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Abstract

This thesis work aims to introduce an innovative obfuscation technique

based on the use of generative grammars in the metamorphic field to provide a

weapon against reversing attacks on the intellectual property of the software.

The metamorphic engine allows each instruction of an executable to be

transformed into a group of one or more semantically equivalent instructions.

A generative grammar is used to produce, in a non-deterministic manner, the

group of equivalent instructions into which to transform a starting instruction.

The created tool can only be applied to binaries in ELF format and for an

Intel architecture.

The transformation process is made up of several phases: there is a first

initial phase in which we try to cancel the changes made in a previous ap-

plication of the engine to the executable in order to prevent the size of the

binary code from growing exponentially. Therefore, we initially try to reduce

the instructions (by performing the initial transformations but in reverse) and

to reorder the instructions, trying to cancel the permutation made in the pre-

vious iteration. Both of these operations lead to changes in the ELF only if it

had previously undergone a transformation process. This is followed by a per-

mutation of the instructions and an expansion phase, in which each instruction

is passed as input to a generative grammar to be transformed.

A test-driven development approach was followed, during which the various

components of the engine (i.e. the portions of code responsible for different

operations) were tested using specific executable files constructed in such a way

as to test almost all exceptional cases that may be encountered when trying

to modify an executable file in the ELF format; furthermore, they have also
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been tested on some executables contained in the /bin directory.

Moreover, tests were carried out to verify the engine’s obfuscation capacity,

applying the latter to a malware sample and analysing the variation in the

detection rate, exploiting the Virus Total API for malware analysis. This also

enabled identifying which anti-viruses were most resistant to this obfuscation

technique.

Performance tests were also conducted to verify whether the variation in ex-

ecution times caused by the application of the engine remains almost constant

between one transformation iteration and another. The tests were carried out

on two benchmarks also to verify that the execution time did not increase too

much after the metamorfic transformations.

Chapter 1 introduces the problem of protecting intellectual property, and

how obfuscation techniques can be used to prevent reversing activities. An

introduction to binary obfuscation is also presented. Chapter 2 discusses the

current state of the art and aims to address existing gaps in the literature.

Chapter 3 introduces the concept of metamorphism and explains how it can

be used in conjunction with generative grammars. Chapter 4 describes the

implementation work, including detailed explanations of interesting algorithms

used. Chapter 5 discusses the experimental results, and Chapter 6 presents

conclusions and ideas for future improvement.
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1. Introduction

In this chapter there is an introduction to obfuscation techniques in general

and how these can be used to solve the problem that this thesis work aims

to address, namely the defense of the intellectual property of software from

attacks based on reverse code engineering .

1.1 Obfuscation techniques and why they are

used

Binary obfuscation refers to different methodologies and techniques that

manipulate existing applications to hide away their internal details [43]. They

are used extensively in computer engineering, especially for malware applica-

tions. In fact, malicious software abuses these techniques to avoid antivirus

detection. Obfuscation can also be used for good intentions, for example to

defend Intellectual Property (more details in Section 1.2).

Code obfuscation is also used to provide security in Android applications

using the code shrinker R8 [36]. In this case, obfuscation is made using both

shrinking (roughly speaking, it would be the removal of unused classes) and

renaming classes to unreadable short names that will prevent a malicious user

from reverse engineering the app.

Some of the most used techniques are:

• binary code permutation;

• binary code encryption and packing;
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1. INTRODUCTION

• metamorphism.

Binary code permutation is a simple reorganisation of the control flow graph

of the application [37], while encryption and packing are strong obfuscation

techniques largely diffused in malicious application. Encryption is based on

the use of cryptography to hide the representation of the program [39], and

packing [18] is the art of reducing the size of the code by transforming it into

something else that cannot be executed directly but needs the support of an-

other piece of code that is then added, named unpacker that is in charge of

undoing all the operations performed by the packer. Sometimes malware au-

thors write their own packers, sometimes use a commercial one, like UPX [32].

All of these techniques suffer from a common pitfall: they are inherently

static in that, once generated, the program’s binary image is not subject to

any change. Most of the reverse engineering techniques adopted to violate IP

or analyse a malware are based on manual analysis leveraging debuggers and

disassemblers (e.g., [1, 13, 15]).

Metamorphism [5, 4] is a technique that tries to exceed this limitation

by changing the image of the executable after each execution. In this way,

we will have a different version with the same behaviour but different binary

code. This makes it difficult for a reverse engineer to combine both static and

dynamic analysis.

Traditional metamorphic approaches found in literature (see, e.g., [5, 41])

rely on a fixed and size-reduced set of transformations that can be randomly

applied to binary code instruction. This represents a huge limitation, in fact

also if the rule to apply is randomly picked from this set, it will probably repeat

from one transformation to another. This limit can be overcome by means of

generative grammars that permit us to generate a transformation from one

to many instructions in a random way, combining most of the available rules.

Also, the use of generative grammar gives the developer the ability to change

the set of transformation by simply changing the grammar set of rule, instead

of rewriting and recompiling the binary application.

This thesis work focuses mainly on obfuscation by means of metamorphism
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1. INTRODUCTION

used in combination with generative grammars; more details about metamor-

phism and how it works can be found in Section 3.1.

1.2 Reverse Code Engineering: a threat for

Intellectual Property

Reverse Code Engineering is an activity aiming at re-building the high-level

representation of a binary executable or to understand the inner workings of

an application. It includes many different techniques that can be divided into

two main categories: Static;Dynamic.

Static techniques (such as disassembling, file signature analysis, or symbol

analysis) are a set of different methodologies with a common aspect: they do

not require program execution. Instead, dynamic techniques (e.g. Debugging,

Unpacking) are based on the observation of the program when executed. Some

of these, such as debugging, execute the program in a controlled manner, while

others (such as unpacking) do not.

These techniques are widely employed in cybersecurity to discover potential

vulnerabilities in a software executable, as well as a sequence of operations

that allows us to distinguish between malware and benignware, but they can

also be used to reverse engineer a commercial product, in order to hack it

(e.g. discover a way to bypass activation key usage) or copy it. In this sense,

reverse engineering can be a potential threat for Intellectual Property, since

it enables an attacker to violate copyright and exposes internal details of a

product. Additionally, vulnerability disclosure can be seen as an attack to

intellectual property if done without the consent of the owner.

There are different well-known intellectual property violations, such as the

one by George Francis Hotz in 2011, which reversed the code of the PlayStation

3 operating system [14]. Thanks to this analysis, it was able to discover and

exploit a firmware vulnerability, which enabled it to execute unsigned software

and gain full control of the console.

Another interesting example can be found in a story told by Kevin D.
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1. INTRODUCTION

Mitnick in The Art Of Intrusion [29], about a group of friends that decided to

reverse engineer one of the most popular slot machines in casinos. They were

able to discover a vulnerability in the Random Number Generator used by the

machine and used the acquired knowledge to develop a piece of software that

was equivalent to the one in the machine’s firmware. It was then used to carry

out more and more sophisticated attacks, which allowed them to earn millions

of dollars.

So now is manifest that a not consensual reverse engineering activity can

cause a lot of damage to a Software Company, and then some countermeasure

are needed. Binary obfuscation techniques can be useful for this. Not surpris-

ingly, Google has decided to integrate an obfuscation mechanism for Android

applications [36], in order to prevent intellectual property violation.

1.3 Thesis’ Objective

This work has as objective to design and develop a new obfuscation engine

based on metamorphic techniques driven by generative grammars to contrast

reverse engineering attempts.

The proposed engine can be integrated into larger tools for the defence of

Intellectual Property, such as MorphVM. MorphVM is a virtual machine

used to run a program that has been written (or compiled) with a custom

Instruction Set Architecture (ISA), that can change from one execution to

another. Where does metamorphism fit in this context? The use of a cus-

tom ISA is an effective reverse engineer repellent, since all of their software

used for analysis (static or dynamic) will fail if applied to an unknown and

undocumented ISA. But this alone is not enough, since the VM itself must be

compiled using a conventional ISA, such as x86 Intel [16]. This makes the VM

prone to reverse engineering attacks, and then all efforts made by the software

to hide itself using a custom ISA are made useless, since the attacker can ob-

tain information on the ISA structure and how it changes. To contrast this

problem, we can include a metamorphic engine in the VM. In this way, we can

4



1. INTRODUCTION

obfuscate the VM itself, making it harder for an attacker to break MorphVM’s

hiding mechanism.

This thesis work is useful in this way, since the entire developed metamor-

phic engine can be easily included into MorphVM, giving it a hard-to-break

obfuscation mechanism.
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2. Related Work

Obfuscation techniques are widely discussed in the literature, both from

the evasion and detection point of view. The panorama is vast, with tech-

niques such as ROP-based obfuscation [6], opcodes hiding [25], code virtualisa-

tion [19, 38], control flow redirection based on exceptions [21] and mimimorphic

techniques [44] based on attacking both semantic and statistical analysis. An-

other type of hiding technique is based on the use of packers, i.e. compressing

and encrypting binary code in the executable file, adding an unpacking stub

that, when activated, reverses the packing operation before giving control to

malware [31, 3, 12, 31].

All of these obfuscation techniques share the same problem: they are static

and do not change executable files over time. Therefore, once an analyst has

recognised the underlying pattern (e.g. how to unpack or how the code is vir-

tualised), they can easily construct a deobfuscated version of the executable

to analyse it without impediments. My solution to this problem will not in-

volve including additional levels of complexity in the binary representations, as

many of the above contributions did. Instead, I will switch focus, allowing the

obfuscated application to modify itself over time. This will be done through

a metamorphic engine that can drastically rewrite, based on some source of

randomness, to prevent analysts from observing two very identical versions of

the same program.

I plan to rely on generative grammars to simplify the generation, manage-

ment, and improvement of such a metamorphic approach. Some early work

in the literature has dealt with metamorphism and generative grammars, but

they always approach the techniques separately. Malware writers primarily use

6



2. RELATED WORK

metamorphic engines to protect their code against detection activities. The

most relevant example is Metaphor [41, 40]. Indeed, the author showed how

we can build a metamorphic engine to change malware binary code effectively.

The techniques reported in [41] were a starting point for this work. Never-

theless, I have already explored the feasibility of applying a grammar-based

approach instead of a hard-coded one (as in [41]) to identify a suitable set of

transformations to apply.

For what concerns generative grammar works, many works (see, e.g., [45,

46? , 8]) describe approaches to use grammars for purposes other than pars-

ing source code [23]. In [45, 46], the authors rely on grammars for automatic

code generation in the context of metamorphism. Still, the issue is tackled ab-

stractly, ignoring technical problems (such as a proper definition of grammar

tokens), which is highly relevant and challenging in the field. In [? ], grammars

are used for sentence generation based on a user-specified Bison grammar [23],

while in [8] grammars are used to generate language sentences for compiler

testing. These approaches are highly optimised for their purposes, barely fit-

ting my objectives. Indeed, even though providing a comprehensive grammar

for a binary representation were feasible, when matching grammars against

existing executables, I would not start from the axiom as these approaches do.

Therefore, more carefully-tailored solutions must be explored, which is what i

have done in this thesis.

Regarding binary manipulation, several proposals in the literature provide

the capability to manipulate executables (see, e.g.,[34, 2, 24]) with different

levels of flexibility. The main difference is that all these proposals target the

study or the improvement of non-functional properties of the applications;

thus, the set of modifications they support is somewhat limited. Conversely,

a significantly more extensive collection of changes on binary files (although

driver by grammars) shall be supported to provide an effective metamorphic

engine. This requires finding careful solutions not to break the application’s

correctness and extracting information that is not explicitly available in the

program, e.g., through ad-hoc heuristics.

7



3. Grammar-driven Metamorphism

In this chapter we want to explore in detail the methodologies adopted in

the thesis work, in particular with regards to metamorphism, the algorithm

to follow to create a functioning and efficient metamorphic engine is explained

in detail. The chapter also addresses in parallel the topic inherent to the

other important component of this work, namely generative grammar, and

then concludes with a discussion on how a generative grammar can be used

within a metamorphic engine and with what objective.

3.1 Metamorphism

In this section, it is explained in detail how metamorphism techniques

work and what are the code blocks to be used to create a metamorphic engine.

As said in Section 1.1, metamorphism aims to change the binary code of an

executable, building an equivalent copy of it, but with different instructions.

"The Mental Driller", author of Metaphor [41] was the first hacker to use

a metamorphic engine inside a malware application for obfuscation purposes

in 2002.

The basic idea is to include into the program an engine that:

1. Load the binary code in memory and disassemble it using any disassem-

bling algorithm;

2. Make a reduction of the code, that is to say convert two or more instruc-

tion into one that is equivalent (inverse operation of 4);

8



3. GRAMMAR-DRIVEN METAMORPHISM

3. Apply a permutation technique to the entire code, changing the instruc-

tion order;

4. Expand the code, that is to say transform one instruction into two or

more equivalent ones;

5. Updates any inter-instruction reference that has been broken (for ex-

ample, a jumped instruction that was moved to another address during

permutation and expansion phases)

6. Rewrite the disk image of the file.

All of these operations must be performed every time the program is executed,

in order to change the file after each execution.

Let us see in details how each phase works and why it is used.

Phase 1 involves the use of a disassembler to load and correctly read the

executable (the type of disassembler used or the algorithm adopted is not

relevant). This phase also requires an algorithm to deal with file format specific

details; for example, for what concerns the ELF format (the one used for Linux

executables) [26], a software that deals with executable header, section header,

and other details is needed. A good practise while interpreting the file content

is to build an intermediate representation of the file, that permits one to hide

low level details, so that for the other phases (excluding the 6) you do not have

to deal with this aspects. The use of an intermediate representation makes the

development of the rest of the engine easier.

As just said before, phase 2 is the inverse of 4, so for this part of the

development process, we need a table of inverse transformation (that are the

same used during the expansion). This phase is strictly related to 4, so we

will explore both together. To transform the binary code of an executable, in

order to build a newer but semantically equivalent version of the software, you

need to transform one instruction into two or more that practically does the

same thing. There are basically two approaches to do that:

• Use a static set of hard-coded rules for transformation;

9



3. GRAMMAR-DRIVEN METAMORPHISM

• Use a generative grammar to drive the transformation—this approach is

the one adopted in this thesis.

In both cases, the selected rule must be chosen randomly, ensuring that the

set of transformations applied by the engine will be different in each execution.

Once you have selected which rule to apply, you have to perform the transfor-

mation effectively, that is, remove the previous instruction and add the new

ones.

This is all for what concerns phase 4. To prevent the file size from growing

unbounded, phase 2 is needed. During this phase you use the table of inverse

transformation to randomly select a rule and use that to reduce binary code,

converting two or more instructions into one. In this way, you are (probably

because of the randomness) undoing all the operation that was done during

the expansion phase of the previous engine execution.

Applying both 2 and 4, you can control the size of the executable. If the

file size increases too much, the antivirus may consider it as an indicator of

maliciousness.

Phase 3 is used to add more randomness to the transformation process.

Basically, it consist in changing the sequence of instructions, making a permu-

tation of them, and adding some jmp instruction (see Appendix B) between

them, so that the execution flow is not altered. For example, suppose that we

have this sequence of instructions:

Listing x86 Asm example pre permutation
1 add rax ,0 x10

2 sub rdx ,0x9

3 add rax ,rdx

4 ret

Listing 3.1: x86 Asm example pre permutation

then, a possible permutation of this can be the following:

Listing x86 Asm example post permutation
1 jmp add_a_10

2 add_r_d :

3 add rax ,rdx

10



3. GRAMMAR-DRIVEN METAMORPHISM

4 jmp r

5 add_a_10 :

6 add rax ,0 x10

7 jmp sub_d_10

8 r:

9 ret

10 sub_d_10 :

11 sub rdx ,0x9

12 jmp add_r_d

Listing 3.2: x86 Asm example post permutation

Expansion, reduction, and permutation can break instruction links, such

as a conditional jump that refers to another instruction in the code that has

been moved at another address. Phase 5 addresses this issue.

Finally, once we have transformed our binary executable using the inter-

mediate representation that we built, we have to make these transformations

permanent by rewriting the entire file in phase 6.

Why is metamorphism effective as an obfuscation mechanism?

The strength of metamorphism lies in the ability to completely modify the

binary code of an executable and, thanks to randomness, to build a new ver-

sion after each execution of the engine. This means that if an attacker tries

to reverse the program, he will not be able to combine static and dynamic

techniques. In fact one of the most largely adopted approaches for reverse

engineering is to exploit static techniques (like disassembler) to obtain the

greatest amount of information and then exploit dynamic techniques (like de-

bugger) to investigate unclear aspects. For example, an attacker could use

the disassembler to look for functions and then use a debugger to analyse

these functions. Since dynamic techniques trigger the engine activation, he

cannot use function addresses obtained with static techniques while using the

debugger, since the address is probably not the same.

For comparison with other obfuscation techniques, consider packers. A

packer generates an executable with several distinctive traits, which can be

seen as indicators by an antivirus. For example, the names of the sections

(.text, .data, etc.) change, and furthermore the code section is very small (it

11



3. GRAMMAR-DRIVEN METAMORPHISM

only contains the unpacker) while the data section grows (this is because having

to unpack at run time, the code must necessarily be present in a segment that is

writable and readable). Indeed, metamorphic executables are indistinguishable

from normal ones. This makes metamorphism a more stealthy technique than

packer, which is what we want, since a metamorphic engine is intended to

provide reverse engineering security for commercial products, and we don’t

want these software to be seen as malware by antivirus.

As said previously, the set of transformations to be applied can be static

or generated by a grammar. The use of a generative grammar allows us to

make complex and always different transformation with respect to the static

solution. This methodology will be explained more in detail in the following

sections.

3.1.1 ELF intermediate representation

Build an intermediate representation of the executable file, according to its

format, is useful when dealing with metamorphism, since it allows one to work

at a higher level of abstraction. In this thesis work, I mainly focused on the

ELF executable file (see Appendix A).

To build an intermediate representation of an ELF, I need to work with:

• Executable Header;

• Section Header Table;

• Program Header Table;

• Section Data;

The program header table contains an entry for each segment header. Seg-

ments constitute the memory image of the program and must be properly

handled, in order to prevent segmentation fault errors. In fact a segment spec-

ifies access permissions; therefore, if the executable code grows to the point of

12



3. GRAMMAR-DRIVEN METAMORPHISM

overflowing into a data segment, it is possible that this does not have execu-

tion permissions, thus giving rise to a segmentation fault. To avoid this, it is

necessary to update the size of the segments and their position.

The section header table contains an entry for each section header. A

section is the smallest unit of an object that can be relocated. The linker uses

sections to mix together sections of the same type that come from different

modules. A section header contains information like the section name, the

section type, and where the start address of the section data.

There are different section types that must be properly handled:

• SHT_PROGBITS, this type of section is assigned to the one containing

executable code;

• SHT_SYMTAB, this type of section contains the symbol table;

• SHT_RELA, this type of section contains the relocation table which

makes use of an addend;

• SHT_REL, this type of section contains the relocation table;

• SHT_DYNAMIC, this type of section holds dynamic linking informa-

tion.

To build a complete ELF representation, I need to deal with all of this

section types.

For what concerns SHT_PROGBITS sections, I need to disassemble their

content using the proper algorithm, which depends on the type of ISA used.

Also, I need to deal with symbols that are in the symbol table (SHT_-

SYMTAB section). In particular, I have to locate each function of the ex-

ecutable since the entire transformation engine is based on the concept of a

function.

Each symbol contains:

• A value field, whose meaning depends on the type of symbol, typically

it is the address where the content is located;
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• A size field, containing the size in bytes occupied by the content of the

symbol;

• A type field, which specify the symbol type;

• A bind field;

• A visibility field;

• An index;

• A name.

For each function, there is an entry in the symbol table which contains the

size of the function and its start address as a value. Using this information

together with instruction addresses and their size, it is simple to assign each

instruction to its function.

Symbol management is not enough, in fact there are some symbols that

contain a zero value. These types of symbols must be handled working on the

information in SHT_DYNAMIC section.

The SHT_DYNAMIC section contains a table whose entries contains:

• A tag value which specify the type of the entry;

• A value field, whose meaning depends on the type of the entry, typically

is the address where the content is located or a string.

An example of a symbol that must be handled using the SHT_DYNAMIC

section are the start address of the _init and _fini functions, as well as the

address of the _INIT_ARRAY and _FINI_ARRAY.

Another thing that must be done when building an intermediate represen-

tation of an ELF file is reference tracing in the code. There could be two types

of reference in the code:

• References between instructions;

• References from instructions to data;
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• References from data to instructions.

The first topology is associated with branch operation or in general to

instruction which may cause a shift in the execution flow. In a similar scenario,

there is a source of the reference (e.g. the branch instruction) and a target.

Each change to the binary code could shift these two instructions, making a

subsequent adjustment necessary to avoid breaking the original relationship.

The same thing is valid for the second topology, in which there is a source

instruction, but the target is not another instruction, but rather a memory

address. This type of reference is typically related to an operation which

moves data from memory to register and vice versa.

In the end, the third topology is typically associated with jump table en-

tries. In fact a jump table entry contains a displacement, which if added to a

base address provides the address of the instruction to be executed.

For more details on how the intermediate representation of the ELF was

built, see Section 4.1.

3.2 Grammars

In this Section, we introduce the use of grammars, especially generative

grammars, in computer science. A grammar is a set of rules, statements,

and axioms which describe a formal language [10]. Typically a grammar is

used to build a parser that validates sentences of a language, for example, an

instruction statement in a program. In fact grammars are used by compilers

to validate the syntax of a program.

Grammars can be classified, according to Chomsky Hierarchy [9], in :

1. Type 3, used to generate regular languages, which are formal languages

that can be defined by a regular expression;

2. Type 2, also known as Context-Free Grammar (CFG), used to generate

context-free languages, which have many application in programming
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languages (e.g. most arithmetic expressions are generated by context-

free grammars);

3. Type 1, also known as Context-Sensitive Grammar (CSG), used to gen-

erate context-sensitive languages;

4. Type 0, used to generate recursively enumerable languages.

Levels of the Chomsky Hierarchy are inclusive; this means that all CFG

grammars are regular, but is not true that all regular grammars are CFG.

Context-free grammars are used to specify the syntax of programming lan-

guages, enabling the development of parsers and compilers. The Backus-Naur

Form (BNF) [27] and the Extended Backus-Naur Form (EBNF) [11] are com-

monly used notations to define context-free grammars for programming lan-

guages. One tool largely used to generate a parser for Context-Free Grammars

is Bison [23]. For my thesis work, I used Bison to generate a parser (starting

from a metagrammar), in order to validate the generative grammar submitted

to the engine.

3.2.1 Generative Grammars

Grammars can also be distinguished in :

• Prescriptive;

• Descriptive;

• Generative.

The term prescriptive grammar refers to a set of norms or rules governing

how a language should or should not be used rather than describing the ways

in which a language is actually used, unlike a descriptive grammar, which is an

examination of how a language is actually being used in speech and writing.

Instead, generative grammar attempts to get to something deeper—the

foundational principles that make language possible across all of humanity.
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Generative grammars consider grammar as a set of rules that generate

exactly those combinations of words that form grammatical sentences in the

given language. They can be used to generate infinite-length sentences of a

language.

In reference to Chomsky’s hierarchy (3.2), generative grammar can be seen

as Context-Free Grammar. In fact, as Chomsky himself said, type 3 grammars

are not expressive enough to describe a human language. A derivation of a

sentence using a CFG can be seen as a derivation tree, which can be parsed in

order to build the generated sentence. Let us see an example of a derivation

tree:

CFGs have been widely used in natural language processing (NLP) and

parsing algorithms. They are the basis for many syntactic parsers that analyse

the grammatical structure of sentences, such as the Earley parser [28] and the

CYK parser [30].

The most famous example of generative grammar belongs to Noah Chom-

sky, and it is the concept of a "finite set of generative rules" for generating

an infinite number of sentences in a language. Chomsky introduced this idea

in his groundbreaking work "Syntactic Structures," which was published in

1957 [22]. In this book, he argued that human languages are generated by a

finite set of recursive rules that can produce an infinite number of sentences.

One of the key illustrations Chomsky used in "Syntactic Structures" is the

following sentence:

"Colorless green ideas sleep furiously."

This sentence was intentionally constructed to be grammatically correct
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but semantically nonsensical. Chomsky’s point was that the grammaticality

of a sentence is separate from its meaningfulness. By presenting this sentence,

he aimed to demonstrate that generative grammar is concerned primarily with

the structure and rules of syntax, not with the meaning of sentences.

Chomsky’s work on generative grammar laid the foundation for the trans-

formational grammar framework, which includes transformational rules for

generating different sentence structures from a deep structure to a surface

structure while preserving meaning. His ideas revolutionised the field of lin-

guistics and continue to be influential in the study of language to this day.

What does a generative grammar look like? Let us see an example of a

generative grammar for English language. In English, a basic sentence follows

the Subject-Verb-Object (SVO) structure. Here’s an example:

• Subject (S): "She"

• Verb (V): "plays"

• Object (O): "the piano"

So, "She plays the piano" follows the SVO structure. A generative grammar

will start from this structure to generate a sentence that is syntactically correct,

but not necessarily semantically correct.

Generative grammar also includes transformational rules that explain how

sentences can be transformed into different forms while preserving their un-

derlying meaning. For example:

Active to Passive Transformation:

• Active: "The cat chased the mouse."

• Passive: "The mouse was chased by the cat."

Transformational grammar laid the groundwork for modern NLP applica-

tions, including machine translation. By understanding the transformations

between languages, early machine translation systems attempted to convert

sentences from one language to another.
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Another important example of generative grammars is the Probabilistic

Context-Free Grammar (PCFG).

PCFGs are extensions of context-free grammars that assign probabilities

to productions. In a PCFG, each production rule in the grammar is associated

with a probability. These probabilities represent the likelihood of using a

particular rule to generate a specific syntactic structure. For example, in a

PCFG for English, you might have a production rule like:
1 VP -> V NP [0.6]

Listing 3.3: PCFG rule example

For the purpose of this thesis work, the generative grammar must be a

transformation grammar, since it has to transform one instruction into two or

more equivalent ones, but also a probabilistic grammar because all rules must

be selected randomly.

3.3 Using Grammars for Program Metamor-

phism

Generative grammars can be used to derive sentences for a given language.

In this thesis, I decide to use generative grammar to derive a set of instructions

that, if executed one after the other, give place to the same effect of a starting

instruction. For example, supposed to start from an add operation, such as
1 add rax ,0x8

Then a possible outcome of the grammar can be:
1 sub rax ,0x4

2 nop

3 mov rdx ,rdx

4 add rax ,0 x10

5 sub rax ,0x4

This is a set of instruction that brings to the same result of the starting

instruction: the content of the register rax is incremented by 8.
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To build an engine that can do these things, I started from Forson [? ],

which is a tool that receive as input a language description (a .y file contain-

ing terms and rules) and generate sentences for this language. Unfortunately

Forson doesn’t work correctly on x64 machines. So I adapted Forson source

code, in order to make it works on x64 machines and I integrate it in my

metamorphic engine.

When dealing with grammar engine, the instructions are converted into

proper tokens.

A token is a term in the language used, and it reflects the instruction type,

for example an instruction like jmp rax has as token JMP.

The set of token used is:
1 typedef enum Token_type {

2 ADD ,

3 SUB ,

4 MOV ,

5 LEA ,

6 LEAIMM ,

7 MUL ,

8 JUMP ,

9 CMP ,

10 JCC ,

11 CALL ,

12 PUSH ,

13 POP ,

14 OR ,

15 AND ,

16 XOR ,

17 RET ,

18 DEF ,

19 NOP

20 } Token_type ;

Listing 3.4: Token type enumeration

Each instruction type is directly mapped to a token that relies exclu-

sively on the mnemonic without taking into account the rest, except for the

lea instruction, which can be mapped to LEAIMM if it is of the type lea

reg,[reg+imm], where reg is any register and imm is an immediate value.

These tokens are the terminal values of the grammar. Terminal values are
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those generated by the grammar at the end of the derivation process. This

means that, in reference to the previous generation example, the grammar has

generated the terminal values SUB NOP MOV ADD SUB.

The language description must contain one and exactly one set of rules

for each of these tokens, except for the DEF token, which corresponds to an

unhandled instruction, which remains unchanged. The grammar engine takes

as input a .y file containing the language description and a starting token,

corresponding to the instruction that has to be transformed. The language

adopted in this thesis work is described by the following .y file:
1 %{

2 # include <math.h>

3 # include <stdio.h>

4 int yylex (void);

5 int yyerror (char *);

6 %}

7

8 %token ADD SUB MUL DIV JCC MOV LEA LEAIMM JUMP CMP CALL PUSH POP OR AND XOR

RET NOP DEF

9

10 %%

11

12

13 single_instruction : add

14 | sub

15 | mul

16 | div

17 | jcc

18 | mov

19 | lea

20 | leaimm

21 | jump

22 | call

23 | cmp

24 | push

25 | pop

26 | or

27 | and

28 | xor

29 | ret

30 | nop

31 | def

32 ;
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33

34

35 add: ADD sub

36 | add sub

37 | add nop

38 | ADD;

39

40

41 sub: SUB nop

42 | add SUB

43 | SUB add

44 | sub add

45 | SUB;

46

47 mul: MUL

48 | mul nop;

49

50 div: DIV

51 | div nop;

52

53 jcc: JCC

54 | jcc nop;

55

56 mov: MOV

57 | push pop

58 | mov nop;

59

60 lea: LEA

61 | lea nop

62 | mov;

63

64 leaimm : LEA

65 | leaimm nop

66 | mov add;

67

68

69 jump: push ret

70 | JUMP

71 | jump nop;

72

73 call: CALL

74 | call nop;

75

76 cmp: CMP

77 | cmp nop;

78

79 push: PUSH
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80 | sub mov

81 | push nop;

82

83 pop: POP

84 | mov add

85 | pop nop;

86

87 or: OR

88 | or nop;

89

90 and: CMP

91 | cmp nop

92 | AND

93 | and nop;

94

95 xor: mov nop

96 | mov

97 | XOR

98 | xor nop;

99

100 ret: RET

101 | nop ret;

102

103 def: DEF

104 | def nop;

105

106 nop: NOP nop

107 | MOV

108 | nop

109 | nop nop;

110

111 %%

Listing 3.5: .y file containing the language description

The single_instruction rule is necessary to make the file syntactically cor-

rect (each token must appear on the right side of at least one rule), but is

never used during the derivation process; furthermore, it is ignored during the

construction of the inverse transformation table for the shrinking phase (see

point 2 of metamorphism process in 3.1).

During its execution, the engine randomly selects a rule from the set corre-

sponding to the given token, and then if the selected rule contains non-terminal

symbols, these are themselves expanded in a recursive process that ends when
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Figure 3.1: Derivation Tree example

all the generated terms are terminal symbols. To prevent the engine from gen-

erate an infinite length sentence, I set a recursive cap, that is, a limit to the

maximum number of recursive steps, equal to 7 steps. If the engine reaches

this cap, it is forced to generate a terminal symbol.

The result of the engine is a derivation tree, which is then parsed by the

metamorphic engine to apply the generated transformations and make them

permanent. An example of a derivation tree is the following:
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In this transformation, the grammar has started from a jump instruction

and has generated a transformation into SUB MOV MOV MOV MOV RET.

This type of transformation can be applied to an indirect jump (e.g. jmp

rax), which can be transformed into a PUSH followed by a RET statements.

Numbers in parentheses correspond to internal representation of symbols and

rules of the grammar and can be ignored.

Since instruction-to-token mapping depends only on the instruction mnemonic,

it is possible that the transformation generated by the grammar cannot be ap-

plied to the original instruction. For example, if the derivation tree in Fig. 3.1

is generated for a direct jmp (e.g. jmp 0x20), it cannot be applied, since the

instruction is not an indirect jump. In this case, the engine falls back to a

transform where it simply adds some garbage statements that are generated

by the grammar. Garbage statements are instructions that are no operation

(NOP) or equivalent instructions.

This simplistic approach is adequate for the type of grammar provided. In

fact, the number of rules in each set is equal to 2 or slightly higher, one of

which corresponds to the addition of garbage.

A different approach can be used: to perform an instruction-to-token map-

ping based on the instruction opcode. This approach does not solve the prob-

lem, since two instruction with the same opcode can be different, but it reduces

the probability that a generated transformation cannot be applied (we can call

this "probability of fail"). However, this comes at a price: an increase in the

number of different tokens to manage.

If the supplied grammar becomes more complex, the number of tokens must

increase to reduce the probability of fail, otherwise the result of the engine will

be a no-operation filled executable.

The grammar used for this thesis work is simplistic, in fact for each group

of rules (remember that each group corresponds to a token) there are:

• 1 rule which keeps the instruction unchanged;

• 1 rule which transforms the instruction into two other;
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• 1 rule which simply adds garbage instructions.

So if the engine failed selecting 1 rule which cannot be applied, falling back

on the "add garbage" rule is not wrong.

I would like to point out that, if the transformation fails, this is only due

to the first rule selected during the transformation. In fact, the subsequent

rules are applied not to the original instruction, but to "artificial" instructions

that have been added by the previous transformation.
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4. Reference Implementation

In this chapter the reference implementation and algorithms adopted are

presented and discussed in detail.

The structure of the chapter reflects the metamorphic steps presented in

3.1.

4.1 Building the intermediate representation

of an ELF

As said in 3.1.1, building an intermediate representation of an ELF gives

you greater flexibility during transformation operations on the ELF and also

allows you to correctly manage all the metadata relating to the format.

In this way, I can work at an higher level when dealing with instruction

manipulation, leaving low-level work to the code part that is responsible for

rewriting the ELF.

4.1.1 Data structures

Then I decide to organise the internal details of the file in several data

structures that use the ones proposed in the libelf library [20], and also main-

tain additional data that are useful for ELF rewriting. This is not sufficient,

since we had also to read and rewrite all section data, both those containing

code (which are the ones with SHT_PROGBITS type) and those containing

data, since during the address update phase, it is possible that the sections

containing data that have not been directly modified have undergone a change
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of address due to the growth of the previous code sections. The data structures

used for ELF intermediate representation are the following:
1 typedef struct Phdr_table {

2 size_t num_entries ; // number of program headers

3 linked_list *list; // list of GElf_Phdr structures

4 linked_list * segments ; // list of Segment structures

5 } Phdr_table ;

Listing 4.1: Data structure for intermediate representation of the

Program Header Table

1 typedef struct Segment {

2 int index; // index of the segment , starting from 0

3 uint64_t start_index ; // segment offset from the beginning of the

file

4 uint64_t end_index ; // segment end offset , from the beginning of

the file

5 uint64_t size; // size in bytes of the segment

6 linked_list * sections ; // list of sections belonging to the segment

7 unsigned char sensible ; // This bit is 0x1 if the phdr is followed by

another one with different flags and has to be correctly handled

8 } Segment ;

Listing 4.2: Data structure for intermediate representation of a

Segment

1 typedef struct Section_data {

2 Elf_Data *data; // content of a section

3 linked_list * instructions ; // list of disassembled instructions , if the

section is of type TEXT

4 size_t displacement ;

5 size_t old_size ;

6 size_t padding ;

7 } Section_data ;

Listing 4.3: Data structure for intermediate representation of section’s

data

1 typedef struct Section {

2 Elf_Scn *scn; // the section handler

3 GElf_Shdr *shdr; // the section header

4 char *name; // the section name

5 linked_list *data; // list of Elf_Data structures associated

with the section

6 size_t num_data ; // number of ELf_Data structures
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7 int64_t section_displacement ; // displacement of the section with respect

to the original offset in the elf , to be reported on elf regeneration

8 size_t old_size ;

9 } Section ;

Listing 4.4: Data structure for intermediate representation of a

section header

1 typedef struct Sec_table {

2 linked_list *secs; // List of Section structures

3 size_t num_entries ; // Number of sections

4 } Sec_table ;

Listing 4.5: Data structure for intermediate representation of Section

Header Table

1 typedef struct Elf_program {

2 Elf *elf; // ELF handle

3 GElf_Ehdr *ehdr; // Executable header

4 Phdr_table *phdrt; // Program Header Table

5 Sec_table *sect; // Section Header Table

6 linked_list * unified_instructions ; // list oif all disassembled

instructions of the ELF

7 // uint64_t e_entry_addr ; // Address of the entry point

8 } Elf_program ;

Listing 4.6: Data structure for intermediate representation of the

entire elf

1 typedef struct Symbol {

2 GElf_Sym sym; // the symbol

3 Section_data * sec_data ; // Section data containing the content the

symbol refers to

4 Section *sec; // Section containing the content the symbol refers to

5 unsigned long in_data_offset ; // Offset in data block of the symbol ’ content

6 } Symbol ;

Listing 4.7: Data structure for intermediate representation of an entry

of the Symbol table

1 typedef struct Asm_function {

2 Symbol *sym; // symbol associated with the function

3 linked_list * instructions ; // list of disassembled instructions

belonging to the function

4 char* name; // name of the function

5 uint64_t size; // size in bytes of the function
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6 uint64_t start_addr ; // initial virtual address of the function

7 uint64_t end_addr ; // virtual address of the end of the

function

8 ll_node *fi; // Pointer to the first instruction or NULL

9 size_t num_instructions ; // number of instructions in the function

10 bool uses_jt ; // true if contains a jt

11 } Asm_function ;

Listing 4.8: Data structure for function handling

1 typedef struct Elf_state {

2 Elf_program *prog; // Struct containing all elements from an

elf file

3 linked_list * symbols ; // A list of all symbols

4 linked_list * functions ; // A list of all functions in the elf

5 linked_list * strings ; // A list of all strings in the elf

6 linked_list * j_tables ; // A list of all jump tables in the elf

7 linked_list * rela_tables ; // A list of all rela tables in the elf

8 linked_list * dyn_etries ; // A list of all entries of dynamic table

9 } Elf_state ;

Listing 4.9: Data structure for Elf handling

The 4.1.1 structure is used in the engine to have a single access to all

the elements that make up an ELF, in order to be able to read and possibly

modify them. Single instructions are represented using another data structure

in which I take track of all information gather from the disassembler used [34]

and additional information that are useful for address adjustment (phase 5 of

the metamorphism process). The introduced data structure is the following:
1 typedef struct insn_info_x86 {

2 // Previous entry of the struct has been erased since they are copied from

Hijacker

3

4 // Start of metamorphic engine stuff

5 unsigned long long orig_addr ; // original address of the instruction

6 unsigned long long new_address ; // new address of instruction

7 int64_t displacement ; // displacement of the instruction after

modifying the elf

8 struct insn_info_x86 * jump_target ; // target of this instruction

9 linked_list * target_of ; // instructions that have this one as

target

10 int jump_op_size ;

11 unsigned long jump_op_start ;
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12 Section_data * sec_data ; // section data where the instruction

jumps to

13 Section *sec; // section where the instruction jumps to

14 unsigned long target_addr ; // target addr of original instruction

15 Asm_function * function ; // function to which this instruction belongs

to

16 bool uses_jt ; // true if this instruction uses a jump table.

17 void *jt;

18 int opd_size ;

19 int op [3];

20 unsigned char visited ; // This byte is supposed to be correct only

during reorder operation . Don ’t use it outside .

21 } insn_info_x86 ;

Listing 4.10: Data structure for Instruction handling

4.1.2 The jump table problem

A switch statement in a general purpose programming language finds its

representation at low-level in the so-called jump table.

A jump table, also known as a branch table or dispatch table, is a data

structure used for efficient control flow in software. It is primarily used to

optimise decision-making and reduce the need for complex conditional branch-

ing in programs. The typical structure of a jump table at the assembly level

involves the presence of a table of offset in the read-only memory segment,

which is accessed by the code with the use of an indirect jump.

The engine must be able to locate jump tables present in memory and their

usage, since this type of instruction references also must be handled. To check

if a function is using a jump table, the engine exploit two basic heuristics,

which are the following:

1. The function load a memory address in a register;

2. Then uses this memory address plus the content of a register (which is

supposed to contain the variable of the switch case) to load the content

of a memory location;

3. Then load again the first memory address in a register;
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4. The destination of the indirect jump is computed as a sum of the value

loaded in point 2 and the one loaded in point 3.

1. The function load a memory address in a register;

2. Then uses this memory address plus the content of a register (which is

supposed to contain the variable of the switch case) to load the content

of a memory location using a movsxd;

3. The destination of the indirect jump is computed as a sum of the value

loaded in point 1 and the one loaded in point 2.

This second type of heuristic is typically associated with an executable

which was compiled using some optimisation mechanism (e.g. -O3 option of

gcc).

Functions that contain a jump table cannot be touched by the engine, since

every modification to the code structure will break this heuristic, making it

impossible to recognise the jump table in a subsequent iteration.
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4.2 Shrinker

The shrinker is the part of the engine responsible for the ELF reduction

phase. As said in 3.1 point 2, the shrinker has to transform two or more

instructions into an equivalent one, preventing the ELF size from growing

exponentially in subsequent runs of the engine.

4.2.1 Table of inverse transformations

To make instruction reduction possible, I need a table of inverse transfor-

mations constructed starting from the .y file provided as a description of the

grammar. This table is built by the grammar engine while loading and parsing

the .y file. To store the table, the following data structures were created:
1 typedef struct INVERSE_RLE_TABLE {

2 inverse_rle ** rules;

3 int n_rules ;

4 int max_rules ;

5 } inverse_rle_table ;

Listing 4.11: struct of the inverse rules table

1 typedef struct INVERSE_RLE {

2 symbol_id start [2];

3 int n_start ;

4 symbol_id end [100];

5 int n_end;

6 } inverse_rle ;

Listing 4.12: struct of the inverse rule

Each rule is actually a set of rules. The array "end" contains each of the pos-

sible end symbols that can be obtained starting from the (at most 2) starting

symbols present in the "start" array. So the "start" array contains the symbols

that identify the set of rules, and end contains each of the possible outcome of

the reduction. As an example, since the grammar has a rule that transforms

from a jmp instruction to a push followed by a ret (see 3.3), the inverse table

will contain an "inverse_rule" entry that has as "start" an array containing

both push and ret symbols, and an end array containing at least a jmp symbol
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(it can contain more symbols if there are other rules in the grammar that have

push and ret as right-hand symbols).

A possible graphical representation of the table is the following:
1 add_sub :

2 add

3 sub

4 add_nop :

5 add

6 sub_nop :

7 sub

8 sub_add :

9 sub

10 mul_nop :

11 mul

12 div_nop :

13 div

14 jcc_nop :

15 jcc

16 mov_nop :

17 mov

18 xor

19 lea_nop :

20 lea

21 leaimm_nop :

22 leaimm

23 mov_add :

24 leaimm

25 pop

26 push_ret :

27 jump

28 jump_nop :

29 jump

30 call_nop :

31 call

32 cmp_nop :

33 cmp

34 and

35 sub_mov :

36 push

37 push_nop :

38 push

39 pop_nop :

40 pop

41 or_nop :

42 or

43 and_nop :
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44 and

45 xor_nop :

46 xor

47 nop_ret :

48 ret

49 nop_nop :

50 nop

As can be seen from the given representation, the rules that transform one

instruction into an equivalent one are ignored. There are no reasons to even

consider those transformations; in fact, the objective of the shrinker engine is

to reduce the size of the ELF. obviously it is possible that, by applying one of

these transformations, a small quantity of bytes can be recovered, since the x86

assembler is of the CISC type and not all instructions have the same length,

but the cost to be paid for doing this further increases the workload of the

engine.

The algorithm adopted for the derivation of this table is the following:

Algorithm 1: Algorithm for building the Inverse Rule Table
input : An empty inverse_rle_table
output: A correctly filled inverse_rle_table
sle← symbol_table
start← [0, 0]
while sle ̸= NULL do

if Is_NT(sle) is 1 then
rle← get_rle()
for j ← 0tolen(rle) do

sym← extract_sym(rle) start[j]← sym
end
put_inverse_rle(table, start, rle)

end
sle← sle→ next

end

Where the put_inverse_rle function used in this algorithm is a simple

function that inserts the end symbol in the inverse_rle entry corresponding to

the given start array.
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4.2.2 Reduction algorithm

In this section, the reduction algorithm used is introduced. The algorithm

converts each instruction into the corresponding token, then uses two tokens at

time and looks at the inverse_rle_table for a rule that can be applied. If there

are no such rules, a proper error is returned. The rule is selected randomly,

using an rng, from the set of rules available, and if the selected rule is wrong,

a new one is selected randomly, until all the available rules have been tested.

When testing for the feasibility of a rule, the algorithm must do all the checks

on the structure of the starting instructions to see if these can be converted

into the instruction specified by the rule, and if this is possible, builds the new

instruction using an assembler, which is Keystone [17].

Checks that have to be done differs from transformation to transformation,

for example looking at the "from add sub to add" transformation, one checks

that have to be done are:

• Are the two starting instruction using an immediate value?

• Are they working with the same destination register?

• Aren’t they using a displacement value or a scale value?

If all checks pass successfully, then the transformation can be applied and

a new add instruction is built using keystone. Clearly, the add instruction will

use the same destination register of the starting ones, and its immediate value

will be equal to the difference between the immediate value of the original

instructions.

No-operation instructions (or something equivalent) are deleted during the

reduction process. This means that the algorithm must be able to identify all

instructions that can be transformed into a nop. This is done using the entries

of the inverse_rle _table that has nop as the only initial value.

If the reduction is possible, then the first of the two starting instruction is

changed (this means that the content of the corresponding struct is updated,
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but the struct is not removed from the list of instructions) and the second

instruction is removed.

4.2.3 How to remove an instruction

Since the reduction algorithm requires to remove an instruction, let me

explain how to do this in a correct manner when dealing with ELF intermediate

representation and ELF metadata. As shown in ..., the intermediate ELF

representation includes a list of all instructions in the executable. Then, to

remove an instruction, it is necessary to remove it from the list (using any

algorithm for doubly linked list) and possibly update the medatata of the

membership function, like its size and starting address.

What happens if the reduction process removes an instruction that is the

target of a jump (or conditional jump) instruction? If this case is not handled

properly, the resulting executable will be broken.

There are two possible things that can be done:

• Do not carry out this type of removal;

• Before removing the instruction, update the branch instruction to make

it jump to the immediately following instruction.

However, the second solution is not always correct. For example, supposed

to have this sequence of instruction:
1 foo:

2 push rbp

3 mov rax ,[rsp -0xc]

4 jmp label

5 <Don ’t care about what ’s here >

6 label:

7 jz rax , label2

8 mov rax ,0x0

9 jmp label3

10 label2 :

11 mov rax ,0x1

12 label3 :

13 ret
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In this case, by removing the instruction on line 7, the function will always

return 0, for any value given in input.

The first solution, although simple, is the best to apply in this context.

In fact, the reduction algorithm removes only the second instruction, not the

first, which is indeed changed to the new ones. This means that, if the second

instruction is target of a jump, then I cannot reduce the pair of instruction

into a new one since there exists a flow of execution in the program that

executes the second instruction but not the first. So, in this case, a reduction

is not possible, and then the limit imposed by the first solution is irrelevant.

The only scenario in which this limit can hurt is when the engine is trying to

remove a no-operation statement. But this is not a problem, since the newer

no-operations added by the engine during the expand phase cannot be the

target of a jump by construction, and so if the engine fails while removing a

no-operation, this means that this nop is an original instruction of the ELF

and as such must not be removed.

4.2.4 Shrinking the ELF

The reduction algorithm presented in 4.2.2 must be applied to the entire

ELF. The metamorphic engine developed for this thesis work is designed to

work on one function at a time. In this way, I avoid problems that mine

function structure, such as the reduction of two instruction that belongs to

two different functions. If the ELF does not contain any functions, it will be

treated as an executable composed of only one function.

That said, we need an algorithm that iteratively performs the reduction on

each function. There are some functions that cannot be touched by the engine,

in order to preserve the correct functionality of the executable. These functions

are the ones added by the gcc compiler (e.g. destructor and constructor) and

the functions which contain a jump table. The reasons linked to these issues

have already been discussed in detail in 4.1.2.

The shrinking algorithm applies the reduction function to two consecutive

tokens at a time and uses the outcome of the reduction function as the first
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token for the next iteration, so that it can be further reduced until the entire

function has been reduced. This process is applied iteratively to each function.

The algorithm described is the following:

Algorithm 2: Shrinking algorithm
input : A set of functions
output: Number of reduction performed
count← 0
for function : functions do

tokens← tokenize(function)
first← NULL
while len(tokens) ̸= NULL do

if first == NULL then
first← pop(tokens)

end
second← pop(tokens)
first← reduce(first, second)
if first ̸= NULL then

res← res + 1
end

end
end
return count
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To show a possible outcome of the shrinker engine, let us consider this

function that has been modified by the expander:

40



4. REFERENCE IMPLEMENTATION

Then one possible result of the application of the shrinker on this function
could be the following:

Figure 4.2: Example of a function reduced by the engine
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4.3 Resequencer

Resequencer is the algorithm adopted to restore the original order of the

instructions, which was changed by the permutator. This operation is done

after the application of the shrinker, this is because the expander is executed

after the permutation has been carried out, and since shrinking is the inverse

operation of expanding, it is correct to apply the shrinker algorithm before

reordering.

Hopefully, the input of the resequencer is of the same form as the output

of the permutator, that is to say, that each instruction is followed by a direct

jump, artificially added to maintain program order. This is not certain, as

it depends on the outcome of the shrinker, which, as extensively discussed in

section 4.2, randomly selects the shrinking transformations.

For this reason, I cannot assume that the structure of the input function

perfectly reflects the output of the permutator. So I need a way to distinguish

between "artificial" jump (which are the ones that must be removed) and "natu-

ral" jump (where natural means that it was originally present in the executable

or it was created by the expander), which cannot rely on the properties of a

permutator outcome (e.g. each "artificial" jump is preceded by exactly one

"natural" instruction).

The idea to solve this problem is that an artificial jump, by construct, is not

the target of any other instruction (roughly speaking, this means that there

are no labels associated with an artificial jump).

So, if the algorithm meets a jump instruction that is marked as a target

of some other instructions, this jump is an original instruction and must be

preserved.

Why does this work? Don’t forget that the permutator adds a jump in-

struction for each other instructions in the function, so if a jump instruction

was originally present in the function, then there must exist an artificial jump

that points to the first one.

But what if the instruction was added by the expander in the previous
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execution of the engine? Well in this case the shrinker will probably remove it,

but, if this does not happen, this is not a problem since there are no rules in

the grammar used that generates a direct jump. There are also no reasons why

the grammar should contain such a rule since a code permutation is executed

already by the proper algorithm.

So distinguishing from direct and indirect jump (conditional branch state-

ments are ignored) together with the criterion described can solve the problem

of discriminating an artificial statement from a natural one.

The main idea of the algorithm is to look at all the function instructions,

marking the touched instruction as visited, but not following the program

order; rather, every time an artificial jump is encountered, we proceed to

analyse the function starting from the instruction to which the jump jumps.

In parallel, the algorithm builds a new double linked list of instructions, putting

the instruction in the order in which they are analysed, ignoring the artificial

jump instruction.

To prevent the engine from building multiple copies of an instruction (this

can happen if the engine analyses the same instruction multiple times), the

statements marked as visited are ignored.

If at the end of the process not all the instructions have been visited, the

algorithm fails and the function is left as it was.

Broadly speaking, the resequencer algorithm is as follows:
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Algorithm 3: Resequencer algorithm
input : A set of functions
output: Number of functions which have been reordered
count← 0
for function : functions do

new_ins← []
n_ins← 0
instruction← get_first_instruction(function)
while n_ins ≤ number_of_instructions(function) &
instruction ̸= NULL do

if is_visited(instruction) then
instruction← next_instruction(instruction)
go to while

end
mark_as_visited(instruction)
n_ins← n_ins + 1
if is_artificial_jmp(instruction) then

instruction← target(instruction)
mark_as_visited(instruction)
n_ins← n_ins + 1

end
add(new_ins, instruction)
instruction← next_instruction(instruction)

end
if n_ins = number_of_instructions(function) then

change_instructions(function, new_ins)
count← count + 1

end
end
return count
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4.4 Permutator

Another important phase of the metamorphic process is the permutation of

the executable code. It is a reorganisation of the code, keeping the execution

flow unchanged. For example, the first instruction in the original executable

code will not be the first in the new version of the code but will always be

executed before all other instructions in the original version.

The idea behind this phase is to add more randomness in the new version

of the executable, changing the order in which the instructions are expanded

by the grammar engine.

As for the other phases, the permutation can also be applied only to func-

tions that do not use a jump table, and cannot be applied to functions that are

added by the gcc compiler. Also, the permutator works only with functions, so

if there are no functions in the executable, the entire code will be considered

as a unique function.

4.4.1 Permutation algorithm

The algorithm used is very simple and is applied to one function at a time,

in this way:

1. Assign to each instruction an index that goes from 0 to number of in-

structions in the function - 1, organising these index in an ascending

sorted array;

2. Then compute a permutation of this array, using a RNG;

3. Build an empty list of instructions;

4. Let us consider the resulting array and look at one element at a time:

• For each element, build an artificial jmp instruction that points

to the instruction that should be in this position according to the

initial order, for example if the element taken into consideration
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is the second of the array, then the jmp must jump to the second

instruction in the initial order;

• Add this instruction to the new list;

• Let us call the value of the element i, then copy the i-th instruction

of the initial order in the new list;

This algorithm adds a jmp instruction for each instruction in the original

version. This means that after the permutator is applied, the size of the

function doubles.

Let us see the result of the algorithm applied to this function:
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Figure 4.3: Outcome of the permutator
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4.4.2 How to build an "artificial" jump instruction

The algorithm followed is very simple to understand, but how can we build

an artificial jump instruction that has exactly the instruction that we want?

We cannot use the original_address field of struct 4.10 because the permuta-

tion has moved instructions and then they are not at the same address. There

are two possible ways to solve this problem: one might be to recompute the

original_address field, but this requires a computation on the entire binary

code, which can be very expansive for large size ELF. Another solution, which

is the one used in this work, is to build a dummy instruction, that is, the engine

build a jump instruction which looks like a jump but has a fixed destination

address, e.g. jmp 0x2b8, in this way we solve the problem to fill correctly the

fields of struct 4.10, in such a way that the instruction is seen by the engine

as a jmp. Clearly, this jump instruction is not correct, because it is not linked

to the right instruction (as explained in 4.4), but this is not an issue, since we

can link it to the correct instruction using the field jump_target of struct 4.10

and then entrust the task of writing the correct jump instruction to the part

of the code responsible for fixing the metadata and rewriting the ELF.

4.5 Expander

The expander is the part of the code responsible for the transformation of

the instruction. It involves the usage of generative grammars to generate a

transformation from one instruction to another. As for the other part of the

engine, the expander can only be applied to functions that do not contain a

jump table, for the issue explained in 4.1.2.

The basic idea behind the expander is to apply the generative grammar

algorithm to one instruction at a time, in order to build a decision tree; then

the engine parses this tree and constructs the new instructions which replace

the original one.
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4.5.1 Grammar generation process

In this section, it is explained in detail how the generative grammar engine

works.

The engine takes as input a .y file (as explained in 3.3) and parses it,

looking for rules and symbols. A symbol is classified as non-terminal (NT) if

there is at least one rule associated to this symbol, while a symbol is classified

as terminal if there are no rules associated with it. In reference to the .y file

used in this work (see 3.5) the non-terminal symbols are written in lower case,

while the terminal ones are written in upper case.

All of these operations are done in an initialisation phase; subsequently the

engine can be used for multiple generation using the grow algorithm. This

algorithm takes as input a starting symbol and gives as output a decision

tree, which is structured in this way: children of a node are the right-side

symbols of the applied rule, and the leaves are all terminal symbols. The

leaves of the decision tree are the instructions in which the starting one has to

be transformed. Clearly, the grammar engine has no knowledge about the fact

that it is working on instruction, but is a simple generative grammar which

generates sentences that are syntactically correct with respect to the defined

language but not necessarily semantically correct. This means that there is a

possibility that the final transformation cannot be applied.

The grow algorithm works in this way:
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Algorithm 4: Grow algorithm
input : A symbol named starting_symbol
output: A decision tree
stack ← emtpy_stack()
decision_tree← emtpy_tree()
push_stack(starting_symbol, stack)
while stack_is_not_empty(stack) do

symbol← pop(stack)
if is_NT(symbol) then

rule← get_random_rule(symbol)
push_rule_on_stack(stack,rule)
print_rule_on_tree(rule, decision_tree)

end
else

print_symbol_on_tree(symbol, decision_tree)
end

end
return decision_tree

The function push_rule_on_stack is structured in such a way that the

first symbol on the right side of the rule will be the top of the stack. The

function get_random_rule makes use of a random number generator to select

a rule. During the initialisation phase, it is possible to specify a fixed seed for

the RNG, or decide to use the current timestamp as the seed.

4.5.2 Parsing the decision tree

The decision tree produced by the generative grammar is then parsed by the

metamorphic engine to build the new instructions. In fact, the grammar limits

itself to deciding which instructions should be generated while remaining at the

abstract token level, i.e. determining only the mnemonic of the instructions.

To correctly build the new instructions, the engine parses the decision

tree starting from the root node generating all the intermediate instructions

up to the final ones. To do that, the engine must be able to process each

transformation rule present in the grammar, and this is done by defining a

proper function for each rule. For example, since the grammar contains a rule:

push -> sub\mov
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then the engine must contain a function that processes this rule.

Notice that the engine does not have to know how to process any transfor-

mations which could be generated by the grammar, but only the single rules

which can be applied. As an example, supposed that the grammar has gen-

erated a transformation from push to sub\add\sub\mov, the engine does not

know how to generate these four instructions from a push statement, but it

is able to process each single step of the decision tree, and in this way it will

generate the final instructions. The algorithm used to parse the decision tree

is as follows:

Algorithm 5: Decision tree parsing
input : A decision tree called decision_tree
output: A set of instructions which have to be added in the

executable
stack ← empty_stack()
instructions← empty_list()
push_symbol(decision_tree, stack)
while stack_is_not_empty(stack) do

token← pop_stack(stack)
if is_terminal(token) then

put_instruction(instructions,token.instruction)
end
else

children← token.children
res← process_rule(token, children)
if is_error(res) then

return empty_list()
end
push_symbols(children)

end
end
return instructions

The functions push_symbol and push_symbols push the symbols given on

the stack, in the case of push_symbols, the symbols are pushed "from the right

to the left", this means that if the children array is the following:

The function process_rule is explained in more detail in Section 4.5.3.

The put_instruction function instead is a simple function that appends the

instruction in the token to a list of instructions, this list will be returned by
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the algorithm and then will be processed in order to add the instructions to

the global list of instructions of the executable. In this way, the instructions

are added only if all the decision tree has been correctly parsed, in order to

avoid spurious changes.

It is important that the parsing algorithm generates the instructions in the

same order as they appear in the right-hand side of the overall transformation.

As an example, suppose that the transformation is push -> sub\add\mov, then

the algorithm must generate the sub instruction first, then the add and finally

the mov statement. To do that, the algorithm goes in depth, always following

the child furthest to the left among those not yet visited, until it reaches a leaf,

then goes back and continues the descent in depth, always following the child

furthest to the left. Since the leftmost statement of the transformation also

corresponds to the leftmost leaf in the tree, this ensures that the statements

will be generated in the order expected by the grammar. The idea of using a

support stack was born precisely to provide the algorithm with the behaviour

described above.

4.5.3 Transformation algorithms

The engine must contain a transformation algorithm for each rule in the

grammar. This algorithm is responsible for the generation of the resulting

instruction(s). This means that there exists a function for each rule in the

grammar and that there is a function that is responsible for selecting the

correct transformation algorithm.

All of these functions have the same structure, which can be summarised

in these four steps:
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Figure 4.4: Basic structure of a transformation algorithm

The function may fail in any of these phases, so also if an instruction passes

all the checks done in the first phase, it may not be transformed because it

fails the second or third phase (this may happen in the case of a malformed or

corrupted instruction).

The verification phase includes checks on instruction operands and instruc-

tion opcodes. The type of controls depends on the transformation, as an ex-

ample: for the rule add -> add\sub the checks that must be done are: the

original instruction:

• is using an immediate value as operand;

• is not using a displacement value (e.g. the instruction is not in the form

add [rax+4],0x4).

The function process_rule used in 5 is a simple function that decides which

transformation function to perform based on the tokens given as input. If the

selected transformation function returns without errors, then the generated

instructions are present in the tokens given as the second parameter of the
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function.

4.5.4 How to add a new instruction

The last thing that remains to be analysed is how to add a new instruction

to the ELF. This type of operation is basically an insert into a global linked list

of instructions that will be used in the rewrite phase to update the binary code

of the ELF. Since we are talking about instructions, we also need to update

properly a set of metadata of the function of the instruction, like the size of

the function and its final address, as well as the pointer to the first instruction

of the function.

Unlike the function that removes an instruction, this cannot fail. In fact,

if the function is asked to insert an instruction at a position whose index is

greater than the size of the list, then the instruction is inserted at the end of

the list.

4.5.5 Expanding the ELF

In summary, to carry out the expansion phase, the engine uses a generative

grammar which is applied to one instruction at a time. The function which

made the expansion of the entire ELF is invoked for each function of the ELF,

then a loop on all the instructions of the function invokes the grow algorithm

(see algorithm 4) on each instruction, then the resulting decision tree is parsed,

and the global list of instructions is modified by the algorithm 5. The function

returns the number of instructions for which the algorithm 5 does not fail.

Since the parsing algorithm can fail if the transformation generated by the

grammar is not feasible (this means that there was a failure in the validation

phase of the selected transformation algorithm), the engine falls on a dummy

transformation in which it tries to add some garbage instructions, leaving

unchanged the original instruction. If also plan B fails, then the instruction

cannot be transformed.

The described algorithm is the following:
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Algorithm 6: Expanding the ELF
input : A function
output: Number of instruction which has been changed
changed_ins← 0
for instruction in function.instructions do

token← tokenize(instruction)
tree← grow(token)
res← parse_tree(tree)
if is_error(res) then

token← nop_token()
tree← grow(token)
res← parse_tree(tree)
if is_success(res then

changed_ins← changed_ins + 1
end

end
else

changed_ins← changed_ins + 1
end

end
return changed_ins

In this algorithm, the parse_tree function includes both the algorithm 5

and an algorithm which adds the generated instructions in the global list.
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4.6 Rewrite ELF

In this section, we explain in detail the methodology followed to rewrite

the ELF content. When changing the binary code of an ELF, you need to pay

attention to how the ELF metadata should be changed. In fact a small change

in the .text section could lead to big changes in the entire ELF, because the

change made can for example move the entry point, or move the start address

of the sections below, which may not even be of type SHT_PROGBITS.

So, the engine needs to update all of the following metadata:

• Program Header Table and its entries;

• Section Header Table and its entries;

• Executable Header;

• Content of the relocation tables;

• Content of the dynamic table;

• Symbol table;

Segments, which are described by the entries of a Program Header Table,

must be correctly updated; otherwise, you may experience segmentation fault

error when running the modified executable. This happens, for example, if

the segment containing the code section is not correctly expanded, and con-

sequently part of the code could be loaded into a segment without execution

permissions. Therefore, when the processor tries to load an instruction found

in such a segment into the register containing the instruction pointer, it will

cause a segmentation fault.

Relocation and dynamic tables must be modified because otherwise the

code will not know where the global variables used by the init and fini function

are, and then the executable will not be able to start up or terminate in a

correct way. This could happen if the .text section grows too much.
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4.6.1 How to update all metadata

Let’s see how to update all metadata of the executable to build a correct

version of it.

Section header refactoring

To adjust the metadata of section header table entries, the engine needs

to compute the new offset of the data of all sections and their new size. This

is done sequentially starting from the first section and using the results of the

previous iteration as input to the next one. The idea is that if the data of a

section have been moved to another address, then this is due to some changes

in the previous data block. Notice that for the previous data block we mean

the set of bytes preceding the one under analysis as established by the virtual

addresses present in the original ELF. The size of the data block is computed

in this way:

• If the data block is of type SHT_PROGBITS, then the size is computed

as the sum of the instructions contained;

• Otherwise the data block size is left unchanged.

Furthermore, because the section header may require an alignment for the

content of the section, we need to check if the next data block is correctly

aligned, otherwise we have to add some padding bytes in order to move the

next data block to the correct address (the one which respects the alignment).

If the data block is of type SHT_PROGBITS, then the byte used for padding

is 0x90 (opcode of a nop instruction), otherwise the byte used is 0x0 (NULL

byte).

Once the data blocks are in place, it is easy to adjust the section header

metadata.
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Program header refactoring

In order to correctly update the program header table entries, it is necessary

to correctly position the segments. To do this, you create a section-segment

map (i.e. an association between a segment and the sections it contains) during

the initial loading phase of the ELF. The goal is that at the end of the engine

execution, the resulting ELF has exactly the same original section segment

mapping, so as to avoid any future segmentation fault problems that may

occur during execution.

To do this, we use the initial mapping to know which should be the first

section contained by the segment and the last one. The first provides us with

the address at which to position the segment (which will be the starting address

of the data block of that section), while the last allows us to calculate the size

of the segment, which is calculated as the difference between the address at

which the data block of the last section ends and the starting address of the

segment.

The mapping between segment and sections is carried out in the following

way: if the data block of a section falls completely or partially into the segment

(this means that the segment includes some of the bytes of the data block),

then the section is associated with that segment. A section can be associated

with multiple segments; this can happen if the segments are of the same type

(they have the same permissions).

The segments must be aligned to the size of the page. This is important to

avoid the fact that two different segments can occupy the same page. In fact,

in this case, it may happen that a segmentation fault error occurs if the two

segments have different access permissions.

Adjusting references between instructions

As explained previously, it is necessary to update the references between

instructions (see 3.1.1). When doing this, you need to take into account that

if the original jump instruction was a jmp short, then it is possible that the
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instruction will need to be changed to a jmp long if the new relative offset

exceeds the size allowed for a jmp short.

Basically in a jump short type instruction you only have 1 byte available

to indicate the rip relative offset, while in a jmp long instruction you have 4

bytes available; consequently, if the new offset cannot be represented in sign

using 1 only bytes, then the instruction must be changed. In this case, it will

be necessary to update the section header and program header again, as the

variation in the size of the changed instruction could lead to changes in the

addresses of the data blocks and their size.

4.6.2 Write byte on the file

To rewrite the file it was necessary to write a special algorithm which takes

care of converting the intermediate representation of the ELF, appropriately

modified, into bytes according to the format expected from an ELF, in order

to generate a new version of the perfectly functional executable.

Unfortunately, the support library used for reading the ELF (libelf [20])

does not have adequate functionality for this purpose, so a specific algorithm

has been developed which, taking into account the endianess of the machine

and the type of processor (32 bit or 64 bit), is able to rewrite the ELF in the

expected format. Therefore, a special function was developed to rewrite:

• the executable header;

• the section header table;

• the content of each section;

• the program header table.
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5. Experimental Evaluation

For the experimental evaluation of the metamorphic engine created, three

different studies were carried out:

• A study on the variation of the detection rate for a malware sample as

the transformation steps vary;

• A study on the variation of the performance for two benchmark as the

transformation steps vary;

• A study on the persistence of byte blocks following the application of the

engine as the block size varies.

For all of these studies, Python scripts were developed as tools to support

data collection. The data were then graphed using a specific Python script

that uses the matplotlib library [35].

5.0.1 Study on the variation of the detection rate of

malware

In this study a sample of 70 malware has been used. All the malware used

have been studied and classified as malicious software by external actors, and

they are ELF format files. Virus Total [42] was used as a tool to analyse

malware and collect data related to the detection rate.

The study comprises different phases. At first, the malware detection rate

and performance for each individual antivirus were collected for the original

malware sample. Then the engine has been used to obtain three new different
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versions of the original malware, applying the engine on each ELF file in the

sample. The different versions have been constructed in this way: the engine

has been applied on the original version of the malware, then the result has

been used as input to the next iteration of the engine, obtaining in this way

a second version of the malware, and then in the same way the third version

has been obtained.

After the three new versions of the malware sample were obtained, we

moved on to collecting data related to the detection rate and antivirus perfor-

mance on each new version of the sample.

This is a boxplot that graphically reports the results obtained:

Figure 5.1: Trend of the malware detection rate

As we can see, there is a consistent decrease in the malware detection rate

from step 0 to step 1, this is because by applying the engine we are adding

an additional layer of obfuscation, while the detection rate remains almost

constant between step 1 and step 2, as well as between step 2 and step 3,

this is due to the initial shrinking and reordering phases carried out by the

engine. In fact, these two phases cancel all the changes made in the previous

iteration, and so in steps 2 and 3 we are not really adding an additional layer

of obfuscation compared to step 1.
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This behaviour is also due to the fact that the same generative grammar was

used in each transformation step, even if the random generator was initialised

with different seeds. In the case in which the generative grammar is changed

(for example, by using a metagrammar), we can expect a variation in the

detection rate also in steps 2 and 3, since by varying the grammar the basic

rules vary, and therefore also the set of instructions that can be modified and

the transformations that can be applied.

Together with the study on the variation in the malware detection rate,

a study was carried out on the variation in the performance of antiviruses,

taking into consideration the 5 best (i.e. the antiviruses with the least loss of

performance) and the 5 worst (i.e. those with the greatest loss of performance).

There are two bar plots showing the results obtained:

Figure 5.2: Detection rate of the best 5 antivirus

As shown in the 5.2 graph, there is an antivirus named ZoneAlarm that

has a better detection rate on malware modified by the engine. This could be

due to some particular indicator used by this single antivirus, probably linked
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Figure 5.3: Detection rate of the worst 5 antivirus

to the fact that the malware has been metamorphically transformed, while

for the other four antiviruses a decrease, albeit slight, in the detection rate is

observed.

In the graph 5.3, we can observe a significant drop in the performance of

the five antiviruses. For all of these 5 antiviruses the initial detection rate is

almost one, while the detection rate at step 1 and the following is less than

0.8; furthermore, we can see how the performances between step 1 and 2 and

between steps 2 and 3 change slightly, consistently with what is seen in the

graph 5.1.

These results show that the engine performs very well as an obfuscation

technique, as it manages to confuse most antiviruses on the outcome of the

analysis carried out on a set of software known to be malware, in some cases

reducing the detection rate even below 0.4%
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5.0.2 Study on the variation of the performance for two

benchmark

The transformations applied by the engine can worsen, even drastically,

the performance of CPU-intensive software (for example, benchmarks), since

they transform an instruction into a set of equivalent instructions which could,

however, slow down the execution pipeline. Furthermore, if some particularly

efficient instructions are modified by the engine, then the original advantage

of using that type of instruction is lost.

For this reason, we decided to carry out an experiment aimed at verifying

that the execution times of two benchmarks do not worsen drastically following

the application of the engine.

The two benchmarks used are named pagerank [7] and mooncalc [33].

The experiment was carried out according to this modality: for each bench-

mark, starting from the original version, 10 different versions were created, us-

ing a different seed for the random number generator. Each of these 10 versions

was subjected to a further 9 transformation steps. In general, the experiment

was carried out on a total of 10 transformation steps of the original file, but

each step consists of ten different versions of the software. This was done to

reduce the random effect on execution time variation due to the nature of the

engine. The times used in the study were then taken as an average over the

times of the individual versions (the ten in each step), and the times of the

individual versions were calculated as an average over five consecutive runs,

to have a more accurate measurement, these are execution times that can be

influenced by the CPU workload. Execution times for the original versions of

the software were taken as the average over 10 program runs.

The physical machine used for the measurements was reserved exclusively

for running the benchmarks during the experiment. Each run of the software

was carried out sequentially and not in parallel, this means that if a version

of the software was running, then this was the only (or almost) only user-level

software running.
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Python scripts have been developed as support tools for the automated

generation of the different versions of the benchmark using the engine and

always assigning a different seed, and for the collection of average execution

times as explained previously.

Let us see the graphs that show the results obtained from this analysis:
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Figure 5.4: Increase in the performance of mooncalc

Figure 5.5: Increase in the performance of pagerank

The red line in the plots indicates the variance.
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As can be seen from the graphs, the increase in execution times occurs

between the original version and the first two transformation steps, whereas

in the subsequent steps the times remain roughly constant. This is due to the

shrinker and reordering phases, which remove, in part, the changes made to

the executable in the previous iteration. In the absence of these phases, in

fact, one could expect a linear increase in execution times as the size of the

software, and therefore the number of instructions necessary to carry out a

single operation, grows with each iteration.

The maximum increase that can be observed is, however, acceptable; in

fact, it is equal to 0.05 in the case of mooncalc and 0.7 in the case of pagerank.

Thanks to these results, it can be concluded that experimentally the engine

causes a visible increase in the execution times of a software, but this is still

minimal. It can be concluded that after appropriate preliminary verification,

it is possible to use the engine to transform hard or soft real-time software,

provided that the execution times after a transformation step do not exceed

the assigned deadlines.

5.0.3 Analysis of metamorphism-resilient byte blocks

The metamorphic engine behaves as well as the fewer the number of byte

blocks that remain present following a transformation process. In fact, if a

new version of the software produced by the engine retains blocks of bytes of

non-trivial size (e.g. larger than 60 bytes) present in the original version, then

this block of bytes can be used to build a signature of the executable, and

consequently be able to reconnect the engine’s output to its original version.

For example, let us suppose we have three files in ELF format, called A, B and

C for simplicity. All three files are subjected to a transformation step, now if

the engine leaves some blocks of bytes unchanged, these could be used to build

a distinctive signature for A, B, and C and consequently be able to understand

which of the modified files was originally A, which B, and which C.

Clearly we don’t want this to happen, so it was decided to test the engine

from this aspect. The test was carried out on the two benchmarks and on
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some of the malware. For computational simplicity, it was decided to consider

exclusively 2 transformation steps. The idea of the experiment is to verify, for a

variable block size, how many byte blocks of that size survive a transformation

step.

The following graphs represent the results for the two benchmarks:
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Figure 5.6: Metamorphism-resilient byte blocks for mooncalc

Figure 5.7: Metamorphism-resilient byte blocks for pagerank

The results are very interesting; in fact, as can be seen, there are blocks

69



5. EXPERIMENTAL EVALUATION

of small dimensions that survive, but for dimensions useful for calculating a

signature there are no blocks that remain unchanged between one transforma-

tion step and another. This result is mainly due to the permutation activity,

which, having been carried out by moving every single instruction of the func-

tion, allows recurring blocks of bytes in the original executable to be broken

with a high probability.

The survivent blocks are small and cannot be used to construct a digital

signature.

The results for the test performed on malware are even more satisfactory:

Figure 5.8: Metamorphism-resilient byte blocks for malware

In fact, in this case there are no blocks that survive the application of the

engine! These same results appeared for 4 different malware subjected to the

same type of testing.

We can therefore conclude that the engine is well designed to avoid leaving

possible spots untouched, which can be used as a signature, but rather the

new versions produced of the software are completely different from the point

of view of byte code compared to the version original, and therefore there is
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nothing that directly connects them.

In particular, the tests were conducted considering exclusively the content

of the SHT_PROGBITS type sections. If you also wanted to consider the

content of the other sections, then it might make sense to integrate the meta-

morphic engine with a dedicated encrypter for encryption of the data sections.
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6. Conclusions and future works

The objective of this thesis was to present an innovative way to protect

Software Intellectual Property from attacks based on reverse engineering of

the code. A metamorphic engine has been introduced that allows the code to

self-mutate, transforming the instructions that make up the binary code of an

executable file into other semantically equivalent instructions.

To advance the state-of-the-art, it was decided to integrate the engine with

a generative grammar capable of determining in a non-deterministic manner

the transformations to be applied to the code, starting from a set of rules

defined for each possible managed instruction. The interesting aspect of using

a generative grammar is that it can be modified between one iteration and

another without the need to recompile the engine, thus allowing it to have

a different set of basic rules each time, making this way the versions of the

executable generated by the engine are very different from each other.

Although the grammar used in this work is very simple, the results obtained

from the experimental evaluation are very satisfactory. The engine is able to

significantly reduce the detection rate of the antiviruses used by Virus Total;

this is a sign that the obfuscation technique works well. Furthermore, thanks

to experiments on the execution times of some benchmarks, it was possible to

verify that the engine does not significantly worsen the performance, in terms

of execution time, of the executable on which it is applied.

To improve the work done, we can think of integrating the engine with a

metagrammar. A metagrammar is a generative grammar responsible for pro-

ducing new generative grammars, which in turn are responsible for generating

transformations for binary code instructions.
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The use of a metagrammar allows you to implement what was described

above, that is, to provide a new generative grammar to the engine after each

iteration, automatically, as this generative grammar will be produced in a non-

deterministic manner by means of the application of some of the rules of the

metagrammar.

This is an image showing what the entire engine will look like, with some

metagrammar added:

Figure 6.1: Engine scheme with some metagrammar added

In this way, the metagrammatics is called into question at the end of each

iteration, to thus generate a new generative grammar, which will then be the

input for the next iteration of the engine.

However, the fact that the input generative grammar is different at each

iteration opens up a significant implementation problem: the engine uses the

generative grammar to derive the table of inverse transformations, as widely

discussed in 4.2, but since the generative grammar changes at each iteration,

the engine is not able to build the table of inverse transformations related to

the previous iteration. In fact, at each run, the engine must shrink according

to the rules applied in the previous iteration.

To overcome this problem, one could think of storing the table of inverse

transformations somewhere in memory, ensuring that it is not accessible to a

possible attacker, for example, by exploiting encryption mechanisms.

This thesis work can be seen as a starting point for the development of new

detection algorithms to be integrated into antivirus, in order to strengthen such

software against malware that uses metamorphic engines. We could start from
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the proposed methodology to try to identify traits common to all metamorphic

engines, and in this way the antivirus would be able, through an appropriate

dynamic analysis (e.g. using a sandbox), to identify the possible presence of a

metamorphic engine in a malware.
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A. Executable and linkable for-

mat

Introduction to ELF

The ELF (Executable and Linkable Format) is a common file format used

for executables, shared libraries, and object code in Unix-like operating sys-

tems. It is designed to be flexible, extensible, and platform-independent, mak-

ing it a fundamental component of the Unix software ecosystem. This Ap-

pendix provides an overview of the ELF file format and its structure.

ELF File Types

ELF files can serve different purposes and are categorised into three main

types:

• Executable Files (ET_EXEC): These files contain machine code and

data that can be directly executed by the operating system or a program

loader.

• Shared Object Files (ET_DYN or ET_SO): These files contain code and

data that can be linked to other programs at runtime, allowing multiple

programs to share the same code.

• Object Files (ET_REL or ET_OBJ): These files contain relocatable

code and data that can be combined with other object files to create an

executable or shared object.
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ELF Header

The ELF file format begins with an ELF header, which provides essential

information about the file. The header is located at the beginning of the file

and has the following structure:
1 struct Elf32_Ehdr { // For 32- bit ELF files

2 unsigned char e_ident [ EI_NIDENT ];

3 Elf32_Half e_type ;

4 Elf32_Half e_machine ;

5 Elf32_Word e_version ;

6 Elf32_Addr e_entry ;

7 Elf32_Off e_phoff ;

8 Elf32_Off e_shoff ;

9 Elf32_Word e_flags ;

10 Elf32_Half e_ehsize ;

11 Elf32_Half e_phentsize ;

12 Elf32_Half e_phnum ;

13 Elf32_Half e_shentsize ;

14 Elf32_Half e_shnum ;

15 Elf32_Half e_shstrndx ;

16 };

Key fields in the ELF header include:

• e_type: Specifies the file type (executable, shared object, or object file);

• e_machine: Indicates the target architecture (e.g., x86, ARM);

• e_entry: The virtual address where program execution begins;

• e_phoff and e_phnum: Describe the program header table’s offset and

number of entries;

• e_shoff and e_shnum: Describe the section header table’s offset and

number of entries;

• e_flags: Contains processor-specific flags;

• e_ehsize, e_phentsize, e_shentsize: Provide the header’s size, program

header’s size, and section header’s size, respectively.
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Program Header Table

The program header table is present in executable and shared object files

(not in object files). It describes how the segments of the file should be loaded

into memory. Each entry in the table has the following structure:
1 struct Elf32_Phdr { // For 32- bit ELF files

2 Elf32_Word p_type ;

3 Elf32_Off p_offset ;

4 Elf32_Addr p_vaddr ;

5 Elf32_Addr p_paddr ;

6 Elf32_Word p_filesz ;

7 Elf32_Word p_memsz ;

8 Elf32_Word p_flags ;

9 Elf32_Word p_align ;

10 };

Key fields in the program header include:

• p_type: Describes the type of segment (e.g., code, data, dynamic link-

ing);

• p_offset: The offset of the segment in the file;

• p_vaddr and p_paddr: Virtual and physical addresses of the segment in

memory;

• p_filesz and p_memsz: Size in the file and in memory;

• p_flags: Permissions (read, write, execute) for the segment;

• p_align: The alignment of the segment in memory.

Section Header Table

The Section Header Table (SHT) is a critical component of the ELF (Exe-

cutable and Linkable Format) file structure. It provides detailed information

about the various sections present in the ELF file, such as executable code,

data, symbol tables, and more. Understanding the Section Header Table is

essential for analysing and working with ELF files.
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Each entry in the Section Header Table has the following structure, which

is defined in the ELF specification:
1 struct Elf32_Shdr { // For 32- bit ELF files

2 Elf32_Word sh_name ; // Section name (index into section header

string table)

3 Elf32_Word sh_type ; // Section type (e.g., SHT_PROGBITS , SHT_SYMTAB )

4 Elf32_Word sh_flags ; // Section attributes and permissions

5 Elf32_Addr sh_addr ; // Virtual address when loaded into memory

6 Elf32_Off sh_offset ; // Offset in the file where the section starts

7 Elf32_Word sh_size ; // Size of the section in bytes

8 Elf32_Word sh_link ; // Section header index that holds related

information

9 Elf32_Word sh_info ; // Extra information about the section

10 Elf32_Word sh_addralign ; // Required alignment when loaded into memory

11 Elf32_Word sh_entsize ; // Size of each entry (if applicable )

12 };

Let us break down the key fields in a Section Header Entry:

• sh_name: An index into the section header string table (.shstrtab) that

holds the name of the section. This allows for efficient storage of section

names and reduces redundancy;

• sh_type: Specifies the type of the section, which determines its content

and purpose. Common section types include:

– SHT_PROGBITS: Contains program-specific data (e.g., code, data);

– SHT_SYMTAB: Symbol table containing information about sym-

bols used for linking;

– SHT_STRTAB: String table for storing various strings (e.g., symbol

names, section names);

– SHT_DYNAMIC: Contains dynamic linking information

– SHT_RELA and SHT_REL: Relocation information for linking;

• sh_flags: Defines section-specific attributes and permissions, often en-

coded as bit flags. Common flags include read (SHF_ALLOC), write

(SHF_WRITE), and execute (SHF_EXECINSTR);
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• sh_addr: Indicates the virtual memory address at which the section

should be loaded when the ELF file is executed. This field is typically

used for executable sections;

• sh_offset: Specifies the offset in the ELF file where the section’s data

begins. It points to the section’s data within the file;

sh_size: Represents the size of the section in bytes. It specifies how

much space the section occupies in the ELF file;

sh_link and sh_info: These fields are used for various purposes de-

pending on the section type. For instance, in a symbol table (SHT_-

SYMTAB), sh_link may point to a string table, and sh_info may hold

the index of the associated section;

sh_addralign: Defines the required alignment of the section’s data when

loaded into memory. It specifies the boundary on which the section

should be placed in memory;

sh_entsize: This field is used for sections that contain fixed-size entries

(e.g., relocation sections). It specifies the size of each entry in the section;

ELF files can contain a variety of sections, each serving a specific purpose.

Some common sections include:

• .text: Contains executable code;

• .data and .bss: Hold initialized and uninitialized data, respectively;

• .rodata: Read-only data (constants);

• .symtab and .strtab: Symbol table and string table for linking and de-

bugging;

• .rel and .rela: Relocation sections for dynamic linking;

• .dynamic: Contains dynamic linking information;

• .plt and .got: Used for Procedure Linkage Table (PLT) and Global Offset

Table (GOT) in shared libraries;
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B. Intel x86 Instruction Set Ar-

chitecture (ISA)

The Intel x86 Instruction Set Architecture (ISA) is a widely used and well-

documented architecture for microprocessors. It has a rich history dating back

to the Intel 8086 processor, and it continues to evolve with modern x86_64

processors. This appendix provides an overview of some essential elements of

the x86 ISA.

Register Names

The x86 ISA features a variety of registers, each with a specific purpose.

Here are some commonly used registers in the x86 architecture:

1. EAX: Accumulator

2. EBX: Base register

3. ECX: Counter register

4. EDX: Data register

5. ESI: Source index

6. EDI: Destination index

7. EBP: Base pointer

8. ESP: Stack pointer
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64-bit Extensions (x86_64 mode)

In 64-bit mode, the general-purpose registers are extended to 64 bits:

1. RAX: Accumulator

2. RBX: Base register

3. RCX: Counter register

4. RDX: Data register

5. RSI: Source index

6. RDI: Destination index

7. RBP: Base pointer

8. RSP: Stack pointer

Instruction Mnemonics

x86 instructions are represented using mnemonics, which are human-readable

representations of the operations that a processor should perform. Some com-

mon mnemonics include:

• MOV: Move data from one location to another.

• ADD: Add two values.

• SUB: Subtract one value from another.

• CMP: Compare two values.

• JMP: Unconditional jump.

• JE: Jump if equal (used for conditional branching).

• CALL: Call a subroutine.

• RET: Return from a subroutine.

• NOP: No operation (useful for padding or alignment).

81



B. INTEL X86 INSTRUCTION SET ARCHITECTURE (ISA)

REX Byte

The REX byte, introduced in the x86_64 (64-bit) extension of the archi-

tecture, is used to extend the functionality of registers and operands. It is

optional and appears before an instruction. The REX byte consists of four

fields:

• R: Bit 2 is the R field, which extends the base register (e.g., EAX to

RAX).

• X: Bit 1 is the X field, which extends the index register (e.g., ESI to

RSI).

• B: Bit 0 is the B field, which extends the base register (e.g., EBX to

RBX).

• W: Bit 3 is the W field, which specifies the 64-bit operand size when set

(e.g., MOVQ for 64-bit data).

Example of a REX byte in assembly code:

48 89 E5 ; MOV RBP, RSP (64-bit mode)

Here, 48 is the REX byte, indicating 64-bit mode (W=1), and the instruc-

tion moves the value of the stack pointer (RSP) into the base pointer (RBP).
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