
SCHOOL OF INFORMATION ENGINEERING, COMPUTER SCIENCE

AND STATISTICS

Master of Science in ENGINEERING IN COMPUTER SCIENCE

EFFICIENT SOFTWARE TRANSACTIONAL
MEMORY VIA THREAD SCHEDULING

AND DYNAMIC VOLTAGE AND
FREQUENCY SCALING

Advisor Co-Advisor

Francesco Quaglia Pierangelo Di Sanzo

External Reviewer Candidate

Massimo Mecella Stefano Conoci

January 2017

Academic Year 2015/2016

Stefano Conoci

EFFICIENT SOFTWARE TRANSACTIONAL
MEMORY VIA THREAD SCHEDULING

AND DYNAMIC VOLTAGE AND
FREQUENCY SCALING

Master’s Thesis in Engineering in Computer Science

SAPIENZA UNIVERSITÀ DI ROMA

January 2017

To my father,

for consistently being everything he could ever be.

Contents
1 Parallel computing and power consumption 2

1.1 Concurrent and parallel computing . 2

1.2 Parallelization and scalability . 4

1.3 Read-modify-write and synchronization 6

1.4 Correctness property of parallel programs 7

1.4.1 Linearizability . 8

1.4.2 Serializability . 8

1.4.3 Opacity . 10

1.5 Liveness property of parallel programs 10

1.6 Software Transactional Memory . 12

1.7 STAMP benchmark suite . 14

1.8 Performance of STM systems . 16

1.9 Hardware Transactional Memory . 18

1.10 Non-Uniform Memory Access . 20

1.11 CPU power consumption . 21

1.12 System power consumption and energy proportional computing . . . 22

1.13 ACPI interface . 24

1.14 Power Management on Linux . 27

1.15 Real-time software energy monitoring 28

2 State of the Art 30

2.1 STM performance optimization . 30

2.2 Energy optimization through DVFS . 33

2.3 DVFS and STM: performance and energy efficiency 36

3 Static analysis of STM and DVFS 39

3.1 Power consumption of different workloads 42

3.2 Performance and power consumption at different P-states 45

3.3 Energy consumption at different P-states 48

i

3.4 Threads versus frequency . 51

3.5 Server system power and energy consumption 53

3.6 NUMA: performance power consumption 55

3.7 Heterogeneous P-state configurations 59

4 Architecture for efficient Software Transactional Memory 62

4.1 Thread Management . 64

4.2 DVFS Management . 65

4.3 Statistics Collector . 66

4.4 Heuristics module . 67

4.5 Exploration policies . 70

4.5.1 Heuristic 0 . 72

4.5.2 Heuristic 1 . 73

4.5.3 Heuristic 2 . 75

4.5.4 Heuristic 3 . 76

4.6 Comparison of the exploration heuristics 77

4.7 Experimental results with different power consumption constraints . . 81

4.8 Experimental results with different energy constraints 84

5 Conclusions 89

ii

Abstract

Transactional memory is a interesting parallel programming paradigm that offers the

scalability of fine-grained locking without the need of handcrafted synchronization.

It relies on the concept of atomic transactions that might commit or abort depending

on the interleaving of operations on shared data. However, an excessive number of

aborts could lead to performance degradation and wasted energy. Recently, there

has been interest in the performance and energy optimization of transactional mem-

ory with techniques like thread scheduling [1, 2]. However, there are not yet stud-

ies that explore the energy efficiency and performance trade-offs obtainable when

running transactional applications at lower energy CPU states. In this work we in-

vestigate the performance and energy efficiency of two current generation systems

executing transactional applications with different configurations of parallel threads

and CPU frequency and voltage. The results of this investigation are exploited to

develop an architecture for the efficient execution of transactional applications. It is

based on exploration heuristics that can efficiently select at run-time the configura-

tion that provide the highest performance while operating withing user defined con-

straints on power and energy consumption. This thesis is organized as follows. In

Chapter 1 we provide an overview of concurrent programming, transactional mem-

ories and we characterize the energy consumption of modern computing system.

Chapter 2 contains a brief summary of the present state of the art of the performance

and energy optimization of transactional memories. In Chapter 3 we perform an

in-depth analysis of the performance and energy efficiency of transactional appli-

cations running with different configurations of parallel threads and CPU energy

states. In Chapter 4 we present the proposed architecture, the exploration heuris-

tics and we show the trade-offs obtainable with different constraints on power and

energy consumption. Chapter 5 concludes this work with a brief summary of the

achieved results.

1

1 Parallel computing and power consumption

1.1 Concurrent and parallel computing

Concurrent computing is a paradigm in which multiple computations are executed

during overlapping time periods concurrently. This overlapping is made possible

by time sharing operating systems developed in the 60s to overcome the limitations

of batch computing. Computers used to be big, expensive and most importantly

shared. Inspired by the idea that no average single user could utilize a computer’s

full load, time sharing operating systems allow multiple units of execution to be

running at the same time in an interleaved fashion. The scheduler is in charge of

deciding which program is being executed on the processor at any time. Each run-

ning task gets assigned a time slice, usually expressed as a number of clock cycles,

which defines the amount of processor time left until the scheduler switches to an-

other task. In concurrent programming there are two units of execution: processes

and threads.

Threads, also known as lightweight processes, are an execution unit that lives

inside a process and share the same memory space. The use of time sharing, even

on single processor machines, gives to the user an illusion of actual parallelism of

operations and allowed the development of intuitive means of interactions such as

the use of the mouse as well as responsive graphical user interfaces. One of the most

influential early time sharing operating system is Multics (Multiplexed Information

and Computing Service) [3] which influenced all of the modern systems.

Concurrent programming is not only used for running multiple independent pro-

grams at the same time but can also be exploited by a single applications made of

multiple processes or threads that can communicate through memory portions used

as shared memory. This can be an effective way of optimizing the usage of a single

processor considering that I/O operations on secondary storage or network inter-

faces could take multiple order of magnitudes more time to complete compared to

read and write operations on main memory. The interactions of multiple traces of

2

execution on the same data, even if at different times, might create different prob-

lems such as deadlocks, race conditions or resource starvation. These problems only

appear in a portion of the program executions due to the non-deterministic nature

of the ordering of execution defined by the scheduler which is influenced by the

state of the whole system. The fragment of a program that performs operations on

shared data is called critical sections and requires means of synchronization to avoid

the contingency of the problems listed above. As identified by Edsger W. Dijkstra,

this problems should be solved by guaranteeing the mutual exclusion of tasks in the

critical section [4].

In 1965 Moore’s law predicted that the number of transistors in a dense integrated

circuit will double each year [5]. Ten years later it was revised as doubling each two

years. Until only a few years ago the evolution of processors confirmed the pace of

this prediction but it changed its manifestation over time. Up until early 2000, the

increased density of transistors was used to increase the clock frequency of proces-

sors which resulted in a proportional speedup in the execution of both sequential

and concurrent programs. However in the last 15 years, the thermal effect known

as the power wall limited the possibility of increasing the core frequency even fur-

ther. The ever increasing amount of transistors that could be put on the same chip

area were already used to replicate some of the processing elements with the goal

of increasing the performance of single core processors. The most used techniques

were pipelining, which created the possibility of Instruction Level Parallelism, and

Simultaneous Multithreading as a manifestation of Thread Level Parallelism which

became the starting point for the development of multi-core processors.

Unlike a simple increase in core frequency, this radical change in hardware forces

a radical mindset change on how the software is developed in order to fully ex-

ploit the processor capabilities. Albeit often confused, there are relevant differences

between concurrent computing and parallel computing. We can define parallel com-

puting as the execution of multiple processes or threads simultaneously on a single

multi-core processor or multiple processors.

3

Concurrency is related to the software structure, namely the division in multiple

processes or threads, while parallelism is about the actual execution. “Concurrency

provides a way to structure a solution to solve a problem that may (but not neces-

sarily) be parallelizable” [6]. In order to have an application scale to multiple cores

developers must find ways to partition the data allowing each core to perform its

processing independently of others. However, this partitioning can often be a com-

plex task such as for irregular problems which can only be “divided into subprob-

lems in a manner not predictable a priori. This implies that the applications used

to solve this kind of problems have an highly unpredictable behavior in terms of

computing power and memory used” [7]. Moreover, problems have different level

of intrinsic parallelism that can be exploited from a parallel execution. The possi-

bility of executing on multiple cores at the same time makes the synchronization of

threads and processes more critical. While in the single processor concurrent case

the synchronization was mostly required for avoiding unpredictable behaviors of

the application, in parallel computing synchronization also has a major effect on the

performance of the whole application.

1.2 Parallelization and scalability

The simplest way of coordinating the access of multiple tasks that try to access the

same portion of shared memory is by guaranteeing mutual exclusion. This can be

achieved by locking portions of shared memory for exclusive usage. Parallel threads

that attempt to access a locked memory item should wait until the lock is released.

The most common blocking primitives are semaphores and mutex. The idea of lock-

ing portions of shared memory directly is only theoretical. In real implementations,

lock acquisition and release should delimit all the operations on shared memory ob-

jects .

The computational effect of locking is a sequentialization of threads which has

a negative impact on the performance of parallel applications. The weight of this

4

performance limitation is related to the average percentage of the running time for

a given thread spent waiting for another thread to release a lock. Unfortunately this

percentage is likely to increase as the number of cores in the processor increases.

Amdahl’s law defines the theoretical speedup of an application with fixed work-

load when system resources are improved. It can also be applied to the speedup of

parallel applications with respect to their sequential implementation by computing

the serial fraction of the program [8].

SAmdahl =
Ts
Tp

= 1
α+ (1−α)

p

where α is the serial fraction of the program as a number in the range from 0 to 1,

p is the number of processors or cores, Ts is the serial execution time and Tp is the

parallel execution time. With an infinite number of cores the function converges to

1/α : a program with a serial fraction of 20% cannot have a speedup higher than 5.

In literature some authors critiqued Amdahl’s law considering the relation it de-

fines as incomplete [9]. Gustafson proposed a revised iteration after extensive em-

pirical study of a 1024 multiprocessor system inspired by the evidence that “when

given a more powerful processor, the problem generally expands to make use of the

increased facilities” [10]. When increasing the workload, either by increasing its size

or computational complexity, the sequential portion can often remain constant. The

researchers Sun and Ni in their paper “Another view on parallel speedup” [11] syn-

thesize both the aforementioned laws in a single formula that considers an increase

in workload bounded by memory. This is a relevant constraint considering that by

increasing the number of parallel cores there is also an higher frequency of main

memory requests which might lead to the memory subsystem becoming the system

bottleneck.

5

1.3 Read-modify-write and synchronization

Read-Modify-Write is a class of operations that allow to read a memory location, com-

pute a new value based on the memory content and then write to the same memory

location atomically. Some operations also allow to evaluate a condition based on

the read data and write back the new value only if a given condition is true. An

operation is considered atomic when if it succeeds it changes the state of the sys-

tem according to the operation semantic while if it fails the operation doesn’t affect

the system state in anyway. Atomicity can be considered a guarantee of isolation

of concurrent processes. In single core machines it is enough to block system inter-

rupts to achieve atomicity of a process execution. However, in multi-core parallel

systems achieving this property is much more complex and requires hardware sup-

port. In x86 machines this operations can have a negative effect on the performance

of the whole systems as it requires many operations to be performed by the cache

controllers of all cores [12].

Read-Modify-Write operations are used to implement blocking synchronization

primitives based on locks such as semaphores. However they are also the building

blocks of non-blocking synchronization data structures and algorithms . The most

relevant operations of this class are:

• compare-and-swap: reads the value of a memory location and compares it with

a passed parameter that represents the expected value. If both values are the

same a new value passed as parameter is written on the same memory location.

This primitive is often used in a sequence composed of an initial read of the

memory value, the computation of the new value that wants to be written and

finally the compare-and-swap operation. This sequence is used as a guarantee

that no other thread wrote on the memory location in the interval between

reading an old value and writing the new value. Unfortunately this suffers

of the ABA problem which requires the definition of a policy to be effectively

prevented [13];

6

• fetch-and-add: reads the value of a memory location, adds up a passed parame-

ter and writes the result in the same memory location;

• test-and-set: reads a memory location, checks if it respects a condition, writes a

new value to the memory location and returns the old one. This is often used

to swap bits.

All of the this primitives can be used to implement a locking mechanism. In different

systems some of the presented operations can be directly implemented in hardware

which can highly reduce their performance cost.

1.4 Correctness property of parallel programs

One of the most relevant difficulties introduced by parallel programming compared

to the sequential paradigm is the undeniably increased complexity in the process

of debugging and validation of the program behavior. Race conditions are difficult

to recreate and debug as they arise from the non-deterministic ordering of threads

working on shared data. In this scenario, the definition of parallel programs prop-

erties and conditions allow to fight this unpredictability through a formal approach.

We can define two primary parallel program properties: Correctness and Liveness.

Correctness, also referred to as Safety, can be informally defined as the property

that nothing wrong happens in the execution of the parallel program with respect to

developer expectations. It can be defined more precisely by restricting to programs

with inputs and outputs: “a correct program always finishes its computation with

outputs related in the desired way to the original inputs” [14]. It is a property that

excludes possible inter-leavings that might lead to incorrect behaviors but does not

define which inter-leavings might occur. In the study of possible conditions that can

generalize the correctness property we can roughly distinguish between two classes

of conditions: those that are willing to isolate single operations on single shared

objects and those that are willing to isolate transactions which can be defined as a

7

sequence of operations on some form of shared data which require some properties

to be guarantee in their execution.

1.4.1 Linearizability

Linearizability “provides a real-time (i.e., wall-clock) guarantee on the behavior of a

set of single operations (often reads and writes) on a single object (e.g., distributed

register or data item)” [15]. The condition is built from two main idea “first, each

operation should appear to take effect instantaneously, and second, the order of non-

concurrent operations should be preserved” [16].

The formal definition is based on the concept of history which is a sequence of

call and return events on objects by a set of threads or processes. A sequential history

is an history where all operations take effect instantly, namely all invocations have

an immediate response. We can consider an history linearizable if:

• pairs of invocations and responses can be reordered as a sequential history;

• this sequential history is correct with respect to the sequential definition of the

object;

• if in the original history a response precedes an invocation then it must also

precede it in the sequential history.

An object is linearizable if all its valid histories are linearizable. As interesting prop-

erty of this correctness condition is that it is a composable property: a system entirely

composed of linearizable objects is also linearizable.

1.4.2 Serializability

Serializability is a condition that provides guarantees of correctness to the parallel

execution of transactions. Informally, it is based on the idea that the outcome of the

execution of a set of transactions should be the same as the outcome of the same

transactions executed serially. While linearizability has its roots in the areas of study

8

of distributed and parallel programming, the concept of serializability was initially

introduced by researchers of data management and parallel databases. A transac-

tion is a sequence of operations whose processing must provide guarantees on the

properties of Atomicity, Consistency, Isolation and Durability (ACID properties). “In

an atomic group of operations, either every operation in the group must succeed, or

the effects of all of them must be undone” [17]. This distinction determines two

possible outcomes for a transaction: the commit of all the actions performed by the

transaction or an abort which may require a rollback of some the operations already

performed on the system. Serializability is a condition used to guarantee isolation,

namely that each transaction should be executed independently from other transac-

tions and that the effects of the abort of a transaction should not affect the execution

of other running transactions. The definitions of the other ACID properties can be

found in this publication [18].

The formal definition of serializability, similarly to linearizability, relies on the no-

tions of history and sequential history albeit defined in the context of transactions.

An history models the execution of a set of transactions on a set of objects as a total

order of operations, commits and aborts. Two transactions of an history are consid-

ered sequential if one invokes its first operations after the other either commits or

aborts; if that is not the case they are considered concurrent. Consequently, if an

history contains only sequential transactions it is a sequential history, otherwise it is

a concurrent history. An history H of committed transactions is serializable if exists

an history S(H) such that:

• it contains exactly the same transactions as H;

• it is a sequential history;

• every read returns the last value written.

Unfortunately, the problem of deciding if an history of transactions is serializable is

NP-complete [19], making it unfeasible to be used in any Concurrency Control Pro-

tocol: a set of rules enforced at run-time by systems such as a Database Management

9

Systems and Software Transactional Memory frameworks to guarantee that the par-

allel execution is preserving some desired properties. Conversely, real systems use

derivations of the concept of serializability which define subsets of serializable histo-

ries which can be verified in polynomial time. One of the most relevant differences

with linearizability is that it doesn’t impose any real time constraint on the ordering.

The combination of serializability and linearizability generates the concept of strict seri-

alizability: transaction behavior is equivalent to some serial execution, and the serial

order corresponds to real time.

1.4.3 Opacity

Unfortunately both the aforementioned conditions are not sufficient in the context of

Transactional Memory. A running transaction that reads an incomplete state during

its execution might lead to unpredictable situations such as a divide by 0 or looping

inside a cycle. In a database system each transaction is executed in its own thread,

thus in case of a runtime error the DBMS can simply abort the transaction and restart

it in a new thread. Unfortunately that’s not viable for Transactional Memory sys-

tems where both transactional and non transactional operations are interleaved in

the same execution unit. In order to account for this more specific requirements,

Rachid Guerraoui and Michał Kapałka formalized a new correctness criterion called

Opacity [20] which provides stronger guarantees about the consistency of the values

read by transaction. The formal definition requires multiple definitions and can be

found directly in the cited paper. Intuitively it is a form of strict serializability that

considers both running and aborting transactions: every operations should have its

read-set consistent during its execution, even if the transaction ends up aborting.

1.5 Liveness property of parallel programs

Liveness, also referred to as Progress, is a parallel programs property that defines

guarantees on the evolution of the system state. A procedure accessing shared ob-

10

jects can be considered blocking if it suspends the threads that want to enter a critical

section while it is already being executed by another thread; otherwise it is consid-

ered non-blocking. Consequently, in a non-blocking procedure each critical section

can only contain atomic operations to ensure that a process cannot be suspended

during its execution. Blocking procedures can lead to an under-utilization of re-

sources for ”asynchronous, fault-tolerant systems: if a faulty process is halted or de-

laying in a critical section, non-faulty processes will also be unable to progress” [21].

We can distinguish between different progress conditions for either blocking or

non-blocking procedures. The conditions for the former class are:

• Deadlock-free: some thread acquires a lock eventually;

• Starvation-free: every thread acquires a lock eventually.

These conditions are dependent on the scheduler because it is required that each

thread can eventually complete the execution inside a critical section and release

the lock. Differently, in the class of non-blocking procedures we can distinguish

between:

• Lock-free: any process can complete an infinite number of operations in any

infinite execution;

• Wait-free: “any process can complete any operation in a finite number of steps,

regardless of the execution speed on the other processes” [21];

• Obstruction-free: a process executed in isolation can complete any operation in

a finite number of steps;

The first two are independent from the scheduler, while the last requires that threads

execute in isolation. Obstruction-freedom is weaker than lock-freedom which is

weaker than wait-freedom. A very basic example of a lock-free procedure is the in-

crement of a shared memory variable through the atomic operation fetch-and-add.

11

1.6 Software Transactional Memory

In 1977, Lomet observed that an abstraction similar to database transactions might be

an effective programming language mechanism to ensure the consistency of shared

data between processes [22]. However, Lomet did not propose any practical imple-

mentation. ”An Architecture for Mostly Functional Languages” [23] published in

1986 introduced the idea of providing hardware support for transactions. In 1995

Nir Shavit and Dan Touitou proposed the first concept of a software only transac-

tional memory [24]. In the last decade, the concept of transactional memory, both

software and hardware, gained a lot of interest due to the increased relevance of

parallel computing.

Software Transactional Memory(STM) systems provide an abstraction for coordi-

nating concurrent reads and writes to shared data in a concurrent program. It is an

interesting alternative to lock based synchronization that allows to hide the synchro-

nization issues from the programmer by replacing locks with atomic transactions.

The use of locks introduces several software engineering problems. An erroneous

handling of locks might lead to problems of deadlocks and races which may only ap-

pear under rare circumstances thus making them particularly hard to debug. Error

recovery can also be tricky as it is required to release locks in exception handlers.

In addition, locks do not compose which means that correctly synchronized frag-

ments could fail when combined in a single procedure, hence reducing the possi-

bility of software reuse. Synchronization is usually achieved using coarse-grained

locks which increase the contention on shared data reducing the scalability of ap-

plications when increasing the number of parallel threads. However, developing

an application with fine-grained locks is very complex and makes all the aforemen-

tioned problems even more glaring.

The goal of transactional memory systems is to achieve the scalability of fine-

grained locks without the increased complexity and problems introduced by hand-

crafted lock-based synchronization. The STM paradigm is particularly effective in

12

situations such as graph algorithms where the set of accessed nodes depends on

the encountered values. Transactional memory allows to ”exploit concurrency that

would otherwise be hidden due to dynamically unnecessary synchronization” [25].

An interesting usage of this programming paradigm is the transactional implemen-

tation of the Quake game server [26] where the fine grained lock-based implemen-

tation is simplified by not requiring the initial phase of simulation used to identify

”the list of objects on the map that the player is likely to interact with” which are

then locked to prevent concurrent access.

STM systems are developed as a framework that operates on top of the operating

system and can be used by applications directly through API or, in some imple-

mentations, through ad hoc programming language extensions. For each executing

transaction the STM system must keep track of its read-set and write-set to enforce

correctness in different point of the execution.

The two main approaches used by STM systems to obtain an automated concur-

rency control are pessimistic concurrency control and optimistic concurrency con-

trol. The pessimistic approach is based on the idea of locks which are requested by

threads either at encounter time or at commit-time [27]. It can be an over conserva-

tive technique which can have a negative impact on scalability. Optimistic concur-

rency control is based on non-blocking primitives and multi-versioning of shared

memory items. The general idea is that conflict detection and resolution can be per-

formed even after a conflict occurs. There is not a clear winner between this two

different approaches: pessimistic concurrency control can have better performance

in workloads with high contention and long transactions; conversely the optimistic

approach can be preferred in workloads with short transactions that can complete

most of the times without conflicts.

As anticipated in paragraph 1.4.3, transactions are protected portions of code ex-

ecuted by regular application threads: an inconsistent read of a shared item could

crash or loop the whole program. To avoid this problem most STM implementations

use Opacity as the correctness condition which however introduces a relevant per-

13

formance cost [20]. Regarding liveness conditions, obstruction-freedom is a viable

condition used by most implementations [19]. Unfortunately, wait-freedom is not

achievable in an asynchronous system because aborts cannot be avoided [28].

The contention manager is a fundamental module of any STM system that has the

role of maximizing the number of commits. It decides which transaction should be

aborted in case of a conflict and when to restart an aborted transaction. Contention

managers are particularly relevant in implementations that use an optimistic con-

currency control approach which can suffer high abort rates in workloads with high

contention resulting in a severe degradation of performance and energy efficiency.

In literature we can find multiple policies optimized for different workloads [29].

1.7 STAMP benchmark suite

Stanford Transactional Applications for Multi-Processing (STAMP) is an extensive

benchmark suite for evaluating transactional memory systems” [30]. It defines eight

different applications and thirty different input parameters that cover a broad range

of transactional applications. This benchmark suite is used for all the experimen-

tal analysis of transactional applications in this thesis as it contains workloads with

varying degree of contention, various read-set and write-set sizes and different trans-

action length. The eight benchmarks used by this suite are:

• bayes: machine learning application that learns the structure of a Bayesian net-

work from observed data;

• genome: bioinformatics application that performs genome assembly of DNA

segments;

• intruder: simulation of the execution of a signature-based network intrusion

detection that scans network packets and matches them against a known set of

intrusion signatures;

14

Figure 1: STAMP Benchmark Transactional Profiles from [30]

• kmeans: data mining algorithm that groups objects of a N dimensional space in

K different clusters;

• labyrinth: implements a variation of the Lee’s algorithm [31] that computes a

path between an user defined start point and end point inside a three-dimensional

maze;

• ssc2: Scalable Synthetic Compact Applications 2 (ssca2) [32] is a set of four

different kernels that perform operations on directed, large, weighted graphs.

They are used in multiple scientific applications such as computational biology

and security. STAMP implementation only focuses on the first kernel;

• vacation: implements an online transaction processing system that emulates a

system for travel reservations;

• yada: stands as Yet Another Delaunay Application. It is the transactional im-

plementation of an algorithm for Delaunay Mesh Refinement [33].

15

Figure 2: Results for three STM Runtimes on a Quad-Core Intel Xeon Server from [34]

Figure 1 shows the transactional behavior of each of this applications by defining

respectively: the length of transactions, read and write set sizes, transactions exe-

cution time compared to the overall execution time and the degree of contention.

This workload profiles are only relative to executions with the suggested input pa-

rameters; the transactional profile of this applications can vary significantly if user

defined input parameters are used.

1.8 Performance of STM systems

The automated concurrency control of STM systems introduces a relevant overhead

in the execution of transactional application. It is particularly relevant in systems

with a limited number of cores which cannot exploit the effects of the increased

scalability compared to coarse grained locking or sequential implementations. In

the article ”Software Transactional Memory: why is it only a research toy?” [34] the

authors study the overhead and performance of different STM systems (Intel [35],

IBM [36], TL2 [27]) on multiple workloads.

Figure 2 presents the scalability of transactional applications normalized to their

16

Figure 3: Percentage of Time Spent in Different STM Operations from [34]

sequential execution. The tests are performed on a Intel Xeon quad core CPU with

two-way hyper-threading. Kmeans, vacation and genome are part of the STAMP bench-

mark suite, while delaunay is a transactional implementation of the Delaunay Mesh

Refinement algorithm external to STAMP. All the STM implementations require 3 to

4 concurrent threads to reach the performance of the sequential implementation in

all the considered benchmarks. K-means shows limited scalability for IBM and Sun

STM’s due to high abort rate. Single thread executions of the transactional imple-

mentations display on average an overhead close to 100% compared to the sequen-

tial implementations.

Figure 3 shows the percentage of time spent in the execution of different STM

operations. It compares the results of two different STM implementation: one that

fully validates (fv) its read set at each transactional read and the other that is based

on a global version number to avoid validating at each read (gv). In all the tests the

read operations dominate the transactional cost due to their higher occurrence. The

global version implementation trades faster read operations with more costly end

17

operations which seems to be a beneficial trade-off for the tested workloads.

In applications with limited shared data conflicts, ”transactions have an advan-

tage over locks in terms of performance as well as energy, due to fewer accesses to

shared memory” [37]. That’s the case due to the high amount of reads of the lock

value by waiting threads.

1.9 Hardware Transactional Memory

In the last 20 years there has been increasing interest in the idea of hardware im-

plemented transactional memory(HTM). In 1993 Herlihy and Moss [38] proposed a

multiprocessor architecture that provides hardware support to lock-free data struc-

tures allowing the programmers to “define customized read-modify-write opera-

tions that apply to multiple, independently-chosen words of memory”.

HTM could provide many advantages compared to software-only implementa-

tions:

• significantly lower overhead in the execution of transactions;

• more efficient power and energy profiles;

• less invasive on the existing execution environment;

• can provide isolation without requiring any change to non-transactional code.

In 2013 Intel launched a new family of microprocessors which provide hardware

transactional memory support through an extension of the X86 instruction set archi-

tecture called Transactional Synchronization Extensions (TSX). Inspired by the Herlihy

and Moss proposal, TSX exploits the first level cache and the cache coherence pro-

tocol to achieve the properties required for a transactional execution. The conflicts

are detected at the granularity of a cache line. During the execution of a transaction

writes are performed on the first level cache without being visible to other cores.

18

Tentative changes are made visible atomically when a transaction successfully com-

mits. TSX provides two different software interfaces to be used in different scenarios:

Hardware Lock Elision (HLE) and Restricted Transactional Memory (RTM).

HLE is a legacy compatible instruction set extension that can be used as a way of

increasing the parallel performance of programs using the conventional lock-based

synchronization. Software written using the HLE interface can also be executed on

hardware not supporting TSX in which case the related instructions would simply

be ignored and the synchronization would be achieved through ordinary locks. In a

critical section delimited by HLE instructions, updates to shared data structures are

performed speculatively using transactional memory to detect conflicts. If a conflict

is detected the critical section is re-executed acquiring regular locks.

RTM is a software interface that allows developers to define transactions in a sim-

ilar way to how they are defined in STM systems. Unlike HLE, it cannot be used on

hardware that doesn’t support the extended TSX instruction set as it would gener-

ate an undefined instruction exception. The RTM interface gives the programmer

the possibility of defining a fallback code path to be executed if a transaction aborts

more than a defined number of times. Unfortunately this alternative path is neces-

sary due to the limitations of RTM. A transaction aborts if any other core, even if not

inside a transaction, reads a location in the transaction read-set or writes to a location

that is either in the transaction read-set or write-set.

Unfortunately, in the Intel hardware implementation the motivations of a trans-

action abort are not always linked to shared data contention. As a matter of fact in

general workloads up to 99% of aborts are not related to conflicts [39]. Transactions

could also abort due to context switches, interrupts, page faults, capacity problem of

the L1 cache and updates of the PTE accessed and dirty bits.

Considering this restrictions, Intel HTM capabilities should only be used in work-

loads dominated by very short transactions. Moreover, by requiring the definition

of a lock-based path of execution the software engineering problems related to this

concurrent programming paradigm are still relevant. For this reason in the last few

19

years there has been growing interest in the idea of developing an hybrid transac-

tional memory which is based on the general structure and interface of regular STM

implementations but uses the capabilities of HTM to improve the performance when

applicable [40].

This thesis focuses studying and exploiting the relation of performance and en-

ergy efficiency of applications using STM systems due to its broader applicability.

However, some of the conclusions and methodologies should also extend to current

and future iterations of HTM systems.

1.10 Non-Uniform Memory Access

A symmetric multiprocessor system (SMP) is a system where multiple processors

are connected to a single shared main memory and are controlled by the same op-

erating systems. However, generally only one processor can access memory at any

time which leads to a significant performance degradation that scales poorly with

an increasing number of processors in the system as well as the an higher amount of

cores per single CPU.

In 2003 AMD launched a new generation of Opteron processors targeted at the

server market which supported Non-Uniform Memory Access(NUMA). NUMA sys-

tems consists of several nodes each containing a subset of CPU cores and a portion

of main memory. A core accessing memory from within the node is called a local

access while accessing a different node is called a remote access. In modern NUMA

systems a remote access takes on average 30% longer than a local one, while on older

hardware it could take up to seven times longer [41]. Remote accesses have an higher

latency because they must traverse one or more interconnect links, i.e. north-bridge

buses that connect different NUMA nodes. Efficient software running on NUMA

systems must consider how nodes are connected, where the program’s memory is

placed and how it is accessed by different nodes to avoid bottlenecks produced by

remote accesses.

20

Figure 4: Non-Uniform Memory Access Architecture

1.11 CPU power consumption

The CPU is one of the components that has the highest impact on the energy con-

sumption of a whole system. Unfortunately a big portion of this power is converted

to heat due to the impedance of the electronic circuits. The main reason behind the

switch from single core to multi core processor was the existence of the so-called

power-wall, namely, it was no longer possible to dissipate with commodity cooling

solutions the heat generated by cores of higher frequencies. There are three main

components that contribute to the CPU power consumption: dynamic power con-

sumption, short-circuit power consumption and power loss due to transistor leakage

currents.

Pcpu = Pdyn + Psc + Pleak

The dynamic power consumption is related to the switching of logic gates through

the charge and discharge of capacitors. It is proportional to the CPU frequency and

21

to the square of the CPU voltage:

P = CV2 f

where C is the capacitance, V is the voltage and f is the frequency. The nonlinear

relation between the power consumption and the CPU voltage creates interesting

possibilities and was one of the main inspirations for this study. Unfortunately re-

ducing the voltage often requires a reduced processor frequency: when running at

lower voltages takes more time to recognize the correct state represented by a volt-

age transition.

The short-circuit power is dissipated due to a temporary direct path between the

source and the ground of a transistor during simultaneous conduction of both p-

and n- block of CMOS cell [42]. The power consumed by transistor leakage currents

are related to small amounts of currents flowing between the differently doped parts

of the transistor. They are considered as a form of parasitic power because they are

unrelated to transitions.

A decade ago the dynamic power consumption was the dominant factor in the

chip total power consumption. However, the reduction in size of transistors in-

flated the relevance of leakage currents making it the most relevant. Last generation

processors attempt to reduce this effect exploiting power gating during idle, high-k

metal gates and voltage scaling.

1.12 System power consumption and energy proportional com-

puting

In 2007, Google engineers Luiz André Barroso and Urs Hölzle published an article

that supported “The case for Energy-Proportional Computing” [43]. A typical server

has an average utilization between 10% and 50% as over provisioning is required in

order to deal with load spikes. Unfortunately this utilization level region is also the

least energy-efficient due to the high static energy consumption of components. In

the article the authors suggest that computer architects should focus on developing

22

Figure 5: Percentage of the Total System Power Consumption from [44]

hardware that exhibits an energy consumption proportional to its utilization level. In

their analysis “energy efficiency in the 20 to 30 percent utilization range—the point

at which servers spend most of their time—has dropped to less than half the energy

efficiency at peak performance”.

Figure 5, taken from another study in 2009 of the same Google researchers on en-

ergy efficiency of data centers [44], shows the percentage of the total system power

consumption consumed by the most relevant subsystems. Disk and DRAM consume

more power than the CPU with low load. Both subsystems show a very limited dy-

namic range, i.e, the increase in power consumption of the subsystem from idle to

max load. The study from Figure 1 reports the dynamic range of CPU to be ap-

proximately 3.5X, 2.0X for memory, 1.3X for disks and less than 1.2X for networking

switches. A portion of the energy in input to the system power supply is wasted in

heat. The amount of wasted energy is expressed by the efficiency of the power sup-

ply which varies at different power output levels. This can introduce an additional

element of power dis-proportionality considering that the peak efficiency values are

usually closer to the system full load than to the 20 percent utilization range.

In the last 10 years researchers focused most of their energy in the energy effi-

ciency of the CPU. At the moment of writing the newest generations of processors

show a much higher dynamic range which can be considered energy proportional.

23

Moreover, in Chapter 3 we show the possibility of remarkably higher efficiency be-

low max CPU utilization by exploiting dynamic voltage and frequency scaling. Re-

duced voltages also reduce the effect of leaking currents making low voltage opera-

tional CPU states attractive.

However, the improvements in CPU power efficiency reduce the significance of

the subsystem in the total system power consumption. Unfortunately memory, hard

disk drives and network adapters still do not show a proportional energy consump-

tion. Nonetheless, new and improved technologies can allow a reduction in the

power consumption of this subsystems making the more scalable CPU portion more

relevant on the overall system wide power utilization. Low voltage and SO-DIMM

used in mobile devices can reduce the power consumption with a minor decrease in

memory bandwidth. Additionally, last generation DDR4 memories consume up to

30% less than DDR3 memories at the same frequency [45].

The energy consumption of hard disk drives is dominated by the mechanical

energy necessary to rapidly rotate the disk which limits the possibilities of energy

efficiency improvements due to mechanical limitations. Solid state drives are an

interesting new technology that can drastically improve performance and energy

efficiency while also being power proportional [46].

1.13 ACPI interface

Advanced Configuration and Power Interface (ACPI) is a specification that provides an

open standard for operating systems to discovery and configure hardware compo-

nents, monitor the system status and perform power management. ACPI has three

main components at the firmware level:

• ACPI Tables: define the interfaces to the hardware through configuration ta-

bles and executable functions defined in ACPI Machine Language (AML) byte-

code. This code is parsed by the kernel and executed using an embedded min-

imal virtual machine;

24

• ACPI BIOS: boots up the machine and provides basic power management op-

erations such as putting the system to sleep and wake it up;

• ACPI Registers: a set of hardware management registers defined by the ACPI

specification.

An example of an ACPI Table is the System Resource Affinity Table which is evalu-

ated at boot time by the Operating System. It associates physical memory ranges to

processors giving to the system the information of which memory portion has the

minimal distance to a given set of cores in a NUMA architecture.

ACPI provides power management control to the Operating Systems. It allows

a more flexible development of energy efficient systems compared to old systems

which were limited to platform-specific power management in firmware. The ACPI

specification defines the power management interface through a set of platform-

independent states.

Global states model system wide power status: state G0 specifies a running sys-

tem state with the CPU executing instructions, G1 defines sleeping mode which is in

itself divided in 4 different sleeping states from S1 to S4; G2 defines the state where

the computer is shut down but the power supply still supplies power and its pos-

sible to restart the system pressing the on button; G3 represents the state where the

computer is mechanically off, the power supply unit doesn’t provide any power and

the power cord can be safely removed. Similarly, device states ranging from D0 to

D3 express the operating state of devices.

More relevant to the work of this thesis are the processor states (C-state) and the

performance states (P-state). In the set of processors states, only the states from C0

to C3 are defined by the ACPI specifications: further states can be defined by man-

ufacturers to provide operating systems a more fine-grained control over the CPU

energy consumption. C-states are also known as idle states because, excluded C0

which is operational, in all the other states the processor is idle. A processor transi-

tioning to an higher C-state reduces the CPU power consumption but also increase

25

the delay required to return to an operational state. The ACPI specified C-states are:

• C0: processor is executing instructions;

• C1: known as Halt. The processor is not executing instructions but can return

to C0 almost instantaneously;

• C2: known as Stop-Clock. Returning to C0 requires a delay. Processor responds

to cache coherence traffic;

• C3: known as Sleep. Processor does not need to keep cache coherent. However,

the state of processor registers is preserved.

Only C0 and C1 are mandatory in ACPI compliant systems. C1E is a common ad-

ditional state defined by manufacturers: it is similar to C1 but also reduces the fre-

quency and voltage of the processor further reducing its power consumption. Cur-

rent generation Intel CPU’s also provide package C-states which allow a fine-tuning

of energy-states independently for each package of a multiprocessor system [47].

While a processor operates at C0 it can be in one of the several performance states.

P0 defines the CPU state with highest frequency and voltage which entails respec-

tively maximum performance and maximum energy consumption. Higher states

must have an increasingly reduced frequency and voltage. The value of voltage and

frequency of C-states is completely processor dependent. The only requirement is

that they are ordered according to the decrease in power consumption and perfor-

mance. The number of available C-states and respective values can be discovered

at run-time by the Operating System. The predetermined ordering and run-time

discoverability provide an effective interface for the definition of algorithms that op-

timize the CPU energy efficiency independently of the processor specifications. The

technique of dynamically decreasing frequency and voltage of the processor to re-

duce power consumption, also known as Dynamic Voltage and Frequency Scaling

(DVFS), has been broadly studied in the context of mobile devices but it is still a

relatively new approach for desktop and server systems.

26

An experimental analysis on different families of Intel processors shows that the

delay for a P-state transition can be estimated in the range from 20 to 70 microsec-

onds [48]. The study also detects a ”variable cost of a frequency increase compared

to the nearly fixed cost of a frequency decrease”. Current generation processors are

provided with technologies, such as Intel Turbo Boost and AMD Power Boost, that al-

low them to run at even higher frequencies than those defined in their specifications

as long as the processor is running below power and temperature limits. This fre-

quency increments are controlled directly by hardware and are enabled only when

the processor is running in state P0. This technologies can optimize performance

and energy in parallel executions with unbalanced load between cores. They allow

to speed-up the execution of the application’s critical path while saving energy in

the execution of the non-critical portions.

1.14 Power Management on Linux

As anticipated in the previous paragraph, ACPI gives to the Operating System the re-

sponsibility of managing the CPU power state. Cpufreq is a subsystem implemented

in the Linux kernel that provides an interface for setting the processor frequency

and voltage through the use of P-states. CPU-specific drivers must be loaded on

the system to able to perform efficient frequency and voltage changes. The cpufreq

infrastructure allows to select between multiple governors which are different poli-

cies of dynamic p-state selection based on different criteria. The cpufreq governors

available by default in most kernel images are: performance, powersave, ondemand,

conservative and userspace [49]. The latter one is particularly interesting as it allows

user space control of the processor P-state through the interaction with pseudo files

exposed by the sysfs file system. The userspace governor allows to set different P-

states to different cores of a multicore CPU. However, the actual hardware results

of this lack of homogeneity can vary depending on different processors and cpufreq

drivers.

27

Unfortunately, the dynamic control of C-states presents more complications than

the management of performance states. In many systems, the most conservative C-

states are disabled by default and should be enabled from the BIOS interface. Idle

states are entered when the processor is not executing any instruction thus cannot be

explicitly set from a running user space program. It’s possible to limit from software

the number of C-states that can be used by writing the maximum allowable latency

for returning to C0 to a pseudo file in /dev/cpu_dma_latency [50]. However,

this limitation only stands until the pseudo file is kept open. Cpuidle is a generic pro-

cessor idle management framework that tries to emulate the architecture of drivers

and governors used by cpufreq for performance states and applies it to the con-

text of processor power states [51]. There is a tradeoff between the reduced power

consumption and the time required to enter and exit an idle state. Higher C-states

discard portions of the processor state which must be restored when returning to C0.

However, this process of restoration requires power: entering a lower power state

only for a short duration might be energetically inefficient. The wake-up duration

from C1 on Intel Sandy Bridge and Westmere processors are below 1 microseconds

while are close to 10 microseconds in AMD Bulldozer CPU’s [47]. Respectively, C3

results are approximately 30, 15 and 50 microseconds. For all the considered plat-

forms the wake-up time is reduced when the processor operates in a faster P-state.

1.15 Real-time software energy monitoring

Real-time decisions based on power consumption, such as the dynamic overclocking

performed by Intel Turbo Boost, used to rely on power consumption models which are

by definition conservatives. In 2011, Intel introduced in its new Sandy Bridge pro-

cessors onboard power meter capabilities which allow better dynamic power man-

agement decisions from the hardware. In addition, real-time power related informa-

tions are exposed to the software through a set of Machine Specific Registers(MSRs)

and PCIe config space which define an interface known as Running Average Power

28

Limit (RAPL) [52]. The software availability of this data creates new possibilities in

the development of energy aware applications that can use the power consumption

as an input of energy optimization algorithms. RAPL also provides the possibility of

setting power limits on processors packages and memory which can be really useful

in data centers scenarios where there is a requirement on power and cooling budgets.

The interface provides fine-grained information on the power consumption and

power limits of different packages. Within a package it also discriminates between

the energy consumed by the core, i.e. the components involved in executing in-

structions, and the uncore which is constituted by auxiliary systems such as QPI

controllers and L3 cache controllers.

Powercap is a Linux kernel framework that provides a convenient wrapper of the

RAPL interface by defining a hierarchical structure of folders and pseudo files in the

sysfs file system. Each power zone is associated with a folder that contains energy

monitoring attributes and constraint controls. The pseudo file named energy uj dis-

plays as an increasing counter the energy consumption, expressed in µJoule, of the

respective power zone.

29

2 State of the Art

In this section we briefly introduce the present State of the Art in the research fields

of STM performance and energy optimization, DVFS optimized applications, spec-

ulative execution and energy efficiency, and finally the studies that try to combine

this different research areas for further optimization of both performance and energy

consumption in STM systems.

2.1 STM performance optimization

The speculative processing of transactions in STM systems creates a limit on the de-

gree of parallelism that can be exploited without incurring in performance penalties

in a transactional application. This phenomenon, known as trashing, is produced by

an unacceptably high percentage of aborting transactions. The concurrency degree

limit is strictly related to the application access pattern to shared data at a given

point in time. Aborted transactions not only have a negative effect on performance

but also increase the amount of useless work performed by the system which results

in wasted energy. Therefore a STM system that attempts to optimize the performance

by reducing the abort rate can also have a positive effect on the system energy effi-

ciency.

In literature we can find different orthogonal approaches used to reduce the abort

rate of transactional applications:

• early conflict detection and contention managers [53, 54] ;

• transaction scheduling which ”is based on delaying the execution of a trans-

action depending on the current system state and some scheduler-embedded

policy” [55]. To decide which transactions should be delayed the system must

estimate the abort probability which could be either dependent on the overall

system state or reliant on transaction specific features;

30

• thread scheduling methodologies that determine the optimal number of paral-

lel threads that should be used in a transactional application running on top a

STM system.

The architecture proposed in Chapter 4 combines thread scheduling and DVFS. Ac-

cordingly, in this section we will mostly cover different iterations of this optimization

approach.

We can distinguish two main classes of scheduling approaches valid both for

thread scheduling and transaction scheduling:

• scheduling approaches based on performance predictions models such as an-

alytical or machine learning models which require an a-priori profiling of the

system;

• those based on heuristic methods which may require users to define scheduler

parameters.

Among these, we can furthermore distinguish between solutions that cope with

static or dynamic application execution profiles. Methodologies targeted at static

execution profiles cannot predict the optimal degree of concurrency in situations

where the contention profile changes, e.g. when the number of accessed objects per

transaction increases over the execution time of the application.

The work in [56] proposes a self-regulating dynamic tuning of the concurrency

degree of transactional applications relying ”on a parametric analytical performance

model aimed at predicting the scalability of the STM application as a function of the

actual workload profile”. The goal of this work is to combine the benefits of machine

learning approaches and analytical model approaches. The parameters of the model

are instantiated through regression analysis on a very limited number of profiling

samples of the application execution at different concurrency levels. It is a much

faster process compared to machine learning approaches which require an extensive

training that should cover all the possible parameter values. This approach doesn’t

31

rely on general assumptions which are usually required in the definition of pure

analytical models while still providing extrapolation capabilities of the behavior on

concurrency levels distant from those used for the model initialization.

Another interesting hybrid approach takes advantage of analytical techniques to

reduce the training time of machine learning approaches while keeping the higher

accuracy and reliability of this techniques compared to other solutions [57]. The core

idea of this combination is the introduction of a new type of training set referred as

Virtual Training Set which is constructed by a combination of real samples and in-

terpolated samples obtained from the analytical model via regression. Experimental

results show that this solution provides the same accuracy of pure machine learn-

ing techniques while requiring around half the time for instantiating the application

specific performance model.

In [58] the authors present a heuristic based scheme that dynamically tunes the

number of concurrent threads running in the application. This solution performs an

iterative exploration of the space composed of different numbers of parallel threads

where the search direction is defined by the hill-climbing optimization technique.

The iterations do not stop until the end of the execution in order to adapt to dynam-

ically changing workloads. Each iteration is constituted by three phases:

• measurement phase: the application runs with a fixed number of threads and

measures performance metrics such as the commit rate, which gives an indi-

cation of the application’s throughput, and the abort rate which quantifies the

contention;

• decision phase: the algorithm decides if it should increase or decrease the num-

ber of parallel threads. If the last measurement phase displays an improvement

of the commit rate compared to previous one, continue exploring in the same

direction; else invert it.

• transition phase: an external controller either adds or removes thread based on

the outcome of the decision phase.

32

It should be noted that this approach only converges to a local maximum. How-

ever the authors couldn’t find workloads with multiple maxima in any of the tested

benchmarks. Experimental results on the intruder benchmark (STAMP), which in-

cludes large variations in its workload, display an increased average throughput

compared to all the static executions, i.e. those with a fixed number of parallel threads.

2.2 Energy optimization through DVFS

The work in [59] presents an algorithm that ”computes task slowdown factors based

on the contribution of the processor leakage and standby energy consumption of the

resources in the system”. Despite being often ignored, the standby power consump-

tion of devices like memory banks, network adapters and disks has a great relevance

on the overall system energy efficiency, especially in the context of distributed com-

puting. In the last 15 years leakage currents have increased with the advances of

CMOS technology. Clock gating allows to negate leakage currents when the proces-

sor is idle, therefore longer execution time results in more leakage energy consumed.

At the same time, a running processor with a decreased voltage, and consequently

lower frequency, has a reduced amount of leakage currents. The proposed solution

attempts to take in consideration all this elements to compute for each task a slow-

down factor, normalized to the maximum processor speed, at which is more efficient

to execute a set of task while operating within applications specific constraints. Each

task in the system is represented by a tuple that defines the task period, the relative

deadline and the worst case execution time of the task running at the maximum pro-

cessor speed. The tasks are scheduled following an Earliest Deadline First schedul-

ing policy that considers the tasks deadlines to be equal to their period. The problem

of computing the optimal slowdown factor for all the tasks has an unknown com-

plexity. The authors defined an heuristic algorithm that computes the critical speed

of each task and then increases the task slowdown factor if the resulting set of tasks

is not feasible. Compared to traditional dynamic voltage scaling, which ignores the

33

system wide standby power consumption and assigns to each task the minimum

task slowdown, this approach can save on average 10% energy when considering

a set of randomly generated tasks. This work is targeted to single core processors

which have many differences in power management and overall power consump-

tion compared to current generation multicore CPU. However, the idea of slowing

down the execution in order to achieve reduced system power consumption com-

pared to default DVFS governors is interesting and can be considered one of the

foundations of this thesis.

The work in [60] proposes a run-time system called ”Adagio” for High Perfor-

mance Computing applications that can achieve significant energy savings while

only incurring in negligible delays. The target programming model is defined by

a set of distributed memory systems using the Message Passing Interface (MPI) for

any communication within processes. Each system has a single core processor with

DVFS support. The general idea of this solutions is to dynamically detect the ap-

plication critical path and slow down other portions of the application without ever

increasing the overall application delay. The run-time is based on an online sched-

uler that identifies individual MPI calls, with the respective parameters, by hashing

the stack trace. Each of this calls is associated with performance counters initialized

after the first execution and exploited to define the operating frequency of subse-

quent executions. If a task incurs significant slowdown due to communication or

other forms of blocking, ”e.g. ” MPI Barrier, it will be executed at a slower frequency

in the following execution. This approach assumes that the behavior of each task

should be identical over different executions, which is often the case for scientific

applications. Experimental results show up to 18% decreased energy consumption

with an increased application delay of less than 1%.

Child and Wilsey explore the possibility of improving both performance and en-

ergy efficiency of Time Warp simulation using the userspace DVFS governor [61].

Time Warp is a form of Parallel Discrete Event Simulation which relies on the con-

cept of Virtual Time as a synchronization paradigm [62]. Events are characterized

34

by their send and receive time and are used for the communication between objects.

A set of these objects, which model physical processes relevant for the simulation,

are grouped in Logical Processes (LP) which are mapped to parallel execution units

(PEs). The time ordering of events imposes limitations on the scalability of pessimist

parallel simulations as each object at a given point in the simulated time could be

influenced by messages sent by another objects at a previous simulated time: only

events with the same time-stamp can be safely processed in parallel. Time Warp pro-

poses an optimistic approach where each execution unit processes events following

its own Local Virtual Time (LVT) which can deviate from the LVT of other execution

units. Whenever a LP receives a message with a time-stamp lower than its LVT it

must rollback to a previous state that can process the event according to its causal

order. In order to preserve the system wide causal order of messages a LP perform-

ing a rollback should not only undone processed events but also send anti-messages

to inform other LP that previously sent messages are not causally ordered. The spec-

ulative execution of Time Warp results in all the PEs having an equally high CPU

utilization. However not all the LP provide the same amount of useful work as a

result of rollbacks. Default DVFS governors and boost technologies in this scenario

are sub-optimal because they cannot deduce the critical path of the problem solely

from CPU utilization metrics. This shortcomings are shared with other forms of

speculative execution such as STM systems. Child and Wilsey propose three dif-

ferent metrics for estimating the amount of ”useful work” performed by different

execution units:

• effective utilization: defined ”as the fraction of work on a given node that will

not be rolled back”;

• number of rollbacks: which are simply the number of rollbacks that occur dur-

ing a measuring cycle;

• efficiency: which is an estimation of the percentage of committed event execu-

tions.

35

This metrics are used to manually increase the speed of the LP involved in the

critical section, potentially using boost technologies, while also slowing down the

non-critical processes. The results are particularly interesting as they show both in-

creased performance and energy savings. Unfortunately this approach cannot be

directly converted to STM systems where transactions do not present a causal order.

Moreover the execution of transactions is by definition logically independent which

complicates in the transactional context the definition of critical path.

2.3 DVFS and STM: performance and energy efficiency

In this subsection we present different solutions that combine DVFS and STM to

achieve improved performance and energy efficiency in transactional applications.

The solution introduced in [63] characterizes the energy consumption of STM sys-

tems using a cycle accurate simulation platform based on ARMv7 processors. The

results of this simulation provide the evidence that energy efficiency and speedup

are dissociated. In addition, the authors present a DVFS-based strategy applicable to

any contention manager that causes transactions to wait. This pause of the thread ex-

ecution is usually implemented by busy waiting; asynchronous wait primitives are

too unresponsive for fine-grained back-offs and introduce overhead. Before entering

backoff-mode the related core reduces its frequency and voltage which are then re-

stored to the previous high performance values when the backoff period completes.

This approach can reduce the energy wasted by the processor while not performing

any useful work. It is particularly effective in workloads with high contention where

threads are often waiting due to conflicts. Scaling frequency and voltage introduces

a delay that increases the backoff duration. This delay produces two different results

depending on the amount of conflicts:

• in high contention workloads the resulting longer backoff time can avoid ”a

premature re-execution which was doomed to fail” resulting in a reduced num-

ber of aborts and consequently increased performance;

36

• in low contention workloads the increased backoff time introduces an unnec-

essary delay that increases the application execution time.

The presented strategy has the weakness of only being effective when used on sys-

tems that allow different cores of the same multicore CPU to run at a different voltage

and frequency at the same time.

Green-CM is an interesting contention manager designed to optimize both per-

formance and energy efficiency [2]. It is based on three key techniques:

1. hybrid back-off primitive that alternates between busy waiting and timer in-

terrupts;

2. an Asymmetric Contention Manager policy that promotes ”the exploitation of

DVFS capabilities via the usage of asymmetric back-off policies”;

3. lightweight reinforcement learning techniques used to dynamically adapt the

parameters that define in different scenarios which backoff primitive should

be preferred or what degree of asymmetry is more appropriate.

This solution does not use software based DVFS controls since they rely on sys-

tem calls that introduce a relevant cost at the granularity of contention managers.

Differently, it attempts to approximate this manual frequency and voltage control

”by using a lightweight design that aims at favoring the spontaneous activation of

hardware-controlled DVFS mechanisms”. This approach can also promote the ex-

ploitation of hardware DVFS technologies like Turbo Boost which does not provide

any software control. The Asymmetric Contention Manager defines two different set

of threads characterized by different back-off policies:

• aggressive policy with linearly increasing back-off duration;

• conservative policy with exponentially increasing back-off duration.

In medium to high contention scenarios, threads managed with the aggressive pol-

icy are less likely to block and more likely to be executed by a core spontaneously

37

boosted to higher frequencies. On the contrary threads, threads managed with the

conservative policy are often blocked and are executed on cores pushed towards

lower operating frequencies. The optimal number of threads in each set is highly sys-

tem and workload dependent and is dynamically estimated using reinforce learning

techniques.

The work in [1] applies the concept of low frequency busy waiting to the orthog-

onal problem of thread scheduling. As anticipated at the start of this chapter, thread

scheduling solutions determine the number of active threads that provides the best

performance for the current execution and block all the threads in surplus. As usual

for STM systems, we assume that the maximum number of threads in a transactional

application is equal to the number of parallel cores in the system and each thread is

associated with a predefined core. Predetermined time blocking primitives are not

feasible because it is unknown a priori how long a thread should be blocked: the

contention profile of an application can change over its execution which requires

the dynamic tuning of the number of active threads to not lose performance and

waste energy. The most common approaches used by thread scheduling solutions

are semaphores and busy waiting which present a trade-off between performance

and energy consumption. On the one hand, busy waiting does not introduce any

overhead and is highly energy consuming. On the other hand, semaphores introduce

overheads but have reduced energy consumption as operating systems DVFS gover-

nors can spontaneously reduce the power state of the blocked core. Low frequency

busy waiting combines both the benefits of this approaches without sharing their

drawbacks. Similarly to [63], frequency and voltage are reduced whenever a thread

enters the blocking phase and put back to the previous values when unblocked by

the thread scheduler. However, differently from the previously discussed contention

manager strategy, the delay introduced by frequency and performance has an neg-

ligible relevance in the overall system performance as thread scheduling is a more

coarse-grained approach. Experimental results display relevant energy savings com-

pared to both standard busy waiting and semaphores.

38

3 Static analysis of STM and DVFS

In this section we investigate the performance and energy consumption of trans-

actional applications running with a variable number of threads and frequencies

on two different current generation multicore CPU’s. This initial study is essential

for understanding the relationship between energy and performance for this new

class of applications and is used as the foundation for the definition of optimization

heuristics in the following chapter. The STAMP benchmark suite is used to simulate

applications with a diverse transactional profile.

The STM system utilized for this evalution is a slightly modified version of the

open source TinySTM framework. TinySTM is a word-based STM implementantion

using encounter time locking for write operations and timestamp-based read vali-

dation [53]. Updates are buffered and flushed to main memory at commit time. The

contention manager policy used for the tests is referred as delay: it aborts the transac-

tion that detects a conflict but only restarts it after the contended lock that caused the

abort has been released. This approach can increase the probability that transactions

can succeed with no interruption upon retry. We introduced in the framework the

logic required for monitoring the energy consumption and power consumption of

executed transactional applications. This data is obtained by the powercap framework

and distinguishes between multiple power zones defined by the RAPL interface for

the respective physical system.

The experimental study is performed on two different systems belonging to dif-

ferent classes:

• Desktop class system: Intel i5 6600 with 4 physical cores and no HyperThread-

ing, 16 GB of DDR4 memory, Ubuntu Server 16.04 with kernel release 4.4.0-53-

generic ;

• Server class system: NUMA architecture with dual Intel Xeon E5 2630v4 with

10 physical cores and 20 virtual cores each, 256 GB of REG ECC DDR4 memory,

39

Figure 6: RAPL defined Power Zones for the Systems

Debian 8 Jessie with kernel release 4.7.0-0.bpo.1-amd64.

Figure 6 shows the hierarchical structure of the different power zones for both sys-

tems as defined by the RAPL interface. The desktop system provides a fine-grained

real-time energy monitoring distinguishing between core and DRAM within the sin-

gle package. Differently, the server system contains two distinct packages with only

the respective DRAM as sub-zones.

Since SandyBridge Intel CPU family, Intel systems on Linux use by default the in-

tel pstate driver for DVFS which provides only two governors: powersave and perfor-

mance. This driver can improve the energy efficiency compared to the more general

acpifreq drivers but unfortunately does not provide an userspace governor that allows

users to manually set the CPU P-state. Consequently, we disabled the ”intel pstate”

driver at kernel start-up for all the experimental evaluations. The desktop system

provides 16 different p-states ranging from 3.301 GHz to 0.8 GHz while the server

system is limited to 12 p-states ranging from 2.201 GHz to 1.2 GHz. Table 1 and

2 show the related frequencies for each P-state respectively for the desktop system

and the server system. When running in state P0 (3.301 GHz and 2.201 GHz respec-

tively), the Intel Turbo Boost technology is enabled which allows the CPU to run at

even higher frequencies depending on the dynamic thermal and power limitations.

It is controlled by hardware and there is no software indication of the actual boosted

40

P-state Frequency(MHz)

P0 3301

P1 3300

P2 3100

P3 2900

P4 2800

P5 2600

P6 2400

P7 2200

P8 2000

P9 1900

P10 1700

P11 1500

P12 1300

P13 1200

P14 1000

P15 800

Table 1: Desktop system P-states

P-state Frequency(MHz)

P0 2201

P1 2200

P2 2100

P3 2000

P4 1900

P5 1800

P6 1700

P7 1600

P8 1500

P9 1400

P10 1300

P11 1200

Table 2: Server system P-states

41

frequency used at any given time during the execution. We don’t consider the results

with Hyper-Threading as it is rarely used in High Performance Computing. In the

first portion of this section we mostly focus on the desktop system as its results are

influenced by a reduced number of variables and offers a broader power dynamic

range. In the last portion of this section we consider the elements introduced by the

NUMA architecture and compare the remarkably different results obtained by the

two systems.

3.1 Power consumption of different workloads

An interesting initial study is the analysis of the average power consumption of the

different power zones when running applications with different characteristics. All

the considered applications are executed on the desktop system with four threads

and the CPU cores set to the state P1. This performance state is the fastest that is not

affected by the non-determinism introduced by Turbo Boost. We consider different

classes of workloads:

• bayes, genome, intruder, ssca2, vacation: transactional applications from the STAMP

benchmark suite;

• prime, oltp: parallel applications from the the Sysbench benchmark suite. Prime

simulates an highly CPU bound workload that requires very limited synchro-

nization between threads. Oltp reproduces an online transaction processing

system that executes a fixed number of read operations on a predefined MySQL

database;

• atomic: simple applications where multiple threads attempt to increase the

value of a shared memory variable using the Read-Modify-Write operation

fetch-and-add;

• idle: idle power consumption of CPU and memory in C-state C2 for the package

and C7 for the cores. It is not a actual workload but it is used as a reference to

42

Figure 7: Package, Core and DRAM Power Consumption expressed in Watt

understand the components of the power consumption during the deepest idle

state.

As previously mentioned, the STAMP applications run on top of our modified ver-

sion of TinySTM which provides the power consumption in output at the end of the

execution. For this class of applications, we performed ten runs and computed the

average. For the evaluation of prime, oltp and atomic we manually read the power

consumption during peak load in multiple runs and computed the average. The

Atomic test doesn’t simulate the workload of a realistic application as the applica-

tion makes very limited processing: the four parallel threads continuously attempt

to write on the same memory address and most of the time fail. However it is an

interesting analysis to understand the effect of hardware contention and cache co-

herence protocols on the power consumption of both CPU and memory. Figure 7

summarizes the results. The difference in the package power consumption when

considering different workloads is significant. The core predictably consumes the

highest portion of package power during the execution with values between 77.22%

43

(bayes) and 87.53% (oltp) while consumes close to no energy in idle (0.12 W). The

peak percentage value of oltp can be attributed to the low memory power consump-

tion which is only marginally higher than on idle (+11.49%). Intruder has the high-

est memory power consumption at 2.65 Watt which is 3.04 times higher than for

the non-operational state. Vacation has a varied workload which involves both main

memory operations and different forms of computations which results in the highest

power consumption for both the overall package (25.30 W) and the core (21.44 W)

among the transactional applications. Oltp shows the overall higher package and

core power consumption with 25.75 Watt and 22.54 Watt respectively. Other transac-

tional applications show a reduced power consumption which can be attributed to

different reasons. Bayes and ssca2 exhibit a sequential initial phase which takes the

majority of the execution time and show power values close to the respective single

thread execution. Genome and intruder fully utilize all the CPU cores but multiple fac-

tors like an increased abort rate, which results in a brief waiting phase, or less power

demanding operations such as memory operations could reduce the overall aver-

age power consumption for this applications. Hardware level contention, as shown

by the results of atomic, reduces the power consumption of the CPU core compared

to general computations despite the higher frequency of cache coherence protocol

messages. A realistic hypothesis that justifies this behavior could be that for most of

the time the cores must wait the response of cache coherence messages thus reduc-

ing the dynamic power resulted from the switching of the CPU logical gates. The

power consumption of the uncore, computed as the difference between the package

power consumption and the core power consumption, presents very limited varia-

tion across all the workloads and even the idle state with values ranging from 3.26

Watt (atomic) to 3.85 Watt (intruder).

44

3.2 Performance and power consumption at different P-states

In this subsection we investigate the relationship between power consumption and

application runtime at different P-states with a fixed number of threads. The Intel

i5-6600 CPU doesn’t support configurations with different cores at different P-states.

It is possible to set different frequencies from software but all the cores will effec-

tively run at the frequency and voltage defined by the core with the lowest P-state.

Heterogeneous combinations of performance states will be considered in a following

subsection using the server system. We don’t consider the results of bayes because

its runs do not present a fixed number of commits which introduces a unacceptable

variance to the results.

(a) (b)

Figure 8: Normalized throughput and package power consumption for intruder (a)

and vacation (b)

Figure 8 displays the scaling of throughput and package power consumption at

increased frequencies for intruder (a) and vacation (b) normalized to the respective

results at 800 MHz. Both the benchmarks show very similar characteristics with

a mostly linear increase in throughput and an exponential increase in the package

power consumption. As already mentioned, an higher P-state results in both an

higher CPU frequency and an higher CPU voltage thus increasing the power con-

sumption cubically. At the same time, an higher voltage also increases the amount of

passive currents. The normalized package power consumption exceeds the normal-

45

(a) (b)

Figure 9: Normalized throughput and package power consumption for genome (a)

and ssca (b)

ized runtime at around 2900 MHz. The results on the performance state P0 are not

represented in the graphs due to their high variability. They show on average a very

relevant increase in power consumption with only a limited execution speedup. The

slope of the throughput function, which is mostly linear until roughly 2600 MHz,

shows a slight decrease which results in a scenario of diminishing returns at higher

frequencies.

Differently, the results for genome (a) and ssca2 (b), presented in Figure 9, display

some distinct characteristics. In both these tests the normalized throughput is always

higher then the normalized power consumption in spite of the overall shape of the

functions being fairly similar. This is the case due to an higher increase in throughput

for genome and ssca2 compared to intruder and vacation. The initial sequential phase

of ssca2 produces a less steep package power consumption function.

Figure 10 compares the throughput and package power consumption at state

P1 for different applications, both transactional and non-transactional. Once again

the results are normalized to state P15 and the number of threads is fixed at 4 for

all the executions. Transactional applications show a reduced speedup compared

to oltp and prime. Intruder has the lowest benefit from an increased frequency with a

speedup of 2.88 with a frequency 4.125 times higher. Ssca2 has the best scaling results

for the transactional applications with a speedup of 3.6. Prime, whose workload is

46

Figure 10: Normalized speedup and package power consumption for different

workloads at state P1

entirely constituted by CPU computations, displays exactly the same speedup value

(4.12) as the normalized frequency increase.

At the same time, an application constituted by different classes of operations has

an higher package power consumption compared to computationally-bound appli-

cations such as prime. The combination of high power consumption and limited

speedup for transactional application makes the prospect of energy savings exploit-

ing lower CPU frequency executions particularly attractive for transactional appli-

cations.

The motivations that can lead to a sub-optimal performance scaling could be

multiple and not all directly linked to the STM paradigm as oltp only shows a 3.71

speedup. The time required for operations on main memory and I/O devices is not

increased when the processor runs at an higher frequency which represents a con-

stant component independent of the different performance states. This component

is increased by STM systems that must introduce an overhead in the execution to

47

ensure correctness which is mostly constituted by main memory operations.

A peculiarity of STM systems is the possibility of aborting transactions. We in-

vestigated the relationship between the number of aborts and the CPU frequencies

by performing at each P-state 50 runs of these benchmarks from the STAMP suite

at a fixed number of threads and computed the average number of aborts. We con-

sidered for each execution 4 threads for the Desktop system and the highest number

of threads that would not lead to trashing for the server system. The results do not

show a statistically significant variation as the number of aborts for all the available

frequencies can be considered uniform.

3.3 Energy consumption at different P-states

In the previous subsections we considered independently the power consumption

and the run-time at different P-states. In this subsection we combine these two met-

rics and analyze the overall energy cost of executing a transactional applications at

different CPU frequencies. The results are presented as amount of energy consumed

per application execution but can be easily converted with a simple division to the

amount of energy used per committed transaction considering that all the tested

applications complete after a fixed number of commits. As displayed in Figure 11,

all the tested applications show a convex energy consumption curve with a mini-

mum in the range between 1.7 GHz and 2.2 GHz. These results are a direct conse-

quence of the exponential scaling of the power consumption and the linear scaling

of the throughput at increased frequency. The package energy behavior is similar to

the one presented by DeVogeleer et al. for mobile devices that defines a Convexity

Rule for the device energy consumption based on both theoretical and practical ev-

idence [64]. The low throughput scaling at high frequency for intruder and vacation

produces a lower execution energy consumption at the state P15 compared to P1; the

minimum energy cost for the execution of both application is at 1.7 GHz. The results

are the opposite for genome and ssca2 that shown really high energy consumption at

48

(a) Intruder (b) Vacation

(c) Genome (d) Ssca2

Figure 11: Energy consumption of Package, Core and DRAM at different frequency

for execution transactional applications

the lowest operational frequency, with the minimum energy cost at 2 GHz and 2.2

GHz respectively.

The core energy consumption is monotonically increasing for all the applications

but ssca2 where it has a very slight decrease at low frequencies. Therefore, if the

mostly static energy consumption of the uncore was not considered, the tradeoff

of higher run-time at lower frequency would be beneficial for saving energy in the

execution of this class of applications. Differently, memory energy consumption is

monotonically decreasing as the DRAM power consumption increases slower than

the throughput when lowering the CPU P-state.

All these results consider the energy consumed by the respective power zones

between the start and the end of an application’s execution without factoring in the

49

amount of energy spent in idle. An application executed at a faster P-state will com-

plete faster and enter idle state earlier thus resulting in a longer idle time compared

to a slower execution that requires more time to complete. Despite its lower value,

a system in idle still consumes energy which is particularly relevant in a server sce-

nario where systems are always kept powered on and the average system load is of-

ten less than 30% percent. Figure 12 shows the padded package energy consumption

(a) Intruder (b) Vacation

(c) Genome (d) Ssca2

Figure 12: Comparison of padded and non-padded package energy consumption

where we added to the previous package power results, for each P-state, the amount

of energy consumed during idle in the time interval between the end of the applica-

tion execution at the considered P-state and the end of the execution at 800 MHz. As

expected, the shape of the obtained functions is very similar to the respective core

energy consumption function. Interestingly, genome and ssca2 which had the worst

results at low frequency have the bigger difference with respect to the non-padded

50

Figure 13: Percentage increase of throughput and package power consumption in

intruder with a 33.3% increase in the number of threads and frequency with low

abort rate

values: an high throughput scaling makes the difference in execution time larger and

consequently increases the relevance of idle energy consumption. Differently from

the non-padded results, all the tested applications have a energy consumption mini-

mum at 1.3 GHz. Lower frequencies (P14 and P15) are sub-optimal as they introduce

a delay in the execution without reducing the amount of energy used by the system.

3.4 Threads versus frequency

In this subsection we compare the performance and energy consumption obtained

by increasing either the CPU frequency or the number of threads. Figure 13 shows

the results of 3 different executions of the intruder benchmark:

• 3 threads at 1500 MHz: used as baseline;

• 4 threads at 1500 MHz: 33.3% increase over baseline in number of threads;

• 3 threads at 2000 MHz with a 33.3% increase over baseline in CPU frequency.

51

Figure 14: Percentage increase of throughput and package power consumption in

intruder with a 33.3% increase in the number of threads and frequency with high

abort rate

In this situation, increasing the number of threads is preferable over increasing the

frequency. Increasing the number of threads from 3 to 4 only increase the power con-

sumption by 8% compared to the 24% increase for the higher frequency while also

providing better performance. The significant static power component of modern

processors has a uniform cost that is independent of the number of cores actually

used.

However, increasing the number of threads on transactional applications also in-

creases the contention on shared data and consequently the abort rate. Figure 14

displays a similar test with the same 33.3% percentage increase of the number of

threads and frequency but considering 15 and 20 threads respectively. The test was

performed on the the server system in order to allow each thread to run on a separate

core. The results are much different with a decreased throughput at 20 threads com-

pared to 15 threads at the same frequency. This dissimilar behavior can be attributed

to the trashing phenomenon with a much higher abort rate at 20 threads (78,62%)

compared to 4 threads (7,83%). Differently, the relative increase in power consump-

52

tion is equivalent to the previous analysis. In this scenario, increasing the frequency

is the only viable choice for increasing the throughput. This is an extreme scenario

but we can generally expect a trend of diminishing returns for the throughput at an

increased number of threads for applications with an high contention profile.

For low contention applications, a many-core system using on average a lim-

ited number of cores at high frequency is not using its processing power efficiently.

This inefficient scenario is unfortunately often induced by the combination of DVFS

governors and schedulers provided by default in modern operating systems that

attempt to complete the execution of processes as fast as possible.

3.5 Server system power and energy consumption

In this subsection we briefly analyze the power consumption and energy consump-

tion of the server system and compare it to the previous results obtained on the

desktop system. We consider intruder and ssca2 since they have a very distinct trans-

actional profile. For ssca2 we used 20 threads, one per physical core of the system,

while for intruder we only used 6 parallel threads due to the high abort rate. As

usual, we consider P1 as the fastest P-state. The power and energy results of the

individual packages are aggregated summing the respective values. An indepen-

dent analysis of the consumption of the two packages is presented in the following

subsection. For these evaluations, we used the default NUMA policy. The increase

in both throughput and power consumption is very reduced compared to the tests

performed on the desktop system. The P-states for the server processors only sup-

port a limited range of frequencies, from 1.2 GHz to 2.2 GHz, compared to the much

wider range on the desktop system from 0.8 GHz to 3.3 GHz. Figure 15 shows the

scaling of throughput and packages power consumption normalized to the result at

the slowest P-state. In this limited frequency range the exponential increase of the

power consumption can be generally considered linear, with a steeper increase start-

ing around 2.0 GHz. Moreover, the normalized increase of the throughput is always

53

(a) intruder (b) ssca2

Figure 15: Normalized throughput and packages energy consumption of intruder

and ssca2 on server system at different frequencies

higher than the normalized increase of the packages power consumption.

Figure 16 displays the energy consumption at different frequencies. For both the

benchmarks, the summed energy consumption of the two packages decreases until

its minimum at 2.1 GHz with a relevant increase at 2.2 GHz. This is very different

from the convex behavior obtained on the desktop system. Differently, the DRAM

energy consumption of the two packages has a slower decrease with a trend inver-

sion at 2.2 GHz. This is the consequence of the much higher DRAM power consump-

tion scaling that reaches 16.75 Watt at state P1 during the execution of intruder while

only having an idle value of 3,1 Watt. The padded packages energy consumption is

mostly linear in the frequency range between 1.2 GHz and 2,1 GHz with once again

an higher value at 2.2 GHz.

Intel clearly limited the available frequencies and voltages for the Xeon 2630v4

in order to exclude, directly from hardware, the least energy efficient operational re-

gions. As shown for the desktop results, the range between 1,2 GHz and 2,2 GHz

contains all the minimums, even when considering padded energy consumption.

This higher average energy efficiency was required to allow each single CPU to con-

tain 10 physical cores with a TDP of only 85 Watt.

However, we should consider that we excluded the performance state P0 that

54

(a) intruder (b) ssca2

(c) intruder padded comparison (d) ssca2 padded comparison

Figure 16: Packages and memory energy consumption on top (a) (b), comparison

between padded and non-padded packages energy consumption on bottom (c) (d)

reaches up to 3.1 GHz exploiting the Intel Turbo Boost technology. This high fre-

quency can be reached when only few cores have an high load , which as we said

earlier, is a common scenario favored by the operating system. In this boosted fre-

quency region we can expect similar results to the desktop system at the same fre-

quencies with a decrease in the overall energy efficiency.

3.6 NUMA: performance power consumption

In this subsection we study the effects of NUMA on the overall system efficiency

using the intruder benchmark since it presents high contention even with a lim-

ited number of threads. Initially, we consider the results obtained using the default

scheduler policy:

55

• the scheduler attempts to balance the work between the two processors, exe-

cuting most of the time with 3 threads each;

• first touch memory allocation policy where each thread allocates memory on

its own NUMA node.

Most application, included intruder, have an initial allocation phase performed on a

single core. Consequently, most of the shared memory items will be located on the

NUMA node of the core executing this initialization. Figure 17 shows on the left

(a) Package0 and Package1 power (b) DRAM0 and DRAM1 power

Figure 17: Power Consumption for Package0 and Package1 (a), and DRAM0 and

DRAM1 (b) with default NUMA policy

(a) the power consumption of the two packages and on the right (b) the power con-

sumption of the respective memories. The power consumption is close for the two

packages with a slightly higher value for package1. Differently, the DRAM power

consumption has a significant variation that is directly related to the different lo-

cation of the shared data which is allocated in local memory by the first thread of

the application. Considering a single run in order to avoid the reduced variation in-

duced by the average, the highest power consumption difference is 9.5 Watt and 7.14

Watt for memory and 31.47 Watt and 29.18 Watt for the packages. For both, there is

an increased consumption for the node that initially allocates the shared memory.

Considering that each package power zone contains the respective memory power

56

zone, and that the amount of the variation of the power consumption between the

packages is equal to the differences between the two memory zones, we can expect

that the difference in the package power consumption should be mostly attributed

to the increased memory power consumption.

An interesting evaluation is understanding the behavior of transactional applica-

tions, regarding both performance and energy efficiency, we considering a different

balance in the number of threads scheduled on each CPU. Once again, we used the

intruder benchmark with suggested parameters and 6 threads with both processors

in performance state P1. We used the command line utility numactl to bind threads

to physical cores and executed 10 runs for each combination of thread scheduling

between the two CPUs. Figure 18 displays the throughput (a) and the number of

(a) Throughput (b) Aborts

Figure 18: Throughput (a) and number of aborts (b) with different number of threads

scheduled on package0

aborts (b) when varying the number of threads bound to package0 from 6 to 0. The

throughput is defined by a convex curve that reaches its maxima when all threads

run on a single package, either package0 or package1, with respectively 51% and

49% better performance then the configuration with 3 threads each. It should be

noted that the slower configuration is also the one used by the default scheduling

policy. There are different reasons behind this remarkably different results, some of

which are peculiar to transactional applications.

57

The increased latency for accessing memory located in different NUMA nodes

slows down the overall execution, reducing the throughput. This is particularly

relevant for transactional applications that introduce an overhead constituted mostly

by main memory operations to ensure correctness. At the same time, the number

of aborts when running with 3 threads per package is 76% higher then when all

threads run on a single package. The different average memory access latency for

the two packages creates two different sets of threads that can process transactions at

two distinct paces. Considering an high level prospective of a general STM system,

and in particular of TinySTM that uses commit-time locking, a transaction aborts

if any item in its read-set is visibly written by another thread in the time period

between its initial read and the transaction commit. Consequently, a transaction that

takes longer than average to complete is more likely to abort than a transaction with

average length as its vulnerability window, namely the interval during which other

threads could write an item in its read-set, is larger. Therefore, we can expect that

the transactions executed by the slower set of threads are more likely to abort and

consequently the overall number of aborts in the execution is higher. This should

be only considered as a speculation: a more in-depth analysis would be required

to find a proper explanation for this phenomenon which is unfortunately outside

the scope of this thesis. Another positive side effect of the reduced abort rate is the

possibility of running applications with an increased number of parallel threads, if

still within a single package, without incurring in the trashing phenomenon. Intruder

with default parameters and the default NUMA scheduling policy has the highest

throughput at 6 threads while, when running only on a single package, it scales up

to 10 threads showing a 74.48% increase in throughput compared to the balanced

thread configuration.

Figure 19 shows the packages power consumption (a) and the energy per com-

mited transactions (b) for the same test of intruder with a varying number of threads

scheduled on package0. The sum of the packages power consumption presents lim-

ited variation for all the configurations. However, the executions on a single pack-

58

(a) Packages power consumption (b) Energy per committed transaction

Figure 19: Packages power consumption (a) and energy used per committed trans-

action (b) with different number of threads scheduled on Package0

age have a slightly lower value with 58 Watt compared to 59,5 Watt for the other

configurations. Interestingly, even when no threads run on a package its power con-

sumption (23.1 Watt) is much higher than when the overall system is in idle (8.7). As

a result of the reduced throughput and slightly higher consumption when running

on multiple packages, the energy consumed per commited transaction is 40% higher

compared to the execution with all the threads running on package0. Once again

the worst result is obtained with the balanced configuration proposed by the default

NUMA scheduling policy.

3.7 Heterogeneous P-state configurations

In this subsection we briefly study the results of transactional executions when run-

ning with different P-states between different cores and different packages. These

tests are performed only on the server system as the desktop system doesn’t sup-

port heterogeneous P-state configurations with the userspace governor. We executed

multiple runs of vacation with 20 threads considering 4 different configurations:

1. all cores in state P11;

2. package0 cores in state P1 and package1 cores in state P11;

59

3. package0 cores in state P1, 5 cores of package1 in P1 and 5 in P11;

4. all cores in state P1.

(a) Normalized throughput and package

power consumption

(b) Energy per committed transaction

Figure 20: Normalized throughput and normalized packages power consumption

on left (a) and energy per committed transaction on right(b) considering different

heterogeneous P-state configurations

Figure 20a shows the throughput and the sum of the packages power consumption

of the different configurations normalized with respect to the results of configura-

tion 1. Unlike configuration 4, configurations 2 and 3 present an higher increase in

the power consumption compared to the increase in throughput. Consequently, the

energy consumed per commited transaction, as displayed in figure 20b, is higher on

this two configurations than on both the configurations using an uniform frequency.

Following the idea speculated on the increased number of aborts when running

on multiple packages, we expected an increase in the number of aborts also when ex-

ecuting at different frequencies. However, the experimental results show a constant

number of aborts across all configurations on multiple applications.

In conclusion, the execution of transactional applications on processors with an

heterogeneous P-state configuration doesn’t seem an attractive solution regarding

energy efficiency. In addition, even if minor optimization could be achieved ex-

ploiting the finer-grained frequency control on different workloads, the number of

60

possible configuration would increase exponentially to the product of the number of

total cores in the system with the number of CPU P-states resulting in a domain of

possible combinations too wide to be efficient explored at run-time.

61

4 Architecture for efficient Software Transactional Mem-

ory

In this section we present an architecture, built on top of TinySTM, that optimizes the

performance and energy efficiency of transactional applications using a combination

of thread scheduling and DVFS based on the results obtained in Chapter 3. The

exponential scaling of the CPU power consumption when running at a faster P-state

and the less than proportional increase in throughput compared to the increase in

frequency makes the execution of transactional applications at high CPU frequency

energy inefficient. At the same time, increasing the number of parallel threads only

has a minor impact on the CPU power consumption but provides different results

based on the level of contention on shared data. In this scenario, a minor reduction

in throughput could allow significant energy savings.

We developed different heuristics that attempt to provide the highest through-

put in the execution of transactional applications while running within user defined

constraints on either the maximum package power consumption or on the average

amount of energy used per committed transaction. These constraints should be con-

sidered knobs that can be used to tune the power consumption and energy efficiency

based on the performance requirements of applications at different points in time .

All the proposed heuristics are based on a run-time exploration of the bi-dimensional

domain defined by the combination of all the CPU P-states and the number of phys-

ical cores available in the system.

Figure 21 shows the different components of the proposed architecture. The

Statistics Collector gathers real-time data from two different sources:

• metrics on the processing of transactions such as throughput and abort rate ob-

tained by wrapping the lifetime functions of transactions defined in TinySTM;

• energy related statistics obtained from the powercap framework.

The Statistics Collector aggregates these data in order to be used by the Heuristic

62

Figure 21: Architecture overview

component to define the next step in the exploration of the domain of possible con-

figurations. The Thread Management component is used by the heuristic function to

tune the number of active threads used by the transactional application. Differently,

the DVFS Management component provides an interface for dynamically changing

the CPU P-state by exploiting the pseudo-files exposed by the cpufreq framework.

The functions and data structures of the architecture are partially implemented

within the source files of TinySTM and partially in external files referenced by TinySTM

functions. All the code is written in the C programming language. The architecture is

designed with the primary goal of introducing the lowest possible overhead during

the execution.

This Chapter is logically divided in three main portions: initially we provide a

description of the main components of the architecture; in the second portion we

define the exploration problem and propose different optimization heuristics; in the

last portion we present the experimental results.

63

4.1 Thread Management

Thread Management is one of the main components of the architecture that provides

an interface for tuning the number of active threads during the execution. It is ini-

tialized during the start-up of the TinySTM framework in the stm init() function. It

is based on two main data structures:

• running array: array of integers of the size of the maximum number of active

threads, considered equal to the number of physical cores in the system, that

contains in each cell either 1 or 0 that discriminates if the respective thread

should be either running or stopped;

• pthread ids: array of pointers to pthread t data structures of the size of the max-

imum number of active threads that contains the respective pthread identifier

for each thread. Each cell of the array is written by the respective thread when

started.

Each thread is also internally identified by an integer in the range between 0 and

(TotalThreads− 1) that is used as an index to access the respective items in the two

arrays.

Before starting a new transaction, each thread reads its running array cell: if it

contains 1 it can start the new transaction; differently, if it contains 0 the thread calls

the system call pause() that suspends the process until it receives a signal. Threads

are resumed by sending the SIGUSR1 signal using as address the identifier obtained

from the pthread ids data structure. In the initialization of the Thread Management

module, an empty function is registered as the handler of SIGUSR1 to prevent the

process termination forced by the operating system when the user signals do not

have a registered handler. Whenever resumed, threads check in the running array

if they should be running: if the respective cell is still 0 they once again call the

pause() system call. This mechanism prevents the wake up of paused threads when

receiving signals different than SIGUSR1.

64

The combination of pause() and signals is particularly fitting for an architecture

that focuses not only on performance but also energy efficiency. Busy-waiting intro-

duces a lower overhead and has a faster wake-up time but is in energy inefficient

for configurations that only use a limited number of parallel threads. At the same

time, the overhead introduced by system calls, such as pause() and kill(), is not partic-

ularly relevant in a thread scheduling scenario where the number of threads is tuned

by the Heuristic function at a much slower pace compared to the execution time of

transactions.

4.2 DVFS Management

The DVFS Management module provides an interface for changing the CPU perfor-

mance state at run-time. Since configurations with heterogeneous P-states exhibit

reduced energy efficiency and a much higher exploration complexity, the module

only considers configurations with uniform frequencies for all the CPU cores. The

Cpufreq framework offers different controls for each core expressed as different fold-

ers in the sys pseudo file system.

At start-up, the module retrieves the number of CPU cores with the sysconf()

function and sets each core to the userspace governor. Successively it reads the CPU

available frequencies defined in a pseudo file in each core’s folder and allocates an

array that associates to each P-state the respective frequency in KHz. The index of

the slower P-state is saved in a global variable called max pstate. This mechanism

provides an effective abstraction for tuning the CPU performance state. In order

to change P-state, the cpufreq framework requires the respective CPU frequency in

KHz to be written in the scaling setspeed file for each core, which can be read from

the array using the P-state number as index. At the same time, the ordering of the

performance states in the range between 0 and max pstate allows the definition of al-

gorithms that tune the system performance and power consumption independently

of the number of system supported P-states.

65

As anticipated, changing the CPU performance state requires writing on a dif-

ferent pseudo-file for each CPU core, thus, the performance cost of this operations

increases linearly with the number of cores in the system.

4.3 Statistics Collector

The Statistics Collector component aggregates at runt-time the information required

by the Heuristic module to accurately tune both performance and power consump-

tion. Unlike the previously described components, statistics are gathered at the gran-

ularity of single transactions. Consequently, one of the main design goals of this

component is to introduce the least possible overhead.

The heuristic function defines the next step of the exploration at the end of each

round of statistics collection whose duration is defined by a number of commits

that is user defined. Each round is also evenly divided in multiple slices, defined

by a variable amount of commits, where each thread provides its own statistics in

a round-robin fashion. A global variable points to an array of pointers to a data

structure, one per thread, that stores the partial results within a round. This data

structure is allocated directly by the respective thread to make sure it is located in the

nearest NUMA node when executing with the default first-touch policy. Moreover,

the size of the L1 data cache is read at start-up in order to allocate each of these data

structures aligned to the size of the CPU cache line. The data structure contains the

following fields:

• flag that indicates if the thread is in the collector phase;

• number of commits that should be processed in the current statistics round for

the thread;

• number of commits in the current round;

• number of aborts in the current round;

• number of transactions started in the current round;

66

• start and end value package energy consumption obtained respectively at the

start and at the end of the collection phase;

• start and end value of time obtained respectively at the start and at the end of

the collection phase.

The package energy consumption is obtained by reading the pseudo-files exposed by

the powercap framework. For the start time and end time we used a monotonic clock

defined in time.h that provides accurate values independently of the CPU frequency.

Each thread in TinySTM is associated with a data structure that is loaded at the

start of each function regarding that thread. In order to reduce the number of mem-

ory accesses, exploiting cache locality, we added to this structure a direct pointer to

the respective statistics data structure and replicated the value of the collector flag.

At any point in time only one thread collects statistics. Whenever a thread completes

its slice of committed transactions it sets to 0 its own collector flag and sets to 1 the

flag of the following thread. When the round completes, thread 0 collects the results

obtained from all threads and calls the Heuristic module passing as parameter the

aggregated statistics of last round: throughput, abort rate, average package power

consumption and average amount of energy used per committed transaction.

The round based design of the Statistic Collectors provides two main benefits.

Firstly, collecting statistics one thread at a time reduces the collection overhead and

makes it increasingly less relevant as the number of cores in the system increases.

Secondly, the even division of commits between all the active threads provides fair

aggregated results in NUMA systems where threads may have a remarkably differ-

ent throughput and energy consumption.

4.4 Heuristics module

The Heuristic module defines different approaches for tuning the performance and

energy consumption of transactional applications at runtime exploiting different ex-

ploration policies. The exploration heuristics are based on two different constraints:

67

average package power consumption or average amount of energy consumed by

the package per committed transaction. We can define the following function that

characterizes the relevant relations for the optimization problem:

f : [S× T] 7→ [TP× Ppackage × Etx]

where S is the CPU P-state, T is the number of active threads, TP is the throughput,

Ppackage is the average package power consumption and Etx is the average energy

used per committed transactions. The goal of the search heuristics is to find the in-

put configuration that provides the maximum throughput while obtaining an aver-

age package power consumption or average amount of energy spent per committed

transaction lower than the value defined by the respective constraint.

All the proposed exploration heuristics are based on a extended version of the

hill-climbing optimization technique. Each execution starts with an user defined

number of starting threads at the slowest P-state which allows to explore the perfor-

mance states only on the direction of increased frequency. As observed in Chapter

3, the slowest P-state is generally more energy efficient than the fastest, making it a

preferable starting point. Generally, the heuristics implement a mono-dimensional

hill-climbing technique at each P-state exploiting the results obtained in the previ-

ous performance state to reduce the search time. The constant number of aborts

at different frequencies suggests that the optimal number of threads at each P-state

should be similar. The different constraints introduce some peculiarities that will be

presented when defining each exploration heuristic independently.

In this scenario, there could be a relevant distance in the 2D domain space among

the points that provide the highest throughput. This is particularly relevant for ap-

plications with high contention and relatively low average power or energy limit.

Consequently, dynamically adapting the optimal configuration during the execu-

tion is considerably more complex than on mono-dimensional searching techniques.

Restarting the whole exploration process whenever a change in the execution pro-

file is detected is sub-optimal considering the longer convergence time compared

68

to mono-dimensional explorations. Consequently, in this initial work we consider

the execution profile at the time of the exploration to be the static execution profile

of the application. The idea of periodically testing the better performing configura-

tions, even if distant in the 2D space, in order to swiftly adapt to changing execution

profiles without requiring a long exploration phase could be an interesting idea that

we might explore in future works.

The Heuristic module can be configured with a specific file that defines the fol-

lowing parameters:

• exploration policy defined by an integer from 0 to 4;

• number of threads used in the first step of the exploration;

• total number of commits per round;

• maximum average power consumption for the package;

• maximum average energy consumed by the package per committed transac-

tions;

• parameter used by heuristic 2 to express the expected proximity of the package

power consumption of the optimal configuration to the user defined power

limit.

In NUMA architectures we consider the package power consumption and package

energy as the sum of the respective results for each package in the system. The

parameter that defines the total number of commits per round should be tuned to the

specific application based on its average transaction length. A too low value could

result in an inaccurate convergence to a sub-optimal configuration while a too high

value would increase the duration of the exploration phase and consequently reduce

the portion of time spent in the optimal configuration. The number of commits per

round is fixed for each configuration, thus, rounds last longer for slow configuration.

69

This is unfortunately necessary to provide real-time statistics with the same level of

accuracy across all configurations.

We refer to our exploration policies as heuristics because we cannot formally

prove that they converge to the optimal configuration at each execution. They are

based on the results of experimental evaluations, which are only performed on a

limited number of system and workloads. Modern system are incredibly complex:

we cannot formally prove that for each execution of every transactional application,

increasing the CPU frequency with a fixed number of active threads results in an

increased throughput; we can only consider it an intuition that can be used to re-

duce the convergence time compared to an exploration policy that simply tests all

configurations.

4.5 Exploration policies

We defined 4 distinct exploration heuristics based on different sets of assumptions

on performance,power and energy consumption of the system with different config-

urations of active threads and P-states. As previously explained, these assumptions

are required to reduce the number of exploration steps. The basic policy of testing

all configurations, feasible in a thread scheduling approach that only optimizes the

number of active threads, is not efficient in this bi-dimensional scenario where the

number of steps would be equal to the product of the total number of cores in the

system with the number of available P-states. This number is equal to 64 steps for

the desktop system and 240 steps for the server system.

The exploration heuristics are divided in two groups defined by two diverse con-

straints:

• heuristic 0, heuristic 1 and heuristic 2 are constrained by a limit on the package

power consumption;

• heuristic 3 is constrained by a limit on the amount of energy used per committed

transaction.

70

All the heuristics try to converge to the configuration that provides the best per-

formance without overcoming the defined constraints. The different nature of the

constraints allows capturing different requirements.

Limiting the package power consumption reduces the amount of heat produced

by the package which can be particularly useful in data centers where heat dissi-

pation is a major concern both technically and economically. It can also provide an

increased control over the peak power consumption of data centers allowing a more

aggressive oversubscription of the power available in the facility. It is a common

technique used in data centers exploiting the consideration that is very unlikely that

all the single servers are at full load at the same time [44].

Differently, the constraint on the energy used per committed transactions can be

exploited to optimize the overall energy efficiency of the execution. In many situ-

ations, the configuration that provides the lowest energy cost per committed trans-

action doesn’t provide the highest throughput. Therefore this constraint presents a

trade-off between energy efficiency and performance.

Heuristic 1 and heuristic 2 use the output of a specifically developed profiler, exe-

cuted offline, to reduce the number of steps required to converge to the optimal con-

figuration. It is based on the parallel computation of prime numbers in a fixed range

which shows similar power consumption results to the vacation and intruder bench-

mark. The profiler performs the computation for each combination of active parallel

threads and available P-states and saves the respective average package power con-

sumption in a file. As shown in Chapter 3, the package power consumption has a

significant variation across different workloads. Therefore, the values obtained by

the profiler are only used as a baseline and are not considered completely accurate

by the heuristics. Moreover, the heuristics only use the proportion between the val-

ues provided by the profiler to interpolate the results of unexplored configurations

starting from the configurations already explored.

Unfortunately, the definition of a general offline profiler that approximates the

average energy used per committed transaction at different states is much more com-

71

plex than for the power consumption as the amount of energy used is directly related

to the throughput which is specific to each application.

For all the defined heuristics the exploration is divided in multiple phases where

each phase only considers the configurations with a fixed CPU P-state. The CPU fre-

quency and voltage increases monotonically at each phase of the exploration, start-

ing from the slowest P-state.

Even when the assumptions are true for the given workload and system, we can-

not prove that the exploration heuristics always converge to the optimal configu-

ration. Firstly, the information obtained by the Statistic Collector are only statistical

samples which are influenced by variance. Secondly, most applications do not have

a perfectly static execution profile, which could change during the exploration, and

consequently affect the run-time evaluation of the optimal configuration.

4.5.1 Heuristic 0

The goal of this heuristic is to find the configuration with the highest throughput

that has an average package power consumption lower than an user defined limit.

In this heuristic, whenever the exploration moves to the subsequent phase, the ex-

ploration starts with the number of active threads equal to the amount used by the

configuration that provided the best result at the previous P-state, i.e. the configura-

tion that displayed the highest throughput while operating within the power limit.

The heuristic relies on the following assumptions in order to reduce the number of

steps required to converge:

1. the function TP = f (t, s) where TP is the throughput, t is the number of active

threads and s is the CPU P-state, has a single global maximum and no local

minima for each fixed value of s;

2. increasing the number of parallel threads with a fixed CPU P-state increases

the package power consumption;

72

3. increasing the CPU voltage and frequency (lower P-state) with a fixed number

of parallel threads increases the package power consumption.

The first assumption is necessary for all the exploration heuristics as it allows to only

explore following the positive trend of the throughput when varying the number of

active threads at a fixed P-state. Assumption 2 allows to not explore configurations

with an higher number of active threads if the previous configuration has a package

power consumption higher than the limit. Similarly, assumption 3 makes possible

to avoid configurations with a faster CPU P-state when the already explored config-

uration with a slower P-state and the same number of active threads has already an

higher power consumption than the limit. The combination of the second and the

third assumption provide the possibility of stopping the exploration before reach-

ing the lowest P-state whenever a configuration with only 1 active thread shows a

too high power consumption. The first assumptions seems to be always true for all

the applications in the STAMP benchmark suite [58]. The second and third assump-

tions, while we cannot consider proven, are definitely reasonable considering the

static and dynamic components of the CPU power consumption, and resulted true

for all the tested workloads and systems.

4.5.2 Heuristic 1

Similarly to heuristic 0, heuristic 1 searches for the configuration that provides the

highest throughput while using less than the limit power consumption. Unlike the

previous heuristic, it exploits the data provided by the offline execution of the power

consumption profiler. The heuristic relies on the following assumptions to reduce

the number of exploration steps:

1. the function TP = f (t, s) where TP is the throughput, t is the number of active

threads and s is the CPU P-state, has a single global maximum and no local

minima for each fixed value of s;

73

2. increasing the number of parallel threads with a fixed CPU P-state increases

the package power consumption;

3. increasing the CPU voltage and frequency (lower P-state) with a fixed number

of parallel threads increases the package power consumption.

4. the proportion between the package power consumption of any two config-

urations provided by the profiler is similar to the proportion of the package

power consumption of the same two configurations in the actual application

execution;

The first three assumptions are the same of heuristic 0 and can provide similar op-

timization for the exploration process. The forth assumption provides a qualitative

guarantee on the values obtained by the profiler. We cannot define a quantitative

definition of the similarity between the profiler and the actual execution as it would

require an extensive experimental analysis which is outside the scope of this work.

We simply want to investigate if using a power profiler could provide some bene-

fits. Exploiting the proportions defined by the profiler, the exploration follows the

increase in power consumption when changing P-state. Unlike the previous heuris-

tic that when entering a new phase directly used the number of threads that resulted

optimal in the previous phase, heuristic 1 always attempts to first explore configu-

rations that are within the power limit, possibly avoiding those that are likely to

be invalid. The profiler data is only used to define the first configuration in each

phase; the exploration of the optimal number of active threads at each P-state fol-

lows the same policy of heuristic 0. Therefore, a mismatch of the values provided by

the power profiler with the effective power consumption during the execution can

only result in an increased number of exploration steps; the configuration chosen as

optimal would still be the same that would have been selected by heuristic 0. The

benefits of this different exploration policy are more tangible when the difference in

power consumption between consecutive P-states is higher. An interesting benefit

of heuristic 1 is that by following the increase in the power consumption, it can re-

74

duce the average package power consumption during the overall exploration phase

compared to the previous heuristic.

4.5.3 Heuristic 2

Heuristic 2 has the same goal of the previous exploration heuristic but uses the data

provided by the power profiler to potentially skip the exploration of configurations

that are expected to show a package power consumption much lower than the limit.

It is based on the following assumptions:

1. the function TP = f (t, s) where TP is the throughput, t is the number of active

threads and s is the CPU P-state, has a single global maximum and no local

minima for each fixed value of s;

2. increasing the number of parallel threads with a fixed CPU P-state increases

the package power consumption;

3. increasing the CPU voltage and frequency (lower P-state) with a fixed number

of parallel threads increases the package power consumption.

4. the proportion between the package power consumption of any two config-

urations provided by the profiler is similar to the proportion of the package

power consumption of the same two configurations in the actual application

execution;

5. the optimal configuration has a package power consumption within an user

defined percentage from the power limit;

The first four assumptions are the same used by heuristic 1. The exploration starts

at the slowest P-state where the heuristic seeks for the number of active threads

that provides the highest throughput. Successively, it uses the data provided by the

power profiler to predict which should be the configuration with the same number

of threads and the highest P-state such that it has a package power consumption

75

in the range defined by [limitpower ∗ (1 − percentage), limitpower] where limit is the

package power consumption constraint, and percentage defines the size of the range,

starting from the limit, that the user expects to be worth exploring in order to find the

optimal configuration. As an example, if the parameter is set to 15%, the exploration

heuristic will skip all the configurations that are expected to have a package power

consumption lower than 85% of the package power consumption limit. A lower

value of this parameter can reduce the exploration time. However, a too low value

could exclude configurations that could be optimal, particularly in applications with

a very high shared data contention. This heuristic is particularly effective when the

power limit is set to a relatively high value compared to the consumption at the

slower P-state.

4.5.4 Heuristic 3

Heuristic 3 has the goal of finding the configuration that provides the highest through-

put while consuming per committed transaction, on average, less energy than the

user defined limit. It only relies on the following basic assumption shared by all

heuristics:

1. the function TP = f (t, s) where TP is the throughput, t is the number of active

threads and s is the CPU P-state, has a single global maximum and no local

minima for each fixed value of s;

Similarly to heuristic 0, in each phase, excluded the first, the exploration starts with

the same number of active threads as those used by the optimal configuration of the

previous phase. We only consider one basic assumption as the amount of consumed

energy is not only related to the package power consumption but also to the through-

put which is specific to each application. As shown in Chapter 3, configurations with

only few active threads are often inefficient. At the same time, an excessive amount

of parallel threads in high contention workloads could lead to thrashing. Therefore,

this heuristic generally requires an higher number of steps to find the optimal con-

76

figuration than those based on a power constraint as it is always required, at each

phase, to explore configurations with both an higher and lower amount of active

threads. Since the heuristic doesn’t rely on any assumption on the behavior of the

energy spent per committed transaction in different configurations it is not possible

to stop the exploration before reaching the highest P-state.

4.6 Comparison of the exploration heuristics

In this subsection we compare the number of steps required by the different heuris-

tics for converging to the optimal configuration. We analyze the results on the server

system as it has a wider domain of possible configurations (240). We consider 4

distinct workloads:

• vacation benchmark with 80 Watt power limit, limit of 60 µJoule per committed

transaction and 10000 commits per round;

• intruder benchmark with 80 Watt power limit, 20 µJoule energy limit per trans-

action and 2000 commits per round;

• intruder benchmark with the same parameters as the previous but executed

with all threads bound to package 0 using the numactl command line tool;

• yada benchmark with 80 Watt power limit, 75 µJoule energy per transaction

limit and 10000 commits per round.

All the executions start with 5 parallel threads and the percentage parameter set to

15%. For comparison, we also show the number of steps required to converge for a

standard heuristic-based thread scheduling approach that searches for the number

of active threads that provides the highest throughput only considering configura-

tions with the highest P-state for all the CPU cores. The package power limit is set

for all applications to 80 Watt which is lower than the maximum observed value of

106 Watt. The energy per committed transaction constraint is clearly different among

77

the tested applications due to the different transaction length and contention level.

Similarly, the number of commits that defines each round is tuned to each specific

application. A too low value could result in an inaccurate sampling where random

variations in the workload could lead to wrong decisions in the exploration phase.

At the same time, most applications do not show a static execution profile which is

usually influenced by the number of transactions committed since the start of the

execution. Therefore, a too high number of commits per round could lead to situa-

tions where the execution profile changes significantly during the exploration phase

which could result in a sub-optimal chosen configuration. Vacation and yada only

show a limited execution profile variation that allows a relatively high round size.

Differently, intruder has a significant increase in the abort rate during the execution

which made us select a lower number of commits per round compared to the other

applications. All the presented results are computed as the average of 20 runs.

Figure 22 shows the number of steps required on average by each heuristic to

converge to the chosen configuration. We recall that heuristic 0, heuristic 1 and heuris-

tic 2 are based on a package power consumption limit while heuristic 3 is constrained

by a limit on the energy used by the package per committed transaction. Interest-

ingly, despite the significantly higher throughput and energy efficiency when run-

ning with all the threads bound to package 0, the exploration heuristics based on the

power constraint converge to the same configurations for both the tests of intrud-

ers. The limit of 80 Watt doesn’t allow an increase in the number of active threads

which could be possibly beneficial to the throughput. Heuristic 0 and heuristic 1 al-

ways converge to the same configuration in each application. Differently heuristic

2, which can skip exploration phases depending on the value of the percentage pa-

rameter, converges to the same configuration in vacation but has a slightly different

result in yada and both the intruder tests. In intruder it favors the configuration with

7 threads at P-state 0 over the configuration with 6 threads at P-state 0 chosen by

the other two heuristics. The difference should be attributed to the non-static ex-

ecution profile of intruder and the reduced number of steps required by heuristic 2

78

(a) Vacation (b) Intruder

(c) Intruder bound to package 0 (d) Yada

Figure 22: Number of steps required by the heuristics to converge to the optimal

configuration in different transactional applications

which evaluates the two configuration at an earlier point in the execution time. In

yada, heuristic 2 converges on average to 15.8 threads with P-state 1.5 compared to 19

threads with performance state 2.2 of the other two heuristics. Both the configura-

tions show a very similar throughput but the configuration with more threads at a

lower frequency is more energy efficient. The different exploration outcome should

be attributed to the too value of the percentage parameter used by heuristic 2 that ex-

cludes the most optimal configuration. We don’t compare the convergence results of

heuristic 3 as it is the only exploration heuristic based on a constraint on the amount

of energy used per committed which is set to a different value for each application.

In all tested applications, heuristic 1 requires more steps to converge than heuristic

0 despite the similarity of the power consumption values provided by the profiler to

79

the actual run-time values. The direction defined by the increase in power consump-

tion can lead to the exploration of configurations with few threads at high frequency

that are generally inefficient in applications with limited contention like yada and

vacation. Differently, heuristic 2 can provide very good results on both the intruder

executions and yada, requiring on average only between the 19% and 54% of the

steps required by heuristic 0. In vacation it cannot provide the same results which

could be attributed to a sub-optimal similarity of the effective run-time power con-

sumption with the values obtained by the profiler for configurations close to 80 Watt.

As expected, Heuristic 3 generally needs more steps than the other heuristic to con-

verge as it relies on weaker assumptions. However, even with basic assumptions, it

can reduce the number of steps for all the tested applications to less than 65 for all

the considered executions, which is a significantly lower number than the 240 steps

required to test all configurations.

(a) Vacation (b) Yada

Figure 23: Number of steps required to converge for heuristic 2 with different values

of package power limit

Figure 23 shows the number of steps required by heuristic 2 to converge consid-

ering different values of package power limit defined as 10 Watt increments in the

range between 40 Watt and 110 Watt. The percentage parameter was fixed to 20% for

all executions. The number of required steps is the highest in the range between 60

Watt and 80 Watt with the lowest value at the two extremes (40 Watt and 110 Watt).

80

All the power constrained heuristics stop the exploration whenever a configuration

with only 1 active thread at a given P-state exceeds the limit which can reduce the

required number of steps when the power limit is set to low values for the respec-

tive system. Differently, considering that heuristics 2 skips configurations outside the

range defined by the percentage parameter, the exploration can skip an higher por-

tion of the configurations when the power limit is set to higher values. We don’t

display the results of the other heuristics as they are less interesting. The number of

steps steadily increases when increasing the package power limit for heuristic 0 and

heuristic 1. Heuristic 3 presents a constant number of steps for all executions since it

must always explore all P-states.

4.7 Experimental results with different power consumption

constraints

In this subsection we present the performance and average package power con-

sumption of transactional applications considering different values for the power

limit. As usual, we consider the package power consumption as the sum of the

power consumption of package 0 and package 1 for the server system. We only con-

sider executions with heuristic 0 as it does provide more consistent results. Heuristic

2 could provide a lower exploration time and consequently a lower overhead but it

would require a fine tuning of the percentage parameter to always converge to the

optimal configuration. In any case, the exploration phase is only executed at the

start of the applications: the longer is the application execution time and the less rel-

evant becomes the exploration overhead to the overall execution metrics. Unlike the

analysis on Chapter 3, we also allow configurations with performance state P0 as it

is can provide increased throughput when the power limit is set to sufficiently high

value. We executed the same workloads presented on the previous subsection using

the same parameters with the exception of the power limit which is set to the appro-

priate value for each execution. All results are obtained by computing the average

81

of 10 runs.

(a) Vacation (b) Intruder

(c) Intruder bound to package 0 (d) Yada

Figure 24: Average package power consumption during the execution of transac-

tional applications considering different values of package power limit and basic

thread scheduling

Figure 24 shows the average package power consumption of the execution of

transactional applications with different values for the package power limit. We also

consider the results of a basic thread scheduling approach that only considers con-

figurations with different number of active threads in state P0. The power limits are

defined as 10 Watt increments in the range from 40 Watt to 110 Watt. We couldn’t

find any application that exceeds 110 W during its execution with any configura-

tion on the system. Therefore, the exploration with a 110 Watt limit should always

converge to the configuration with the highest throughput despite the power con-

sumption. Differently, some applications can run with a lower power consumption

82

than 40 Watt when using only a limited number of threads. We don’t consider a

lower limit value because the resulting configurations would be usually inefficient

and 40 Watt is already very close to the lowest value.

The heuristic can successfully provide executions within the defined limit for all

the considered applications. Generally, the power consumption during the explo-

ration phase is on average lower than the power consumption of the chosen config-

uration. Consequently average power consumption of the overall execution should

be slightly lower than the power consumption of the configuration selected by the

heuristic. We should note that the exploration heuristic seeks the configuration that

provides the highest throughput while operating within the power limit. Therefore,

it could be possible that even with an higher value for the limit the execution power

consumption stays constant because the configuration with the highest throughput

doesn’t require an higher amount of power. An example of this phenomenon is the

intruder benchmark where the best performing configuration requires less than 70

Watt, both with default scheduling and with threads bound to package 0. Differ-

ently, in vacation and yada the average power consumption increases linearly until

100 Watt. These applications have a reduced abort rate compared to intruder which

allows them to scale up to 19 to 20 threads in state P0. All the executions based

only on thread scheduling show an higher package power consumption due to the

shorter exploration phase.

Figure 25 shows the throughput and average package power consumption of

transactional applications with different values of power limit normalized to the

results of the execution with the basic thread scheduling policy. The normalized

throughput is generally higher than the normalized power consumption when the

power limit is higher than 60 Watt. Configurations with consumption lower than 40

Watt are particularly inefficient as they only use a limited number of parallel threads.

This is expected considering that, as analyzed in Chapter 3, increasing the num-

ber of threads is considerably more power efficient than increasing the frequency

with low shared data contention. Yada has very interesting results with 99.8% of the

83

(a) Vacation (b) Intruder

(c) Intruder bound to package 0 (d) Yada

Figure 25: Throghput and package power consumption with different power limits

normalized to the thread scheduling results

throughput obtained by thread scheduling execution with only 93% average power

consumption. The uncapped (110 Watt) executions of intruder only shows 88% and

94% of the throughput obtained by the thread scheduling policy. That is the case due

to an higher convergence variability, as a consequence of the dynamic execution pro-

file, and the lower overall execution time that makes the overhead of the exploration

phase more prominent.

4.8 Experimental results with different energy constraints

In this subsection we study the performance and energy efficiency of transactional

applications with different constraints on the average amount of energy used per

committed transaction. Differently from the heuristics with a power consumption

84

constraint, heuristic 3 cannot provide an average energy per committed transaction

for the overall execution within the defined limits. The exploration phase is per-

formed only at the start of the execution. However, applications often rely on data

structures with a non-constant access time that increases over time during the exe-

cution. Moreover, for transactional application, this could also increase the average

duration of transactions which may increase the abort rate. Therefore, a decreasing

throughput with a constant package power consumption results in an ever increas-

ing amount of energy spent per committed transaction. In this scenario, no static

exploration heuristic could provide guarantees on the amount of energy spent per

committed transaction for applications with a dynamic execution profile. However,

even if only based on the profile of the application at the start of its execution, the

limit on the average energy per committed transaction can define a trade-off between

energy efficiency and performance with the assumption that the relative efficiency

of each configuration is mostly constant during the execution. We should note that

differently from the analysis on power consumption where the goal was to obtain an

higher scaling of the throughput compared to the increase in power consumption,

the energy spent per committed transaction already takes into account the increase

in run-time, thus, it could be legitimately considered a measure of energy efficiency.

Therefore, a configuration with lower average amount of energy spent per commit-

ted transaction should be considered more energy efficient even if it offers a consid-

erably reduced throughput.

Figure 26 displays the energy per committed transaction and throughput with

different energy limits for the same transactional applications considered in the pre-

vious subsection. The results are normalized with respect to the thread scheduling

execution that optimizes the performance without considering the energy efficiency.

All executions are performed on the server system. As investigated in Chapter 3,

the energy efficiency of the server system is mostly uniform for all P-states since

it only supports a limited range of CPU frequencies. Therefore, we could only de-

fined small variations in the energy per committed transaction limit. In intruder the

85

(a) Vacation (b) Intruder

(c) Intruder bound to package 0 (d) Yada

Figure 26: Throghput and energy per committed transaction with different values of

energy limits normalized to the results of the thread scheduling execution.

heuristic with 5 µJoule energy limit can provide a 6.31% lower energy per committed

transaction with a 23.35% decrease in throughput with respect to the thread schedul-

ing execution. In vacation, intruder with threads bound to package 0 and yada it can

reduce the energy consumption by 1%, 1.1% and 2.67% respectively. We should note

that these results don’t consider the increased effect of the idle power consumption

on the energy consumption of applications that execute for a longer time. However,

considering the results obtained in Chapter 3 on the padded energy consumption at

different frequencies and the relatively small differences in the throughput we can

expect only marginal improvements. Even if the energy savings are only minor, they

could be interesting in a data center scenario in time intervals with a low expected

load during which the trade-off of reduced throughput for a lower energy consump-

86

tion could be beneficial.

We also performed a similar test with different limit values of energy per commit-

ted transaction on the desktop system. We recall that this system offers a much wider

CPU frequency range with a convex energy consumption curve at different perfor-

mance states. We scaled the length of the benchmarks proportionally to the reduced

throughput compared to the executions on the server system with the goal of obtain-

ing the same proportions on the duration of the exploration phase compared to the

overall run-time. The energy limits are set to different values as both the package

power consumption and the throughput are system dependent. We only consider

yada and vacation since they provide a less dynamic execution profile. Moreover, the

higher data contention of intruder would be irrelevant with only 4 maximum threads.

The number of starting threads is set to 2 for all executions.

(a) Vacation (b) Yada

Figure 27: Average energy per committed transaction with different energy limits in

vacation (a) and yada (b) executed on the desktop system

Interestingly, as shown in Figure 27, the heuristic can successfully provide for all

executions values of energy per committed transaction within the respective limits.

There are two main elements that concur to this different result compared to the ex-

ecutions on the server system. Firstly, the throughput is considerably lower which

results in a slower evolution of the execution profile. Secondly, the energy consump-

tion of the exploration phase should be lower as intermediate P-states are generally

87

more energy efficient than performance states with higher frequency.

(a) Vacation (b) Yada

Figure 28: Throghput and package power consumption with different power limits

normalized to the thread scheduling results executed on the desktop system

Figure 28 displays the throughput and the amount of energy spent per commit-

ted transaction with different values of energy limit in the execution of vacation and

yada. The results are normalized with respect to the thread scheduling execution that

converges to 4 threads at P-state P0 in both the applications. Independently of the en-

ergy limit, all the executions converge to configurations with 4 threads with different

P-states. The heuristic can provide compelling trade-offs that can lead to significant

energy savings. In vacation, with the limit set to 30 µJoule, the heuristic can provide

a 33.35 % lower energy consumption per committed transaction with a decrease in

performance of 37.75%. If an higher level of performance is required, the execution

with the energy limit set to 40 µJoule is also very compelling as it can provide a 21.5%

energy reduction with a 24.36% reduction in the application throughput. In yada the

heuristic can reduce the energy per committed transaction up to 24.24% with a slow-

down of 34.86%. The energy savings could be even more relevant on workloads

with a longer execution time or if taking into account the higher relevance of the idle

power consumption on slowed down executions.

88

5 Conclusions

In this work we investigated the relation between performance and energy efficiency

of parallel applications that rely on a software transactional memory framework to

manage the concurrent access to shared data. Initially we analyzed the power con-

sumption, energy consumption and throughput of multiple transactional applica-

tion running with different static configurations of parallel threads and CPU per-

formance states. Each performance state is associated with an hardware-defined

frequency and voltage, which can be set via software exploiting the cpufreq frame-

work available in modern Linux kernel releases. We considered the results on two

distinct current generation systems: desktop class system with 4 physical cores and

a server class system constituted by two processors with 20 physical cores each. The

desktop system showed an higher energy efficiency at mid to low frequencies as

the power consumption increases exponentially at faster performance states while

the throughput only increases linearly. The server system provides a limited range

of available frequency which results in a mostly uniform energy efficiency for all

the available performance states. The results show that, when the abort rate is rea-

sonable, increasing the number of active threads is considerably more energy effi-

ciency than increasing the CPU frequency and voltage. The abort rate appears to

be constant when considering configuration with different performance state with

the same level of parallelism. Differently, we found that the not uniform memory

access time in NUMA architectures can increase the number of aborts by up to 76%

compared to executions with all threads scheduled to a single package. We used the

results of the investigation to develop an architecture, built on top of the TinySTM

framework, that provides compelling performance and energy trade-offs in the exe-

cution of transactional applications. The architecture relies on an exploration-based

approach that searches for the configuration of parallel threads and P-state that pro-

vides the highest throughput while operating withing user defined constraint on

power consumption and energy consumption. These constraints can be used to tune

89

the power consumption and energy efficiency of applications based on the perfor-

mance requirements of applications at different points in time. We developed 4 dis-

tinct exploration heuristics that require on average the exploration of less than one

forth of the domain to converge to the optimal configuration. The executions con-

strained on the average power consumption show a reduction in throughput higher

than the reduction in power consumption. The energy per committed transaction

limit defines a trade-off between performance and energy efficiency. In the server

system the architecture can obtain up to a 6.31% decrease in the average energy cost

of committed transaction with a 23.35% decrease in throughput. The energy savings

are considerably higher on the desktop system as it offers a wider range of possible

frequencies. In this system, the architecture can provide up to a 33.5% lower en-

ergy consumption with a 37.75% execution slowdown. In this thesis, we worked on

transactional memories as they can provide a run-time indication on the amount of

shared data contention which can be a limiting factor when increasing the number of

parallel threads. However, we expect that the energy savings obtainable by running

at lower performance states with an high level of parallelism should be applicable to

general parallel applications running on current generation hardware.

90

References

[1] P. D. Sanzo and B. Ciciani, “CPU-core Frequency Scaling for Efficient Thread

Scheduling in Transactional Memories,”

[2] S. Issa, P. Romano, and M. Brorsson, “Green-CM: Energy efficient contention

management for transactional memory,” Proceedings of the International Confer-

ence on Parallel Processing, vol. 2015-Decem, pp. 550–559, 2015.

[3] “Introduction and overview of the multics system.” https://courses.

cs.washington.edu/courses/cse451/16wi/readings/lecture_

readings/MulticsDesign.pdf. (Accessed on 12/04/2016).

[4] E. W. Dijkstra, “Solution of a problem in concurrent programming control,”

Commun. ACM, vol. 8, pp. 569–, Sept. 1965.

[5] G. E. Moore, “Cramming more components onto integrated circuits, reprinted

from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.,” IEEE Solid-

State Circuits Society Newsletter, vol. 11, pp. 33–35, Sept 2006.

[6] “Concurrency is not parallelism.” https://talks.golang.org/2012/

waza.slide#1. (Accessed on 12/04/2016).

[7] Y. Denneulin, J. Geib, and J. M. Ehaut, “A multithreaded-based methodology to

solve irregular problems *,”

[8] M. D. Hill and M. R. Marty, “Amdahl ’s Law in the Multicore Era,” Computer,

vol. 41, no. July, pp. 33–38, 2008.

[9] M. Gillespie, “Amdahl’s Law, Gustafson’s Trend, and the Performance Limits

of Parallel Applications,”

[10] J. L. Gustafson, “Reevaluating Amdahl’s law,” Communications of the ACM,

vol. 31, no. 5, pp. 532–533, 1988.

91

[11] X.-H. Sun and L. M. Ni, “Another Veiw on Parallel Speedup*,”

[12] S. Owens, S. Sarkar, and P. Sewell, “A better x86 memory model: X86-TSO,”

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial In-

telligence and Lecture Notes in Bioinformatics), vol. 5674 LNCS, pp. 391–407, 2009.

[13] D. Dechev, P. Pirkelbauer, and B. Stroustrup, “Understanding and effectively

preventing the ABA problem in descriptor-based lock-free designs,” ISORC

2010 - 2010 13th IEEE International Symposium on Object/Component/Service-

Oriented Real-Time Distributed Computing, vol. 1, pp. 185–192, 2010.

[14] B. K. Rosen, “Correctness of parallel programs: The Church-Rosser approach,”

Theoretical Computer Science, vol. 2, no. 2, pp. 183–207, 1976.

[15] “Linearizability versus serializability — peter bailis.” http://www.bailis.

org/blog/linearizability-versus-serializability/. (Accessed

on 12/04/2016).

[16] M. P. Herlihy and J. M. Wing, “Linearizability: a correctness condition for

concurrent objects,” ACM Transactions on Programming Languages and Systems,

vol. 12, no. 3, pp. 463–492, 1990.

[17] “What is a transaction? (windows).” https://msdn.microsoft.com/

en-us/library/aa366402(VS.85).aspx. (Accessed on 12/04/2016).

[18] T. Haerder and A. Reuter, “Principles of Transaction-Oriented Database Recov-

ery,” Computing Surveys, vol. 15, no. 4, pp. 287–317, 1983.

[19] C. H. Papadimitriou, “The serializability of concurrent database updates,” Jour-

nal of the ACM, vol. 26, no. 4, pp. 631–653, 1979.

[20] R. Guerraoui and M. Kapalka, “On the correctness of transactional memory,”

in Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice

92

of Parallel Programming, PPoPP ’08, (New York, NY, USA), pp. 175–184, ACM,

2008.

[21] M. Herlihy, “Wait-free Synchronization,” ACM Trans. Program. Lang. Syst.,

vol. 13, no. 1, pp. 124–149, 1991.

[22] D. B. Lomet, “Process structuring, synchronization, and recovery using atomic

actions,” ACM SIGSOFT Software Engineering Notes, vol. 2, no. 2, pp. 128–137,

1977.

[23] T. Knight, “An architecture for mostly functional languages,” Proceedings of the

1986 ACM conference on LISP and functional programming - LFP ’86, pp. 105–112,

1986.

[24] N. Shavit and D. Touitou, “Software transactional memory,” in Proceedings of the

Fourteenth Annual ACM Symposium on Principles of Distributed Computing, PODC

’95, (New York, NY, USA), pp. 204–213, ACM, 1995.

[25] “Transactional synchronization in haswell — intel® software.”

https://software.intel.com/en-us/blogs/2012/02/07/

transactional-synchronization-in-haswell. (Accessed on

12/04/2016).

[26] F. Zyulkyarov, V. Gajinov, O. S. Unsal, A. Cristal, E. Ayguadé, T. Harris, and

M. Valero, “Atomic quake,” Proceedings of the 14th ACM SIGPLAN symposium

on Principles and practice of parallel programming - PPoPP ’09, vol. 44, no. 4, p. 25,

2008.

[27] D. Dice, O. Shalev, and N. Shavit, “Transactional Locking II,” Distributed Com-

puting, vol. 4167, pp. 194–208, 2006.

[28] R. Guerraoui and M. Kapalka, “The semantics of progress in lock-based trans-

actional memory,” SIGPLAN Not., vol. 44, pp. 404–415, Jan. 2009.

93

[29] W. Scherer, “Synchronization and Concurrency in User-level Software Sys-

tems,” Computer, 2006.

[30] C. M. Chı́, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stanford trans-

actional applications for multi-processing,” 2008 IEEE International Symposium

on Workload Characterization, IISWC’08, pp. 35–46, 2008.

[31] C. Y. Lee, “An algorithm for path connections and its applications,” IRE Trans-

actions on Electronic Computers, vol. EC-10, pp. 346–365, Sept 1961.

[32] D. A. Bader and K. Madduri, Design and Implementation of the HPCS Graph Anal-

ysis Benchmark on Symmetric Multiprocessors, pp. 465–476. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2005.

[33] J. Ruppert, “A Delaunay Refinement Algorithm for Quality 2-Dimensional

Mesh Generation,” Journal of Algorithms, vol. 18, pp. 548–585, 1994.

[34] R. Barrier, “Software Transactional Memory,” no. September, pp. 1–14, 2012.

[35] “8263-intel c 2b 2b stm compiler prototype edition -

language extensions and user 5c 27s guide v3 0.pdf.” https://

software.intel.com/sites/default/files/m/8/5/4/f/1/

8263-Intel_C_2B_2B_STM_Compiler_Prototype_Edition_-_

Language_Extensions_and_User_5C_27s_Guide_V3_0.pdf. (Ac-

cessed on 12/04/2016).

[36] “docview.wss.” http://www-01.ibm.com/support/docview.wss?uid=

swg27041783&aid=1. (Accessed on 12/04/2016).

[37] T. Moreshet, R. I. Bahar, and M. Herlihy, “Energy Reduction in Multiprocessor

Systems Using Transactional Memory *,”

94

[38] M. Herlihy, J. Eliot, and B. Moss, “Transactional Memory: Architectural Sup-

port For Lock-free Data Structures,” Proceedings of the 20th Annual International

Symposium on Computer Architecture, pp. 289–300, 1993.

[39] D. Rughetti, P. Romano, F. Quaglia, and B. Ciciani, “Automatic tuning of the

parallelism degree in hardware transactional memory,” in Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 8632 LNCS, pp. 475–486, 2014.

[40] P. Damron, A. Fedorova, and Y. Lev, “Hybrid transactional memory,” ACM

SIGARCH Computer Architecture News, vol. 34, p. 336, 2006.

[41] F. Gaud, B. Lepers, J. Funston, M. Dashti, A. Fedorova, V. Quéma, R. Lachaize,

and M. Roth, “Challenges of memory management on modern NUMA sys-

tems,” Communications of the ACM, vol. 58, no. 12, pp. 59–66, 2015.

[42] A. Morgenshtein, “Short-Circuit Power Reduction by Using High-Threshold

Transistors,” Journal of Low Power Electronics and Applications, vol. 2, pp. 69–78,

2012.

[43] L. A. Barroso and U. Hölzle, “The case for energy-proportional computing,”

Computer, vol. 40, pp. 33–37, Dec 2007.

[44] L. A. Barroso and U. Hölzle, “The Datacenter as a Computer: An Introduction

to the Design of Warehouse-Scale Machines,” Synthesis Lectures on Computer Ar-

chitecture, vol. 4, no. 1, pp. 1–108, 2009.

[45] “Quantifying the power savings by upgrading to ddr4 memory on

lenovo servers.” https://lenovopress.com/lp0083.pdf. (Accessed on

12/04/2016).

[46] P. Llopis, J. G. Blas, F. Isaila, and J. Carretero, “Survey of energy-efficient and

power-proportional storage systems,” Computer Journal, vol. 57, no. 7, pp. 1017–

1032, 2014.

95

[47] R. Schöne, D. Molka, and M. Werner, “Wake-up latencies for processor idle

states on current x86 processors,” Computer Science - Research and Development,

vol. 30, no. 2, pp. 219–227, 2015.

[48] A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby, “Evaluation of CPU frequency

transition latency,” Computer Science - Research and Development, vol. 29, no. 3-4,

pp. 187–195, 2014.

[49] A. Pallipadi and A. Starikovskiy, “The ondemand governor: past, present and

future,” Proceedings of the Linux Symposium, pp. 215–230, 2006.

[50] S. Hayes, “Controlling Processor C-State Usage in Linux,” Report, p. 8, 2013.

[51] V. Pallipadi, S. Li, I. Open, S. Technology, and A. Belay, “cpuidle—Do nothing,

efficiently. . .,”

[52] “Running average power limit – rapl — 01.org.” https://01.org/blogs/

2014/running-average-power-limit-%E2%80%93-rapl. (Accessed on

12/04/2016).

[53] P. Felber, P. Felber, C. Fetzer, C. Fetzer, T. Riegel, and T. Riegel, “Dynamic perfor-

mance tuning of word-based software transactional memory,” Proceedings of the

13th ACM SIGPLAN Symposium on Principles and practice of parallel programming,

pp. 237–246, 2008.

[54] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott, “A comprehensive

strategy for contention management in software transactional memory,” ACM

SIGPLAN Notices, vol. 44, no. 4, p. 141, 2009.

[55] P. D. Sanzo, M. Sannicandro, B. Ciciani, and F. Quaglia, “Markov Chain-Based

Adaptive Scheduling in Software Transactional Memory,” Proceedings - 2016

IEEE 30th International Parallel and Distributed Processing Symposium, IPDPS

2016, pp. 373–382, 2016.

96

[56] P. D. Sanzo, F. D. Re, D. Rughetti, B. Ciciani, and F. Quaglia, “Regulating

concurrency in Software transactional memory: An effective model-based ap-

proach,” International Conference on Self-Adaptive and Self-Organizing Systems,

SASO, pp. 31–40, 2013.

[57] D. Rughetti, P. D. Sanzo, B. Ciciani, and F. Quaglia, “Analytical/ML mixed ap-

proach for concurrency regulation in software transactional memory,” Proceed-

ings - 14th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Com-

puting, CCGrid 2014, pp. 81–91, 2014.

[58] D. Didona, P. Felber, D. Harmanci, P. Romano, and J. Schenker, “Identifying the

Optimal Level of Parallelism in Transactional Memory Applications,”

[59] R. Jejurikar and R. Gupta, “Dynamic Voltage Scaling for Systemwi Minimiza-

tion in Real-Time Embedded Systems,”

[60] B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz, V. W. Freeh, and

T. Bletsch, “Adagio,” Proceedings of the 23rd international conference on Conference

on Supercomputing - ICS ’09, p. 460, 2009.

[61] R. Child and P. A. Wilsey, “Using DVFS to Optimize Time Warp Simulations,”

2012.

[62] D. R. Jefferson, “Virtual time,” ACM Trans. Program. Lang. Syst., vol. 7, pp. 404–

425, July 1985.

[63] A. Baldassin, F. Klein, G. Araujo, R. Azevedo, and P. Centoducatte, “Character-

izing the Energy Consumption of Software Transactional Memory,” Ieee Com-

puter Architecture Letters, vol. 8, no. 2, pp. 56–59, 2009.

[64] K. De Vogeleer, G. Memmi, P. Jouvelot, and F. Coelho, “The energy/frequency

convexity rule: Modeling and experimental validation on mobile devices,” Lec-

ture Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-

97

ligence and Lecture Notes in Bioinformatics), vol. 8384 LNCS, no. PART 1, pp. 793–

803, 2014.

98

Acknowledgments

First of all, I would like to thank my advisor Prof. Francesco Quaglia for the many

passionate and inspiring lessons and for always believing in my work.

I would like to thank Pierangelo Di Sanzo for introducing me to the concept of trans-

actional memory and for the many hours spent working together to solve problems

faced during this work.

A word of gratitude goes to all the friends in the HPDCS research group for the many

inspiring discussions, constant support and mostly importantly for making me feel

like one of them since the first day I started working on this thesis.

To my friends, both new and old, for making every day more joyful.

I would like to thank my family for always believing in me and supporting me.

To Martina for all the happiness, motivation and love she brings in my life.

99

