executed
transactions, and require the restoration of non-transactional state (i.e. heap,

4.2. The SPECULA protocol 37

Specula(ve	
 Versioned	
 STM	
 (SVSTM)	

Specula(ve	
 Cer(fier	
 (SC)	

Applica(on	

Begin
Read/
Write Commit Synch

Group	
 Communica(on	
 System	

Speculative
Commit

Final
Commit

Abort TryToCommit

AB-broadcast AB-deliver

Class	
 Loader	

JVM	
 Con(nua(ons	

Figure 4.3: Software architecture of a SPECULA instance

stack, and thread control state) updated during the speculative execution of
non-transactional code. On the other hand, in case speculatively committed
transactions are compatible with the final serialization order established by the
AB-based certification scheme, SPECULA achieves an effective overlapping
between local processing and distributed certification phases. The diagram in
Figure 4.2 illustrates the advantages achievable by SPECULA with respect to a
conventional certification-based replication protocol, hereafter named CERT,
via an example execution of a sequence of two transactions T1 and T2, in-
terleaved with a non-transactional code block. In this example both T1 and
T2 complete their execution without incurring in aborts due to conflicts with
other transactions. With both the protocols, T1 is executed locally and, when
it enters the commit phase, a global certification is started. At this point the
two protocols diverge. With CERT, the application level thread is blocked
until T1’s global certification finishes. Instead, with SPECULA, T1 is spec-
ulatively committed and the application level thread can immediately start
processing the subsequent non-transactional code. Then it executes transac-
tion T2. Hence, in this scenario, SPECULA achieves a reduction of the overall
execution time equal to the duration of T1’s certification.

4.2.2 High Level Software Architecture

The diagram in Figure 4.3 provides a high level overview of the software archi-
tecture of a SPECULA replica. The Application layer starts a transaction by
triggering a Begin event on the Speculative Versioned Software Transactional
Memory, hereafter referred to as SVSTM, which registers the transaction

38 CHAPTER 4

within the SPECULA environment and handles every subsequent read/write
operation executed in the context of that transaction.

The SVSTM layer provides isolation guarantees during transaction execu-
tion and ensures the atomicity of the state alterations associated with Abort,
Speculative Commit and Final Commit events. These properties are guar-
anteed by a multi-version concurrency control scheme that ensures that read
operations performed by a transaction T can be always executed in a non-
blocking manner by properly selecting versions belonging to the most recent
snapshot that has been committed, possibly in a speculative fashion, before
starting T . Further, unlike classical multi-version schemes, SVSTM allows
a speculatively committed transaction T to externalize its write-set to other
locally executing transactions before its final outcome is established. Also,
SVSTM atomically removes T ’s write-set if the certification phase of T deter-
mines that it needs to be aborted, in which case cascading abort of transactions
having speculative (data and/or flow) dependencies from T is triggered.

Additionally, SPECULA needs to cope with scenarios in which a non-
revocable operation (e.g. an I/O operation) is issued by a thread that is ex-
ecuting in speculative mode, i.e. that causally depends on a speculatively
committed state. To tackle this case, SVSTM offers a simple programming
interface, called Synch, that can be used by the applications to force a syn-
chronization point, which blocks speculation on the caller thread until all the
transactions speculatively committed so far by that thread are actually com-
mitted, or at least one of them is aborted (in which case this speculative
execution needs to be squashed).

When the application layer invokes commit (Commit event) for a trans-
action T , SVSTM requests T ’s validation to the Speculative Certifier (SC),
which first attempts to validate T speculatively. If the validation fails, an
Abort event is triggered. Otherwise, SC triggers a Speculative Commit event
to the upper layer, unblocking the application level thread, and activates a
second validation phase aimed at certifying T ’s consistency on a global basis
by relying on the total ordering service provided by the Group Communica-
tion System (GCS). If this second certification phase is also successful, a Final
Commit event is triggered. Otherwise, an Abort event is generated.

In order to support the rollback of chains of speculatively committed
transactions, possibly interleaved by non-transactional code, SPECULA re-
lies on the continuation abstraction, and on the automatic management of
non-transactional code via undo-logging techniques. A continuation reifies
the control state of a thread, and allows resuming the execution at the point
in which the continuation was created. To ensure total transparency for the
applications, SPECULA relies on a customized class loader that instruments
the application code (at the bytecode level) in order to automatically capture
continuations out of the transaction boundaries and transparently create the

4.2. The SPECULA protocol 39

data structures required for reversing non-transactional executions.

4.2.3 Speculative Execution of Transactions

This Section describes in detail the key mechanisms used by SVSTM and SC
components to execute and commit a transaction in SPECULA. The pseudo-
code of the algorithms used by SVSTM and SC is also included, namely the
one used to manage the speculative execution and commit of transactions as
well as the one used to both speculatively and finally certify transactions.

Management of Speculative/Final Snapshots. As in classical multi-
versioned STMs, e.g. [15, 82, 83], SVSTM maintains multiple committed ver-
sions of data and uses a timestamp-based mechanism to associate each trans-
action T with a snapshot that is used during T ’s execution to determine ver-
sion visibility. Unlike existing multi-version concurrency control algorithms,
however, SVSTM allows the addition and removal of speculatively committed
versions. These manipulations of the object versions need to take place with-
out endangering the correctness (i.e. serializability) of the snapshots observed
by currently executing transactions.

To this end SPECULA follows the data model presented in Section 3.2
and the speculative and final versions maintained for each key k are organized
in two separate single-linked lists. As shown in Figure 4.4, a key k is associ-
ated with the pointers to the most recent speculatively and finally committed
versions of an object, denoted, respectively, as k.lastSpec and k.lastFinal. A
(speculatively/finally) committed version created by a transaction T stores (i)
a reference to the previously (speculatively/finally) committed version in the
list (if any), (ii) the associated value val, (iii) the version identifier vid that is
represented as a scalar logical timestamp in SPECULA and that identifies the
(speculatively/finally) committed snapshot generated by T , (iv) a reference to
a Transaction object identifying T .

Since SPECULA has been implemented in a replicated object-based STM
for the experimental evaluation, analogously to what other multi-version STMs
do, e.g. [15], each key and the associated versions of the data model are mapped
in a so called Transactional Container (TC). Therefore, in the object-based
implementation of SPECULA, each transactional object is wrapped in a TC,
an abstraction that provides two main functionalities: i) allowing cluster-wide
object identification, by transparently associating unique IDs to transactional
objects (namely the keys of the data model), and ii) maintaining and man-
aging (speculatively/finally) committed versions of each transactional object
(by pointing to the versions of speculatively/finally committed versions).

The most recent final committed snapshot is tracked using a single scalar
timestamp, called UpperFinID. As in conventional (i.e. non-speculative) multi-

40 CHAPTER 4

versioned STMs, whenever a transaction T is final committed, the UpperFinID
is incremented and the new versions created by T are written back, tagging
them with the current value of UpperFinID.

The management of speculatively committed snapshots is instead regulated
via a Speculative Window (SW), which is a linked list containing an element
for each speculatively committed transaction by the local SPECULA replica.
The advancement of speculative commits is regulated by an additional times-
tamp, called UpperSpecID, which identifies the most recent transaction in the
speculative window (i.e. the last transaction that has been speculatively com-
mitted). Whenever a transaction is speculatively committed, UpperSpecID
is incremented and, for each data item in the transaction write-set, a new
speculative version is added in the associated TC and tagged with the new
value of UpperSpecID. Further, a node is added to the head of SW , causing
its widening. The speculative window is narrowed whenever a final outcome
(commit/abort) is determined for one of the transactions in SW , causing the
removal of the corresponding node.

As it will be shown, the most recent speculatively committed snapshot
by an instance of SVSTM is equivalent to the one obtained by serializing
the speculatively committed (and not aborted) transactions contained in the
speculative window after the sequence of finally committed transactions up to
the one having (finally committed) snapshot id equal to UpperFinID.

Transaction Activation. When a transaction is activated via the Begin op-
eration (Algorithm 1), it is associated with the following data structures: i)
the read-set rs and write-set ws, maintaining, respectively, the set of items
read and written by the transaction; ii) a state variable that can assume val-
ues in the domain {executing, aborted, specCommitted, finCommitted}; iii)
a scalar timestamp, called TXUpperFinID, which determines the most recent
final committed snapshot visible by that transaction and which is set, upon
starting the transaction, to the current value of UpperFinID ; iv) a linked list,
called TX SW , which is initialized at transaction’s activation time, by creat-
ing a copy of the local SVSTM’s SW; v) a reference to a continuation, called
resumePoint, which is initialized to null and is updated upon the specula-
tive commit of the transaction to capture the thread’s execution context at
the end of the transaction; vi) an undoLog that, as it will be discussed in
Section 4.2.4, is used to rollback any update of the non-transactional heap
performed by non-transactional code blocks executed after the speculative
commit of the transaction.

Tracking Speculative Flow Dependencies. In order to track flow de-
pendencies among speculative transactions executed by the same thread, an
additional timestamping mechanism is used. Each thread th is associated with

4.2. The SPECULA protocol 41

Algorithm 1 SVSTM - Transaction activation

1: void Begin(Transaction T)
2: T.ws← ∅
3: T.rs← ∅
4: T.state← executing
5: T.TXUpperF inID ← UpperF inID
6: T.TX SW ← copy(SW)

a scalar timestamp called epoch, which is initialized to zero and incremented
upon the abort of a transaction speculatively committed by th. Further, each
replica maintains a table, called EpochTable that stores the current epoch
of each thread issuing transactions in any of the nodes in Π. As it will be-
come clearer in the following, this mechanism allows detecting whether an
AB-delivered commit request (possibly associated with a remotely originated
transaction) should be discarded due to a speculative flow dependency from
an aborted speculative transaction.

Read and Write Operations. Write operations are managed by simply
buffering the new written values in the transaction’s write-set (lines 1-4 of
Algorithm 2). A read operation issued by a transaction T on a key k is
managed as follows. In order to guarantee that transactions observe the values
that they previously wrote, it is first necessary to check whether k is already in
T ’s write-set and, in the positive case, the read operation returns that k’s value
(lines 9-10 of Algorithm 2). Otherwise, it is checked if k’s speculative versions’
chain contains any version speculatively committed by a transaction present
in T ’s speculative window. If this is true, the most recent of such versions,
say v∗, is the one that should be observed by T , based on the speculative
serialization order that was attributed to it upon starting up its processing.
However, before returning v∗, it is necessary to check whether the transaction
that created v∗ has been aborted in the meanwhile (recall each version stores
a pointer to the creating transaction). In such a case T needs to be aborted
as well (lines 11-14 of Algorithm 2).

Finally, if no speculative version of k is visible, the visibility rule of conven-
tional multi-version algorithms is used, namely it is returned the most recent
final committed version of k having vid less than or equal to TXUpperFinID
(line 16 of Algorithm 2).

As well as write operations do with the write-set, the read operations buffer
the version associated with the returned values in the transaction’s read-set,
in order to validate the transaction execution at commit time. In addition,
both write and read operations always check the status of the transaction and
they force an abort in case the transaction was marked as to be aborted. This

42 CHAPTER 4

is because the SC can concurrently abort a transaction T ′ which T depends
on.

To better clarify the read mechanism, Figure 4.4 shows two example exe-
cutions in which a read operation is issued by a transaction T having TXUp-
perFinID equal to 6 and having in its TX SW two speculatively committed
transactions with timestamps 7 and 8. In the example of Figure 4.4(a), T
observes the speculative version having vid 8, since transaction 8 is in T ’s
TX SW . In the example of Figure 4.4(b), none of the available speculatively
committed versions is observable by T , which is forced to read the most recent
finally committed version having vid equals to 5.

Algorithm 2 SVSTM - Read and Write operations

1: void Write(Transaction T, Key k, Value val)
2: if T.state = aborted then
3: throw ABORT ;

4: T.ws← T.ws \ {〈k,−〉} ∪ {〈k, val〉}
5:

6: Value Read(Transaction T, Key k)
7: if T.state = aborted then
8: throw ABORT
9: if ∃〈k, val〉 ∈ T.ws then

10: return val
11: V ersion v∗ ← mostRececentInSpecWindow(k.lastSpec, T.TX SW)
12: if v∗ 6= null then
13: if v∗.commitTx.state = aborted then
14: throw ABORT
15: else
16: v∗ ← mostRecentF inal(k.lastF inal, T.TXUpperF inID)

17: T.rs← T.rs ∪ {〈k, v∗〉}
18: return v∗.val

Commit Requests. The above described visibility rules ensure that every
transaction T always observes a snapshot equivalent to the one generated by
the sequential history that includes the (globally validated) final committed
transactions up to T ’s TXUpperFinID followed by the speculatively commit-
ted transactions in T ’s TX SW. On the other hand, in SPECULA read-only
transactions may have to be aborted due to the detection of speculative de-
pendencies.

As the speculative snapshot observed by a transaction is guaranteed to
be serializable, SPECULA can spare read-only transactions from the cost of a
dedicated (and very expensive) AB-based validation phase. Conversely, SPEC-
ULA adopts a lazy validation mechanism that delegates the validation of read-

4.2. The SPECULA protocol 43

Key	
 k	

5	
 3	

8	
 6	

lastSpec!

lastFinal!

1	

Transac1on	
 T1	

TX_SW = {7,8}!
TXUpperFinID = 6 !
	

Prev. version

Read version

Transactional
 container Speculatively committed versions

Finally committed versions

(a) Read of a speculative version

5	
 3	

15	
 6	
 1	

Transac,on	
 T2	

TX_SW = {7,8}!
TXUpperFinID = 6 !
	

Prev. version

Read version

Key	
 k	

lastSpec!

lastFinal!

Transactional
 container Speculatively committed versions

Finally committed versions

(b) Read of a final version

Figure 4.4: Versioning in SVSTM and examples of read operations

only transactions (that have observed some speculatively committed value) to
the first update transaction subsequently executed by the same thread. By
this mechanism, whenever a thread th requests the commit for an update
transaction Tup, it does not only validate Tup but also any speculative read-
only transaction Tro that th executed before Tup and after the last update
transaction preceding Tup. This set of read-only transactions is denoted as
RO(Tup).

More in detail, as an update transaction Tup requests to commit (lines 1-9
of Algorithm 3), it is first locally validated to check for conflicts with already
(both speculatively and finally) committed transactions. This validation sim-
ply entails iterating over Tup’s read-set and checking whether Tup would still
observe the same versions if its execution were started in that moment (lines
1-6 of Algorithm 4).

If the local validation phase is successful, the commit request of Tup is sent
via AB, along with the following information: the identifiers of the objects in
Tup’s read-set, its write-set, its speculative window, and the identifiers of the
speculative transactions from which there is a read-from dependency (wrt Tup

and the read-only transactions in RO(Tup)). The latter set of transactions is
denoted as SRF (RO(Tup)). Finally, in order to allow remote nodes to track
speculative flow dependencies, the unique identifier of the thread executing
Tup and its current epoch value are also sent via AB.

Speculative Commit. The speculative commit of a transaction T by a

44 CHAPTER 4

Algorithm 3 SVSTM - Commit request and speculative/final commit (thread
th of node pi)

1: void Commit(Transaction T)
2: if T.state = aborted then
3: throw ABORT
4: if validateLocal(T) then
5: if T.ws 6= ∅ then
6: AB-broadcast([T, th.epoch, th.id, SRF (RO(T)), RO(T)])

7: specCommit(T)
8: else
9: throw ABORT

10:

11: void specCommit(Transaction T)
12: UpperSpecID + +
13: for all 〈k, val〉 ∈ T.ws do
14: addV ersion(k.lastSpec, val, UpperSpecID)

15: widen(SW, T)
16: T.state← specCommitted

17:

18: void finalCommit(Transaction T)
19: for all 〈k, val〉 ∈ T.ws do
20: addV ersion(k.lastF inal, val, UpperF inID + 1)

21: UpperF inID + +
22: put(Spec2FinIDs, T, UpperF inID)
23: if isLocal(T) then
24: shrink(SW, T)

25: T.state← finCommitted

thread th implies two main operations. First, a checkpoint of the current
thread execution context is generated by creating a continuation and storing
it in T ’s resumePoint variable. This continuation will be used in case it is
later necessary to rollback the execution of (transactional/non-transactional)
code that is processed by th in a speculative fashion, following the speculative
commit of T . If T is an update transaction, it is also necessary to write-back
the speculative versions that T updated/created (lines 11-15 of Algorithm 3).
This is done by atomically i) increasing UpperSpecID, ii) adding the new spec-
ulatively committed versions of the keys in T ’s write-set at the head of the
corresponding chains of speculative versions and (iii) adding a new node asso-
ciated with T to the head of SW of the local SVSTM.

Global Validation and Final Commit. When an AB message is delivered
to node pi, which requests the commit of a transaction Tup originated by
thread th running on node pj , Tup is validated to detect whether it is possible

4.2. The SPECULA protocol 45

to finally commit it. To this end, it is first checked in which epoch Tup has been
originated. If Tup’s epoch is less than the current value stored in EpochTable
for th, it means that Tup has a speculative flow dependency from an aborted
transaction and can be discarded. If Tup is tagged with a greater epoch value
than the one currently associated with th at node pi, say e′, the corresponding
entry in EpochTable is updated (lines 2-9 of Algorithm 5).

Next, it is checked whether the read-only transactions RO(Tup) and Tup

have read a valid snapshot. To this end it is checked if the transactions in
SRF (RO(Tup)) have been, in the meanwhile, finally committed at pi. This is
achieved by looking up a table, called Spec2FinIDs, that maintains a map-
ping between the identifier of each transaction T that is both speculatively
committed and finally committed, and the UpperFinID snapshot that was at-
tributed to T when it was finally committed. By the causal ordering property
of the AB service, at the time in which Tup is AB-delivered, it follows that
also the update transactions SRF (RO(Tup)) from which Tup (via RO(Tup))
depends indirectly must have already been final delivered. Therefore, if any
transaction T ∗ in SRF (RO(Tup)) cannot be found in Spec2FinIDs, it means
that T ∗ must have been already aborted at pi (lines 10-15 of Algorithm 5).

Before finally committing a read-only transaction TRO in RO(Tup), it is
necessary to perform read-set validation as if it was an update transaction. In
fact, if at this stage transactions in RO(Tup) do not undergo a validation pro-
cedure, there could be executions that violate 1CS in case Tup was successfully
validated.

To better clarify this issue, an example execution is considered, in which
a transaction T1 speculatively commits on node p1 by writing value valx1 on
object x and transaction T2 speculatively commits on node p2 by writing value
valy2 on object y. Further there is a thread th on p2 that executes a read-only
transaction TRO by reading the speculative value valy2 committed by T2 and a
value valx0 of x that precedes the one committed by T1. Even if this could be
admissible because T1 and T2 do not conflict and TRO reads from a serializable
snapshot in which T2 appears as executed before T1, TRO has to be aborted
during the global validation of transaction Tup such that TRO ∈ RO(Tup).
This is because there can exist another read-only transaction T̄RO on p1 that
executes two read operations on both x and y and, unlike TRO, it observes the
speculative commit of T1 and it misses the one of T2. Since both T1 and T2

finally commit, this leads to a non-serializable execution in which T1 appears
as committed before T2 according to the observation of transaction T̄RO, while
T2 appears as committed before T1 according to the observation of TRO.

Therefore transactions TROin RO(Tup) as well as Tup are validated by
using the validateGlobal function (lines 16-20 of Algorithm 5 and lines 8-12
of Algorithm 4), and clearly if any of the transactions in RO(Tup) is aborted,
also Tup has to be aborted.

46 CHAPTER 4

Algorithm 4 SC - Local and global validation

1: bool validateLocal(Transaction T)
2: if T.ws 6= ∅ then
3: for all 〈k, v∗〉 ∈ T.rs do
4: if v∗.val 6= k.lastF inal.val ∧ v∗.val 6= k.lastSpec.val then
5: return ⊥
6: return >
7:

8: bool validateGlobal(Transaction T)
9: for all 〈k, v〉 ∈ T.rs do

10: if k.lastF inal.vid > T.TXUpperF inID ∧
k.lastF inal.commitTx 6∈ T.TX SW then

11: return ⊥
12: return >

To this end it is first verified whether, for each key k in Tup’s read-set
(respectively TRO’s read-set), k’s most recent finally committed version, say
k.lastF inal, has vid less than or equal to Tup’s TXUpperFinID (respectively
TRO’s TXUpperFinID). This is certainly a safe read, given that Tup (respec-
tively TRO) has read a non-speculative version of k, which has not been in the
meanwhile overwritten by more recent versions, and is hence valid. If this is
not the case, it is checked whether the transaction that created k.lastF inal,
say T †, is in the speculative window of Tup (respectively TRO). If this is
false, it means that Tup needs to be aborted as it depends on a speculative
version that has been either aborted, or overwritten by a more recent (finally
committed) version.

If Tup is a remote transaction, an additional test is performed before ap-
plying its write-set, in order to determine whether Tup’s commit invalidates
any local speculatively committed transaction. To this end it is checked, for
each transaction T ′ in the node’s SVSTM whether its read-set intersects with
the write-set of Tup. In this case, T ′ is aborted, triggering the cascading abort
of any other speculative transaction having flow/data dependencies with T ′.

At this point the node’s UpperFinID is increased, and the write-set of Tup is
applied by creating new finally committed versions in the corresponding chains
of versions and tagging them with the new UpperFinID value as vid. Finally,
if Tup had been previously speculatively committed on node pi (i.e. pi = pj),
it is removed from the SVSTM’s SW (lines 17-23 of Algorithm 3).

Abort. If a transaction T is aborted while it is still executing, its state
is simply marked as aborted. The state of a transaction is checked by the
SVSTM’s layer any time a Read/Write/Commit operation is issued for that
transaction, which guarantees that T will be aborted before it can speculatively

4.2. The SPECULA protocol 47

Algorithm 5 SC - Delivery of a commit broadcast message on node pi
1: void AB-deliver([T,epochID,thID,SRF(RO(T)),RO(T)])
2: int epoch← get(EpochTable, thID)
3: if epoch 6= null ∧ epochID < epoch then
4: T.state← aborted
5: if isLocal(tx) then
6: Abort(T)

7: return
8: else
9: put(EpochTable, thID, epochID)

10: for all stx ∈ SRF (RO(T)) do
11: if stx 6∈ Spec2FinIDs then
12: T.state← aborted
13: if isLocal(T) then
14: Abort(T)

15: return
16: for all stx ∈ RO(tx) ∪ {T} do
17: if validateGlobal(stx) = ⊥ then
18: if isLocal(T) then
19: Abort(T)

20: return
21: if isRemote(T) then
22: for all stx ∈ specActiveTx do
23: if (stx.rs ∩ T.ws) 6= ∅ then
24: stx.state← aborted
25: Abort(stx)

26: finalCommit(T)

commit and externalize its writeset.

Additional care needs to be taken, instead, if the transaction T that is
being aborted has already been speculatively committed. In this case, in fact,
there may be locally running transactions that include T in their speculative
windows, and which may access some of the objects for which T has pro-
duced a speculative version while T ’s abort procedure is being concurrently
executed. In order to avoid anomalies, it is also required that the abort of
T is performed atomically with the abort of any transaction in SW that has
(possibly transitive) speculative dependencies from T (otherwise, concurrently
executing transactions may miss the snapshot of T and observe the snapshot
created by transactions that depend on T). If th is denoted as the thread that
executed a transaction T that is being aborted, then the abort procedure re-
cursively aborts all the transactions that were speculatively committed by th
after T in reverse chronological order (from the most recent to the the oldest).
Next, the abort procedure is called on any other transaction in SW that has

48 CHAPTER 4

read from T . Finally, the state of T is set to aborted, which allows atomically
preventing that future reads can observe any of T ’s speculatively committed
version.

Garbage Collection. In order to allow the garbage collection of specula-
tive and final committed versions, whenever a transaction is final committed
or aborted, SPECULA evaluates what are the oldest final and speculative
snapshots visible by any locally running transaction. These snapshots corre-
spond to the minimum value, across any active transaction T , of T ’s TXUp-
perFinID and, respectively, of the minimum speculative snapshot identifier in
T ’s TX SW .

4.2.4 Speculative Execution of Non-Transactional Code

This Section describes the support of SPECULA for the speculative execution
of non-transactional code. Even though the description is strictly related to the
specific Java implementation of SPECULA, the presented concepts remain still
valid in case other languages are used. In particular, changing the technology
only poses the issue of mapping the concepts used here onto different specific
solutions.

In case of misspeculation, SPECULA may have to reverse the execution
of a sequence of transactional and non-transactional code blocks. As already
discussed, continuations are used to allow resuming the execution flow at the
end of the most recent valid transaction committed by each thread. In or-
der to rollback the alterations performed on the heap by non-transactional
code, SPECULA relies on undo-logs. Undo-logs are built in a totally trans-
parent fashion for the application by intercepting 8 different Java bytecode
instructions issuing modifications of fields and arrays. Automatic bytecode
instrumentation is achieved by replacing the Java default class-loader with a
custom class-loader that performs dynamic bytecode rewriting at the moment
in which any Java class is loaded by the JVM.

When any of these bytecode instructions is executed by a thread th, the
pre-image of the target address is saved in the undoLog before being overwrit-
ten with the new value. An undoLog keeps just one value per memory address,
namely the oldest one, and is associated with the last speculatively commit-
ted transaction T that was executed by th. If the squashing of a speculative
execution causes the abort of th, the undo-log is used to restore the heap state
to the snapshot at the moment in which the continuation that is going to be
resumed was captured (that is at the end of transaction T).

Another issue that is tackled by SPECULA’s automatic bytecode instru-
mentation framework is the transparent addition of forced synchronization
blocks preceding any non-revocable operation (e.g. I/O operations). More in

4.2. The SPECULA protocol 49

detail, SPECULA leverages on the JaSPEx [7] library to detect, at the byte-
code level, calls to native code via JNI and other non-reversible operations
(e.g. invocations of the java.io.* package), and automatically insert bytecode
that forces the thread to wait for the validation of any speculatively committed
transaction.

4.2.5 Correctness Arguments

This Section provides some informal arguments on the correctness of SPEC-
ULA with respect to the criteria mentioned in Section 4.1. A formal proof is
not reported since it is easy to show in the following how SPECULA guar-
antees 1CS on the set of finally committed transactions and that every read
operation always observes a serializable execution.

The assurance of 1CS stems directly from the fact that every final com-
mitted transaction, is validated deterministically and in the same final order
by all the replicas in the system. Specifically, if a transaction Ti has devel-
oped any speculative dependency from a speculatively committed transaction
Tj , SPECULA validates Ti only after having finally committed, or aborted,
Tj . In the latter case, Ti will be aborted either when Tj is delivered, or dur-
ing the validation of Ti that takes place when the commit request of Ti is
AB-delivered. Now assume that all the transactions Tj from which Ti has de-
veloped a speculative dependency have been committed at the time in which Ti

is validated. In this case, the validation of Ti detects whether Ti would observe
the same snapshot as if it was executed via a non-speculative multi-version
scheme starting on a committed snapshot that includes all the transactions
committed before Ti according to the AB-based serialization order.

On the other hand the following description analyzes how SPECULA en-
sures serializability of the snapshots observed by transactions (including those
that are eventually aborted) throughout their execution. When a transaction
T is activated at a node pi, SPECULA speculatively serializes T after the to-
tally ordered history of (update) transactions, sayH, composed by i) the prefix
of finally committed transactions, followed by ii) the sequence of speculatively
committed transactions ordered according to pi’s SW . The latter ones have
been locally validated before being speculatively committed. This guarantees
serializability of H. During the execution of T , new transactions may com-
mit, either speculatively or finally. In both cases, however, the new versions
created by these transactions cannot be observed by T due to the visibility
conditions regulating the execution of read operations. Also, the abort of any
of the transactions in T ’s TX SW , say T ∗, does not compromise serializability
of the snapshot observable by T . In fact, the versions speculatively commit-
ted by T ∗ are only removed by the underlying SVSTM after T ’s execution is
completed (see the “Garbage Collection” paragraph in Section 4.2.3).

50 CHAPTER 4

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

ec
)

Number of nodes

baseline
4 spec. level
8 spec. level

16 spec. level
64 spec. level

(a) Throughput.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 3 4 5 6 7 8

De
liv

er
y

La
te

nc
y

(m
se

c)

Number of nodes

baseline
4 spec. level
8 spec. level

16 spec. level
64 spec. level

(b) Delivery Latency.

Figure 4.5: Bank benchmark.

4.3 Experimental Evaluation

In order to assess the performance gains achievable by SPECULA, a non-
speculative multi-versioned replicated STM has been used as baseline, which,
analogously to SPECULA, relies on an AB-based distributed certification
phase taking place whenever an update transaction reaches the commit stage [74,
72]. The local STM exploited for the baseline is JVSTM [15], a state of the art
multi-versioned STM that never blocks or aborts read-only transactions. The
AB layer relies on the LCR algorithm [42], a recent ring-based AB algorithm
that is known for its robust performance especially at high throughput. The
results reported in this section were obtained using the same experimental
platform employed to produce the plot reported in Figure 4.1.

In addition to the mechanisms described in Section 4.2, the SPECULA
prototype introduced a simple throttling mechanism that limits the maximum
number of speculatively committed transactions pending at any node, i.e. the
speculation level. By treating the speculation level as an independent pa-
rameter, the impact of SPECULA has been assessed on various performance
indicators, in particular the latency of the AB layer and the transaction abort
rate, as well as the throughput of the system.

The first considered workload is a synthetic benchmark, called Bank, that
was selected to assess the maximum gains achievable by SPECULA. Bank ex-
clusively entails update transactions that simulate the transfers among bank
deposits, and was configured not to generate any conflict. These are clearly
ideal conditions for SPECULA, and the plots in Figure 4.5 confirm the achieve-
ment of striking performance gains, with speedups varying in the range 4x (for
8 nodes) to 13x (for 2 nodes). Despite the simplicity of this scenario, these
data allow to draw some interesting conclusions. The plot in Figure 4.5(a)

4.3. Experimental Evaluation 51

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

ec
)

Number of nodes

baseline
4 spec. level
8 spec. level

16 spec. level
64 spec. level

(a) Throughput.

 10

 100

 1000

 10000

 2 3 4 5 6 7 8

De
liv

er
y

La
te

nc
y

(m
se

c)

Number of nodes

baseline
4 spec. level
8 spec. level

16 spec. level
64 spec. level

(b) Delivery Latency.

 0

 10

 20

 30

 40

 50

 60

 70

 2 3 4 5 6 7 8

Ab
or

t r
at

e
(%

)

Number of nodes

baseline
4 spec. level
8 spec. level

16 spec. level
64 spec. level

(c) Abort Rate.

Figure 4.6: STMBench7 write dominated.

52 CHAPTER 4

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

ec
)

Number of nodes

baseline
4 spec. level
8 spec. level

16 spec. level
64 spec. level

(a) Throughput.

 10

 100

 1000

 2 3 4 5 6 7 8

De
liv

er
y

La
te

nc
y

(m
se

c)

Number of nodes

baseline
4 spec. level
8 spec. level

16 spec. level
64 spec. level

(b) Delivery Latency.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8

Ab
or

t r
at

e
(%

)

Number of nodes

baseline
4 spec. level
8 spec. level

16 spec. level
64 spec. level

(c) Abort Rate.

Figure 4.7: STMBench7 read dominated.

shows that increasing the speculation level beyond 8 does not provide any ad-
ditional speedup for SPECULA. This is explainable by observing in the plot
in Figure 4.5(b) that the AB-delivery latency grows very rapidly for specula-
tion levels above 8, highlighting that SPECULA has already hit the maximum
throughput of the underlying AB implementation.

The second considered workload is the write-dominated configuration of
STMBench7 [41]. STMBench7 is a complex benchmark that features a num-
ber of operations with different levels of complexity over an object-graph with
millions of objects. In the write-dominated configuration, this benchmark gen-
erates around 50% of update transactions and yields, with the baseline replica-
tion protocol, a moderate contention level causing an abort rate ranging from
5% (for 2 nodes) to around 15% (for 8 nodes). Also in this scenario (see Fig-
ure 4.6) SPECULA achieves remarkable speedups, up to a 4.4x factor in the
configuration with 6 nodes and speculation level equal to 8. Interestingly, un-
like in the previously analyzed scenario, with STMBench7, an excessively high
setting for the speculation level can actually hinder SPECULA’s performance.
This is justifiable observing the trends of the abort rate and AB-delivery la-

4.3. Experimental Evaluation 53

tency in the two plots of Figure 4.6(b) and 4.6(c). For speculation levels lower
than 8, the AB-delivery (in log scale) remains comparable with that of the
baseline, and the abort rate is even lower when using SPECULA. This reduc-
tion of the transaction abort probability is imputable to the fact that the burst
of speculatively committed transactions by each replica has a high chance of
being final delivered without the interleaving of messages associated with re-
mote transactions, at least at low/moderate levels of load for the AB layer.
As the speculation level increases, on the other hand, the GCS load accord-
ingly increases, and the chances that the burst of transactions speculatively
committed by a node are final delivered without interleaving commit requests
for remote transactions decrease drastically. The result is a rapid growth of
the abort rate, especially as the number of nodes, and hence the concurrency
in the system, increases.

Finally, Figure 4.7 analyzes the read-dominated workload of STMBench7,
a setting in which this benchmark generates 94% of read-only transactions.
This is clearly a least favorable scenario for SPECULA since, on average, 94%
of the incoming transactions can be executed very efficiently by the baseline
algorithm, i.e. locally and without the risk of incurring in aborts or blocks.
Also, the speculative transaction processing mechanism at the core of SPEC-
ULA is triggered only for 6% of the transactions. Nevertheless, even in this
unfavorable scenario, SPECULA achieves comparable, or even higher through-
put in almost all the evaluated scales of the platform (Figure 4.7(a)). The only
exception is the case of 2 nodes, where the baseline can benefit from a sig-
nificantly lower AB-delivery latency (Figure 4.7(b)). The abort rates for this
scenario remain below 7% both for the baseline and for SPECULA in all the
considered settings (Figure 4.7(c)).

Analogously to the Bank benchmark’s scenario, also in this case increasing
the speculation level beyond 4 does not pay off in SPECULA. In fact, as two
update transactions are on average interleaved by a relatively high number
of read-only transactions (that do not incur in any replica synchronization
phase in the baseline) the gains achievable in SPECULA by overlapping the
phases of processing and replica coordination (for update transactions) are
quite reduced.

Chapter 5

Reducing Full Replication
Costs by Leveraging
Transactions Migration

This Chapter advances the state of the art by presenting an innovative, fully
decentralized, LocalIty-aware LeAse-based repliCated TM (Lilac-TM) pro-
tocol [47], whose aim is to maximize the system throughput via a distributed
self-optimizing lease circulation scheme, based on the idea of dynamically de-
termining whether to migrate transactions to the nodes that own the leases
required for their validation, or to demand the acquisition of these leases by
the transaction originating node.

Lilac-TM builds on and extends the Asynchronous Lease-based Certifica-
tion (ALC) protocol [18] (which has been already overviewed in Section 2.1).
As in conventional transaction certification-based protocols [74, 72, 81], in
ALC a transaction is executed exclusively on its originating node, which al-
lows for higher scalability compared to classic active replication schemes [55].
Also, in ALC the replicas run a consensus protocol (embodied by an Atomic
Broadcast) only in order to establish leases on portions of the data set, rather
than to determine the serialization order of every update transaction (as done
in certification-based protocols). Leases grant nodes temporary privileges on
the management of a subset of the replicated data-set, with the advantage
that an update transaction can be locally validated if, at commit time, the
execution site owns the leases on the data-objects accessed by the transac-
tion. Further, the node’s ownership of a lease on a data set shelters the local
transactions from aborts due to conflicts with remote transactions, which are
the most expensive conflicts to deal with, as they are detected only at commit
time and after an expensive distributed coordination phase.

Therefore the ALC scheme is able to exploit data locality to reduce the

55

56 CHAPTER 5

impact of data replication because transactions that already own all the nec-
essary leases on the originating nodes can be replicated via a more cheaper
reliable broadcast service, i.e. URB, and they do not undergo a more expensive
consensus protocol among the replicas.

Nevertheless, if on one hand ALC is proved to provide significant gains
if compared to classical certification-based schemes in the particular cases
in which the workload is almost completely partitioned among replicas, it
can suffer from the same replication costs of certification-based protocols in
scenarios that do not reveal considerable gaps among nodes in the frequency
of accesses on a given data-subset. In those scenarios, in fact, ALC is not able
to maintain low the leases circulation frequency, and the scheme may collapse
to a certification-based approach in which an instance of consensus is triggered
for any executed transaction.

Lilac-TM’s flexibility in deciding whether to migrate code or data not
only allows it to take advantage of the data locality present in many appli-
cation workloads, but also to further enhance it by turning a node N that
frequently accesses a set of data items D into an attractor for transactions
that access subsets of D (and that could be committed by N avoiding any
lease circulation). This allows Lilac-TM to provide two key benefits: (i)
limiting the frequency of lease circulation, and (ii) enhancing the contention
management efficiency. In fact, with Lilac-TM, conflicting concurrent trans-
actions have a significantly higher probability of being executed on the same
node, which prevents them from incurring the high costs of distributed con-
flicts. The contributions of this Chapter are the following:

1. Lilac-TM is presented, namely a locality-aware lease-based replication
protocol for fully replicated transactional systems that optimizes lease
circulation by dynamically deciding whether to circulate transactional
data or transactional code. A fully-fledged prototype of Lilac-TM is
also presented, which implements a fully replicated Software Transac-
tional Memory (STM) based on Java technology.

2. ALC [18] generates a single lease request for the entire transaction data-
set. This limits the exploitation of data-locality, since another local
transaction may reuse the lease only if its data set is a subset of another
lease owned by the node. To allow efficient exploitation of data locality
by Lilac-TM, a new version of ALC that supports fine-grained leases
(FGL-ALC) is presented, which, instead of acquiring one lease for the
entire data set, acquires a set of leases, one per each item of the data
set.

3. A comprehensive comparative performance analysis is conducted, by
evaluating the performance gains obtained by the new locality-aware in-

5.1. Overview of ALC 57

frastructure and algorithms developed in comparison with ALC. The ex-
perimental results establish that replacing ALC by FGL-ALC yields sig-
nificant performance boost for workloads possessing data locality. When
Lilac-TM is used on top of the new lease-management infrastructure,
performance gains are increased significantly, providing up to 3.2 times
the throughput of the baseline implementation.

The remainder of this Chapter is structured as follows. Section 5.1 gives
an overview of the ALC protocol. The Lilac-TM protocol is presented in
Section 5.2, while Section 5.3 provides arguments on the correctness of Lilac-
TM. Section 5.4 reports the results of the experimental analysis.

5.1 Overview of ALC

The original ALC protocol (fully described in [18]) works as follows. A trans-
action is executed based on local data, avoiding any inter-replica synchroniza-
tion until it enters its commit phase. At this stage, ALC acquires a lease
for the transaction’s accessed data items, before proceeding to validate the
transaction. Leases are associated with data items indirectly, namely through
conflict classes. This allows to flexibly control the granularity of the leases
abstraction, trading off accuracy (i.e., avoidance of aliasing problems) for ef-
ficiency (amount of information exchanged among nodes and maintained in-
memory) [6]. In case a transaction T is found to have accessed stale data, T
is re-executed without releasing the lease. This ensures that, during T ’s re-
execution, no other replica can update any of the data items accessed during
T ’s first execution, which guarantees the absence of remote conflicts on the
subsequent re-execution of T , provided that the same set of conflict classes
accessed during T ’s first execution is accessed again.

To establish lease ownership and disseminate updates of committed trans-
actions, ALC employs the OAB communication service for delivering lease
request messages, and the URB service for delivering data items of committed
transactions and for lease-release messages.

The ownership of a lease ensures that no other replica will be allowed
to validate any conflicting transaction, making it unnecessary to enforce dis-
tributed agreement on the global serialization order of transactions. ALC
takes advantage of this by limiting the use of atomic broadcast exclusively for
establishing the lease ownership. Subsequently, as long as the lease is owned
by the replica, transactions can be locally validated and their updates can be
disseminated using URB, which can be implemented in a much more efficient
manner than OAB.

58 CHAPTER 5

Distributed STM API Wrapper

Local STM

Distributed
Transaction
Dispatcher

Lease Manager

Group Communication Service

Application

Replication
Manager

Transaction
Forwarder

Figure 5.1: Middleware architecture of a Lilac-TM replica.

5.2 Lilac-TM

Figure 5.1 provides an overview of the software architecture of each replica of
Lilac-TM, highlighting in gray the modules that were either re-designed or
that were not originally present in ALC.

The top layer is a wrapper that intercepts application level calls for trans-
action demarcation without interfering with application accesses (read/write)
to the transactional data items, which are managed directly by the underlying
local STM layer. This approach allows transparent extension of the classic
STM programming model to a distributed setting.

The prototype of Lilac-TM has been built by extending the ALC im-
plementation shipped in the GenRSTM framework [19]. GenRSTM has been
designed to support, in a modular fashion, a range of heterogeneous algorithms
across the various layers of the software stack of a replicated STM platform.
Lilac-TM inherits this flexibility from GenRSTM. The object-based imple-
mentation of TL2 [30] provided in GenRSTM is also used as the local STM
layer. Since the TL2 algorithm is not multi-version based, transactions are
always allowed to observe at most the last committed version of a key in the
previously defined data model. As in SPECULA, a key is represented by a
Transactional Container (TC) that wraps an object by pointing to the its last
committed version.

The Replication Manager (RM) is the component in charge of interfacing
the local STM layer with its replicas deployed on other system nodes. The
RM is responsible of coordinating the commit phase of both remote and lo-
cal transactions by: (i) intercepting commit-request events generated by local
transactions and triggering a distributed coordination phase aimed at deter-
mining transactions’ global serialization order and detecting the presence of

5.2. Lilac-TM 59

conflicts with concurrently executing remote transactions; and (ii) validat-
ing remote transactions and, upon successful validation, committing them by
atomically applying their write-sets in the local STM.

At the bottom layer there is a GCS (e.g. Appia [66]), which provides the
view synchronous membership, OAB and URB services.

The role of the Lease Manager (LM) is to ensure that no two replicas si-
multaneously disseminate updates for conflicting transactions. To this end,
the LM exposes an interface consisting of two methods, GetLease() and Fin-
ishedXact(), which are used by the RM to acquire/release leases on a set of
data items. This component was originally introduced in ALC and has been
re-designed in this work to support fine-grained leases. As explained in more
detail in Section 5.2.1, fine-grained leases facilitate the exploitation of locality
and consequently reduce lease circulation.

The Transaction Forwarder (TF) is responsible for managing the forward-
ing of a transaction to a different node in the system. The transaction for-
warding mechanism represents an alternative mechanism to the lease-based
certification scheme introduced in ALC. Essentially, both transaction forward-
ing and lease-based replication strive to achieve the same goal: minimizing the
execution rate of expensive Atomic Broadcast-based consensus protocols to de-
termine the outcome of commit requests. ALC’s lease mechanism pursues this
objective by allowing a node that owns sufficient leases to validate transactions
and disseminate their write-sets without executing consensus protocols. Still,
acquiring a lease remains an expensive operation, as it requires the execution
of a consensus protocol.

The transaction forwarding scheme introduced in this work aims at re-
ducing the frequency of lease requests triggered in the system, by migrating
the execution of transactions to remote nodes that may process them more
efficiently. This is the case, for instance, if some node pi owns the set of leases
required to certify and commit a transaction T originated on some remote node
pj . In this scenario, in fact, pi could validate T locally, and simply disseminate
its write-set in case of success. Transaction migration may be beneficial also
in subtler scenarios in which, even though no node already owns the leases
required to certify a transaction T , if T ’s originating node were to issue a
lease request for T , it would revoke leases that are being utilized with high
frequency by some other node, say pk. In this case, it is preferable to forward
the transaction to pk and have pk acquire the lease on behalf of T , as this
would reduce the frequency of lease circulation and increase throughput in the
long term.

The decision of whether to migrate a transaction’s execution to another
node or to issue a lease request and process it locally is far from being a
trivial one. The transaction scheduling policy should take load balancing
considerations into account and ensure that the transaction migration logic

60 CHAPTER 5

avoids to excessively overload any subset of nodes in the system. In Lilac-
TM, the logic for determining how to manage the commit phase of transactions
is encapsulated by the Distributed Transaction Dispatching (DTD) module.
This dissertation proposes two decision policies based on an efficiently solvable
formulation in terms of an Integer Linear Programming optimization problem.

In the following, the key contributions of Lilac-TM are described, i.e. the
fine-grained lease management scheme, the TF and the DTD.

5.2.1 Fine-Grained Leases

In ALC, a transaction requires a single lease, associated with its data-set in
its entirety. A transaction T , attempting to commit on a node, may reuse a
lease owned by the node only if T ’s data-set is a subset of the lease’s items set.
Thus, each transaction is tightly coupled with a single lease ownership record.
This approach has two disadvantages: i) upon the delivery of a lease request
by a remote node that requires even a single data item from a lease owned
by the local node, the lease must be released, causing subsequent transactions
accessing other items in that lease to issue new lease requests; ii) if a transac-
tion’s data-set is a subset of a union of leases owned by the local replica but is
not a subset of any of them, a new lease request must be issued. This forces
the creation of new lease requests, causing extensive use of AB-broadcast.

To exploit data-locality, a new lease manager module has been introduced,
which decouples lease requests from the requesting transaction’s data-set.
Rather than having a transaction to acquire a single lease encompassing its
entire data-set, each transaction acquires a set of fine-grained Lease Ownership
Records (LORs), one per accessed conflict class.

The new design only affected the original ALC’s Lease Manager (LM) while
the ALC’s Replication Manager (RM) was not changed. In fact the latter still
interfaces with the LM via the GetLease() and FinishedXact() methods for
acquiring and releasing leases, respectively.

As in ALC, Lilac-TM maintains the indirection level between leases and
data items through conflict classes. This allows flexible control of the leases
abstraction granularity. The mapping between a data item and a conflict class
is abstracted away through the getConflictClasses() primitive, taking a set of
data items as input parameter and returning a set of conflict classes.

Each replica maintains one main data structure for managing the estab-
lishment/release of leases: CQ (Conflict-Queues), an array of FIFO queues,
one per conflict class. The CQ keeps track of conflict relations among lease
requests of different replicas. Each queue contains LORs, each storing the
following data: (i) proc: the address of the requesting replica; (ii) cc: the
conflict class this LOR is associated with; (iii) activeXacts: a counter keep-
ing track of the number of active local transactions associated with this LOR,

5.2. Lilac-TM 61

initialized to 1 when the LOR is created; and (iv) blocked : a flag indicat-
ing whether new local transactions can be associated with this LOR - this
flag is initialized to false when the LOR is created (in the createLorsForCon-
flictClasses primitive), and set to true as soon as a remote lease request is
received.

Algorithm 6 Lease Manager - Requesting leases (node pi)

1: FIFOQueue〈LOR〉
2: CQ[NumConflictClasses]← {⊥, . . . ,⊥}
3:

4: Set〈LOR〉 GetLease(Set DataSet)
5: ConflictClass[] CC ← getConflictClasses(DataSet)
6: if ∃(Set〈LOR〉)S ⊆ CQ s.t. ∀cc ∈ CC(∃lor ∈ S : (lor.cc = cc ∧ lor.proc =

pi ∧ ¬lor.blocked)) then
7: for all lor ∈ S do
8: lor.activeXacts + +

9: else
10: Set〈LOR〉 S ← createLorsForConflictClasses(CC)
11: LeaseRequest req ← LeaseRequest(pi, S)
12: AB-broadcast([LeaseRequest, req])

13: wait until isEnabled(S)
14: return S
15:

16: upon Opt-deliver([LeaseRequest, req]) from pk do
17: freeLocalLeases(req.cc)

18:

19: upon AB-deliver([LeaseRequest, req]) from pk do
20: Set〈LOR〉 S ← createLorsForConflictClasses(req.cc)
21: for all lor ∈ S do
22: enqueue(CQ[lor.cc], lor)

23:

24: bool isEnabled(Set〈LOR〉 S)
25: return ∀lor ∈ S, isF irst(CQ[lor.cc], lor)

Algorithms 6 and 7 present the pseudo-code of Lilac-TM’s LM. The
method GetLease() is invoked by the RM once a transaction reaches its com-
mit phase. The LM then attempts to acquire leases for all items in the commit-
ting transaction’s data-set. It first determines, using the getConflictClasses()
method, the set of conflict classes associated with the transaction’s data-set
(line 5 of Algorithm 6). It then checks (lines 6 of Algorithm 6) whether CQ
contains a set S of LORs such that i) the LORs were issued by pi, and ii)
additional transactions of pi may still be associated with these LORs (this is
the case for each LOR owned by the current node that is not blocked). If
the conditions of line 6 are satisfied, the current transaction can be associated

62 CHAPTER 5

Algorithm 7 Lease Manager - Freeing leases (node pi)

1: void FinishedXact(Set〈LOR〉 S)
2: Set〈LOR〉 lorsToFree
3: for all lor ∈ S do
4: lor.activeXacts−−
5: if lor.blocked ∧ lor.activeXacts = 0 then
6: lorsToFree← lorsToFree ∪ lor
7: if lorsToFree 6= ∅ then
8: UR-broadcast([LeaseFreed, lorsToFree])

9:

10: upon UR-deliver([LeaseFreed, Set〈LOR〉]) from pk do
11: Set〈LOR〉 S ← createLorsForConflictClasses(req.cc)
12: for all lor ∈ S do
13: dequeue(CQ[lor.cc], lor)

14:

15: void freeLocalLeases(ConflictClass[] CC)
16: Set〈LOR〉 lorsToFree
17: for all cc ∈ CC do
18: if ∃lor ∈ CQ[cc] s.t. lor.proc = pi then
19: lor.blocked← >
20: if isF irst(CQ[lor.cc], lor) ∧ lor.activeXacts = 0 then
21: lorsToFree← lorsToFree ∪ lor
22: if lorsToFree 6= ∅ then
23: UR-broadcast([LeaseFreed, lorsToFree])

5.2. Lilac-TM 63

with all LORs in S (lines 7-8 of Algorithm 6). Otherwise, a new lease request,
containing the set of LORs, is created and is disseminated using OAB (lines
9-12 of Algorithm 6). In either case, pi waits (see line 13) until S is enabled,
that is, until all the LORs in S reach the front of their corresponding FIFO
queues (see the isEnabled() method). Finally, the method returns S and the
RM may proceed validating the transaction.

When a transaction terminates, the RM invokes the FinishedXact() method
(line 1 of Algorithm 7). This method receives a set of LORs and decrements
the number of active transactions within each record (lines 3-4 of Algorithm 7).
Every blocked LOR that is not used by local transactions is then released by
sending a single message via the UR-broadcast primitive (lines 5-8 of Algo-
rithm 7).

Upon an Opt-deliver event of a remote lease request req, pi invokes the
freeLocalLeases() method, which blocks all LORs owned by pi that are part
of req by setting their blocked field (line 19 of Algorithm 7). Then, all LORs
that are blocked and are no longer in use by local transactions are released
by sending a single UR-broadcast message (lines 20-23 of Algorithm 7). Other
LORs required by req that have local transactions associated with them (if any)
will be freed when the local transactions terminate. Blocking LORs is required
to ensure the fairness of the lease circulation scheme. In order to prevent a
remote process pj from waiting indefinitely for process pi to relinquish a lease,
pi is prevented from associating new transactions with existing LORs as soon
as a conflicting lease request from pj is Opt-delivered at pi.

Upon an AB-deliver of a lease request req (line 19 of Algorithm 6), pi
creates the corresponding set of LORs, and enqueues these records in their
conflict class queues. The logic associated with a UR-deliver event (line 10
of Algorithm 7) removes each LOR specified in the message from its conflict
class queue.

5.2.2 Transaction Forwarder

The TF is the module in charge of managing the process of migrating transac-
tions between nodes. If at commit time the set S of conflict classes accessed by
a transaction T is not already owned by its origin node, say pi, the DTD may
decide to avoid requesting leases for T , and forward its execution to a different
node pj . In this case node pj becomes responsible for finalizing the commit
phase of the transaction. This includes establishing leases on S on behalf of
transaction T , which can be obtained avoiding any distributed coordination,
in case pj already owns all the leases required by T . Else, if some of the leases
requested by T are not owned by pj , this node has to issue lease requests on
behalf of T via the OAB service.

Furthermore the TF can use a remote validation optimization and let pj

64 CHAPTER 5

perform T ’s final validation upon arrival (without re-executing T) in order to
detect whether T has conflicts with concurrently committed transactions. In
order to use this remote validation optimization, the TF module must be aug-
mented with a TM-specific validation procedure and append the appropriate
meta-data to forwarding messages. TM-specific adaptation and overhead can
be avoided by simply always re-executing the forwarded transaction once it is
migrated to pj .

To prove that the remote validation optimization (without re-execution)
cannot be transparent to the local concurrency scheme and it needs TM-
specific adaptation procedure for migrated transactions, in the following an
example of execution is considered, which points out the issue of validating a
transaction T on a node different from the originating one in Lilac-TM. In
particular the following three transactions are considered:

T1 : w1(x)

T2 : r2(z), w2(y)

T3 : r3(x), r3(y), w3(z)

where T1 and T2 are two transactions already validated after a lease acquisition
on two different nodes and are going to be committed via URB service. Note
that this is admissible because T1 and T2 are not conflicting and therefore they
can be associated to non-overlapping conflict classes.

Due to the lack of total order in the URB service T1 is committed on a node
pi before the commit of T2 on pi, while there exists another node pj where the
commit order of T1 and T2 is right the opposite, i.e. T2 is committed before
T1 on pj . In addition transaction T3 begins on pi right after the commit of
T1 and it is optimistically executed according to the local TM concurrency
control scheme, i.e. TL2, till its commit phase and before T2 commits on pi.
Next the TF on pi migrates T3 on pj . Assume that T3 is delivered on pj after
the commit of T2 but before the commit of T1 on pj . Therefore the executed
history H right after the migration of T3 is the following:

H = w1(x1), c1, r3(x1), r3(y0), r2(z0), w2(y2), c2

where y0 and z0 are the initial values of respectively y and z, and x1 is the
value of x written by T1.

Assume that T1 and T2 are the only transactions committed, and therefore
the following advancement of the global clock gcl of the local TMs can be
supposed: gcl on pi is advanced to 1 by the commit of T1 on pi while gcl on
pj is advanced to 1 by the commit of T2 on pj . This means that transaction
T3 started on the snapshot 1 on pi, which in not equivalent to the snapshot 1

5.2. Lilac-TM 65

on pj . In this case, the local TM on pj would not be able to distinguish that
difference without additional information.

At this point, if Lilac-TM relied on the classical validation implemented
by the local TM on pj (or other timestamp-based TMs usually adopted in
DTM [24]), it could commit transaction T3 because it can consider the snap-
shot read by T3 not older than the current committed snapshot on pj . Clearly
this would lead to an incorrect, i.e. non serializable, history because it is not
possible to choose a unique serialization point for both T2 and T3: (i) T3 would
appear as executed before T2 since it misses the T2’s write on y and (ii) T2

would appear as executed before T3 since it misses the T3’s write on z. The
result would be the following history H′:

H′ = w1(x1), c1, r3(x1), w3(y0), r2(z0), w2(y0), c2, w3(z3), c3

The solution adopted in Lilac-TM is associating with every conflict class
C on every node pi a commit counter cclock(C,i) that is incremented whenever
a commit of a transaction writes a new value of a datum x belonging to C. In
addition, upon a read operation on x of a transaction T in execution on node
pi, the transaction inserts in its read-set the tuple 〈x, cclock(C,i)〉.

Therefore the validation procedure after the migration of T on another
node pj , checks whether for any tuple 〈x, cclock(C,i)〉 in T ’s read-set, the value
cclock(C,i) is not strictly less than the value cclock(C,j).

This mechanism is enough to mimic the validation procedure of classical
certification-based replication schemes because for any pair of nodes pi, pj ,
the write commits on a given conflict class C are observed in the same order
by both pi and pj , i.e. Lilac-TM guarantees total order among committed
transactions that write on the same conflict class C.

The last property is easily provable by observing communication services
in Lilac-TM guarantee causal order and therefore:

− For any pair of transactions Ti and Tj committed by the same node pi, if
Ti and Tj both write on a common conflict class C then the commits of
Ti and Tj are delivered to all nodes in the same order and by following
the order of the broadcast of their commit messages.

− For any pair of transactions Ti and Tj committed by different nodes,
i.e. respectively pi and pj , if Ti and Tj both write on a common conflict
class C then the commits of Ti and Tj are delivered to all nodes in the
same order and the order depends on the order of acquisition of the
lease L on C (which is determined by the AB delivery order). If L is
acquired by pi first (respectively pj first), then it will be released to pj
(respectively pi) after the delivery of the commit message for Ti on pi
(respectively Tj on pj), and therefore the sending of the commit message

66 CHAPTER 5

for Tj from pj (respectively for Ti from pi) will follow the delivery of L
on pj (respectively pi).

In case of successful validation, T can be simply committed, as in ALC, by
disseminating a Commit message via the UR-broadcast. Additionally this has
the effect of unblocking the thread that requested the commit of T on node pi.
On the other hand, if T fails its final validation, it is re-executed on node pj
until it can be successfully committed, or it fails for a pre-determined number
of attempts. In this latter case, the origin node pi is notified of the abort of
T , and the user application is notified via an explicit exception type. Note
that, in order to commit the transaction associated with the re-execution of
T , which is denoted as T ′, pj must own the set of conflict classes accessed by
T ′. This may not be necessarily true, as T ′ and T may access different sets
of conflict classes. In this case, Lilac-TM prevents a transaction from being
forwarded an arbitrary number of times, by forcing pj to issue a lease request
and acquire ownership of the leases requested by T ′.

It must be noted that, in order to support the transaction forwarding pro-
cess, the programming model exposed by Lilac-TM has to undergo some
minor adaptations compared, e.g., with the one typically provided by non-
replicated TM systems. Specifically, Lilac-TM requires that the transac-
tional code is replicated and encapsulated by an interface that allows to seam-
lessly re-execute transactions originating at different nodes. To this end, the
transactional logic is wrapped in an object whose attributes encode its input
parameters, and which exposes methods (i) supporting its correct serialization
and de-serialization, and (ii) allowing to trigger the execution of the transac-
tional logic, possibly on a remote node (similarly to RMI [101]). In order to
maximize the generality and flexibility of the programming model, the method
that supports the execution of a transaction is allowed to return a (typed) re-
sult. In case of re-execution on node pj of a transaction T forwarded by node
pi, the transaction’s result is piggybacked on the commit message. This al-
lows to inform the application thread that originated the execution of T on pi
about the result generated by T on pj (which may be different from the one
originally produced by T on pi).

5.2.3 Distributed Transaction Dispatching

The DTD module allows encapsulating arbitrary policies to determine whether
to process the commit of a transaction locally, by issuing lease requests if
required, or to migrate its execution to a remote node. In the following this
problem is defined as the transaction migration problem. It can be formulated
as an Integer Linear Programming (ILP) problem that takes as input the set
of leases required by the transaction, the CPU utilization of the nodes in the
system, and a cost function C(i, S), which returns the cost of acquiring the

5.2. Lilac-TM 67

leases for the transaction on the set S if the node pi is selected for managing
the commit phase of the transaction.

The ILP is defined as follows:

min
∑
i∈Π

Ni · C(i, S) (5.1)

subject to: ∑
i∈Π

Ni = 1 (5.2)

CPUi ·Ni < maxCPU (5.3)

The above problem formulation aims at determining an assignment of the
binary vector N (whose entries are all equal to 0 except for one, whose index
specifies the selected node) minimizing a generic cost function C(i, S) that
expresses the cost for node pi to be selected for managing the commit phase
of a transaction accessing the conflict classes in the set S. The optimization
problem specifies two constraints. Constraint 5.2 expresses the fact that a
transaction can be certified by exactly a single node in Π. Constraint 5.3 is
used to avoid load imbalance between nodes. It states that a node pi should
be considered eligible for re-scheduling only if its CPU utilization (CPUi) is
below a maximum threshold (maxCPU).

Two different policies have been derived for satisfying the above ILP for-
mulation, which are designed to minimize the long-term and the short-term
impact of the decision on how to handle a transaction. First the cost function
LC(i, S) has been defined, which models the long-term cost of selecting node
pi as the node that will execute the transaction as the sum of the frequency
of accesses to the conflict classes in S by every other node pj 6= pi ∈ Π:

LC(i, S) =
∑
x∈S

∑
pj∈Π∧j 6=i

F(j, x)

where F(j, x) is defined as the per time-unit number of transactions originated
on node pj that have object x in their dataset.

In order to derive the short-term policy, the function SC(i, S) has been
defined, which expresses the immediate costs induced at the GCS level by
different choices of where to execute a transaction:

SC(i, S) =


cURB if i = O ∧ ∀x ∈ S : L(i, x) = 1

cAB + 2cURB if i = O ∧ ∃x ∈ S : L(i, x) = 0
cp2p + cAB + 2cURB if i 6= O ∧ ∃x ∈ S : L(i, x) = 0

cp2p + cURB if i 6= O ∧ ∀x ∈ S : L(i, x) = 1

where pO is the node that originated the transaction, and cURB, cAB and cp2p

are the costs of performing a URB, an AB, and a point-to-point communi-
cation, respectively. The above equations express the cost of the following

68 CHAPTER 5

scenarios (from top to bottom): i) the originating node already owns all the
leases required by it; ii) the originating node does not own all the necessary
leases and issues a lease request; iii) the originating node forwards the transac-
tion to a node that does not own all the necessary leases; iv) the transaction is
forwarded to a node that owns the leases for all required conflict classes. The
DTD can be configured to use the long-term or the short-term policy simply
by setting the generic cost function C(i, S) in 5.1 to, respectively, LC(i, S) or
SC(i, S).

It is easily seen that the ILP can be solved in O(|Π|) time regardless of
whether the long-term or the short-term policy is used. The statistics required
for the computation of the long-term policy are computed by gathering the
access frequencies of nodes to conflict classes. This information is piggybacked
on the messages exchanged to commit transactions/request leases. A similar
mechanism is used for exchanging information on the CPU utilization of each
node. For the short term policy, the costs of the P2P, URB and OAB protocols
are quantified in terms of their communication-steps latencies (which are equal
to 1, 2, and 3, respectively).

5.3 Correctness Arguments

The formal proof about the correctness guarantees of Lilac-TM is not pro-
vided because the one provided by the ALC is trivially inherited. In particular
the optimistic execution of a transaction on each node is regulated by a local
TM (TL2 in the Lilac-TM specific implementation), which guarantees each
transaction (even the one that does not commit) always observes a consis-
tent snapshot of the memory, namely a snapshot obtained by the commit of
a serializable history of write transactions (as required by Opacity as well).
Therefore read-only transactions that do not abort during the execution phase
can safely commit and appear as atomically executed at their beginning.

Furthermore the commits of every pair of committed write transactions
that conflict on at least one datum x (i.e. both transactions access at least
a common datum x and at least one of them executes a write operation on
x) are serialized (even if committed by different nodes) because Lilac-TM
forces a serialization via lease acquisition on x. In addition, if the validation
mechanism is taken into account, namely upon a lease acquisition a write
transaction T undergoes the classical validation procedure to check that no
other concurrent transaction (the one that committed after T began) has
committed by writing on a datum in T ′s read-set [74], then the history of
write transactions committed by Lilac-TM is 1CS.

Clearly it is not possible to claim either that the whole history of committed
transactions (including both read-only and update transactions) is 1CS or that

5.4. Experimental Evaluation 69

the history of the executed transactions is opaque since, as in ALC, Lilac-
TM does not enforce a total order among the commit events of non-conflicting
transactions. This can leads to scenarios in which two different transactions Ti

and Tj in execution respectively on nodes pi and pj can observe the commits
of another pair of write transactions, e.g. Tk and Th, in different order.

Nevertheless this scenario can happen only if Ti and Tj are either read-
only transactions or update transactions that are eventually aborted. In fact,
Lilac-TM, ensures the global serializability for the history restricted to com-
mitted update transactions, by certifying them according to the order deter-
mined by the lease acquisition scheme.

Technically Lilac-TM guarantees EUS because:

− every history restricted to committed write transactions is serializable;

− every transaction always observes a history of serializable committed
write transactions in its past.

5.4 Experimental Evaluation

In this Section, the performance of Lilac-TM is compared with that of the
baseline ALC protocol. Performance is evaluated using two benchmarks: a
variant of the Bank benchmark [49] and the TPC-C benchmark [93]. The
following algorithms are compared: ALC (using the implementation evalu-
ated in [19]), FGL (ALC using the fine-grained leases mechanism), MG-ALC
(ALC extended with the transaction migration mechanism), and two variants
of Lilac-TM (transaction migration on top of ALC using fine-grained leases),
using the short-term (Lilac-TM-ST) and the long-term (Lilac-TM-LT) poli-
cies, respectively. The source code of ALC, Lilac-TM and the benchmarks
used in this study are publicly available 1.

All benchmarks were executed running 2 threads per node, and using a
cluster of 4 replicas, each comprising an Intel Xeon E5506 CPU at 2.13 GHz
and 32 GB of RAM, running Linux and interconnected via a private Gigabit
Ethernet.

Bank. The Bank benchmark [20, 49] is a well-known transactional benchmark
that emulates a bank system comprising a number of accounts.

This benchmark has been extended with various types of read-write and
read-only transactions, for generating more realistic transactional workloads.
A read-write transaction performs transfers between randomly selected pairs
of accounts. A read-only transaction reads the balance of a set of randomly-
selected client accounts. Workloads consist of 50% read-write transactions and
50% read-only transactions of varying lengths.

1http://aristos.gsd.inesc-id.pt

70 CHAPTER 5

Data locality has been also introduced in the benchmark as follows. Ac-
counts are split into partitions such that each partition is logically associated
with a distinct replica and partitions are evenly distributed between replicas.
A transaction originated on replica r accesses accounts of a single (randomly
selected) partition associated with r with probability P , and accounts from
another (randomly selected) remote (associated with another replica) partition
with probability 1−P . Larger values of P generate workloads characterized by
higher data-locality and smaller inter-replica contention. Hence, the optimal
migration policy is to forward a transaction T to the replica with which the
partition accessed by T is associated. Therefore a third variant of Lilac-TM
(called Lilac-TM-OPT) using this optimal policy has been implemented and
evaluated.2

Figure 5.2(a) shows the throughput (committed transactions per second)
of the algorithms that have been evaluated on workloads generated by the
bank application with P varying between 0% to 100%.

Comparing ALC and FGL, Figure 5.2(a) shows that, while ALC’s through-
put remains almost constant for all locality levels, FGL’s performance dra-
matically increases when locality rises above 80%. This is explained by Fig-
ure 5.2(b), that shows the Lease Reuse Rate, defined as the ratio between the
number of read-write transactions which are piggy-backed on existing leases
and the total number of read-write transactions.3 A higher lease reuse rate
results in fewer lease requests, which reduces in turn the communication over-
head and the latency caused by waiting for leases. FGL’s lease reuse rate
approaches one for high locality levels, which enables FGL and FGL-based
migration policies to achieve up to 3.2 times higher throughput as compared
with ALC and MG-ALC.

When locality is lower than 80%, the FGL approach yields throughput
that is comparable to ALC. Under highly-contended low-locality workloads,
FGL’s throughput is even approximately 10%-20% lower than that of ALC.
This is because these workloads produce a growing demand for leases from
all nodes. FGL releases the leases in fine-grained chunks, which results in a
higher load on URB-communication as compared with ALC.

The adverse impact of low-locality workloads on transaction migration
policies, however, is much lower. Migrating transactions to replicas where
leases might already be present (or will benefit from acquiring it), increases
the lease reuse rate, which increases throughput in turn. Indeed, as shown
by Figure 5.2(a), Lilac-TM achieves speed-up of between 40%-100% even for
low-locality workloads (0%-60%) in comparison with ALC. For high-locality
workloads, both FGL and Lilac-TM converge to similar performance, out-

2MG-ALC implementation also uses this optimal migration policy.
3Read-only transactions never request leases.

5.4. Experimental Evaluation 71

performing ALC by a factor of 3.2.

Comparing the performance of ALC and MG-ALC shows that using trans-
action migration on top of ALC does not improve the lease reuse rate as com-
pared with ALC. This is because migration only helps when used on top of
the fine-grained leases mechanism. The slightly lower throughput of MG-ALC
vs ALC is due to the overhead of the TF mechanism.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 90 100

T
h
ro

u
g
h
p
u
t
(C

o
m

m
it
te

d
 t
x
s
/s

e
c
)

P

ALC
FGL

MG-ALC
Lilac-TM-ST
Lilac-TM-LT

Lilac-TM-OPT

(a) Throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 90 100
L
e
a
s
e
 R

e
u
s
e
 R

a
te

P

ALC

FGL

MG-ALC

Lilac-TM-ST

Lilac-TM-LT

Lilac-TM-OPT

(b) Lease reuse rate.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t
(C

o
m

m
it
te

d
 t
x
s
/s

e
c
)

Time (sec)

Lilac-TM-LT-NoCtrl
Lilac-TM-ST-NoCtrl

Lilac-TM-LT
Lilac-TM-ST

(c) Overload.

Figure 5.2: Bank Benchmark.

Next the ability of Lilac-TM to cope with load imbalance has been evalu-
ated. To this end, the benchmark is set to access with 20% probability a single
partition, p, from all the nodes, except for the single node, say n, associated
with p, which accesses only p. In these settings, with all the considered poli-
cies, n tends to attract all the transactions that access p. At second 40 of the
test, node n has been overloaded by injecting external, CPU-intensive jobs.
The plots in Figure 5.2(c) compare the throughput achieved by Lilac-TM
with and without the mechanism for overload control (implementing Inequal-
ity (3)), and with both the long-term and the short-term policies. The data
highlights the effectiveness of the proposed overload control mechanism, which
significantly increases system throughput. In fact, the schemes that exploit

72 CHAPTER 5

statistics on CPU utilization (Lilac-TM-ST and Lilac-TM-LT) react in a timely
manner to the overload of n by avoiding further migrating their transactions
towards it, and consequently achieve a throughput that is about twice that of
uninformed policies (Lilac-TM-ST-NoCtrl and Lilac-TM-LT-NoCtrl).

TPC-C. The TPC-C benchmark has been also ported and used to evaluate
Lilac-TM. The TPC-C benchmark is representative of OLTP workloads and
is useful to assess the benefits of Lilac-TM even in the context of complex
workloads that simulate real world applications. It includes a wider vari-
ety of transactions that simulate a whole-sale supplying items from a set of
warehouses to customers within sales districts. Two of the five transactional
profiles offered by TPC-C have been ported, namely the Payment and the
New Order transactional profiles, which exhibit high conflict rate scenarios
and long running transactional workloads, respectively. For this benchmark
transactions have been injected to the system by emulating a load balancer
operating according to a geographically-based policy that forwards requests on
the basis of the requests’ geographic origin: in particular requests sent from a
certain geographic region are dispatched to the node that is responsible for the
warehouses associated with the users of that region. To generate more realis-
tic scenarios it has been also assumed that the load balancer can do mistakes
by imposing that with probability 0.2 a request sent from a certain region is
issued by users associated with warehouses that do not belong to that region.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300

T
h
ro

u
g
h
p
u
t
(C

o
m

m
it
te

d
 t
x
s
/s

e
c
)

Time (sec)

ALC
FGL

Lilac-TM-ST
Lilac-TM-LT

Figure 5.3: TPC-C.

Figure 5.3 presents the throughput obtained by running a workload with
95% Payment transactions and 5% New Order transactions; moreover in this
case the throughput is shown varying over time in order to better assess the
convergence of the reschedule policies. Even in this complex scenario FGL
performs better than ALC due to better exploitation of the application, and a
higher leases reuse rate. In addition, using the migration mechanism, driven
by either the short term (ST) or the long term (LT) policy, over FGL, it

5.4. Experimental Evaluation 73

achieves speedups of between 1.2 and 1.5 when compared to ALC. However,
unlike the Bank Benchmark, in this case the ST policy achieves only minor
gains compared to the LT policy, due to TPC-C’s transactional profiles that
generate more complex access patterns. In fact, even when the data-set is
partitioned by identifying each partition as a warehouse and all the objects
associated with that warehouse, TPC-C’s transactions may access more than
one partition. This reduces the probability that the ST policy can actually
trigger a reschedule for a transaction on a node that already owns all the leases
necessary to validate/commit that transaction. On the other hand the LT
policy can exploit application locality thus noticeably reducing lease requests
circulation, i.e. the number of lease requests issued per second.

Chapter 6

Changing the Viewpoint: a
Scalable Multi-Version
Protocol under Genuine
Partial Replication

As showed in the previous Chapters, protocols like SPECULA or Lilac-TM
are able to noticeably reduce the impact of replication on the transaction
processing performance. While the former exploits speculative techniques to
tentatively mask the cost of synchronization among nodes, the latter is able
to leverage application locality to reduce the probability of remote synchro-
nizations.

Nevertheless, since both the solutions are targeted for a fully replicated
system model, i.e. every node stores the whole dataset, their design is inher-
ently not scalable. In fully replicated environments, update transactions need
to update synchronously all nodes in the system. As the cost of processing
update transactions grows (at least) linearly with the number of nodes in the
system, full replication schemes are strongly inefficient in large scale systems.

In order to avoid this problem, and enhance scalability, most of today’s
datastores or transactional systems rely on partial replication schemes, in
which each datum is replicated on a (typically small) subset of nodes, i.e.
partial replication. Further, these systems often ensure more relaxed consis-
tency models, in order to achieve benefits in terms of execution latency or
partition tolerance [27, 58, 4]. This is the approach taken by most of the refer-
ence transactional data stores, such as the NoSQL data management platforms
(e.g. Cassandra, BigTable, Infinispan) currently playing a core role in cloud
based systems.

On the other hand, an orthogonal approach to cope with scalability is rep-

75

76 CHAPTER 6

resented by the so called Genuine Partial Replication (GPR), e.g. [86]. GPR
maximizes scalability by ensuring that, for any transaction T , only the sites
that replicate the data items read or written by T exchange messages to de-
cide the final outcome (commit/abort) of T . Unfortunately, existing GPR
solutions introduce considerable overhead, as they require read-only transac-
tions (that are largely predominant in typical applications’ workloads [3]) to
undergo expensive distributed validation phases.

Therefore, by having in mind as first class requirements both consistency
and scalability, this Chapter shifts from the fully replicated system model
(targeted by SPECULA and Lilac-TM) by exploiting GPR as the means for
coping with (very) large scale systems. In particular it presents GMU [79],
namely a Genuine Multiversion Update serializability protocol, which stands
as the first GPR proposal guaranteeing that read-only transactions are never
aborted or forced to undergo any additional remote validation phase.

The core of GMU is a distributed multiversion concurrency control algo-
rithm, which relies on a novel vector clock [59] based synchronization mecha-
nism to track, in a totally decentralized (and consequently scalable) way, both
data and causal dependency relations among transactions.

In terms of formal properties, GMU (as its name suggests) ensures the Ex-
tended Update Serializability (EUS) consistency criterion. Therefore it pro-
vides guarantees analogous to those offered by classic One-Copy Serializability
(1CS) for update transactions, thus ensuring consistent evolution of the sys-
tem’s state. Further it guarantees that all transactions, whether they have
to be eventually aborted or not, observe consistent snapshots. This property
can be important when applications execute in non-sandboxed environments
(such as Transactional Memory systems [2]) and may behave erroneously upon
observing non-serializable histories.

The GMU protocol is the first GPR protocol that exploits EUS semantics
in order to implement a scalable distributed multiversioning concurrency con-
trol scheme that does not introduce any global synchronization point (such
as logically centralized clocks [54]), and does not require expensive remote
validation phases to commit read-only transactions [86].

In addition, GMU is also able to enrich the EUS semantic, by inheriting an
interesting property from Opacity (and hence Strict Serializability) [40, 71]: it
enforces a lowerbound on the staleness of the read data. In particular, despite
distribution, in a quiescent state a transaction T in GMU is always allowed
to see the freshest snapshots produced by transactions that had committed
before T started.

GMU has been integrated into Infinispan [65], which is a mainstream open-
source transactional in-memory data grid developed by the Red-Hat/JBoss
team. Given that the native replication mechanism implemented in Infinispan
only supports non-serializable consistency (i.e., Repeatable Read), this data

6.1. The GMU protocol 77

grid represents an ideal baseline to evaluate the additional costs incurred by
GMU to ensure EUS consistency. The study has been based on TPC-C [93],
an industry standard benchmark for OLTP systems, and YCSB [23], a re-
cent benchmark for distributed key-value stores. The results show that GMU
achieves linear scalability up to 40 nodes and provides stronger consistency
than Repeatable Read at a negligible cost (less than 10% reduction of the
system throughput).

The remainder of this Chapter is structured as follows. The GMU protocol
is introduced in Section 6.1, while its formal correctness proof is presented in
Section 6.2. Section 6.3 provides a discussion on how GMU is able to reduce
the staleness of the data read, while the results of the experimental study are
illustrated in Section 6.4.

6.1 The GMU protocol

As classical multi-version concurrency control (MVCC) algorithms, GMU stores
multiple versions of a same data item, and allows read-only transactions to
observe consistent (which for GMU means Update Serializable), but possibly
outdated snapshots of the available data. As in typical MVCC implemen-
tations (either centralized [12] or fully replicated [54]), in GMU each node
arranges the locally stored versions of each data item into a chain tagged with
a version identifier vid according to the data model described in Section 3.2.
In GMU that identifier can be represented either as a scalar clock or a vector
clock and the two options condition the way GMU implements read and com-
mit operations. Unlike the protocol presented in [79], in this dissertation a vid
is represented as a vector clock, resulting in a more intuitive description of the
read and commit operations. In fact, for the sake of clarity, in this way there is
no need of handling the translation of vector clocks to version identifiers since,
as it will be shown later in the description, a transaction relies on vectors
clocks both to execute read operations and finalize commit operations1.

Other than following the total order of commit events on a datum d to
represent the sequence of d’s versions (as required by the data model described
in Section 3.2), GMU also guarantees that the commit events of transactions
that update any data item d belonging to a partition j are totally ordered
among all replicas that replicate partition j (namely, gj).

1Note that this choice barely affects the memory footprint of the metadata required by
the protocol, since in both options GMU has to store anyway the vector clock representation
of each vid in a per-node separate structure. Therefore while in both options each version
on every node requires to associate a vector clock identifier, the difference between the two
options is that in the former a version also stores a scalar clock and in the latter a version
also stores a pointer to the associated vector clock identifier.

78 CHAPTER 6

More in general, GMU ensures total order among the commit events of
update transactions that exhibit (possibly transitive) data dependencies. This
is in fact what guarantees that the history restricted to update transactions
generated by GMU is 1CS, as demanded by EUS.

However, unlike existing distributed/replicated MVCC protocols [89, 9,
102, 54], GMU does not order transaction commit events by relying on a
centralized, or fully replicated, global clock. Conversely, GMU relies on a
novel, highly scalable, fully distributed synchronization scheme that exploits
vector clocks to achieve the twofold objective of:

1. determining which data item versions have to be returned by read oper-
ations issued by transactions;

2. ensuring agreement among the nodes replicating the data items updated
by a transaction T on the vector clock to associate with the commit
event of T and to be used when locally applying the write-set of T .

Before explaining these two key mechanisms of GMU, the main data struc-
tures locally maintained at each node pi are discussed, namely CommitQueue,
CLog and LastPrepV C.

CommitQueue is an ordered queue whose entries are tuples 〈T, vc, s〉 such
that T is a transaction, vc is its current commit vector clock, and s is a value
in the domain {pending, ready}. The entries stored in CommitQueue at
node pi are ordered according to the i-th entry of their vector clocks, i.e. vc[i],
and possible ties are broken using deterministic functions (e.g. hash functions)
taking in input the transaction identifier T .

The semantic associated with the s field is the following one. If s is equal
to pending, it means that T is currently successfully prepared to commit
on pi and is waiting for a final commit/abort decision from the transaction
coordinator. In the following the vc of a pending transaction is referred as its
prepareV C. The ready value, instead, means that the transaction has already
received (a) the commit decision from the transaction coordinator and that
(b) it has already been assigned a final vector clock. Such a vc is referred as
the commitV C. As it will be discussed in the following, a ready transaction
T will be committed as soon as T becomes the top standing transaction in the
CommitQueue.

CLog is a simple list that maintains, for each committed transaction, the
triple 〈T, commitV C, updatedKeys〉, such that T is the identifier of a com-
mitted transaction, commitV C is the vector clock that T used to commit and
updatedKeys is the set of keys locally stored by process pi and that T has
updated by committing. Therefore commitV C is the vector clock pointed by
the vid of each new version committed by T , i.e. the last version associated to
each key in the set updatedKeys upon the commit of T .

6.1. The GMU protocol 79

The elements in the list CLog on a node pi are totally ordered according
to the value commitV C[i] and the order follows the sequence of commits of
write transactions that updated a key stored on pi. In addition the vector clock
associated to the most recent write transaction committed on pi is denoted
as CLog.mostRecentV C, and CLog is initialized as containing only one ele-
ment 〈−, commitV Cinit,−〉, where CLog.mostRecentV C = commitV Cinit =
[0, . . . , 0] in this case.

LastPrepV C, finally, is a vector clock that, as it will be discussed, is used
by pi, during the prepare phase of a transaction, to determine its prepareV C
on pi. GMU maintains the following invariant on LastPrepV C: it is always
greater than or equal to the vector clock associated to the last committed
transaction in CLog, i.e. ∀j, LastPrepV C[j] ≥ CLog.mostRecentV C[j].

The following Sections present the details and the pseudocode formalizing
the GMU protocol.

6.1.1 Transaction execution phase

GMU stores, in the transactional context of each executing transaction T , the
following information:

1. The transaction vector clock V C, namely an array of scalar (integer)
logical timestamps, having cardinality equal to the number of nodes in
the system, which keeps track of the (data and causal) dependencies de-
veloped by the transaction during its execution. When T starts its execu-
tion on node pi, T.V C is initialized with the values of CLog.mostRecentV C
on pi.

2. The transaction read-set (rs in the pseudocode), which stores the set of
identifiers of the keys read by T .

3. The transaction write-set (ws in the pseudocode), which stores, as a set
of pairs 〈key, value〉, the identifiers and values of the keys written by the
transaction.

4. An array of boolean values, called hasRead, which has an entry for each
node in the system, and whose j-th entry stores the flag >, i.e. true, if
T has executed a read operation on a key stored by pj ; otherwise the
entry stores the flag ⊥, i.e. false. If T starts on node pi the i-th entry
of T ’s hasRead is initialized to > in order to indicate that T won’t be
allowed to read transactions committed on pi after its beginning.

The pseudocode describing the behavior of a transaction during its execu-
tion phase is reported in Algorithm 8 and Algorithm 9.

80 CHAPTER 6

Algorithm 8 Write and Read operations (node pi).

1: void Write(Transaction T, Key k, Value val)
2: T.ws← T.ws \ {〈k,−〉} ∪ {〈k, val〉}
3:

4: Value Read(Transaction T, Key k)
5: if 〈k, val〉 ∈ T.ws then
6: return val
7: if pi ∈ replicas({k}) then . k is local
8: [val, V C∗, last]← doRead(k, T.V C, T.hasRead)
9: T.hasRead[i]← >

10: else . k is remote
11: send ReadRequest([k, T.V C, T.hasRead]) to all pj ∈ replicas({k})
12: wait receive ReadReturn([val, V C∗, last]) from any ph ∈

replicas({k})
13: T.hasRead[h]← >
14: if last = ⊥ ∧ T.ws 6= ∅ then
15: throw ABORT
16: T.V C ← max(T.V C, V C∗)
17: T.rs← T.rs ∪ {k}
18: return val
19:

20: upon receive ReadRequest([Key k, VC xactVC, bool[] hasRead]) from pj
21: wait until CLog.mostRecentV C[i] ≥ xactV C[i]
22: [val, V C∗, last]← doRead(k, xactV C, hasRead)
23: send ReadReturn([val, V C∗, last]) to pj

6.1. The GMU protocol 81

Write operations are simply handled by storing the key and the new value
in the transaction write-set (lines 1-2 of Algorithm 8).

If a transaction T issues a read operation on key k at a process pi, it is
first checked whether T has already written k. In this case, the value stored in
T ’s write-set is returned (lines 5-6 of Algorithm 8). Otherwise, pi determines
whether the key to be read by transaction T is local or not, thus giving rise
to the following disjoint execution paths (line 7 of Algorithm 8).

Local read. If pi belongs to replicas({k}), the read operation is a local one
and the key’s value is retrieved from the local data store via the doRead()
function (lines 7-9 of Algorithm 8). This function (Algorithm 9) iterates over
the versions of k and returns the most recent one having a version identifier
vid that does not exceed an upper bound defined for T on pi. This upper
bound delimits the visible snapshot of T on pi and it is determined in different
ways depending on whether it is the first time that T issues a read operation
on a key stored by pi.

If this is the case, the most recent local snapshot that is visible by T
is determined by iterating over CLog (which stores the totally ordered list
of the update transactions that committed at this node) and by discarding
all the transactions T̄ such that T̄ ’s commit event depends (either directly or
transitively) on the set of events associated with the first read operation issued
by T on any node (see lines 3-4 of Algorithm 9). Therefore, the remaining
transactions T ∗ are the ones having the commit vector clock commitV C such
that commitV C does not exceed the reading transaction’s vector clock T.V C
on the entries fixed by T.hasRead. This is verified if for each entry having
value > in T.hasRead, commitV C is not greater than T.V C.

Roughly speaking, the first time that T issues a read on a node pi, GMU
serializes T after transactions T ∗, establishing an upper bound MaxV C on
the freshness of the snapshots that T can observe during subsequent reads.
Specifically, MaxV C is computed by merging via a per-entry maximum op-
eration the commitV C (stored in VisibleSet in the pseudocode) associated to
transactions T ∗ , and it prevents T from observing versions committed, on any
node, by transactions that depend/anti-depend (either directly or transitively)
on the snapshot identified by MaxV C.

MaxV C can therefore be used (line 9 of Algorithm 9) to determine the
version of k that is visible by the transaction T , namely the most recent version
ver of k that is committed by one among the transactions T ∗. This means the
selected ver has vid vector clock that does not exceed MaxV C on the entries
fixed by T.hasRead.

The behavior in case it is not the first time that T reads on pi is similar,
with the exception that the MaxV C used to determine version visibility is the
one already stored in the transaction’s V C. This is an optimization provided

82 CHAPTER 6

by GMU that avoids to scan the CLog of a generic node pj on subsequent read
operations executed by transaction T on the same (whether local or remote)
node pj . Note that if T iterated over the CLog again, it could not produce
a MaxV C with the j-th entry different from the j-th entry of T.V C since T
already read on pj . This is because of the rule that GMU uses to select the
candidate vector clocks in CLog and the way T.V C is updated upon a read
operation, i.e. via the max operator.

Finally, doRead() returns the value of the selected version, along with
MaxV C and a boolean flag that specifies whether the returned version of
k is the most recent currently committed. The opposite case is perfectly
acceptable for read-only transactions, which can be serialized in the past as
typical of MVCC algorithms. However, that is not for update transactions,
and it does doom update transactions to abort (see lines 14-15 of Algorithm
8).

Remote read. If pi does not belong to replicas({k}), the read operation is
remote, with the meaning that the data to be read must be retrieved from
some node pj , with j 6= i (lines 10-13 and 20-23 of Algorithm 8). In this case,
a read request is sent to all the nodes replicating the key k, and it is waited for
the first (namely the fastest) of their replies, e.g. ph. Analogously to the local
read case, the doRead() function is used by the remote nodes to determine
the version of k visible by transaction T . However, in this case GMU ensures
that, before invoking doRead, the remote node pj has finalized the commit of
all the update transactions which T depends on, and that have written keys
replicated by pj .

Algorithm 9 Version visibility logic (node pi).

1: [Value,VC,bool] doRead(Key k, VC xactVC, bool[] hasRead)
2: if ¬hasRead[i] then
3: Set〈V C〉 V isibleSet ← {vc : 〈−, vc,−〉 ∈ CLog ∧ ∀w (hasRead[w] ⇒

vc[w] ≤ xactV C[w])}
4: V C MaxV C ← vc : ∀w, vc[w] = max{velem[w] : velem ∈ V isibleSet}
5: else
6: MaxV C ← xactV C
7: V ersion ver ← k.lastF inal
8: bool last← >
9: while ∃w : hasRead[w] = > ⇒ ver.vid[w] > MaxV C[w] do

10: ver ← ver.prev
11: last← ⊥
12: return [ver.val,MaxV C, last]

Independently of whether the read is local or remote, before returning the
value of the requested key k to the application, k is added to T ’s read-set

6.1. The GMU protocol 83

and the process that has provided the read value is flagged as already read
by T (lines 9, 13 and 17 of Algorithm 8). Finally, the vector clock of T is
updated to reflect the happened before relationship [59] between the commit
event of the transaction that wrote the version observed by T ’s read, and the
corresponding read event of T (line 16 of Algorithm 8).

6.1.2 Transaction commit phase

As already anticipated, one of the key strength points of GMU is that it
allows committing read-only transactions without requiring any kind of local
or remote validation phase.

The scheme used to commit update transactions in GMU is specified by
the pseudocode shown in Algorithms 10 and 11. GMU uses a Two Phase
Commit (2PC) protocol, involving all and only the set rep of nodes that repli-
cate keys read or written by a committing transaction T , as well as the node
that originated T . Exploiting 2PC, GMU can use standard techniques to en-
sure transaction atomicity and to verify its compatibility with the history of
committed (update) transactions. The latter goal is achieved by acquiring
read/write locks on all keys read/written by the transaction, at all nodes in
which these keys are stored, and then performing a validation of the trans-
action’s read-set (lines 2-4 of Algorithm 11). Note that, to prevent deadlock
scenarios, the locks acquisition latency is bound with a timeout, such that
when a timer expires the acquisition terminates with a negative outcome.

The key innovative feature of GMU’s commit algorithm, however, consists
in the scheme employed to establish agreement among the nodes involved in
the execution of a transaction T , on the commit vector clock to assign to
T . To this end, GMU blends into the 2PC messaging pattern a distributed
consensus scheme that resembles the one used by Skeen’s total order multicast
algorithm [44].

When node pi receives a prepare message for transaction T (and after its
successful validation), it sends back with the Vote message the proposal of a
new vector clock for T . This proposal, i.e. prepareV C, is built starting from
LastPrepV C to maintain the invariant such that the commit of T on pi does
not precede any other transaction committed on pi. If T is not going to up-
date any key stored by pi, assigning LastPrepV C to prepareV C is enough to
maintain the aforementioned invariant (line 9 of Algorithm 11); otherwise, if pi
stores a key that is contained in T ’s write-set, the i-th entry of LastPrepV C
is incremented by 1 before performing the assignment (lines 11-12 of Algo-
rithm 11). In addition, in the latter case, the prepare phase is concluded by
storing the triple 〈T, prepareV C, pending〉 in the pi’s CommitQueue (line 13
of Algorithm 11).

The 2PC coordinator gathers all the proposed prepareV C, and performs

84 CHAPTER 6

Algorithm 10 Commit phase (node pi).

1: bool Commit(Transaction T)
2: if T.ws = ∅ then
3: return >
4: V C commitV C ← T.V C
5: bool outcome← >
6: send Prepare([T]) to all pj ∈ replicas(T.rs ∪ T.ws) ∪ {pi}
7: for all pj ∈ replicas(T.rs ∪ T.ws) ∪ {pi} do
8: wait receive Vote([T.id, V Cj , res]) from pj or timeout
9: if res = ⊥ ∨ timeout then

10: outcome← ⊥
11: break
12: else
13: commitV C ← max(commitV C, V Cj)

14: int xactV N ← max{commitV C[w] : pw ∈ Π}
15: for all pj ∈ replicas(T.ws) do
16: commitV C[j]← xactV N

17: send Decide([T, commitV C, outcome]) to all pj ∈ replicas(T.rs ∪ T.ws) ∪
{pi}

18: wait until T.completed = >
19: return T.outcome
20:

21: bool validate(Set rs, VC xactVC)
22: for all k ∈ rs do
23: if k.lastF inal.vid[i] > xactV C[i] then
24: return ⊥
25: return >

6.1. The GMU protocol 85

Algorithm 11 Prepare and Decide messages (node pi).

1: upon receive Prepare([Transaction T]) from pj
2: bool outcome← getExclLocksWithT imeout(T.id, T.ws)
3: outcome← outcome ∧ getSharedLocksWithT imeout(T.id, T.rs)
4: outcome← outcome ∧ validate(T.rs, T.V C)
5: if outcome = ⊥ then
6: releaseLocks(T.id, T.ws, T.rs)
7: send Vote([T.id, T.V C, outcome]) to pj
8: else
9: V C prepareV C ← LastPrepV C

10: if pi ∈ replicas(T.ws) then
11: LastPrepV C[i] + +
12: prepareV C ← LastPrepV C
13: CommitQueue.put(〈T, prepareV C, pending〉)
14: send Vote([T.id, prepV C, outcome]) to pj

15:

16: upon receive Decide([Transaction T, VC commitVC, bool outcome]) from pj
17: if outcome = > then
18: LastPrepV C ← max(LastPrepV C, commitV C)
19: if pi ∈ replicas(T.ws) then
20: CommitQueue.update(〈T, commitV C, ready〉)
21: else
22: T.outcome← >
23: T.completed← >
24: else
25: CommitQueue.remove(T)
26: releaseLocks(T.id, T.ws, T.rs)
27: T.outcome← ⊥
28: T.completed← >
29:

30: upon (∃〈T, vc, s〉 : 〈T, vc, s〉 = CommitQueue.head ∧ s = ready ∧ (@〈T̄ , v̄c, s̄〉 ∈
CommitQueue : v̄c[i] < vc[i]))

31: ∀〈k, val〉 ∈ T.ws : pi ∈ replicas({k}) do apply(k, val, vc)
32: CLog.add(〈T, vc, T.ws〉)
33: CommitQueue.remove(T)
34: releaseLocks(T.id, T.ws, T.rs)
35: T.outcome← >
36: T.completed← >

two operations in order to derive the commitV C for the transaction (lines 13-
16 of Algorithm 10). First, it merges the prepareV C’s values with the current
V C’s values of the transaction using the max operator, which outputs a vector
clock having, for each of its entries j, the maximum of the j-th entry of the
vector clocks passed as input. This allows to keep track in the commitV C

86 CHAPTER 6

of the causal dependencies developed both by T during its execution as well
as by the most recently committed transactions at all the nodes contacted by
T . Next, the coordinator determines the common value to attribute to the
entries of the commitV C related to the nodes whose keys have been updated
by the transaction (i.e. the nodes pj ∈ replicas(T.ws)). This is achieved by
picking the maximum value among all the entries in the prepareV C of all
nodes involved in the commit.

At this point the coordinator sends back a decision to all the nodes in
rep. This triggers the update of the entry associated with transaction T in
CommitQueue, if any, whose vector clock is replaced with the commitV C
and whose status is set to ready (lines 19-20 of Algorithm 11). In addition,
to maintain the invariant such that LastPrepV C on pi is never less than the
vector clock of the last committed transaction on pi, LastPrepV C is updated
accordingly by using the received commitV C (line 18 of Algorithm 11). For
the sake of clarity, in the pseudocode it has been supposed that the coordinator
always sends the decision for T to itself as well, so that it can reply to the
client of T as soon as the commit is finalized locally.

In order to finalize the commit of T locally on a node pi, however, it is
waited until its entry (if any) has become the first in CommitQueue (recall
that the CommitQueue at process pi is ordered based on the i-th entry of
the vector clocks that it contains). This scheme guarantees that all the nodes
updated by a transaction T will assign the same commitV C to T . It also
ensures that if a node pi commits a transaction with a local scalar timestamp
(i.e., having as i-th entry in its VC the value) equal to v, then the local scalar
timestamps of the transactions that subsequently commit at pi will be larger
than v.

The two aforementioned properties guarantee that all the replicas in replicas(T.ws)
commit T by using the same commitV C and in the same total order with re-
spect to all the other committed transactions.

Finally, the merging of the causal histories encoded by the transaction’s
VC and by all the gathered prepareV C guarantees that the total order of the
commit events is propagated across chains of, possibly transitively dependent
transactions. This represents one of key mechanisms leveraged by GMU in
order to ensure 1CS of the history of update transactions.

In the case the transaction’s coordinator receives at least one negative
vote message, i.e. containing res equal to ⊥, it sends to all the participants
(including itself) a negative decision, i.e. containing outcome equal to ⊥,
which triggers the abort of the commit phase.

6.1. The GMU protocol 87

6.1.3 Garbage Collection

GMU integrates an efficient distributed garbage collection protocol that relies
on background dissemination (either via gossip [95] and/or via piggybacking)
of the lbV Ci, i.e. the lower bound vector clock computed locally at each node
pi. In particular lbV Ci is the result of the minimum operator applied on the
set of VC vector clocks associated to the active transactions on node pi.

This lightweight rumor-mongering mechanism allows each node to deter-
mine a conservative estimate of the global lower bound vector clock, say
glbV C, that delimits the set of snapshots that may be still visible by ac-
tive transactions in the system, and allows identifying the ones that cannot
be reached anymore by any read operation. This means that it is possible to
garbage collect every version having vid < glbV C without risking to remove
versions that may be later requested by some transaction.

Therefore once a node pi is aware about the current value of lbV Cj of each
node pj ∈ Π, it computes glbV C, where glbV C[w] is the minimum value among
the ones stored in lbV Cj [w]. Afterwards it can safely detach and delete from
the CLog every node 〈T, commitV C, updatedKeys〉 such that commitV C <
glbV C. Then for each key k in updatedKeys it can remove every version ver
such that ver.vid < glbV C and ver is not the last committed version of k.

6.1.4 Failure Handling and Dynamic Process Groups

For the sake of simplicity, GMU is layered on top of a 2PC protocol, which is
well known to be blocking upon failure of the coordinator. However, the issue
of how to ensure high availability of the transaction coordinator state is well
understood, and a range of orthogonal solutions have been proposed in litera-
ture to deal with such failure scenarios. One may use, for instance, protocols
such as Paxos Commit [39] or other consensus based abstractions [35, 73], to
replicate the state of the coordinator of a transaction T across the replicas of
any of the data partitions accessed by T . Note that, since a majority of nodes
is assumed to be correct for each replica group, failures of transactions’ partic-
ipants will not lead to blocking scenarios during the execution of a remote read
operation. Failures of transactions’ participants can, instead, lead to aborts
during the commit phase, as the coordinator unilaterally aborts the transac-
tion if it times out while waiting for some reply during the prepare phase.
To ensure the liveness of the commit protocol, GMU relies on an underlying
Group Communication System [22] in order to handle the removal of faulty
replicas from the system and manage its reconfiguration, which may imply
the re-distribution of data across replicas to guarantee a desirable replication
degree.

Aiming at ensuring a strong consistency criterion, GMU opts for sacrific-

88 CHAPTER 6

ing availability (by aborting transactions that span remote nodes) in order to
ensure consistency in presence of network partitions. This is not surprising,
given the existence of well known results, such as the CAP theorem [13, 37],
concerning the impossibility of achieving both availability and consistency in
presence of partitions. In particular, GMU can be categorized as a PC/EC
protocol in accordance with the PACELC-based classification of replication
protocols provided in [1]. GMU, in fact, refuses to give up consistency inde-
pendently of whether in presence of network partition or not, and it will pay
the availability and latency costs to achieve it. Therefore, if there is a partition
(P, i.e. Partition) the system chooses consistency (C, i.e. Consistency) instead
of availability (A, i.e. Availability). Also, when the system runs normally (E,
i.e. Else), it prefers consistency (C) to minimal latency (L, i.e. Latency).

Finally, GMU does not introduce additional issues concerning the man-
agement of dynamic process groups with respect to classic 2PC-based trans-
actional replication systems. Conversely, its supports for multiversion simplify
significantly the design of state-transfer mechanisms [51] aimed to synchronize
the state of newly joining nodes.

6.1.5 On the support for read operations

Section 6.1.1 has shown that one of the key role for determining the correct
version to be returned during a read operation is played by the commit log
CLog. In fact the commit log on a node pi is used by a transaction T to
select the set of write transactions whose committed values can be observed
by, i.e. are correctly serialized before, T . Then after that selection, T can
computes the MaxV C vector clock that establishes a upper bound for its
read operations on pi.

Even though the visibility rule (as described in Section 6.1.1) ensures that
a transaction cannot observe an inconsistent state, it can suffer from high
execution costs whenever the number of committed write transactions on pi
starts growing. This is because a naive implementation of line 3 of Algorithm 9
may require a transaction to scan the whole CLog in order to find the set of
visible commits, and clearly the temporal cost of this operation has a linear
dependence on the size of the CLog.

Therefore the implementation of GMU follows a slightly modified rule that
is able to scan only a subsequence of the elements in CLog to compute the
MaxV C vector clock. This new rule has its foundation on the fact that for
a set of elements S = {e1, . . . , ej−1, ej , ej+1, . . . , em}, if ∀h ∈ [1, j − 1] and
∀k ∈ [j,m], eh ≤ ek, then the following equation is verified:

max{e : e ∈ S} = max{e′ : e′ ∈ S′ = {ej , ej+1, . . . , em}} (6.1)

So the new visibility rule uses Equation 6.1 to optimize the computation of

6.2. Correctness Proof 89

MaxV C. In particular, given CLog on pi, the rule scans CLog from the most
recent element, in order to find the element e∗ = 〈T ∗, commitV C∗, updatedKeys∗〉
such that for all the elements e′ = 〈T ′, commitV C ′, updatedKeys′〉 that follow
e∗ (i.e. newer than e∗) in CLog and for all the elements
e′′ = 〈T ′′, commitV C ′′, updatedKeys′′〉 that precede e∗ (i.e. older than e∗)
in CLog, then commitV C ′′ ≤ commitV C∗ and commitV C ′′ ≤ commitV C ′.
Therefore, the values taken into account to produce V isibleSet (see Algo-
rithm 9) and hence to compute MaxV C are only the values commitV C ′ and
commitV C∗.

Finding the element e∗ in GMU requires scanning all and only the elements
in CLog from the most recent to e∗ itself without looking at all the remaining
elements e′′. This is because for any element e′ in CLog, GMU stores which
was the last element lbe′ in CLog at the time T ′ was prepared on pi. In this
case GMU guarantees that commitV C ′ is greater than or equals to:

− the commit vector clock associated to lbe′ and

− all the vector clocks associated to the elements in CLog that precedes
lbe′.

Therefore, named (i) S′ the set of elements e′, (ii) LS′ the set of elements
lbe′, (iii) min(S′) the oldest committed element in S′, and (iv) min(LS′) the
oldest committed element in LS′, then the element e∗ is equal to min(LS′) iff
min(LS′) immediately precedes min(S′) in CLog.

6.2 Correctness Proof

This Section proves that GMU accepts only Extended Update Serializable
histories by showing that the protocol avoids G1a and G1b anomalies, plus
G1c and Extended G-update anomalies by taking also executing transactions
into account (as described in Chapter 3).

To simplify the explanation and without loss of generality, throughout the
following proof, both an executing and an aborted transaction at time t are
treated as a read-only transaction constituted by its prefix at time t that con-
tains all its read operations performed until time t, except the read operation
which has triggered an abort (if any). This is an admissible reduction since
write operations are buffered during the execution of a transaction and they
are externalized (i.e. the updates are applied) only upon a successfully com-
pleted commit phase. Moreover, the read operation that triggers an abort for
a transaction T can be safely discarded because it does not return any value
to the application layer, and hence it does not generate any dependency in the
DSG(H) graph.

90 CHAPTER 6

Since write operations are externalized only by committed transactions
then G1a anomaly is trivially avoided by the fact that a transaction Tj can-
not read a value written by an aborted transaction Ti; on the other hand
G1b anomaly is avoided because only the final modification produced by a
transaction T on a key k is made visible after transaction T commits.

The rest of the proof is organized in two parts: the former proves that
the G1c anomaly is avoided, namely the unidirectional flow of information is
guaranteed; the latter proves that the Extended G-update anomaly is avoided,
namely the no-update-conflict-misses property extended to also executing and
aborted transactions is guaranteed.

6.2.1 Unidirectional flow of information

As already described in Chapter 3, for each history H containing committed,
aborted and executing transactions, and pair of transactions Ti, Tj in H,
there is an unidirectional flow of information from Ti to Tj if DSG(H) does
not contain a directed cycle consisting entirely of dependency edges from Ti

to Tj .

To prove the last statement it will be shown that the sub-graph DSG(Hupc)
does not contain any directed cycle consisting entirely of dependency edges,
whereHupc is derived fromH by removing all the executing, aborted and read-
only transactions in H. In other words Hupc considers only the committed
update transactions in H. This simplification is admissible due to the fact
that:

1. by excluding anti-dependency edges, read-only transactions are necessar-
ily sink nodes of the DSG(H), i.e. they do not have outgoing edges, as
they can only develop incoming read dependency edges in this analysis;

2. each executing or aborted transaction can be treated as a read-only
transaction.

Consequently it is proved that for each edge VTi

wr−→ VTj ∈ DSG(Hupc)

and VTi

ww−−→ VTj ∈ DSG(Hupc), then Ti.commitV C < Tj .commitV C holds,
where Ti.commitV C (respectively Tj .commitV C) is the vector clock used to
commit transaction Ti (respectively Tj), and hence that DSG(Hupc) cannot
contain any oriented cycle with (write and read) dependency edges.

Therefore if an edge VTi

E−→ VTj is in DSG(Hupc), two cases are distin-
guished, depending on whether Tj directly read-depends on Ti, i.e. E = wr,
or Tj directly write-depends on Ti, i.e. E = ww.

6.2. Correctness Proof 91

Tj directly read-depends on Ti

In this case Tj reads a value val associated to a version ver committed by Ti

on key k stored on a node pn. Let Tj .V C be the vector clock associated to Tj

after Tj has read from Ti; then it is proved that both Ti.commitV C ≤ Tj .V C
and Tj .V C < Tj .commitV C hold.

Lemma 6.2.1. If a transaction Tj directly read-depends on a transaction Ti

then Ti.commitV C ≤ Tj .V C, where Tj .V C is the vector clock associated to
Tj right after Tj has read from Ti.

Proof. Right after Tj has read from Ti, Tj .V C is equal to the vector clock
obtained by maximizing each entry of Tj .V C with its counterpart in the V C∗

vector clock (see line 16 of Algorithm 8), implying that

V C∗ ≤ Tj .V C (6.2)

.
At that point two cases have to be distinguished, depending on whether

this is the first read by Tj on node pn or not. In the first case V C∗ is equal to
the vector clock MaxV C computed from pn’s CLog and such that

V C∗ ←MaxV C ← vc : ∀w, vc[w] = max{velem[w] : velem ∈ V isibleSet}
(6.3)

(see line 4 of Algorithm 9) and where

V isibleSet← {vc : 〈−, vc,−〉 ∈ CLog∧∀w(hasRead[w]⇒ vc[w] ≤ xactV C[w])}
(6.4)

(see line 3 of Algorithm 9), where xactV C was the old value of Tj .V C right
before the read operation.

In addition, since Tj has read version ver of key k from Ti, the following
condition is verified

∀w : hasRead[w] = > ⇒ Ti.commitV C[w] ≤MaxV C[w] (6.5)

by the visibility rule at line 9 of Algorithm 9, and therefore

MaxV C ≥ Ti.commitV C (6.6)

because Ti.commitV C ∈ V isibleSet by Equations 6.3, 6.4 and 6.5.
Since Ti.commitV C ≤ V C∗ by Equations 6.3 and 6.6, it follows that

Ti.commitV C ≤ Tj .V C by Equation 6.2.
Now it is considered the case in which the read by Tj on key k is not the

first read on node pn. In this case Ti.commitV C ≤ Tj .V C still holds because
Ti.commitV C was in the V isibleSet computed by Tj upon the first read on

92 CHAPTER 6

pn. If this was not the case, it would mean that at the time of that first read
there existed an index h such that Tj .hasRead[h] = > and Ti.commitV C[h] >
Tj .V C. However, by the visibility rule at line 9 of Algorithm 9, Tj .V C is always
updated by means of a max operator and that once Tj .hasRead[h] is set to >
then Tj .V C[h] cannot change anymore. Hence the claim follows.

Lemma 6.2.2. For each committed update transaction Tj, Tj .V CMAX <
Tj .commitV C, where Tj .V CMAX is the vector clock associated to Tj before
Tj enters the commit phase.

Proof. Let I be the set of the identifiers of the nodes in the system.

Tj .V CMAX < Tj .commitV C because:

− Tj .V CMAX [h] ≤ Tj .commitV C[h], ∀h ∈ I, since Tj .commitV C is ini-
tialized with the values of Tj .V CMAX (see line 4 of Algorithm 10) and
it is later modified by means of a max operator (see line 13 of Algorithm
10).

− ∀s ∈ I such that Tj writes on a key maintained by node ps, then
Tj .V CMAX [s] < Tj .commitV C[s] holds, since Tj .commitV C[s] is set to
xactV N , which is a new scalar version number derived from the incre-
ment of LastPrepV C[s] scalar clock on s (see lines 14-16 of Algorithm
10 and line 11 of Algorithm 11) and Tj .V CMAX [s] ≤ LastPrepV C[s]
before the increment.

Lemma 6.2.3. If a transaction Tj directly read-depends on a transaction Ti

then Ti.commitV C < Tj .commitV C

Proof. Since Tj .V C ≤ Tj .V CMAX by definition, Ti.commitV C ≤ Tj .V C
by Lemma 6.2.1 and Tj .V CMAX < Tj .commitV C by Lemma 6.2.2 then
Ti.commitV C < Tj .commitV C .

Tj directly write-depends on Ti

In this case Tj overwrites a key k already written by Ti.

Lemma 6.2.4. If a transaction Tj directly write-depends on a transaction Ti

then Ti.commitV C < Tj .commitV C

6.2. Correctness Proof 93

Proof. Since (i) a write is actually executed when a transaction commits, (ii)
an exclusive lock for each key to be written is acquired during the prepare
phase and (iii) all the locks are released at the end of the commit phase, then
Tj commits after Ti has already committed and both Ti and Tj commit on at
least a common node pn (the node that stores the key overwritten by Tj). In
addition, by line 13 of Algorithm 10, it follows that

prepareV Cj,n ≤ Tj .commitV C (6.7)

where prepareV Cj,n is the prepare vector clock used to prepare Tj on node
pn. Moreover, since Tj starts the prepare phase after Ti has already inserted
Ti.commitV C in pn’s CLog and prepareV Cj,n is greater than any vector clock
in that CLog (see line 11 of Algorithm 11), it follows that

Ti.commitV C < prepareV Cj,n (6.8)

Therefore Ti.commitV C < Tj .commitV C by (6.7) and (6.8).

Theorem 6.2.5. For each history H containing committed, aborted and exe-
cuting transactions, DSG(H) does not contain any oriented cycle with (write
and read) dependency edges.

Proof. As already described in the introduction of section 6.2.1 proving that
the DSG(Hupc) does not contain any directed cycle with dependency edges is
a sufficient condition to prove that DSG(H) does not contain such cycles. The
history Hupc is obtained by removing all the aborted, executing and read-only
transactions from H.

Therefore the DSG(Hupc) cannot contain any directed cycle with depen-
dency edges because if, by contradiction, such a cycle C existed, then, by
Lemma 6.2.3 and Lemma 6.2.4, there would be the absurd such that for each
transaction Ti in C, Ti.commitV C < Ti.commitV C.

6.2.2 No-update-conflict-misses

The no-update-conflict-misses property is guaranteed if, for each historyH and
aborted/executing/committed transaction Ti ∈ H, the DSG(Hupc

Ti
) containing

all committed update transactions of H and transaction Ti does not contain
any oriented cycle with anti-dependency edges.

Since every aborted/executing transaction can be reduced to a read-only
transaction (as described in the introduction of Section 6.2), the following
proof considers Ti as a generic (i.e. either read-only or update) committed
transaction.

94 CHAPTER 6

The proof is structured as follows: Lemma 6.2.6 proves that the result of
Lemmas 6.2.3 and 6.2.4 can be extended to the case of anti-dependency edges;
then Lemma 6.2.7 shows that the DSG(Hupc

Ti
) cannot contain oriented cycles

in the case Ti was a read-only transaction and at the end, Theorem 6.2.8
proves that the no-update-conflict-misses is guaranteed by using the results of
Lemmas 6.2.3, 6.2.4, 6.2.6 and 6.2.7.

Lemma 6.2.6. If a transaction Tj directly anti-depends on a transaction Ti

then Ti.commitV C < Tj .commitV C

Proof. In this case Ti reads a version of a key k older than the one created by
Tj on k and later it successfully commits. Since the protocol ensures that an
update transaction T is not aborted if and only if (i) it successfully acquires
locks on all the keys in its write-set and read-set at the beginning of its prepare
phase and (ii) it passes the validation phase, namely other transactions have
not concurrently altered the versions chain of the keys in T ’s read-set (see lines
21-25 of Algorithm 10), then Ti commits before Tj has committed and the two
sets of nodes involved in their commit operations are not disjoint. This is the
same scenario analyzed in Lemma 6.2.4, which considered the case in which
Tj directly write-depends on Ti. Therefore, using identical arguments, one can
easily show that Ti.commitV C < Tj .commitV C.

Lemma 6.2.7. For each history H and read-only transaction TRO ∈ H, the
DSG(Hupc

TRO) containing all committed update transactions of H and transac-

tion TRO does not contain any oriented cycle involving TRO.

Proof. As TRO is a read-only transaction, it follows that any incoming edge
from an update transaction Ti to TRO must be a read-dependency edge,
namely VTi

wr−→ VTRO . Further, the only outgoing edges from TRO to up-
date transactions Tj must be anti-dependency edges, namely VTRO

rw
� VTj .

In the case DSG(Hupc
TRO) contains an edge VTi

wr−→ VTRO , by Lemma 6.2.1

it follows that Ti.commitV C ≤ TRO.V C, where Ti.commitV C is the Ti’s
commit vector clock and TRO.V C is the vector clock associated to TRO right
after TRO has developed the dependence on Ti, i.e. TRO has read a version
committed by Ti.

On the other hand, if DSG(Hupc
TRO) contains an edge VTRO

rw
� VTj , by

definition of anti-dependency edge it follows that ∃k 6= j and a key x such
that TRO has read a version xk on a node pn, Tj has committed a version xj
on pn and xk � xj (xk is committed before xj).

In this case there always exists an index h such that TRO.V CMAX [h] <
Tj .commitV C[h]. In particular, if Tj has already committed version xj at the
time TRO has read version xk then ∃ ph from which TRO has already read

6.2. Correctness Proof 95

such that TRO.V C[h] < Tj .commitV C[h] (following the condition at line 9 of
Algorithm 9); since TRO.V C[h] cannot change anymore after TRO has read
on ph, then TRO.V CMAX [h] < Tj .commitV C[h] holds.

Otherwise, if TRO misses Tj updates because its read operation on key
x is delivered on pn before Tj ’s commit, then TRO.V C[h] < Tj .commitV C[h]
holds, where h is equal to n, because the pn’s commit log CLog is always totally
ordered according to the commit vector clocks’ values with index n. Also in
this case TRO.V CMAX [h] < Tj .commitV C[h] holds because TRO.V CMAX [h]
cannot change anymore after TRO has read on pn.

Note that no other cases are possible since the reading rule defined at
line 21 of Algorithm 8 prevents the transaction TRO from missing the up-
dates of Tj on pn when TRO.V C[n] ≥ Tj .commitV C[n] holds, and therefore
TRO.V CMAX [n] ≥ Tj .commitV C[n] since TRO.V CMAX ≥ TRO.V C by con-
struction.

At this point if DSG(Hupc
TRO) has an oriented cycle involving TRO, without

loss of generality such a cycle C can be assumed as follows: VT1 → . . .→ VTi →
VTRO → VTj → . . . → VT1 . Then by Lemmas 6.2.3, 6.2.4 and 6.2.6 it follows
that T1.commitV C < Ti.commitV C and Tj .commitV C < T1.commitV C. In
addition Ti.commitV C ≤ TRO.V C, after TRO has read a version commit-
ted by Ti, and there always exists an index h such that TRO.V CMAX [h] <
Tj .commitV C[h]. Since TRO.V C ≤ TRO.V CMAX by construction, it follows
the absurd:

1. for each update transaction T in C, T.commitV C[h] < T.commitV C[h];

2. TRO.V CMAX [h] < TRO.V CMAX [h].

Therefore DSG(Hupc
TRO) does not contain any cycle involving TRO.

The no-update-conflict-misses property is guaranteed by the following The-
orem.

Theorem 6.2.8. For each history H and transaction Ti ∈ H, the DSG(Hupc
Ti

)
containing all committed update transactions of H and an arbitrary (read or
update, committed, executing or aborted) transaction Ti does not contain any
oriented cycle with at least an anti-dependency edge.

Proof. In the case Ti is a committed update transaction then if such an ori-
ented cycle C existed, it would follow the absurd according to which T.commitV C <
T.commitV C for each transaction T in C by Lemmas 6.2.3, 6.2.4 and 6.2.6.

On the other hand, in the case Ti is a read-only transaction, DSG(Hupc
Ti

)
does not contain any cycle by Lemma 6.2.7.

96 CHAPTER 6

Since no other cases have to be considered because any executing or aborted
transaction can be treated as a read-only transaction (see introduction of sec-
tion 6.2), DSG(Hupc

Ti
) does not contain any oriented cycle and therefore not

even a cycle with an anti-dependency edge.

6.3 On the Data Freshness

In the transactional systems world it has been argued in various works [40, 71]
that executing transactions without violating the real-time order among them
may represent a necessary condition for the correctness of the applications.
Informally, according to Strict Serializability or Opacity, it can be required
that for each history H and for each pair of transactions T1 and T2 in H, T2

must appear as executed after T1, i.e. T2 must be serialized after T1 in the
DSG(H), if T1 ≺H T2. The ≺H relation is the happened-before relation [59]
between two transactions in a history H. In particular T1 ≺H T2 if the com-
mit operation c1 of T1 precedes the begin operation b2 of T2 in H (see also
Section 3.4.3).

This is an important property since, for multi-version concurrency control
schemes, it entails to establish a limit on the staleness of data returned by
read operations. This means that, even though a transaction T2 is allowed to
observe an old version of a datum, it must see at least the values committed
by every transaction T1 such that T1 ≺H T2.

Unfortunately GMU is not able to guarantee the real-time order as it has
been defined above, due to two main reasons that can be explained by the
following two executions admitted by GMU which exactly violate real-time
order.

In the first execution there are two update transactions T1, T2 such that (i)
T1 ≺H T2; (ii) T1 executes a single write operation w1(x1) and then commits
on node pi; (iii) T2 executes a single write operation w2(y2) and then commits
on node pj . In addition, there is a read-only transaction T3 that executes a
read operation r3(x0) on node pi (i.e. x0 � x1) before the commit of T1, a
read operation r3(y2) on node pj , and then commits. Therefore T3 misses the
version of x committed by T1 but is able to read the last committed version
of y because this version still belongs to a consistent snapshot for T3. This
execution is admitted by EUS because the resulting history H is serializable
and it is equivalent to the serial history in which T3 is executed after T2 and
before T1. But the execution violates the real-time order between T1 and T2

according to the definition in Section 3.4.3, since T1 ≺H T2 and there is an
oriented path from T2 to T1 in DSG(H).

In the second execution there are two transactions T1, T2 such that (i)

6.3. On the Data Freshness 97

T1 ≺H T2; (ii) T1 executes a single write operation w1(x1) and then commits
the new version x1 both on node pi and node pj ; (iii) T2 executes a read
operation r2(x0) on node pj (i.e. x0 � x1) before the commit of T1 has
been finalized on pj . This execution is admissible if pi is supposed to be the
coordinator of T1’s commit phase, which can reply the completion of T1 as soon
as it has finalized the commit of T1 locally. In fact, the second phase of the
2PC for T1 does not wait for all the participants to have finalized the commit
of T1, and transaction T2 has a real-time dependency on T1 since its begin is
executed in the system after pi has notified the client for the commit of T1. In
this case the resulting history H violates the real-time order between T1 and
T2, since T1 ≺H T2 and there is an oriented path, i.e. a direct anti-dependency
edge, from T2 to T1 in DSG(H).

Even if the issue related to the second execution can be avoided in some
cases by enforcing the coordinator of a 2PC to wait for a reply from each
participant also in the second phase of the 2PC, GMU is still not able to always
guarantee the real-time due to the genuineness of the replication scheme.

Nevertheless GMU is able to cope with one relevant aspect included in
the definition of the real-time order and that is very important for enhancing
the freshness of data returned by read operations. Roughly speaking GMU
ensures that the read operation r(x) on x of a transaction T executed on a
quiescent state of the system always returns the last committed version of
x. The system is defined to have a quiescent state if it is not executing any
transaction, except T , and all commit-pending transactions have finalized their
commit on all nodes of the system.

The latter feature is provided because a transaction does not fix its vis-
ible snapshot at the beginning of its execution but it always tries to extend
its view on the transactional state as soon as it touches for the first time a
new (not yet observed) node. This is a powerful feature because it allows a
transaction to observe the last committed snapshot for scenarios in which no
other transactions are changing the system state concurrently and despite the
genuineness of the replication protocol. Other existing GPR protocols that
also guarantee abort-free read-only transactions either are not able to achieve
this result [91] or provide the same data freshness guarantees by adopting a
more expensive memory footprint [8], i.e. vector clocks having the size equal
to the number of objects in the transactional state.

A formalization of such a behavior by GMU is given by the following
theorem.

Theorem 6.3.1. For any datum x and any transaction Ti that executes on a
quiescent state of the system, if Ti performs read operation ri(xk) then xk is
the most recent committed version of x.

Proof. The proof follows by induction on the elements in the read-set of Ti. It

98 CHAPTER 6

is first proved that the thesis is verified when ri(xk) is the first read operation
of Ti (base step). Then, it is proved that the thesis is verified when ri(xk) is
the n-th read operation of Ti, where the thesis is already verified for all the
previous n− 1 read operations of Ti (inductive step). It is also assumed that
ph ∈ replicas({x}) and Ti executes the read operation ri(xk) on ph.

Base step: ri(xk) is the first read operation of Ti. The proof of this step
follows by contradiction by assuming that xk is not the most recent committed
version of x. Therefore there is a version xj already committed on ph at the
time Ti executes ri(xk) such that xk � xj . This can only happen if Ti skips
version xj committed by transaction Tj on ph because there exists an index
m such that pm is the originating node of Ti, Ti.hasRead[m] = > (due to
the initialization of Ti.hasRead) and xj .vid[m] > Ti.V C[m] (see line 9 of
Algorithm 9). But since Ti.V C[m] is equal to CLog.mostRecentV C[m] on pm
at the time Ti began, and only a commit involving node pm can increase entry
m of every vector clock in the system, it would entail that the commit of Tj

transitively depends on a transaction committed on pm after Ti began. This
contradicts the hypothesis of quiescent system and therefore xk can only be
the last committed version of x.

Inductive step: ri(xk) is the n-th read operation of Ti and the previous
n − 1 read operations of Ti verify the thesis, namely for each datum y, if
ri(yq) is the t-th read operation of Ti, where t = 1, . . . , n − 1, then yq is
the most recent committed version of y. The proof of this step follows by
contradiction by assuming that xk is not the most recent committed version
of x. Therefore there is a version xj already committed on ph at the time
Ti executes ri(xk) such that xk � xj . This can only happen if Ti skips
version xj committed by transaction Tj on ph because there exists an index m
such that Ti.hasRead[m] = > (due to a previous read operation on pm) and
xj .vid[m] > Ti.V C[m] (see line 9 of Algorithm 9). But since only a commit
involving node pm can increase entry m of every vector clock in the system, this
entails that the commit of Tj transitively depends on a snapshot S committed
on pm that has been skipped by one of the first n−1 read operations. Without
loss of generality it is supposed that operation ri(yq) has skipped S on pm.
This is a contradiction for the following reasons:

− in case S contains a version of y, ri(yq) did not return the most recent
committed version of y;

− in case S does not contain a version of y, S has been committed after
ri(yq) was executed on pm.

Both cases are in contradiction with the quiescence of the system and
therefore xk can only be the last committed version of x.

6.4. Experimental Evaluation 99

6.4 Experimental Evaluation

GMU has been integrated in Infinispan2, a mainstream open source in-memory
distributed data platform. Analogously to many other contemporary dis-
tributed cache platforms, Infinispan [65] externalizes a simple key-value store
interface. In order to maximize scalability, Infinispan relies on weak consis-
tency models, and on a lightweight consistent hashing scheme [52] that allows
partitioning data efficiently while ensuring good load balancing and minimum
reshuffling of keys in presence of joins/departures of nodes from the platform.
Further, Infinispan supports partial replication, allowing to store each key
across a fixed, user-tunable number of replicas, thus achieving fault-tolerance
without hampering scalability.

For what concerns consistency, the stronger consistency level ensured by
Infinispan is Repeatable Read [11] (RR), an isolation level which ensures that
no intermediate or aborted values are ever observed, and that no two consecu-
tive reads on the same object within the same transaction can return different
values. RR is significantly weaker than (E)US, as it allows the commit of (both
read-only and update) transactions that observe non-serializable schedules [3].

Infinispan relies on an encounter based two phase locking scheme, which
is applied only to write operations and that does not synchronize reads. Re-
peatability of read operations is instead guaranteed by storing the data items
observed by read operations, and returning them upon subsequent reads. For
what concerns the replication protocol of Infinispan, it relies on a classic 2PC-
based distributed locking algorithm [38].

Designed to achieve high scalability and support weak consistency mod-
els, Infinispan represents an ideal baseline to evaluate the costs incurred by
GMU to provide stronger consistency guarantees. In addition also a non-
genuine multiversion-based replication scheme has been implemented, which,
analogously to the one in [54], relies on a fully replicated, logically centralized,
global scalar clock, used to totally order committing update transactions. This
protocol is named NGM (Non-Genuine Multiversioning) in the following.

For experimental study two well-known benchmarks were used, namely
TPC-C [93] and YCSB [23]. The workload generated by TPC-C is representa-
tive of OLTP environments and characterized by complex and heterogeneous
transactions, with very skewed access patterns and high conflict probability.
YCSB (Yahoo! Cloud Serving Benchmark) [23] is a framework specifically
aimed at benchmarking NoSQL key-value data grids and cloud stores. The
transactional profile of this benchmark is quite different from the one of TPC-
C, with simpler, shorter transactions that rarely conflict.

The results presented in the following were obtained using two experimen-

2The GMU prototype is publicly available at the URL http://www.cloudtm.eu.

100 CHAPTER 6

tal platforms. The first one, FutureGrid 3, is a public distributed test-bed for
parallel and cloud computing. This platform allows to evaluate GMU in en-
vironments representative of public cloud infrastructures, which are typically
characterized by more competitive resource sharing, ample usage of virtu-
alization technology, and relatively less powerful nodes. In the FutureGrid
platform, experiments using up to 40 virtual machines (VM) were performed.
Each VM was equipped with 7GB RAM, two 2.93GHz cores Intel Xeon CPU
X5570, running CentOS 5.5 x86 64. All the VMs were deployed in the same
physical data-center and interconnected via Gigabit Ethernet. In all exper-
iments performed on FutureGrid a single thread per node was adopted to
inject transactions (in closed loop), which guaranteed a high utilization of the
machine’s resources without overloading.

The second experimental platform, referred to as Cloud-TM, is a dedi-
cated cluster of 20 homogeneous nodes, where each machine is equipped with
two 2.13 GHz Quad-Core Intel(R) Xeon(R) E5506 processors and 16 GB of
RAM, running Linux 2.6.32-33-server and interconnected via a private Giga-
bit Ethernet. This platform is representative of small/medium private clouds
or data-centers environments, with dedicated servers and a fairly large amount
of available (computational and memory) resources per node. In order to
maintain a similar ratio between threads and available cores with respect to
the experiments performed in FutureGrid, in all experiments performed on
Cloud-TM, four threads per node were used to inject transactions (in closed
loop).

The analysis first starts with the results obtained by running YCSB using
the Cloud-TM platform. The Workload A [23] of the benchmark was used,
which is an update intensive workload (comprising 50% of update transactions)
simulating a session store that records recent client actions. Figure 6.1 reports
the maximum throughput (committed transactions per second) achievable by
GMU and by Infinispan’s partial replication protocol that ensures Repeatable
Read (referred to as RR, in the following). The plot shows that the average
reduction in throughput for GMU oscillates around 8%, and that it scales
linearly at the same rate as RR, providing an evidence of the efficiency and
scalability of the proposed solution.

Next, Figure 6.2 reports the results achieved using, on FutureGrid, the
TPC-C benchmark configured with a read-dominated profile, composed at the
90% by read-only (Order-Status profiles) transactions and, for the remaining
10%, by update transactions (Payment and New-Order profiles) in equal parts.
The plot confirms the efficiency and scalability of GMU. Surprisingly, in this
scenario, despite providing consistency guarantees, GMU even outperforms
RR by up to 10%. A profiling study has highlighted that these gains are

3www.futuregrid.org

6.4. Experimental Evaluation 101

 0

 10000

 20000

 30000

 40000

 50000

 6 8 10 12 14 16 18 20

Th
ro

ug
hp

ut
 (c

om
m

itt
ed

 tx
/s

ec
)

Number of Nodes

Read & Write Transaction - (YCSB)

GMU
RR

Figure 6.1: YCSB Benchmark (Cloud-TM).

 0

 500

 1000

 1500

 2000

 2500

 3000

 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Th
ro

ug
hp

ut
 (c

om
m

itt
ed

 tx
/s

ec
)

Number of Nodes

Read & Write Transactions - (TPC-C)

GMU
RR

Figure 6.2: TPC-C Benchmark (FutureGrid).

imputable to the fact that GMU, unlike RR, avoids the overhead of storing
previously read values to guarantee consistency. Read-only transactions in
TPC-C, in fact, tend to perform a large number of operations, forcing RR
to perform a large number of cloning operations to store read versions in the
transactional context.

Finally, Figure 6.3 reports the results achieved by running TPC-C on the
Cloud-TM platform. With 4 threads injecting transactions per node, the
degree of concurrency is significantly higher than in the former experiment,
leading to significant conflicts both at the logical (data) and at the physical
(computing/network resources) level. The plots in this case report also the per-
formance of the above described non-genuine multiversion partial replication
protocol (NGM). The experimental data clearly demonstrate the detrimental

102 CHAPTER 6

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12 14 16 18 20

Th
ro

ug
hp

ut
 (c

om
m

itt
ed

 tx
/s

ec
)

Number of Nodes

Write Transactions - (TPC-C)

GMU
RR

NGM

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 4 6 8 10 12 14 16 18 20

Th
ro

ug
hp

ut
 (c

om
m

itt
ed

 tx
/s

ec
)

Number of Nodes

Read & Write Transactions - (TPC-C)

GMU
RR

NGM

Figure 6.3: TPC-C Benchmark (Cloud-TM)
.

effect on system scalability due to the high logical contention on the fully
replicated global clock, which leads to the drastic decay of the throughput (in
particular of write transactions, see plot on top of Figure 6.3).

By comparing the performance of GMU with that of RR it emerges that
the increase in the logical/physical contention level characterizing this config-
uration has a stronger impact on GMU. In fact, even though GMU shows an
almost linear scalability trend, data reveal that it suffers of a higher abort rate
than RR: for 20 nodes, the abort rate is on the order of the 15% for GMU,
whereas it is around 8% for RR. This data shows that, in high contention sce-
narios, strong consistency semantics do pay a performance toll, which, in this
specific configuration, corresponds to a throughput reduction ranging from
10% (at 4 nodes) up to 20% (at 20 nodes). On the other hand this is an
unavoidable cost to pay in the context of applications whose correctness can
be endangered by adopting non-serializable isolation levels. Note that TPC-C

6.4. Experimental Evaluation 103

does belong to this class of applications, as in fact several of its transactional
profiles might generate data corruptions in presence of concurrency anomalies
such as those possible using Repeatable Read.

Chapter 7

Additional Tradeoffs in the
Design of Multi-Version GPR
Protocols

With GMU it has been proved how to design a scalable multi-version solution
for replicated transactional systems by guaranteeing highly desirable proper-
ties which no other protocol guaranteed before, i.e. genuine partial replication
(GPR) and abort-free read-only transactions. This has been achieved by still
ensuring a strong consistency level, i.e. EUS.

In other words, GMU does not require an expensive distributed validation
for read-only transactions, and allows the abort of update transactions only if
they encounter a conflict with other update transactions. The latter property,
that as been defined as multi-versioned permissiveness in the context of in-
memory transactional systems [80], entails in the context of replicated systems
that read-only transactions are never forced to abort unless the coordinators
of those transactions crash and clearly if there is at least a correct node storing
every datum requested by the transaction.

Other than meeting this base requirements GMU also has the following
two additional features for read operations:

− Every read operation is always provided with a consistent state of the
transactional system, namely it is never allowed to observe a transac-
tional state that would not be producible by some serializable execution
of write transactions.

− The read operation ri(x) of a transaction Ti never returns a version older
than the one created by the latest transaction Tk that has performed a
write operation on x, if Ti is executed in a quiescent system state.

105

106 CHAPTER 7

The former feature is the reason why GMU guarantees abort-free read-
only transactions and explains why they do not undergo distributed validation
procedures after their execution: in fact, since a transaction always observes
a consistent state, as soon as it completes its execution it can safely commit
by appearing as serialized at a point in time that coincides with the execution
of one of its read operations.

Data freshness is ensured thanks to the logic used in GMU to regulate the
advance of the visible snapshots, which always tries to extend the view on
the transactional state as soon as it touches for the first time a new (not yet
observed) node.

These desirable properties, however, do come with some costs. Concerning
consistency, GMU does not ensure serializability but only EUS. Regarding
meta-data, GMU associates vector clocks, and not simple scalar, unlike for
instance SPECULA. Indeed, vector clocks can have a non-negligible cost at
high systems scale, as their usage leads to generate larger messages (i.e. higher
network load), larger processing and storage overheads (i.e. higher CPU and
memory consumption).

This Chapter seeks an answer to the following question: can we avoid
the two above drawbacks of GMU, by relaxing exclusively its data freshness
guarantees, and preserving its other desirable properties (i.e., GPR and abort-
free read-only transaction)?

It is shown that the answer to the above question is yes, by presenting
SCORe (SCalable One-copy serializable Replication protocol) [78]. Like GMU,
SCORe employs a genuine partial replication scheme which guarantees that
read-only transactions always observe a consistent snapshot of the data, hence
avoiding to incur in expensive remote validation phases. This result is achieved
by combining a local multiversion concurrency control algorithm with a highly
scalable distributed logical-clock synchronization scheme that only requires the
exchange of a scalar clock value among the nodes involved in the handling of
a transaction. All the above features jointly allow SCORe to be performance
effective, highly scalable, and able to provide support for a wider set of appli-
cations, including those that impose strict data consistency requirements.

The prize to pay is the possible lack in data freshness because SCORe is
not able to dynamically advance the visible snapshot of a transaction through
its execution. Therefore, unlike GMU, SCORe is not able to ensure that
every read operation on datum x executed in a quiescent system state always
returns the last committed version of x. In particular SCORe only guarantees
that a transaction is allowed to observe at least the snapshot committed on
the transaction’s originating node at the time the transaction began. This
property is still important for scenarios in which a client submits a sequence
of transactions by contacting always the same node, and it is guaranteed by
other consistency criteria defined for replicated transactional systems, e.g.

7.1. The SCORe Protocol 107

Prefix-Consistent Snapshot Isolation [33].

As GMU, SCORe has been integrated in Infinispan [65]. This allows for
performing a fair experimental comparison between the two protocols. Fur-
thermore, this choice of integrating SCORe in a popular open-source data grid
allowed enhancing the visibility of the proposed protocol also to the industrial
community.

The effectiveness of SCORe has been assessed via an extensive experimen-
tal study based on both the TPC-C [93] and YCSB [23] benchmarks, using
as experimental testbeds a private cluster with up to 20 nodes, and a public
cloud (FutureGrid) with up to 100 nodes. Major outcomes from the study
entail demonstrations of linear scalability by SCORe across a wide range of
workloads, and analogous performance to that achievable by GMU, which
however provides different guarantees for what concerns consistency and data
freshness.

The remainder of this Chapter is organized as follows. The SCORe pro-
tocol is presented in Section 7.1 while its proof of correctness is provided in
Section 7.2. The results of the experimental analysis are reported in Section
7.3.

7.1 The SCORe Protocol

7.1.1 Overview

SCORe is a genuine (hence highly scalable) partial replication protocol that
implements a One-Copy Serializable distributed multi-version scheme. As in
typical non-distributed multi-version algorithms [12], SCORe replicas store
multiple versions of the data items that they maintain, each tagged with a
scalar timestamp. Therefore SCORe adopts the data model as described in
Chapter 3 and every version is associated a scalar version identifier vid. How-
ever, SCORe introduces a novel distributed timestamp management scheme
that addresses two main issues: (i) establishing the snapshot visible by trans-
actions, i.e. selecting which one, among the multiple versions of a datum
(replicated across multiple nodes) should be observed by a transaction upon a
read operation; (ii) determining the final global serialization order for update
transactions via a distributed agreement protocol that takes place during the
transactions’ commit phase.

To this end SCORe maintains two scalar variables per node, namely commitId
and nextId. The former one maintains the timestamp that was attributed to
the last update transaction when committed on that node. nextId, on the
other hand, keeps track of the next timestamp that the node will propose
when it will receive a commit request for a transaction that accessed some of
the data that it maintains.

108 CHAPTER 7

Snapshot visibility for transactions is determined by associating with each
transaction T a scalar timestamp, called snapshot identifier or, more suc-
cinctly, sid. The sid of a transaction is established upon its first read opera-
tion. In this case the most recent version of the requested datum is returned,
and the transaction’s sid is set to the value of commitId at the transaction’s
originating node, if the read can be served locally. Otherwise, if the requested
datum is not maintained locally, T.sid is set equal to the maximum between
commitId at the originating node and commitId at the remote node from
which T reads. From that moment on, any subsequent read operation is al-
lowed to observe the most recent committed version of the requested datum
having timestamp less than or equal to T.sid, as in classical multiversion con-
currency control algorithms.

Therefore, unlike GMU, SCORe is not able to advance the observable
snapshot on every read operation, and it only ensures that a transaction can
observe at least all the writes that were committed on the transaction’s origi-
nating node before the transaction begins.

To guarantee that the logical timestamps univocally identify committed
snapshots of the transactional state (whether they are commitId, nextId,
sid or vid), in SCORe they are represented in such a way for any pair of
timestamps idi and idj , if idi ≤ idj ∧ idj ≤ idi then i = j, hence they are the
same identifier associated to a unique commit. In addition if i 6= j, then either
idi ≤ idj or idj ≤ idi, and for any triple idi, idj and idk, if idj ≤ idj∧idj ≤ idk,
then idi ≤ idk. Therefore a set of identifiers in SCORe is always totally
ordered under the binary relation ≤, and this property is ensured by implicitly
supposing that a timestamp identifier can be represented as a pair of integer
and node identifier (which can be a compact representation of its address that
univocally identifies it in the system). In addition, throughout the following
description, the notation idi < idj is used to indicate that idi ≤ idj and
idj 6≤ idi, .

Analogously to GMU, SCORe relies on a genuine atomic commit protocol
that can be seen as the fusion of the Two-Phase Commit algorithm (2PC)
and the Skeen’s total order multicast [44]. 2PC is used to validate update
transactions and to guarantee the atomicity of the application of their post-
images. Overlapped with 2PC, SCORe runs a distributed agreement protocol
that allows to achieve a twofold goal: (i) totally ordering the commit events
of transactions that update any data item in a partition j among all the
nodes that replicate j (namely, gj); (ii) tracking the serialization order between
update transactions that exhibit (potentially transitive) data dependencies by
totally ordering them via a scalar commit timestamp that is also used as version
identifier of the post-images of committed transactions.

A key mechanism used in SCORe to correctly serialize transactions, and in
particular to track write-after-read dependencies [12], is to update the nextId

7.1. The SCORe Protocol 109

of a node upon the processing of a read operation. Specifically, if a node
receives a read operation from a transaction T having a sid larger than its
local nextId, this is advanced to T.sid. This mechanism allows to guarantee
that any update transaction T up that requests to commit on node pi at time t is
attributed a commit timestamp larger than the timestamp of any transaction
T that read a value from pi before time t, hence ensuring that T up is serialized
after T .

Finally, since a transaction is attributed a snapshot identifier upon its
first read, which is used throughout its execution, SCORe guarantees that the
snapshot read by a transaction is always consistent with respect to a prefix of
the equivalent serial history of committed transactions. As a consequence, in
SCORe read-only transactions never abort and do not need to undergo any
distributed validation.

The pseudocode of the SCORe protocol is reported in Algorithms 12, 13,
14, 15, 16 and 17, and discussed and analyzed in the following. For the sake
of presentation, it is first assumed that the transaction’s coordinator does not
crash, and then Section 7.1.4 discusses how to relax this assumption.

7.1.2 Handling of Read and Write Operations

SCORe buffers write operations of transactions in a private write-set (denoted
as ws in Algorithm 12), which is only made visible upon transaction’s commit.

Read operations on a datum d first check whether d has already been
updated by the transaction, returning in this case the value present in the
transaction’s writeset (lines 5-6 of Algorithm 12). Otherwise, it is necessary
to establish which of the versions of d is visible to the transaction. As al-
ready mentioned, transactions establish the sid that they use to determine
version’s visibility upon their first read. If this read operation is local, the
transaction’s sid is simply set equal to the originating node’s commitId (lines
7-8 of Algorithm 12). Otherwise, it is set equal to the maximum between the
commitId of the remote node from which the data is read and the commitId
of the transaction’s originating node (lines 17-18 of Algorithm 12 and lines 3-4
of Algorithm 14). Further, if the transaction’s sid is higher than the node’s
nextId, the latter is set equal to T.sid (line 3 of Algorithm 13). This ensures
that update transactions that subsequently issue a commit request on that
node are serialized after T .

Next, the version visible by transaction T is determined, as in conventional
MVCC algorithms [12], by selecting the most recent version having commit
timestamp less than T ’s snapshot identifier (lines 6-11 of Algorithm 13). Before
doing so, however, T first waits for the completion of the commit phase of any
transaction T ′ that i) is updating d, and ii) is currently in its commit phase
(line 5 of Algorithm 13). In fact, in case T ′ is committed successfully, as it

110 CHAPTER 7

Algorithm 12 Write and Read operations (node pi).

1: void Write(Transaction T, Key k, Value val)
2: T.ws← T.ws \ {〈k,−〉} ∪ {〈k, val〉}
3:

4: Value Read(Transaction T, Key k)
5: if ∃ < k, val >∈ T.ws then
6: return val
7: if is first read of T then
8: T.sid← pi.commitId

9: if pi ∈ replicas({k}) then
10: [val, last]← doRead(T.sid, k)
11: else
12: if (is first read of T) then
13: send ReadRequest([T.id, k, T.sid,>]) to all pj ∈ replicas({k})
14: else
15: send ReadRequest([T.id, k, T.sid,⊥]) to all pj ∈ replicas({k})
16: wait receive ReadReturn([tid, val, newRsid, lastCsid, last]) from

any ph ∈ replicas({k})
17: if is first read of T then
18: T.sid← newRSid
19: if last = ⊥ ∧ T.ws 6= ∅ then
20: throw ABORT
21: T.rs← T.rs ∪ {k}
22: return val

7.1. The SCORe Protocol 111

will be clearer in the following, it might be attributed a timestamp smaller
than T.sid. Hence, T ′ would be totally ordered before T and the version of
d created by T ′ would be visible to T . If T ′ aborted, on the other hand, T
should not see its updates. In order to enforce the correct tracking of this
read-after-write dependence, SCORe forces any transaction T reading a data
item d to wait until there are no longer transaction commit events pending
on d and with a (either final or temporary) commit timestamp smaller than
T.sid.

Algorithm 13 Version visibility logic (node pi).

1: [Value, bool] doRead(SnapshotId readSid, Key k)
2: // Track write-after-read dependence
3: pi.nextId← max(pi.nextId, readSid)
4: // Enforce read-after-write dependence
5: wait until (pi.commitId ≥ readSid ∨ k.exclusiveUnlocked())
6: V ersion ver ← k.lastF inal
7: bool last← >
8: while ver.vid > sid do
9: ver ← ver.prev

10: last← ⊥
11: return [ver.val, last]

The logic for handling remote read operations is defined by Algorithm 14.
It is worthy to highlight that, even though transactions update their own sid
only upon their first read operation, a node attempts to advance its local
timestamps commitId and nextId whenever it receives a message (associated
with the request or the response of a read operation) from another node in the
system informing it that snapshots with higher timestamps have been already
committed. This mechanism, which aims to maximize the freshness of visi-
ble snapshots, is encapsulated by the updateNodeTimestamps function (lines
12-15 of Algorithm 14). This function advances immediately the nextId times-
tamp, which is used to determine the timestamp proposed for future commit
requests. However, additional care needs to be taken before advancing the
node’s commitId timestamp. As this timestamp determines the (minimum)
snapshot visible by locally generated transactions, in fact, it can be increased
to a new value, say commitId′, only if it is found that there are no committing
transactions that may be given a timestamp less than or equal to commitId′

(lines 17-18 of Algorithm 14).

Finally, SCORe includes a simple, yet effective, optimization that consists
in immediately aborting update transactions which, based on their snapshot
identifier, are forced to observe, upon a read operation, data item versions
that have been already overwritten by more recently committed transactions
(lines 19-20 of Algorithm 12).

112 CHAPTER 7

Algorithm 14 Handling of remote reads (node pi).

1: upon receive ReadRequest([int tid, Key k, SnapshotId readSid, bool
firstRead]) from pj

2: SnapshotId newReadSid← readSid
3: if firstRead = > ∧ pi.commitId > newReadSid then
4: newReadSid← pi.commitId

5: [val, last]← doRead(newReadSid, k)
6: send ReadReturn([tid, val, newReadSid, pi.commitId, last])
7: updateNodeT imestamps(readSid)

8:

9: upon receive ReadReturn([int tid, Value val, SnapshotId newRsid, Snap-
shotId lastCsid, bool last]) from pj

10: updateNodeT imestamps(lastCsid)

11:

12: void updateNodeTimestamps(SnapshotId lastCommittedSid)
13: // Update global snapshot knowledge
14: pi.nextId← max(pi.nextId, lastCommittedSid)
15: pi.maxSeenId← max(pi.maxSeenId, lastCommittedSid)

16:

17: upon (pi.maxSeenId > pi.commitId ∧ CommitQueue.isEmpty())
18: pi.commitId← max(pi.maxSeenId, pi.commitId)

7.1.3 Commit Phase

As already mentioned, with SCORe read-only transactions (lines 2-3 of Algo-
rithm 15) can be committed without undergoing distributed validation phases
(unlike, for instance, in [86]).

Update transactions, on the other hand, execute a Two-Phase Commit
protocol, which is detailed in the following. To guarantee genuineness, SCORe
involves in the commit phase of a transaction T only the nodes that maintain
replicas of the data items that T accessed plus the coordinator of T , namely
the node originating T . More in detail, when a node pi requests to commit
transaction T , it broadcasts a Prepare message to all nodes pj belonging
to replicas(T.rs ∪ T.ws) ∪ pi (line 6 of Algorithm 15). Upon the receipt of
this message, node pj verifies whether the transaction can be serialized after
every transaction that has locally committed so far. To this end, it attempts
to acquire exclusive, respectively shared, locks for the data in T ’s write-set,
respectively read-set, that it locally maintains. This lock acquisition is non-
blocking since the node waits for a busy lock only for a certain amount of time,
which is determined by means of a configurable timeout parameter (lines 2-
3 of Algorithm 16). Next, if the acquisition of the locks succeeds, the node
validates T ’s read-set (line 4 of Algorithm 16), verifying that none of the items
read by T has been overwritten by a more recently committed transaction (in

7.1. The SCORe Protocol 113

terms of timsestamp identifiers). If any of these operations fails, T is simply
rolled back, which will yield to the abort of the whole distributed transaction,
as in classic 2PC (lines 6-7 of Algorithm 16).

Algorithm 15 Commit phase (node pi).

1: bool Commit(Transaction T)
2: if T.ws = ∅ then
3: return >;

4: bool outcome← >;
5: Set proposedSn← ∅;
6: send Prepare([T, T.sid, T.rs, T.ws]) to all pj ∈ replicas(T.rs∪T.ws)∪{pi}
7: for all pj ∈ replicas(T.rs ∪ T.ws) ∪ {pi} do
8: wait receive Vote([T, sn, res]) from pj or timeout
9: if res = ⊥ ∨ timeout then

10: outcome← ⊥
11: break
12: else
13: proposedSn← proposedSn ∪ sn

14: T.sid← max(proposedSn)
15: send Decide([T, T.sid, outcome]) to all pj ∈ replicas(T.rs ∪ T.ws) ∪ {pi}
16: wait until T.completed = >
17: return T.outcome
18:

19: bool validate(Set rs, SnapshotId sid)
20: for all k ∈ rs do
21: if k.lastF inal.vid > sid then
22: return ⊥
23: return >

If the transaction passes the validation phase, however, the Vote message
of 2PC is exploited to overlap a distributed agreement scheme similar in spirit
to Skeen’s total order multicast algorithm that aims to establish the final seri-
alization order for the transaction, as in GMU. More in detail, pj increments
the nextId timestamp, inserts the triple 〈T, pj .nextId, pending〉, defined on
the domain Transaction×SnapshotId×{pending, ready} in a queue of pend-
ing committing transactions (denoted as CommitQueue like in GMU) ordered
by SnapshotId, and sends back to the transaction coordinator the value of
pj .nextId in piggyback to the Vote message (lines 8-11 of Algorithm 16).
The coordinator gathers the Vote messages (aborting the transaction in case
one of the contacted node does not respond within a predefined timeout),
determines the final commit timestamp for T as the maximum among the
timestamps proposed by the transaction’s participants, and broadcasts back
a Decide message with the transaction’s final commit timestamp (lines 7-15
of Algorithm 15).

114 CHAPTER 7

Upon the receipt of the Decide message (lines 13-25 of Algorithm 16)
with a positive outcome, unlike classical 2PC and like the GMU scheme, the
transaction is not necessarily immediately committed. In fact, as each data
item is replicated over more than one node, and since 1CS has to be ensured
without requiring the validation of read-only transactions, SCORe guarantees
that the commit events of all update transactions (even non-conflicting ones)
are totally ordered across all the replicas of a same partition. To ensure
this result, when a Decide message is received on pj for transaction T with
final commit timestamp fsn, T is removed from CommitQueue and it is
immediately committed (atomically increasing pj .nextId) only if there are no
other transactions in CommitQueue with snapshot id less than fsn. If this
is not the case, the old entry of T is updated in CommitQueue with the
values 〈T, fsn, ready〉 and it is ordered accordingly, while the commit of T is
is delayed till it can be ensured that no other pending transaction will ever
receive a final commit snapshot id less than fsn (Algorithm 17).

Algorithm 16 Prepare and Decide messages (node pi).

1: upon receive Prepare([Transaction T]) from pj
2: bool outcome← getExclLocksWithT imeout(T.id, T.ws)
3: outcome← outcome ∧ getSharedLocksWithT imeout(T.id, T.rs)
4: outcome← outcome ∧ validate(T.rs, T.sid)
5: SnapshotIdsn← NULL SID
6: if outcome = ⊥ then
7: releaseLocks(T.id, T.ws, T.rs)
8: else
9: sn← pi.nextId← pi.nextId + 1

10: CommitQueue.put(〈T, sn, pending〉)
11: send Vote ([T.id, sn, outcome]) to pj

12:

13: upon receive Decide([Transaction T, SnapshotId fsn, bool outcome]) from pj
14: if outcome = > then
15: pi.nextId← max(pi.nextId, fsn)
16: if pi ∈ replicas(T.ws ∪ T.rs) then
17: CommitQueue.update(〈T, fsn, ready〉)
18: else
19: T.outcome← >
20: T.completed← >
21: else
22: CommitQueue.remove(T)
23: releaseLocks(T.id, T.ws, T.rs)
24: T.outcome← ⊥
25: T.completed← >

7.2. Correctness Proof 115

Algorithm 17 Finalizing the commit phase of transaction T (node pi).

1: upon (∃〈T, fsn, s〉 : 〈T, fsn, s〉 = CommitQueue.head ∧ s = ready ∧
(@〈T̄ , s̄n, s̄〉 ∈ CommitQueue : s̄n < fsn))

2: ∀〈k, val〉 ∈ T.ws : pi ∈ replicas({k}) do apply(k, val, fsn)
3: pi.commitId = fsn
4: CommitQueue.remove(T)
5: releaseLocks(T.id, T.ws, T.rs)
6: T.outcome← >
7: T.completed← >

7.1.4 Garbage Collection and Fault-Tolerance

As in non-distributed MVCC algorithms, versions of a data item d having
timestamps less than the sid of any active transaction can be safely removed,
provided that most recent versions of d have already been committed. In a
distributed platform, it is required to disseminate the information on the sid
of the oldest active transaction at each node. This information can be spread
by relying, e.g., on lazy approaches based on piggybacking or gossip [95], as
described for GMU.

Like GMU, for simplicity SCORe has been presented as layered on top of
2PC protocol. Therefore the issues of how ensuring fault-tolerance in SCORe
are the same of GMU and the solutions described in Section 6.1.4 apply to
SCORe as well.

7.2 Correctness Proof

The correctness proof of SCORe is less complex than the one of GMU because
it only needs to show that every multiversioned history of committed trans-
actions executed by SCORe is One-Copy Serializable (1CS). In addition, this
Section also proves that SCORe provides an isolation guarantee that is even
stronger than 1CS, i.e. Executing 1CS (E1CS) [3] (Section 3.4.2), because it
enforces that every executed history (without limiting to those of committed
transactions) is 1CS. Therefore it is proved that for every history H, both
DSG(Hc) and DSG(H) do not contain any oriented cycle, where Hc is the
history obtained from H by removing all the aborted and executing transac-
tions.

Theorem 7.2.1. For each history H, DSG(Hc) does not contain any oriented
cycle, where Hc is the history obtained from H by removing all the aborted and
executing transactions.

Proof. The proof is based on establishing a mapping between each vertex
VTi in DSG(Hc) and the value of the commit timestamp of Ti, denoted as

116 CHAPTER 7

commitSId(Ti). The acyclicity of the DSG(Hc) is proved by showing that for

each edge VTi

E−→ VTj ∈ DSG(Hc) SCORe guarantees that commitSId(Ti) ≤
commitSId(Tj).

Note that, if Ti is a read-only transaction, commitSId(Ti) is equal to the
sid assigned to Ti upon its first read operation. On the other hand, in case
Ti is an update transaction, commitSId(Ti) is computed during Ti’s commit
phase and is equal to the maximum identifier among the ones proposed by the
nodes involved in the commit of Ti .

E is first assumed to be a direct write-dependence edge, and in this case
it is shown that SCORe ensures commitSId(Ti) < commitSId(Tj). This is
because Ti and Tj are both update transactions and they commit on a common
subset S of the nodes in the system (at least the nodes storing the data item
on which the write-dependence is materialized). In fact, in accordance with
the design of the commit phase, it is ensured that: (i) Tj cannot enter the
commit phase of the protocol before Ti has committed, since Tj has to wait
for the release of some exclusive lock owned by Ti at least on the nodes in
S; (ii) Ti updates the nextId on the nodes in S to a value at least equal to
commitSId(Ti) before finalizing its commit; (iii) the commitSId(Tj) is chosen
as the maximum among the nextId values, incremented by one, of the nodes
involved in the commit of Tj .

Now assume that E is a direct read-dependence edge. This means that Tj

has read a version committed by Ti. Therefore the snapshot identifier used by
Tj to perform read operations, i.e. Tj .sid, is greater than or equal to the Ti’s
commit snapshot identifier due to the reading rule defined by the protocol.
So, if Tj is a read-only transaction, this entails that commitSId(Ti) ≤ Tj .sid
= commitSId(Tj); otherwise, if Tj is an update transaction its commit snap-
shot identifier will be always greater than its reading snapshot identifier, since
the value proposed by each node involved in the commit of Tj (i.e. the incre-
mented nextId) is greater than every snapshot seen by Tj . As a consequence,
commitSId(Ti) < commitSId(Tj) holds.

Finally, if E is a direct anti-dependence edge, then two scenarios have
to be distinguished. In the former, if Ti is a read-only transaction, then the
commitSId(Tj) is greater than commitSId(Ti) since (i) the Tj ’s commit snap-
shot identifier is at least equal to all the values proposed for its commit and (ii)
there exists a value among the one proposed that is guaranteed to be greater
than Ti’s reading snapshot identifier (i.e. commitSId(Ti) in this scenario) due
to the visibility rule adopted on each read operation of Ti. In particular, Ti

performs a read operation on a data item x of a node p only after it has en-
sured that (i) the nextId value on p will be greater than or equal to its reading
snapshot identifier and (ii) no transaction will commit an update on x using
a snapshot id not greater than commitSId(Ti). Otherwise, if Ti is an update

7.3. Experimental Evaluation 117

transaction, it is guaranteed that at the time Tj commits, Ti has been already
successfully committed otherwise Ti’s read-set would have been invalidated by
Tj . This case is analogous to the one in which E is a write-dependence edge
since there are two update transactions, Ti and Tj , that commit on a com-
mon subset of nodes S, and Ti commits before Tj ; therefore commitSId(Ti)
< commitSId(Tj) holds.

Therefore if DSG(Hc) contained an oriented cycle C, it would follow that
for every transaction Ti involved in C, commitSId(Ti) < commitSId(Ti),
which is impossible. Hence the claim follows.

Theorem 7.2.1 have proved that SCORe guarantees 1CS. Now, the follow-
ing Theorem proves that SCORe guarantees a consistency criterion stronger
than 1CS, i.e. E1CS, because the protocol ensures that the read operations
issued by every transaction T ∈ H, even those that eventually abort, observe
the state generated by a prefix of a sequential history equivalent to Hupc,
where Hupc is the history of committed update transactions in H. In addition,
unlike EUS, for any pair of transactions Ti and Tj , the states observed by Ti

and Tj are generated by two prefixes of the same sequential history equivalent
to Hupc.

Theorem 7.2.2. For each history H, DSG(H) does not contain any oriented
cycle.

Proof. The proof automatically follows by the proof of Theorem 7.2.1 and
by considering that: (i) since a write operation is externalized only upon a
successful commit, a live or an aborted transaction at time t can be considered
as a committed read-only transaction that contains its read prefix performed
until t, except the operation which has triggered an abort (if any); (ii) the
DSG(H) graph is built as DSG(Hc) (so it has a node for each committed
transaction) and it also has a node for each aborted/live transaction reduced
to its read prefix.

The property E1CS, is also implied by the more recent Opacity property
defined as the reference correctness criterion for in-memory transactional sys-
tems [40] (Section 3.4.3). However, it is easy to show that, since SCORe
fixes the timestamp of a transaction upon its first read operation, it neither
guarantees real-time order, as required by Opacity, nor tries to maximize the
freshness of data read, like GMU.

7.3 Experimental Evaluation

This Section reports the results of an experimental study aimed at evaluating
the performance and scalability of SCORe. This study is based on a prototype

118 CHAPTER 7

implementation of SCORe1 that has been integrated within the Infinispan data
grid system.

The strongest consistency level ensured by Infinispan is Repeatable Read [11]
(RR), which guarantees that no intermediate or aborted values are ever ob-
served, and that no two reads on the same key within the same transaction
can return different values. RR is definitely weaker than Serializability, as it
allows the commit of (both read-only and update) transactions that observe
non-serializable schedules [3].

Being Infinispan designed to achieve high scalability in the context of weak
data consistency models, it represents an ideal baseline to evaluate the costs
incurred in by the SCORe protocol in order to provide 1CS (i.e. strong con-
sistency) guarantees.

SCORe has been evaluated by using the same benchmarks adopted for
the experimental evaluation of GMU (Section 6.4): the TPC-C [93] bench-
mark adapted to execute on a NoSQL platform such as Infinispan, and YCSB
(Yahoo! Cloud Serving Benchmark) [23], which is specifically targeted at the
assessment of key-value data grids and cloud stores.

The test-bed platforms adopted are the ones described in Section 6.4 for
GMU, i.e. the Cloud-TM platform of 20 homogeneous nodes, and FutureGrid,
which is a public distributed test-bed for parallel and cloud computing. Unlike
the experimental evaluation of GMU, the experiments on top of the FutureGrid
platform have been performed by using up to 100 virtual machines, equipped
with 4GB RAM, two 2.93GHz cores Intel Xeon CPU X5570, running CentOS
5.7 x86 64.

Finally, for both deploys on the above described platforms, the replication
degree of each data item is set to the value 2.

Figure 7.1 shows the achieved throughput values for TPC-C on top of the
Cloud-TM platform while varying the number of involved nodes between 2
and 20. The plots in the top row refer to the workload composed at the 90%
by read-only transactions, denoted as Workload A. The left plot reports the
throughput for write transactions, whereas the right plot reports the through-
put for read-only transactions. The performance of SCORe are contrasted
with that of the native RR scheme supported by Infinispan, and with that of
the GMU protocol. As already discussed, GMU ensures a consistency crite-
rion (namely EUS) weaker than 1CS, but stronger than RR. In other words,
GMU exhibits intermediate consistency semantics with respect to the other
two analyzed protocols.

The plots highlight that SCORe attains throughput values that are even
slightly better than those achieved by GMU. This phenomenon is explainable
by considering that, while SCORe relies on a timestamping mechanism based

1The SCORe prototype is publicly available at the URL http://www.cloudtm.eu.

7.3. Experimental Evaluation 119

 0

 200

 400

 600

 800

 1000

 1200

 2 4 6 8 10 12 14 16 18 20

T
h

ro
u
g

h
p
u
t

(C
o
m

m
it
te

d
 t
x
/s

e
c
)

Number of nodes

Write Transactions - (TPC-C Workload A)

SCORe
GMU

RR

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2 4 6 8 10 12 14 16 18 20

T
h

ro
u
g

h
p
u
t

(C
o
m

m
it
te

d
 t
x
/s

e
c
)

Number of nodes

Read Transactions - (TPC-C Workload A)

SCORe
GMU

RR

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h

p
u
t
(C

o
m

m
it
te

d
 t
x
/s

e
c
)

Number of nodes

Write Transactions - (TPC-C Workload B)

SCORe
GMU

RR

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10 12 14 16 18 20

T
h
ro

u
g
h

p
u
t
(C

o
m

m
it
te

d
 t
x
/s

e
c
)

Number of nodes

Read Transactions - (TPC-C Workload B)

SCORe
GMU

RR

Figure 7.1: TPC-C Benchmark (Cloud-TM).

 0

 10000

 20000

 30000

 40000

 50000

 6 8 10 12 14 16 18 20

T
h

ro
u
g

h
p

u
t

(C
o

m
m

it
te

d
 t

x
/s

e
c
)

Number of Nodes

Read and Write Transactions - (YCSB)

SCORe
GMU

RR

Figure 7.2: YCSB Benchmark (Cloud-TM).

120 CHAPTER 7

 0

 200

 400

 600

 800

 1000

 1200

 40 50 60 70 80 90 100

T
h

ro
u
g

h
p
u
t

(C
o
m

m
it
te

d
 t

x
/s

e
c
)

Number of nodes

Write Transactions - (TPC-C Workload A)

SCORe
GMU

RR

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 40 50 60 70 80 90 100

T
h

ro
u
g

h
p
u
t

(C
o
m

m
it
te

d
 t

x
/s

e
c
)

Number of nodes

Read Transactions - (TPC-C Workload A)

SCORe
GMU

RR

Figure 7.3: TPC-C Benchmark (FutureGrid).

on scalar clock values, GMU uses vector clocks, which introduce higher over-
heads with respect to scalar clocks as the number of nodes in system grows.

The plot in the bottom row of Figure 7.1 reports the results for TPC-C,
obtained on top of the Cloud-TM platform, for the scenario encompassing 50%
of read-only transactions, denoted as Workload B. While the comparative be-
havior of SCORe vs GMU follows trends similar to those observed for 90%
read-only transactions, this time the performance loss of SCORe vs RR for
update transactions grows significantly. This is essentially due to the fact that
the increased volume of update transactions leads to an increased abort rate
caused predominantly by aborts during the validation phase of the transac-
tion’s read-set (interestingly, the aborts due to failures in the lock acquisition
phase turned out to be statistically marginal). In other words, as the update
rate grows, the probability for an update transaction to access a stale snapshot
accordingly grows. In particular, for the case of 20 nodes, the abort proba-
bility for update transactions with SCORe is on the order of 43%, while RR
only exhibits around 8% abort rate for update transactions, with aborts exclu-
sively caused by deadlocks. However, when considering the total throughput
for Workload B (including both read-only plus update transactions), SCORe
exhibits similar scalability trend when compared to RR. Overall, the data
show that, for increased contention scenarios, strong consistency semantics do
pay a performance toll, which, in this specific configuration, corresponds to a
throughput reduction up to 22% (at 20 nodes). On the other hand this is an
unavoidable cost to pay in applications whose correctness can be endangered
by adopting non-serializable isolation levels.

Figure 7.2 shows the results obtained by running YCSB on the Cloud-TM
platform. Workload A [23] of the benchmark was used, which is an update in-
tensive workload (comprising 50% of update transactions) simulating a session
store that records recent client actions. The maximum throughput (committed
transactions per second) achievable by the three considered protocols has been

7.3. Experimental Evaluation 121

 0

 2

 4

 6

 8

 10

 2 4 6 8 10 12 14 16 18 20

T
ra

n
s
a

c
ti
o
n
 e

x
e
c
u
ti
o
n

 l
a
te

n
c
y
 (

m
s
e
c
)

Number of nodes

Read and Write Transactions - (TPC-C Workload A)

SCORe
GMU

RR

 0

 5

 10

 15

 20

 25

 30

 40 50 60 70 80 90 100

T
ra

n
s
a

c
ti
o
n
 e

x
e
c
u
ti
o
n

 l
a
te

n
c
y
 (

m
s
e
c
)

Number of nodes

Read and Write Transactions - (TPC-C Workload A)

SCORe
GMU

RR

Figure 7.4: Average transaction execution latency (TPC-C Workload A) for
both Cloud-TM (left) and FutureGrid (right).

reported. The plot shows that the average reduction in throughput for both
SCORe and GMU, compared to RR, oscillates around 8%, and that, again,
the throughput scales linearly at the same rate as RR, providing an evidence
of the efficiency and scalability of the proposed solution when considering
transaction profiles featuring applications natively tailored for key-value data
stores.

Figure 7.3 presents the results obtained by running Workload A of TPC-
C on FutureGrid. The data confirm the general trends already observed on
the Cloud-TM platform, highlighting both the high scalability of the proposed
solution and its high efficiency when compared to vector-clock-based solutions,
such as GMU, whose overheads grow linearly with the scale of the platform.

Finally, for completeness of the analysis, Figure 7.4 reports the average
transaction execution latency for the case of TPC-C (Workload A) run on
both Cloud-TM and FutureGrid. By the data it is shown that, for all the
protocols, latency values stay almost flat while increasing the size on the un-
derlying platform (and consequently of the total workload sustained), which
again supports the claim of good scalability of SCORe. Further, the relevance
of this result is supported by the fact that all the reported values were related
to scenarios where the utilization of infrastructural resources was high (as an
example, for the tests with TPC-C on top of FutureGrid the CPU utilization
was constantly observed to be over the 80%). Hence, the data refer to sce-
narios where the throughput was relatively close to the maximum sustainable
one.

Chapter 8

Concluding Remarks

This dissertation have presented innovative research results in the context
of distributed transactional systems, with the common objective of enhanc-
ing the efficiency in the handling of data replication. This has been done to
effectively cope with recent technological trends, which have significantly in-
creased the relative impact that the inter-replica synchronization costs have on
the performance of the systems. In particular, three main recent architectural
evolutions have exacerbated the ratio between replicas coordination time and
transaction execution time, raising the need for revisiting existing approaches
to transactional replication. The first one is the Transactional Memory (TM)
programming paradigm, which has changed the structure of the transactional
workloads: while relational databases are optimized to support complex SQL
queries on data possibly stored on disk, TM’s workloads are often dominated
by transactions that perform very few read/write access to in-memory vari-
ables. The second one is the Solid-State Drive technology that has allowed the
implementation of faster storage components, and has changed non-functional
(e.g. performance/response time) characteristics of transactional processing.
The third one is the trend towards ever growing levels of scale, which, by
increasing the number of replicas that need to agree on the transactions’ out-
come, generally leads to an increase of per-transaction replica coordination
cost.

Four replication protocols have been proposed in order to face the afore-
mentioned issue via the exploitation of differentiated approaches tailoring ei-
ther full or partial replication scenarios. In the following the key aspects of
each proposed solution are summarized.

− SPECULA is a transactional replication protocol for fully replicated en-
vironments that aims at minimizing the overhead of the replica coordina-
tion phase by speculating on its eventual success. It lets application level
threads speculatively commit transactions and optimistically pipeline

123

124 CHAPTER 8

the execution of subsequent transactional/non-transactional code blocks.
Therefore it is able to prevent threads from blocking till the completion
of a distributed coordination for a transaction executed locally, by seek-
ing the complete overlap between transactions execution and replicas
synchronization. SPECULA relies on three key building blocks: an inno-
vative multi-version concurrency control, which manages the coexistence
of speculatively and finally committed data versions while ensuring se-
rializability of the snapshots observed by transactions throughout their
execution; a novel distributed certification protocol, which ensures that
the history of finally committed transactions is One-Copy Serializable; a
set of mechanisms (including continuations, undo-logging of updates on
non-transactional heap variables, automatic detection of non-revocable
operations) aimed at ensuring total transparency of the management of
speculative executions for the user level application.

− Lilac-TM is a fully decentralized, LocalIty-aware LeAse-based repli-
Cated TM protocol for fully replicated environments. Its core design is
based on the idea of asynchronous leases such that a node needs to ac-
quire exclusive leases on a subset S of the transactional state to commit
transactions on S. It exploits a novel, self-optimizing lease circulation
scheme that provides two key benefits: (i) limiting the frequency of
lease circulation by dynamically deciding whether to circulate leases or
migrate transactions, and (ii) enhancing the contention management ef-
ficiency, by increasing the probability that conflicting transactions are
executed on the same node. Lilac-TM relies on three main building
blocks: a fine-grained lease manager, which facilitates the exploitation of
locality and consequently reduces lease circulation, by decoupling lease
requests from the requesting transaction’s data-set via the fine-grained
Lease Ownership Records; the Transaction Forwarder, which is respon-
sible for managing the forwarding of a transaction to a different node, in
order to achieve the goal of minimizing the execution rate of expensive
Atomic Broadcast-based consensus protocols; the Distributed Transac-
tion Dispatching module, which encapsulates the logic for determining
whether to process the commit of a transaction locally, by issuing lease
requests if required, or to migrate its execution to a remote node.

− GMU (Genuine Multi-version Update serializability) protocol is an inno-
vative partial replication protocol for transactional systems. The core of
GMU is a distributed multi-version concurrency control scheme, which
relies on a novel vector clock based synchronization algorithm to track, in
a totally decentralized (and consequently scalable) way, both data and
causal dependency relations. In order to maximize scalability, GMU

125

adopts a genuine partial replication mechanism that ensures that trans-
actions only contact replicas storing the data that they accessed. Fur-
ther, GMU never aborts read-only transactions and spares them from
expensive distributed validation schemes. In addition, despite the gen-
uineness of its replication mechanism, GMU always tries to maximize the
freshness of data returned upon a read operation. This is achieved by
adopting a weaker consistency criterion than classic One-Copy Serializ-
ability, namely EUS. Informally, EUS guarantees One-Copy Serializabil-
ity for the committed update transactions and disallows all transactions
(also aborted ones) to observe non-consistent snapshots. On the other
hand it allows both read-only and executing/aborted transactions two
observe different non-compatible histories of committed write transac-
tions.

− SCORe (SCalable One-copy serializable Replication) protocol is an in-
novative genuine partial replication protocol for transactional systems
that, like GMU, maximizes system scalability by demanding that only
the replicas that maintain data accessed by a transaction are involved
in its processing, and read-only transactions never abort or undergo an
expensive distributed validation. Its novelty is given by the consistency
level it guarantees, since SCORe is the first genuine partial replication
protocol with abort-free read-only transactions that also ensures Execut-
ing One-Copy Serializability (E1CS). E1CS is stronger then One-Copy
Serializability because it guarantees that the whole history of executed
transactions is One-Copy Serializable, by also including aborted and
executing transactions. This is achieved by reaching a compromise be-
tween data freshness and consistency since, SCORe achieves E1CS by
sacrificing data freshness, and achieving a weaker property such that
transactions can observe at least the write operations committed on the
originating nodes when they begin. Further, unlike GMU, SCORe avoids
relying on vector clocks, and uses simpler and more efficient scalar clocks
to establish transactions’ serialization order.

All the theoretical achievements have also been experimentally evaluated
by integrating the designed protocols into state of the art academic and indus-
trial transactional platforms. Additionally, the experimental results presented
in this dissertation were obtained by relying on both traditional and cloud
infrastructures, which further strengths the relevance of the experimental out-
comes.

Bibliography

[1] Daniel J. Abadi. Consistency Tradeoffs in Modern Distributed Database
System Design: CAP is Only Part of the Story. Computer, 45(2):37–42,
February 2012.

[2] Ali-Reza Adl-Tabatabai, Christos Kozyrakis, and Bratin Saha. Unlock-
ing Concurrency. Queue, 4(10):24–33, December 2006.

[3] Atul Adya. Weak Consistency: A Generalized Theory and Opti-
mistic Implementations for Distributed Transactions. PhD Thesis, Mas-
sachusetts Institute of Technology, 1999.

[4] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and
Christos Karamanolis. Sinfonia: A New Paradigm for Building Scalable
Distributed Systems. In Proceedings of 21st ACM SIGOPS Symposium
on Operating Systems Principles, SOSP, 2007.

[5] Sérgio Almeida, João Leitão, and Lúıs Rodrigues. Chainreaction: A
causal+ consistent datastore based on chain replication. In Proceedings
of the 8th ACM European Conference on Computer Systems, EuroSys
’13, pages 85–98, New York, NY, USA, 2013. ACM.

[6] Cristiana Amza, Alan Cox, Karthick Rajamani, and Willy Zwaenepoel.
Tradeoffs Between False Sharing and Aggregation in Software Dis-
tributed Shared Memory. In Proceedings of the 6th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP,
1997.

[7] Ivo Anjo and João Cachopo. JaSPEx: Speculative Parallel Execution
of Java Applications. In Proceedings of the Simpósio de Informática,
INFORUM, 2009.

[8] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-
monotonic Snapshot Isolation: Scalable and Strong Consistency for Geo-
replicated Transactional Systems. In Proceedings of the IEEE 32nd In-
ternational Symposium on Reliable Distributed Systems, SRDS, 2013.

127

128 Bibliography

[9] J. E. Armendáriz-Iñigo, A. Mauch-Goya, J. R. González de Mend́ıvil,
and F. D. Muñoz Escóı. SIPRe: A Partial Database Replication Protocol
with SI Replicas. In Proceedings of the ACM Symposium on Applied
Computing, SAC, 2008.

[10] Alberto Bartoli and Ozalp Babaoglu. Selecting a ”Primary Partition”
in Partitionable Asynchronous Distributed Systems. In Proceedings of
the 16th Symposium on Reliable Distributed Systems, SRDS, 1997.

[11] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil,
and Patrick O’Neil. A Critique of ANSI SQL Isolation Levels. In Proceed-
ings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD, 1995.

[12] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Con-
currency Control and Recovery in Database Systems. Addison-Wesley
Longman Publishing Co., Inc., 1987.

[13] Eric A. Brewer. Towards Robust Distributed Systems (Abstract). In
Proceedings of the 19th Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC, 2000.

[14] Andrey Brito, Christof Fetzer, and Pascal Felber. Multithreading-
Enabled Active Replication for Event Stream Processing Operators. In
Proceedings of the 28th IEEE International Symposium on Reliable Dis-
tributed Systems, SRDS, 2009.

[15] João Cachopo and António Rito-Silva. Versioned Boxes As the Basis for
Memory Transactions. Science of Computer Programming, 63(2):172–
185, December 2006.

[16] Lasaro Camargos, Fernando Pedone, and Rodrigo Schmidt. A Primary-
Backup Protocol for In-Memory Database Replication. In Proceedings
of the 5th IEEE International Symposium on Network Computing and
Applications, NCA, 2006.

[17] Nuno Carvalho, João Cachopo, Lúıs Rodrigues, and Antonio Rito Silva.
Versioned transactional shared memory for the FenixEDU web applica-
tion. In Proceedings of the 2nd workshop on Dependable distributed data
management, SDDDM, 2008.

[18] Nuno Carvalho, Paolo Romano, and Lúıs Rodrigues. Asynchronous
Lease-based Replication of Software Transactional Memory. In Pro-
ceedings of the ACM/IFIP/USENIX 11th International Conference on
Middleware, Middleware, 2010.

Bibliography 129

[19] Nuno Carvalho, Paolo Romano, and Lúıs Rodrigues. A Generic Frame-
work for Replicated Software Transactional Memories. In Proceedings
of the IEEE 10th International Symposium on Network Computing and
Applications, NCA, 2011.

[20] Nuno Carvalho, Paolo Romano, and Lúıs Rodrigues. SCert: Specula-
tive Certification in Replicated Software Transactional Memories. In
Proceedings of the 4th Annual International Conference on Systems and
Storage, SYSTOR, 2011.

[21] Bernadette Charron-Bost and André Schiper. Uniform Consensus is
Harder Than Consensus. Journal of Algorithms, 51(1):15–37, April 2004.

[22] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. Group Com-
munication Specifications: A Comprehensive Study. ACM Computing
Surveys, 33(4):427–469, December 2001.

[23] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.
In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC,
2010.

[24] Maria Couceiro, Paolo Romano, Nuno Carvalho, and Lúıs Rodrigues.
D2STM: Dependable Distributed Software Transactional Memory. In
Proceedings of the 15th IEEE Pacific Rim International Symposium on
Dependable Computing, PRDC, 2009.

[25] Maria Couceiro, Paolo Romano, and Luis Rodrigues. PolyCert: Poly-
morphic Self-optimizing Replication for In-memory Transactional Grids.
In Proceedings of the 12th ACM/IFIP/USENIX International Confer-
ence on Middleware, Middleware, 2011.

[26] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi.
Albatross: Lightweight Elasticity in Shared Storage Databases for the
Cloud Using Live Data Migration. Proceedings of the VLDB Endowment,
4(8):494–505, May 2011.

[27] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly
Available Key-value Store. In Proceedings of 21st ACM SIGOPS Sym-
posium on Operating Systems Principles, SOSP, 2007.

[28] Xavier Défago, André Schiper, and Péter Urbán. Total Order Broadcast
and Multicast Algorithms: Taxonomy and Survey. ACM Computing
Surveys, 36(4):372–421, December 2004.

130 Bibliography

[29] Aditya Dhoke, Binoy Ravindran, and Bo Zhang. On Closed Nesting and
Checkpointing in Fault-Tolerant Distributed Transactional Memory. In
Proceedings of the IEEE 27th International Symposium on Parallel and
Distributed Processing, IPDPS, 2013.

[30] Dave Dice, Ori Shalev, and Nir Shavit. Transactional Locking II. In Pro-
ceedings of the 20th International Conference on Distributed Computing,
DISC, 2006.

[31] Nuno Lourenço Diegues and Paolo Romano. Bumper: Sheltering Trans-
actions from Conflicts. In Proceedings of the IEEE 32nd International
Symposium on Reliable Distributed Systems, SRDS, 2013.

[32] Aleksandar Dragojević, Pascal Felber, Vincent Gramoli, and Rachid
Guerraoui. Why STM Can Be More Than a Research Toy. Communi-
cations of the ACM, 54(4):70–77, April 2011.

[33] Sameh Elnikety, Willy Zwaenepoel, and Fernando Pedone. Database
Replication Using Generalized Snapshot Isolation. In Proceedings of the
24th IEEE Symposium on Reliable Distributed Systems, SRDS, 2005.

[34] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossi-
bility of Distributed Consensus with One Faulty Process. Journal of the
ACM, 32(2):374–382, April 1985.

[35] Svend Frølund and Rachid Guerraoui. Implementing E-Transactions
with Asynchronous Replication. IEEE Transactions on Parallel and
Distributed Systems, 12(2):133–146, February 2001.

[36] Hector Garcia-Molina. Elections in a Distributed Computing System.
IEEE Transactions on Computers, 31(1):48–59, January 1982.

[37] Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasi-
bility of Consistent, Available, Partition-tolerant Web Services. ACM
SIGACT News, 33(2):51–59, June 2002.

[38] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The Dangers
of Replication and a Solution. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD, 1996.

[39] Jim Gray and Leslie Lamport. Consensus on Transaction Commit. ACM
Transactions on Database Systems, 31(1):133–160, March 2006.

[40] Rachid Guerraoui and Michal Kapalka. On the Correctness of Transac-
tional Memory. In Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP, 2008.

Bibliography 131

[41] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. STMBench7: A
Benchmark for Software Transactional Memory. In Proceedings of the
2nd ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems, EuroSys, 2007.

[42] Rachid Guerraoui, Ron R. Levy, Bastian Pochon, and Vivien Quéma.
Throughput Optimal Total Order Broadcast for Cluster Environments.
ACM Transactions on Computer Systems, 28(2):5:1–5:32, July 2010.

[43] Rachid Guerraoui and Lúıs Rodrigues. Introduction to Reliable Dis-
tributed Programming. Springer-Verlag New York, Inc., 2006.

[44] Rachid Guerraoui and André Schiper. Genuine Atomic Multicast in
Asynchronous Distributed Systems. Theoretical Computer Science,
254(1-2):297–316, March 2001.

[45] R. C. Hansdah and Lalit M. Patnaik. Update Serializability in Locking.
In Proceedings on International Conference on Database Theory, ICDT,
1986.

[46] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy.
Composable Memory Transactions. In Proceedings of the 10th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP, 2005.

[47] Danny Hendler, Alex Naiman, Sebastiano Peluso, Francesco Quaglia,
Paolo Romano, and Adi Suissa. Exploiting Locality in Lease-Based
Replicated Transactional Memory via Task Migration. In Proceedings
of the 27th International Conference on Distributed Computing, DISC,
2013.

[48] Maurice Herlihy and Victor Luchangco. Distributed Computing and the
Multicore Revolution. SIGACT News, 39(1):62–72, March 2008.

[49] Maurice Herlihy, Victor Luchangco, and Mark Moir. A Flexible Frame-
work for Implementing Software Transactional Memory. In Proceedings
of the 21st Annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming Systems, Languages, and Applications, OOPSLA, 2006.

[50] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Archi-
tectural Support for Lock-free Data Structures. In Proceedings of the
20th Annual International Symposium on Computer Architecture, ISCA,
1993.

132 Bibliography

[51] Ricardo Jiménez-Peris, Marta Patiño Mart́ınez, and Gustavo Alonso.
Non-Intrusive, Parallel Recovery of Replicated Data. In Proceedings of
the 21st IEEE Symposium on Reliable Distributed Systems, SRDS, 2002.

[52] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. Consistent Hashing and Random Trees: Dis-
tributed Caching Protocols for Relieving Hot Spots on the World Wide
Web. In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, STOC, 1997.

[53] Bettina Kemme and Gustavo Alonso. A Suite of Database Replication
Protocols Based on Group Communication Primitives. In Proceedings
of the 18th International Conference on Distributed Computing Systems,
ICDCS, 1998.

[54] Bettina Kemme and Gustavo Alonso. Don’T Be Lazy, Be Consistent:
Postgres-R, A New Way to Implement Database Replication. In Pro-
ceedings of the 26th International Conference on Very Large Data Bases,
VLDB, 2000.

[55] Bettina Kemme, Fernando Pedone, Gustavo Alonso, and André Schiper.
Processing Transactions over Optimistic Atomic Broadcast Protocols. In
Proceedings of the 19th IEEE International Conference on Distributed
Computing Systems, ICDCS, 1999.

[56] Bettina Kemme, Fernando Pedone, Gustavo Alonso, Andre Schiper, and
Matthias Wiesmann. Using Optimistic Atomic Broadcast in Transaction
Processing Systems. IEEE Transactions on Knowledge and Data Engi-
neering, 15(4):1018–1032, July 2003.

[57] Eric Koskinen and Maurice Herlihy. Checkpoints and Continuations
Instead of Nested Transactions. In Proceedings of the 20th Annual Sym-
posium on Parallelism in Algorithms and Architectures, SPAA, 2008.

[58] Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized
Structured Storage System. ACM SIGOPS Operating Systems Review,
44(2):35–40, April 2010.

[59] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Dis-
tributed System. Communications of the ACM, 21(7):558–565, July
1978.

[60] Leslie Lamport. Generalized Consensus and Paxos. Technical Report
MSR-TR-2005-33, Microsoft, http://research.microsoft.com/apps/
pubs/default.aspx?id=64631, March 2005.

http://research.microsoft.com/apps/pubs/default.aspx?id=64631
http://research.microsoft.com/apps/pubs/default.aspx?id=64631

Bibliography 133

[61] Tobias Landes. Dynamic Vector Clocks for Consistent Ordering of
Events in Dynamic Distributed Applications. In Proceedings of the Inter-
national Conference on Parallel and Distributed Processing Techniques
and Applications & Conference on Real-Time Computing Systems and
Applications, PDPTA, 2006.

[62] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.
Andersen. Don’T Settle for Eventual: Scalable Causal Consistency for
Wide-area Storage with COPS. In Proceedings of the 23rd ACM Sym-
posium on Operating Systems Principles, SOSP, 2011.

[63] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.
Andersen. Stronger Semantics for Low-latency Geo-replicated Storage.
In Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation, NSDI, 2013.

[64] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. High Per-
formance State-machine Replication. In Proceedings of the IEEE/IFIP
41st International Conference on Dependable Systems&Networks, DSN,
2011.

[65] Francesco Marchioni and Manik Surtani. Infinispan Data Grid Platform.
PACKT Publishing, 2012.

[66] Hugo Miranda, Alexandre Pinto, and Rodrigues Lúıs. Appia: A Flexible
Protocol Kernel Supporting Multiple Coordinated Channels. In Proceed-
ings of the the 21st International Conference on Distributed Computing
Systems, ICDCS, 2001.

[67] J. Eliot B. Moss. Nested Transactions: An Approach to Reliable Dis-
tributed Computing. PhD Thesis, Massachusetts Institute of Technology,
1985.

[68] Roberto Palmieri, Francesco Quaglia, and Paolo Romano. AGGRO:
Boosting STM Replication via Aggressively Optimistic Transaction Pro-
cessing. In Proceedings of the 9th IEEE International Symposium on
Network Computing and Applications, NCA, 2010.

[69] Roberto Palmieri, Francesco Quaglia, and Paolo Romano. OSARE: Op-
portunistic Speculation in Actively REplicated Transactional Systems.
In Proceedings of the IEEE 30th International Symposium on Reliable
Distributed Systems, SRDS, 2011.

[70] Roberto Palmieri, Francesco Quaglia, and Paolo Romano. ASAP: An
Aggressive SpeculAtive Protocol for Actively Replicated Transactional

134 Bibliography

Systems. In Proceedings of the IEEE 11th International Symposium on
Network Computing and Applications, NCA, 2012.

[71] Christos H. Papadimitriou. The Serializability of Concurrent Database
Updates. Journal of the ACM, 26(4):631–653, October 1979.

[72] Marta Patiño Mart́ınez, Ricardo Jiménez-Peris, Bettina Kemme, and
Gustavo Alonso. Scalable Replication in Database Clusters. In Proceed-
ings of the 14th International Conference on Distributed Computing,
DISC, 2000.

[73] Stacy Patterson, Aaron J. Elmore, Faisal Nawab, Divyakant Agrawal,
and Amr El Abbadi. Serializability, Not Serial: Concurrency Control and
Availability in Multi-datacenter Datastores. Proceedings of the VLDB
Endowment, 5(11):1459–1470, July 2012.

[74] Fernando Pedone, Rachid Guerraoui, and André Schiper. The Database
State Machine Approach. Distributed and Parallel Databases, 14(1):71–
98, July 2003.

[75] Fernando Pedone and André Schiper. Optimistic Atomic Broadcast:
A Pragmatic Viewpoint. Theoretical Computer Science, 291(1):79–101,
January 2003.

[76] Sebastiano Peluso, João Fernandes, Paolo Romano, Francesco Quaglia,
and Lúıs Rodrigues. SPECULA: Speculative Replication of Software
Transactional Memory. In Proceedings of the IEEE 31st Symposium on
Reliable Distributed Systems, SRDS, 2012.

[77] Sebastiano Peluso, Roberto Palmieri, Francesco Quaglia, and Binoy
Ravindran. On the Viability of Speculative Transactional Replication
in Database Systems: A Case Study with PostgreSQL. In Proceedings
of the 12th IEEE International Symposium on Network Computing and
Applications, NCA, 2013.

[78] Sebastiano Peluso, Paolo Romano, and Francesco Quaglia. SCORe: A
Scalable One-copy Serializable Partial Replication Protocol. In Proceed-
ings of the ACM/IFIP/USENIX 13th International Middleware Confer-
ence, Middleware, 2012.

[79] Sebastiano Peluso, Pedro Ruivo, Paolo Romano, Francesco Quaglia, and
Lúıs Rodrigues. When Scalability Meets Consistency: Genuine Multi-
version Update-Serializable Partial Data Replication. In Proceedings
of the IEEE 32Nd International Conference on Distributed Computing
Systems, ICDCS, 2012.

Bibliography 135

[80] Dmitri Perelman, Rui Fan, and Idit Keidar. On Maintaining Multiple
Versions in STM. In Proceedings of the 29th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, PODC, 2010.

[81] Francisco Perez-Sorrosal, Marta Patiño Mart́ınez, Ricardo Jiménez-
Peris, and Bettina Kemme. Consistent and Scalable Cache Repli-
cation for Multi-tier J2EE Applications. In Proceedings of the
ACM/IFIP/USENIX 2007 International Conference on Middleware,
Middleware, 2007.

[82] Torvald Riegel, Pascal Felber, and Christof Fetzer. A Lazy Snapshot Al-
gorithm with Eager Validation. In Proceedings of the 20th International
Conference on Distributed Computing, DISC, 2006.

[83] Torvald Riegel, Christof Fetzer, and Pascal Felber. Time-based Transac-
tional Memory with Scalable Time Bases. In Proceedings of the 19th An-
nual ACM Symposium on Parallel Algorithms and Architectures, SPAA,
2007.

[84] Paolo Romano, Roberto Palmieri, Francesco Quaglia, Nuno Carvalho,
and Lúıs Rodrigues. Brief Announcement: On Speculative Replication
of Transactional Systems. In Proceedings of the 22nd Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures, SPAA, 2010.

[85] O. T. Satyanarayanan and D. Agrawal. Efficient Execution of Read-Only
Transactions in Replicated Multiversion Databases. IEEE Transactions
on Knowledge and Data Engineering, 5(5):859–871, October 1993.

[86] Nicolas Schiper, Pierre Sutra, and Fernando Pedone. P-Store: Genuine
Partial Replication in Wide Area Networks. In Proceedings of the 29th
IEEE Symposium on Reliable Distributed Systems, SRDS, 2010.

[87] Fred B. Schneider. Implementing Fault-tolerant Services Using the State
Machine Approach: A Tutorial. ACM Computing Surveys, 22(4):299–
319, December 1990.

[88] Daniele Sciascia, Fernando Pedone, and Flavio Junqueira. Scalable
Deferred Update Replication. In Proceedings of the 42nd Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN, 2012.

[89] D. Serrano, Marta Patiño Mart́ınez, Ricardo Jiménez-Peris, and Bet-
tina Kemme. Boosting Database Replication Scalability Through Par-
tial Replication and 1-Copy-Snapshot-Isolation. In Proceedings of the
13th Pacific Rim International Symposium on Dependable Computing,
PRDC, 2007.

136 Bibliography

[90] Nir Shavit and Dan Touitou. Software Transactional Memory. In Pro-
ceedings of the 14th Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC, 1995.

[91] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Trans-
actional Storage for Geo-replicated Systems. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles, SOSP, 2011.

[92] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J. Abadi. Calvin: Fast Distributed Transactions
for Partitioned Database Systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD, 2012.

[93] TPC Council. TPC Benchmark C, Revision 5.11. February 2010.

[94] Alexandru Turcu and Binoy Ravindran. On Open Nesting in Distributed
Transactional Memory. In Proceedings of the 5th Annual International
Systems and Storage Conference, SYSTOR, 2012.

[95] Robbert Van Renesse, Kenneth P. Birman, and Werner Vogels. Astro-
labe: A Robust and Scalable Technology for Distributed System Moni-
toring, Management, and Data Mining. ACM Transactions on Computer
Systems, 21(2):164–206, May 2003.

[96] Li Wang and Wanlei Zhou. Primary-Backup Object Replications in
Java. In Proceedings of the Technology of Object-Oriented Languages
and Systems, TOOLS, 1998.

[97] Xinli Wang, Jean Mayo, Wei Gao, and James Slusser. An Efficient Im-
plementation of Vector Clocks in Dynamic Systems. In Proceedings of the
International Conference on Parallel and Distributed Processing Tech-
niques and Applications & Conference on Real-Time Computing Systems
and Applications, PDPTA, 2006.

[98] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso. Under-
standing Replication in Databases and Distributed Systems. In Proceed-
ings of the the 20th International Conference on Distributed Computing
Systems, ICDCS, 2000.

[99] Matthias Wiesmann, André Schiper, Fernando Pedone, Bettina Kemme,
and Gustavo Alonso. Database Replication Techniques: A Three Pa-
rameter Classification. In Proceedings of the 19th IEEE Symposium on
Reliable Distributed Systems, SRDS, 2000.

Bibliography 137

[100] Pawel T. Wojciechowski, Tadeusz Kobus, and Maciej Kokocin-
ski. Model-Driven Comparison of State-Machine-Based and Deferred-
Update Replication Schemes. In Proceedings of the IEEE 31st Sympo-
sium on Reliable Distributed Systems, SRDS, 2012.

[101] Ann Wollrath, Roger Riggs, and Jim Waldo. A Distributed Object
Model for the javaTM System. In Proceedings of the 2nd USENIX Con-
ference on Object-Oriented Technologies - Volume 2, COOTS, 1996.

[102] Shuqing Wu and Bettina Kemme. Postgres-R(SI): Combining Replica
Control with Concurrency Control Based on Snapshot Isolation. In
Proceedings of the 21st International Conference on Data Engineering,
ICDE, 2005.

[103] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguil-
era, and Jinyang Li. Transaction Chains: Achieving Serializability with
Low Latency in Geo-distributed Storage Systems. In Proceedings of the
24th ACM Symposium on Operating Systems Principles, SOSP, 2013.

	Abstract
	Introduction
	The Need for Rethinking Transactional Replication
	Outline of Innovative Contributions

	State of the Art
	Primary Copy
	Update Everywhere
	Active Replication
	Deferred Update Replication

	Model of the Target Systems and Preliminary Definitions
	Distributed Processes and Communication Primitives
	Data Model
	Transaction Model
	History and Direct Serialization Graph

	Consistency Model
	Extended Update Serializability
	Serializability
	Opacity

	Exploiting Speculation to Overlap Computation and Distributed Coordination in Fully Replicated Systems
	Correctness Criteria
	The SPECULA protocol
	Protocol Overview
	High Level Software Architecture
	Speculative Execution of Transactions
	Speculative Execution of Non-Transactional Code
	Correctness Arguments

	Experimental Evaluation

	Reducing Full Replication Costs by Leveraging Transactions Migration
	Overview of ALC
	Lilac-TM
	Fine-Grained Leases
	Transaction Forwarder
	Distributed Transaction Dispatching

	Correctness Arguments
	Experimental Evaluation

	Changing the Viewpoint: a Scalable Multi-Version Protocol under Genuine Partial Replication
	The GMU protocol
	Transaction execution phase
	Transaction commit phase
	Garbage Collection
	Failure Handling and Dynamic Process Groups
	On the support for read operations

	Correctness Proof
	Unidirectional flow of information
	No-update-conflict-misses

	On the Data Freshness
	Experimental Evaluation

	Additional Tradeoffs in the Design of Multi-Version GPR Protocols
	The SCORe Protocol
	Overview
	Handling of Read and Write Operations
	Commit Phase
	Garbage Collection and Fault-Tolerance

	Correctness Proof
	Experimental Evaluation

	Concluding Remarks
	Bibliography

