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CHAPTER1
Introduction

The number of transistors in a dense integrated circuit doubles approximately
every two years.

— Gordon Moore, Co-founder of Intel (1965)

Simple computing architectures are just memories. The Moore’s law is
the empirical rule that predicts the electronic development for over 40 years,
so accurately, that lays the "roadmap" foundations for most of the semicon-
ductor manufacturers. Until a few decades ago, the computer architecture
evolution was mainly based on the operating frequency growth, namely the
speed of the processor. However, in 2003 the gap between the performance
achieved by processors and the Moore’s law came up, diverting the com-
puter progression to other ways. Moore’s law is still sound. The more
and more availability of transistors has been exploited to implement more
sophisticated architectures, able to take advantage of polished capabilities
rather than simple brute force.

Nowadays, processors are based on supercalar architectures as well as
out-of-order execution engines. These not only allows achieving better in-
structions per clock (IPC) than scalar solutions, but also optimize the code
execution through the employment of further mechanisms such as specula-
tive computation.

Besides these core improvements, companies walks the road toward the
process parallelism. This led to multi-core processors, which include more
computing cores on the same chip. However, the increasing power capability
on processors and the memory speed did not go hand in hand. Accessing the
memory still represents a bottleneck during computation because CPU-core
processing is far faster than memory operations. To overcome this speed
limitation, memory elements have been directly implemented on chip such
that the communication with the processing units is subjected to smaller
latency. These memories are know as cache memories which are so pervasive
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CHAPTER 1. INTRODUCTION 2

that their structure have been further enhanced by providing several layers,
resulting, along with the main memory, in a sophisticated hierarchy.

The high number of cores sharing memory in a single system bumped
in another memory issue. As a matter of fact, the memory cannot easily
handle the concurrent requests by all the cores thus becoming the main
performance bottleneck in different scenarios. Non Uniform Memory Ac-
cess (NUMA) systems were born from the need of coping with this inepti-
tude. Such systems are formed by a set of nodes which cooperate, sharing
computational power and memory resources to carry out advanced system
management and problem resolution.

Heterogeneous computing refers to systems that take advantage of ded-
icated cores to carry out specific tasks. An example of such solution is the
combined work of CPUs and GPUs. They are suitable for different kinds
of calculations and mixing their capabilities allows achieving several goals
such as efficiency, higher performance and less power consumption.

In such a complex world, modern software, for its part, tries to benefit—
in the best possible way— from the underlying hardware facilities without
exposing too many hardware-level details to developers.
Yet, how is it possible to find out the reason of a program behaviour when
it does not act as we expected? Simple: use a profiler!

Profilers are tools specially designed for observing the execution of an
application or the entire system with the aim of a profile creation. Such a
profile holds the information gathered during the investigation and can be
fed to external tools for further analysis.
Most of the profilers are based on software techniques which, though capa-
ble of revealing a lot of execution information, may just observe high-level
events also incurring in a significant overhead.

Most of the modern processors include within their architecture some
specialized elements used to gather information about what is going on, at
the hardware level, during code execution. Such elements are known as
Performance Monitor Units and allow to understand the reasons of several
issues that may not directly recognized at higher level. Enhancing profiling
tools with this support may lead to a low-overhead and more transparent
software analysis.

The remainder of this thesis is structured as follows. Chapter 2 provides
an overview of the profiling techniques focusing on hardware instrumenta-
tion reached by means of the on-chip performance monitor units. It analy-
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ses existing implementations—along with their advantages and drawbacks—
and extends its inspection to the most relevant works in the literature which
rely on such a hardware support. Chapter 3 is the core of this thesis and
presents our hardware-based profiler illustrating its capabilities along with
its design qualities. Additionally, it introduces several issues to tackle when
directly working with Instruction Based Sampling (IBS). Chapter 4 provides
the reader with an experimental justification of the goodness of our solution
in terms of overhead, accuracy, and efficiency, also commenting some IBS
intrinsic characteristics we observed during our experimentation. Finally,
Chapter 5 concludes and sums up this thesis. It discloses how our proposal
can be enhanced for an extended support and possible directions for future
work.



CHAPTER2
Program Profiling

The more you know, the more you realize you know nothing.
— Socrates

Program profiling is the fine art of observing the behaviour of an ap-
plication during its execution. The analysis performed on such an exam-
ination may identify several problems such as CPU stalls, memory leaks,
blocking I/O operations, inefficient memory usage and performance bot-
tlenecks. The employment of profiling tools not only allows to point out
performance issues, but it also provides a primary form of debugging and
security audit. Although there are alternative ways to perform application
analysis, program profilers can carry out an optimal examination of code
and data in a program in terms of accuracy and overhead. Indeed, in or-
der to study the program of interest, some extra work has to be carried
out, which necessarily leads to additional resource usage. Contrary to some
rudimentary techniques that insert print operations to identify the execu-
tion flow or the occurrence of some event, the profiler can insert hotspots
in specific points of the code in a less intrusive fashion. One of the reasons
that nowadays make a profiler an essential tool for performance analysis is
the increasing complexity of computer architectures as well as the modern
trend to simplify programming languages. High-level languages and pro-
gramming frameworks represent an essential part of software development,
and though they relieve developers of low-level aspects such as memory
management (pointers, allocation and deallocation), the code may not be
optimized for hardware facilities like cache memory. Generally speaking,
the profilers deal with just the monitoring of the execution flow and the
data collection of an application and are further supported by a set of tools
which perform the actual analysis. Relying on such an analysis, a user may
operate on possible not-well-written code sections, enhancing the overall
application performance.

4



CHAPTER 2. PROGRAM PROFILING 5

2.1 Profiling Techniques

Instrumentation, as we intend it in this work, is the technique which the
majority of profilers rely on. A profiling tool may adopt either software or
hardware instrumentation according to the scope of its analysis. However,
the overhead a profiler produces highly depends on the technique being
adopted. While the hardware approach exploits on-chip elements which are
code-agnostic, software instrumentation acts on the code being executed by
injecting extra instructions. Even though such techniques work at different
levels and can answer different kinds of questions, a mixed solution can be
adopted in order to produce a more accurate outcome.

2.1.1 Software Instrumentation

Software instrumentation represents the most common used approach. The
main way to instrument an application adopting this technique is patching
the application itself. Even though this may be more or less transparent
to the application developer, it may not be so from the program point
of view, just depending on the kind of instrumentation adopted. Software
instrumentation can be applied on software at different levels of abstraction:
the end-user application, the middleware libraries, or even the operating
system itself. This is extremely useful because, depending on the context,
it is possible to analyse either the environment in which user applications
are running or limiting the instrumentation to the program itself. The
instrumentation provides a code patching technique which can be performed
at different representation levels of software:

• Machine code level: at this level, everything is seen just as pure byte
sequences. Both instructions and data lose their semantic nature given
that high-level elements (control flow execution and data types) of the
related program can be barely identified. Despite this, it results useful
for particular tasks like memory analysis since the access pattern is
explicit at this level.

• Byte code level: some compilers, like just-in-time ones, provide this
transitional code form which is in between machine level and source
level code. Compared to the previous, at this level it is possible to
have some semantic clues about the program control flow and data
structures. Moreover, it goes beyond the particular limitations of the
underlying architecture by working on hardware-independent code.

• Source code level: the program description degree at this level
comprises all its internal composition, ranging from the sophisticated
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control-flow paths to the advanced data structure metadata. Even
though this represents the most precise level concerning program se-
mantics and guarantees the best portability of the instrumentation
logic, it requires the availability of the program source code as the
target of the instrumentation task.

There are two kind of software instrumentation techniques which depend
on when the instrumentation is applied.

Static Instrumentation

Static instrumentation takes place when patching is performed at compile-
time [LTCS10] [Pel13]. Though it is not transparent to the application
because it acts by directly modifying the final executable image, the cost
of the instrumentation is paid only once for all the runs. Relocation is one
of the main techniques based on static instrumentation. The code is dupli-
cated in different text segments and enhanced with instrumentation logic.
A flow branch is put in the original executable to execute the instrumented
code in place of the original one, where the latter is located (instrumentation
point). When the execution reaches an instrumentation point, the flow is
redirected to the corresponding instrumented section which, at its end, will
deflect the flow to the original code. The number of applied changes to the
original code are minimal while all the memory addresses are unmodified.
Of course, the presence of two branch instructions for each instrumenta-
tion point represents an overhead. Additionally, a requisite is placed on
the size of the code being instrumented because it must have instructions
large enough to make it possible to replace them with branch instructions,
without having to shift subsequent code. Another technique is known as
inlining. It acts in a completely different way. In fact, instead of duplicat-
ing sections, it inserts the instrumentation code directly into the original
executable. This allows saving the cost of both diverting the execution flow
and the memory required to produce the final instrumented code. As a
drawback, it requires to shift code and update all the addresses (where re-
quired) due to the new instructions insertion which, may result difficult for
indirect memory references that typically don’t have sufficient meta-data.

Dynamic Instrumentation

Dynamic instrumentation performs the patching operation at application
execution-time (it is also called just-in-time instrumentation). Compared
to the static methodology, acting at running time makes the dynamic instru-
mentation highly impact the performance of the application being instru-
mented. Most of the available toolkits base their activity on two different
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approaches know as native execution and emulated execution. The native
execution is performed by means of an instrumentation virtual machine
(VM). This copies the instrumented application in its address space and
logically sees the related code as a set of code blocks, which are executed
one by one. Before being processed, each block is instrumented and patched
such that the last instruction returns control to the VM. Additionally, some
precautions are adopted in order to speed up the entire process activity. In
particular, the already patched blocks are kept in a cache such that already
instrumented blocks can be just retrieved from it. Moreover, the linking
technique allows sparing the VM dispatcher calls after a block execution by
early understanding if the following one is already in cache. In this case, the
second block is directly linked to the previous one, and the execution is not
interrupted in the middle. The main drawback of this technique is given by
the fact that it has to capture all the execution-flow directions such as those
provided by branches or even privileged actions (e.g., exception generation).
The emulated execution takes advantage of an intermediate representation
of the code to generalize some information tied to the architecture, ob-
taining an abstract low-level language (byte-code style). Furthermore, the
processor is subjected to a full emulation of its state and elements such
as its registers are logically represented. The original application code is
never executed, but the VM presents only a compatible version of that such
that the control is never released and is therefore more useful in scenarios
where applications are never executed natively for security and portability
purposes.

2.1.2 Hardware Instrumentation

Hardware instrumentation extends its scope to several domains. A first ap-
proach is represented by snooping the electrical signals of the analysed hard-
ware via sophisticated probing instruments. This technique requires either
the hardware interface for the attachment of such debugging instruments—
which are usually available in embedded system platforms— or a deep
knowledge of the instrumented platform so that the user can manually
hack it and reconstruct the debugging scenario. However, the hardware
instrumentation, as we intended it in this work, identifies all those activ-
ities concerning the use of some specialized elements directly provided by
processor architectures. Unlike the software approach, hardware instrumen-
tation allows observing the behaviour of the system at low overhead while
detecting architectural-level transitions unlikely cough by other method.
The following section largely describes this hardware support.
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2.2 Performance Monitor Units

Most of the modern processors include within their architecture some spe-
cialized counters used to gather information about what is going on, at
the hardware level, during code execution. Performance monitor counters
(PMCs) are available since very old architecture like Intel Pentium and
AMD Athlon and have been largely extended for years. These counters
monitor a set of available architecture-defined hardware events and are di-
vided into

• fixed-event counters which can be used to observe already defined
events type

• programmable counters which allow the user to define the event type
of interest to be monitored.

PMCs can be configured to work in one of the following modes [Moo02]:

1. counting : the counter is incremented each time the related event oc-
curs. As consequence, inspecting the counter after some time poten-
tially provides the exact number of the event occurrences since the
counter was enabled. Its value at any time is the result of an aggre-
gation of data because it keep increasing regardless of the code being
executed. However, it does not bring extra information related to the
event thus the gathered data insufficient in some situation.

2. sampling : to enhance the counting mode, a threshold can be pro-
grammed such that an interruption can be sent to the execution flow
each time the counter overflows. Thereby it is possible to investigate
the context that generated that hardware-event.

The common way to access these counters is through a read/write on
model-specific registers (MSRs) exposed by the underlying architecture.
MSRs differ from traditional registers (like general-purpose ones) because
they are used to configure and toggle specific features on the CPU that
may not be present in other models. On x86 architectures, it is possible to
operate on MSRs via RDMSR and WRMSR [Dev17][Cor17] instructions or by
directly working on the counter using RDPMC [Cor17].

Generally speaking, there are two classes of events that can be monitored
[Cor17]. Non-architectural events are not standard defined because of the
different ways processors are assembled into larger chips, while the architec-
tural ones provide a set of events that are consistent among architectures.
Consequently, the second category is more interesting and provides a higher
degree of portability. Among the rich set of events that can be monitored,
it is possible to observe
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1. time events : architectures provide a special counter, called Time-
Stamp Counter (TSC), which is in charge of incrementing its value
for each clock cycle1;

2. instructions progress : a dedicated counter tracks the retired instruc-
tions during CPU activity, providing a primary form of processor
throughtput2;

3. memory data: caches can be monitored at several levels and counters
can be incremented for each miss/hit event;

4. branches : a counter can provide further information on branch in-
structions such that it is possible to notice events such as branch
mispredictions or retired branch instructions.

Given this plentiful support for the hardware-events, the accuracy of
PMCs has been largely studied and discussed. In [KTC01] Korn et al. con-
duct an extended study on the primary implementation of the performance
counter. To access the PMCs, the authors exploited facilities given by soft-
ware as perfex and libperfex. The performance counters accuracy analysis
was performed by comparing the data obtained by PMCs and a simulated
run over several micro-benchmarks executions. Accuracy highly depends
on the kind of used interface as well as the application and the event be-
ing measured. A more recent study [ZJH09] conducted by Zaparanuks et
al. presents a meticulous study done on performance counter accuracy,
also comparing with other similar works. They based the PMU access on
PAPI and perfmon softwares (see section 2.3) and matched observed counter
events with simulated data provided by a statistical study on the benchmark
structure. Authors conclude by highlighting the high inaccuracies reached
by some tests performed on different architectures.

Using the PMCs in sampling mode is the context in which this inaccu-
racy problem is observed with greater probability. In this case, a threshold
must be specified so that, when the counter reaches it, the processor can
be notified. The way the event is notified on modern systems is by sending
an interrupt. To get the instruction associated with the micro-operation
that generated that event, one would look at the instruction pointer (IP)
register at the time the overflow occurred. However, upon the interruption
generation, the IP is saved into the stack and may not represent the actual

1Actually, its activity depends on the processor state and, in some cases, it may skip
the counting. RDTSC is the x86 instruction to access its contents.

2For instructions composed of multiple micro-operations, the counter is incremented
when the last micro-op is retired. Note that a REP prefix does not effect the number of
times the counter is advanced.
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instruction of interest. This problem is largely enhanced in the modern su-
perscalar architectures which take advantage of the use of an out-of-order
engine that can execute several operations concurrently3. Furthermore, due
to the different order of micro-operation execution and instruction retire-
ment, the sampling notification may be late with respect to its generation
point. This delay is called skid. Stated differently, the triggered event may
not be precisely associated with the instruction that generated it, but to
one of its neighbours. Indeed, when measuring program efficiency, for in-
stance, cache misses, this produces low-precision results. The skid is one of
the problems that led vendor to improve the Performance Monitor Units by
extending the PMCs with extra capabilities, also intensifying the hardware
complexity. From now on, with the term PMU we refers to entire hardware
support including both traditional PMCs and extra elements.

2.2.1 Intel Precise Event-Based Sampling

To go beyond the traditional performance counters precision, Intel extended
the PMC support with the Precise Event-Based Sampling (PEBS) [Cor17].
This new support introduces the precise event concept over the non-precise
events observable by PMCs. Even though PEBS cannot be applied for all
the available events but only for a limited subset of them, it provides some
new mechanisms that automatically save the hardware context when the
counter overflows consequently avoiding a code interruption to gather extra
processor information related to the event itself. Note that PEBS does not
block the usage of the standard counters, so they can work in a combined
manner. Generally speaking, the user should program a counter to incre-
ment upon a determinate event generation and contextually should define
if it should work with PEBS or not. A first essential element introduced
is the PEBS assist. It comprises a predefined micro-code that is in charge
of saving the hardware context when the counter overflows, bypassing the
generation of an interrupt like legacy counter mechanisms. Additionally, it
is possible to program the counter in sampling-mode such that when the
threshold is met, an interrupt is fired4. When gathering the event-related
data 5, the information is packed into a structure called PEBS record which
represents the base element of the PEBS buffer. This buffer is located in
the Debug store (DS) save area whose size can be defined at setup time.
Each time a sample is produced it is added to the tail which is known as

3AMD Fam 10Th processor can have up to 72 operation in-flight at any time
4In this case, the interrupt will arrive after the PEBS assist completion. If both the

counter-interrupt and PEBS-interrupt are programmed, and they are concurrently ready
to be generated, the processor will postpone their execution after PEBS-assist. In this
case, two different interrupts are generated.

5Data comprises the EIP, EFLAGS and processor general purpose registers.
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PEBS index. When the PEBS index reaches that threshold value, an inter-
rupt informs the operating system that the buffer is almost full and a read
operation should be conducted.

2.2.2 AMD Instruction-Based Sampling

To overcome the skid issue and other minor problems, AMD relied on a
different sampling mode. So far, we saw how hardware counters and ad-
vanced units conduct the sampling task on hardware-events. As a more
sophisticated support to PMU with the Family 10Th processors (Barcel-
lona), AMD introduced in 2007 the Instruction-Based Sampling feature.
IBS is built on the technique described in [DHW+97] and, as the name sug-
gests, it observes instructions instead of events. There is no best method
between event-sampling and instruction-sampling, but rather the context
defines what solution is more suitable. The former focuses on event gener-
ation, limiting the number of observable events to the number of available
hardware counters. Thus, instruction metadata brought back upon event
generation. The latter performs the sampling on executed instructions by
the processor, statistically choosing the instruction to profile during its en-
tire flow and gathering produced information. This method extracts data
related to events generated by the sampled instruction.

IBS Specifics

The pipeline structure within the processor is decoupled into two main
phases: the fetch stage witch retrieves the next instruction to be executed
and the execution stage that represents the step where the instruction is
performed. IBS adapts to this scheme and exposes two different interfaces
associated with the same working logic but operating at a different level: the
fetch sampling and the execution sampling. Table 4.1 details the information
for both the subsystems [Dev11].

Like Intel PEBS, IBS bases its activities on model-specific registers. The
most important MSR is represented by the IBS control register, while others
are used to keep data information, thus being accessed upon a new sample
generation. Figures 2.1 and 2.2 respectively show the Control Register for
IBS fetch and IBS Execution. It is possible to note some common elements
between the two registers that are used specifically to configure the sampling
activity:

• Ibs*En: This bit represents the activation bit, thus as long as it is set
the support is working.

• Ibs*Val: Whenever a sample is generated this bit is set. Conse-
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IBS Fetch IBS Execution
Completed or Aborted fecth Branch information
Clock cycles spent on the fetch Time from tagging to retirement
I-Cache hit or miss Multiple levels D-Cache hit or miss
I-TLBs hit or miss Multiple levels D-TLBs hit or miss
Linear and physical instruction address Linear and physical memory addresses

for store/load ops
Latency to complete the load/store
If it was a local or remote memory ac-
cess

Table 2.1: A comparison of binary instrumentation tools

quently, an interrupt is sent to the CPU6 so that it can handle the
new data. In order to not take samples associated with the interrupt
routine code, the sampling stops working while this bit is set.

• Ibs*CurCnt: it represents the counter which is incremented according
to the sampling logic.

• Ibs*MaxCnt: when the counter reaches this threshold value, the next
instruction is chosen for profiling.

Figure 2.1: Fetch Control Register [Dev17]

By inspecting the IBS Fetch Control Register, one of the control bits
is reserved for randomization7. This technique helps to avoid the situation
in which the nature of code may lead to a wrong result of the monitored
samples. In particular, altough randomization does not provide an all-
inclusive solution for certain cases, it allows the sampling activity to exit

6AMD does not provide any form of buffering, like Intel does, thus a new sample
implies an APIC interrupt.

7This bit enables the randomization facility which act on CurCnt bits.
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Figure 2.2: Execution Control Register [Dev17]

from the determinism incurred inside a loop [CVH+10]. This support is not
implemented for the IBS Execution part, and randomization is managed
at the software level. In Figure 2.2, the scheme shows fewer bits in MaxCnt
(23) than those used to express the CurCnt (27) value. Actually, the MaxCnt
value is considered left-shifted by 4 so that its logic value spans 27 bits.
The reason for this misalignment is to give the possibility of randomizing
the last 4 bits of the CurCnt. By expressing each time a different value for
this nibble 8, it is possible to make the actual value of the sampling period
oscillate within 0 and 16 units above its initial value. Last but not least,
IBS Execution provides the IbsOpCntCTL bit that determines the policy
of the sampling activity. In particular, it is possible to base the sampling
on counting the dispatched micro-operations or on the elapsed clock cycles.
The user must be aware of the fact that if an instruction results in more than
one micro-operation, only one of those may be sampled hence potentially
leading to unexpected results.

Lightweight Profiling

A very interesting support, called Lightweight Profiling (LWP) [Dev10a],
was presented by AMD right after IBS introduction for a more specialized
analysis. LWP carries out a more precise activity than hardware counters
and IBS, focusing on user-space activity and low overhead profiling. LWP
improves speedup by allowing gathering data into a dedicated hardware ring
buffer and defining an optional threshold for interruption since it can just
work in polling mode. An interesting property is its ability to look at thread
context and consequently, it can be used simultaneously by more threads
without conflicts. The support is transparent to the end application and
collects data uniquely generated by user-space code9. Moreover if profiled
and not profiled threads exist at the same time, there is no additional over-
head to turn off the support for the second ones. The interface between

8A nibble is half of a byte.
9LWP works only for code running at Code Protection Level (CPL) 3.
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the threads and the LWP is a data structure called the Lightweight Pro-
filing Control Block which can be accessed and configured by the LLWPCB
and SLWPCB instructions. The LWP work can be summarized in five points
[Dev10a]:

• Count : there are several available event counters that are decreased
every time a retired instruction caused a related event10. Additionally,
it is possible to specify some filters for the observed event driving to
a more peculiar monitoring.

• Gather : upon counter overflow, LWP collects all the event data. In
case of multiple events generation, the behaviour is implementation-
dependent. All the events may be sequentially recorded or only one
of them can be picked. If there are conflicts due to the presence of
multiple events there is a delay in the gathering of the data, some
strategies can be put in place to overcome this issue.

• Store: in this phase, the event record is saved into the ring buffer
located in the process memory address space. The hardware keeps
track of the missed events which represent the sample that couldn’t
be saved because the buffer was full. Moreover, the storing action is
not perfectly synchronous with the instruction retirement and may
complete later.

• Report : this represents the hardware counter step where, if a threshold
value is specified, an interrupt is generated11 and the OS can benefit
from this notification to start reading the ring buffer.

• Reset : Like IBS this part re-enables a new sampling cycle. Every
time a sample is saved, thus leading to increase the buffer HEAD, or
a missed event occurs, LWP resets the sampling mechanism.

Unfortunately, LWP didn’t have so much success and even its official
support by AMD was limited. We didn’t found any open-source driver to
play with, therefore it is likely that the low interest from users led AMD
to remove its support from its processors to take advantage of die space to
foster other features.

2.2.3 Overhead

The Performance Monitor Units can be used for activity profiling incur-
ring in a very low resource usage if compared to the software counterpart.

10One instruction can cause an unpredictable number of events according to its execu-
tion context.

11The interruption may be presented much later than the threshold excess.
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Nevertheless, the overhead experienced by the examined application sub-
stantially depends on the setup of this hardware support. PMUs have been
widely studied, starting from old performance hardware counters and reach-
ing the modern IBS and PEBS technologies. Bitzes and Nowak reported in
[BN14] a very detailed analysis of PMCs and PEBS performances. Counting
mode gives the lowest penalty but, it depends on the number of observed
events and running threads during the experiments. Despite an increasing
trend when expanding the number of tracked events due to multiplexing,
the overhead does not go over 2%. Performance counters are available in a
finite number and the set of event concurrently monitored is limited to that
quantity. Multiplexing allows spreading the activity over more events. It
regulates the counter activity on a programmed events by observing them
for a certain amount of time. When the time for the current event expires,
the counter value is saved and a new event is programmed to be observed.
After some time, its state is loaded into counter so that its activity can
restart like no interruption occurred. On Intel Hyper-Threading (HT) com-
pliant architectures the hardware counters are replicated. Thus, by turn-
ing off the Simultaneous Multi-Threading support, the HT-related counters
can be used by the core, resulting in a double availability which may avoid
the multiplexing reducing the experienced overhead. An entirely different
scenario is presented when using PMC in sampling mode. Although the
primary function of the counter is still counting, the possibility of express-
ing a threshold value can enhance it such that, upon counter overflow, it is
possible to grab context data. Invoking a hardware interrupt introduces a
new source of delay. PEBS produces almost the same overhead experienced
during tradictional counter sampling activity [BN14]. This behaviour is the
result of firing a hardware interrupt upon the sample finalisation. In fact,
the software execution is stopped to perform the interrupt handler routine,
resulting in more work to be done. The drawback is not limited to the extra
code execution, but it implies another backstage phenomenon, i.e.; privilege
ring switching, that indeed will cause slowdown because of pipeline flushing
and cache pollution [SS10]. Furthermore, we did not found in literature a
similar study on AMD architecture, but we got several works which took
advantage of the AMD IBS support, consequently limiting the analysis on
the developed product [LLQ12] [MV10] [DFF+13]. Although, both PEBS
and IBS notify the presence of a new sample via an interrupt-based mech-
anism, only the former provides a hardware buffer support. Stopping the
normal code execution for processing new available data, especially in very
high-frequency rates, represents a heavy load for the entire system. PEBS
allows an automatized buffering at the hardware level, such that each time
a new sample is accessible, instead of sending an interrupt, it is saved into
a dedicated memory area. Nevertheless, a threshold value should be set to
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make the software aware of the buffer state, then starting reading data from
it. PEBS has been relatively overestimated in the literature due it buffer-
ing capability. Indeed, it was demonstrated that PEBS assist takes several
nanosecond (200-300) to complete, thus causing cache pollution due to fast
data writes [AH17]. Moreover, both event and instruction sampling carry
on a problem within their nature. Event-sampling, as discussed above, is
limited in the number of the possible number of the monitored event at
the same time incurring in a multiplexing overhead. Instruction-sampling,
following the IBS implementation, lacks instruction selection ability. The
instructions are sampled among all in the running code, so that it is not
possible to discriminate a particular type, making it more suitable for a
general-purpose activity. For instance, if an application wants just to get
memory-related instructions, the only way to perform that is by filtering
out all unwanted sample types with a clear overhead due to extra sampling
collecting.

2.2.4 Portability

One of the big challenge when starting working with PMUs is clearly stated
by the not-always-easy interface. There is not a standard way of acting with
this supports and each vendor provides its own methods. The complexity
of this process is enhanced by the necessity of directly working on hardware
registers taking the software to a lower level. Implementing a cross-platform
solution may be quite expensive in terms of time because it implies the study
of each single architecture reference manual.

Furthermore, PMU is not largely used and even looking for support
might not lead to fruitful results. Beside those complications, there is an-
other issue that makes portability an issue. Taking into account a general
vendor, for instance Intel, we already discussed that the kind of events that
can be observed are twofold: architectural and not-architectural. The for-
mer comprises those events that try to keep compatibility among all avail-
able models supporting hardware counters and PEBS features. The latter,
instead, identifies model specific events which probably are defined for a
sub set of model. This implies that basing an application on the availability
of determined events must take care of their type if it wants to be able to
be executed on several processor models. Moreover, by taking other ven-
dor products into account makes the task as daunting as walking a jungle.
Placing side by side the PEBS and IBS support it is actually hard to find a
common point to start from. The major problem here is due to the working
mode which, in the former, lies in event sampling while in the latter, it is
based on instruction-sampling. Even if we can take a step backwards and
considering the simpler hardware counters, the available events do not per-
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fectly match. To try to overtake the issues mentioned above, some solutions
have been proposed.
One of them is Perfctr, a low-level interface introduced in 1999 for accessing
the hardware performance counters [Pet11]. Although it does not provide
advanced features and limits its support to self-monitor analysis and system-
wide profiling, many tools adopted perfctr a means for accessing the PMUs.
An exciting feature is the ability to use the RDPMC assembly instruction
to access the PMC content. Contrary to other instructions like RDMSR,
RDPMC can be executed from not-privileged level so that the counter can
be directly accessed from user-space code. However, the arrival of more
sophisticated solutions like perf_events supplanted perfctr which nowadays
does not represent a valid alternative (its support ceased since 2011 [Pet11]).
Even though it provides only little support for PMC, another tool that de-
serves a brief citation is the Intel Performance Counter Monitor (PCM)
library [TWF17]. It is a cross platform tool, but, as the name suggests,
it is only compatible with the Intel family processors. Nevertheless, it can
configure the performance counters only in counting mode without allowing
any further capability such as memory sampling support [SMM16].
PAPI probably represents one of the best project in this field. It is an API
for accessing hardware counters within processors [BDG+00] and exposes a
high-level interface for a plain activity and a low-level interface to perform
more-advanced tasks. This layer in charge of translating actions from low-
level to hardware counters depending on the underlying operating system.
On Linux, they communicate by means of the perf_event interface. A gen-
eral PAPI overview shows that its behaviour follows the already discussed
procedure:

1. defining the hardware-events of interest,

2. gathering the sample,

3. informing the system via an interrupt.

These steps are tunable thanks to a parametric setup. Moreover, increasing
support for PMUs on modern processors aroused the research in this field
consequently improving the PAPI capabilities [LMW15]. Another issue,
though it is not a real portability trouble, is represented by the fact that
sometimes the events do not work as we expect [MSHN17]. This problem
not only might lead to an incorrect analysis but also represents a source
of divergence among the several vendor solutions. A standard is highly
required because the increasingly complexity of the PMUs, as well as the
number of capabilities these provide, may result in a dog chasing its own
tail. Software should guarantee a compatibility level at its bare minimum.
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2.3 State of the Art

In the rest of this chapter, an evaluation of some of the most popular general-
purpose profiling tools is provided.

2.3.1 Perfmon2

Perfmon2 is a performance monitoring interface for Linux [JJN08] [Era08],
initially developed for the Itanium architecture [SA00] and later extended to
all modern processor families. This interface relies on a kernel side which is
in charge of interacting with the PMUs and defining some advanced mecha-
nisms that would not be easy (and worthy) at user-level implementation. As
a matter of fact, most architectures allow communication with monitor units
only at the highest privilege level (ring 0) which only hosts kernel activity.
Furthermore, notification systems such as the interrupt-based one result
completely compliant with this design choice. Although it aims to pro-
vide an uniform functionality set for all the architectures, the measurement
precision is limited by the hardware capability rather than the software im-
plementation. Obviously, this is a common issue to all the hardware-based
solutions. As seen in the section 2.2, generally speaking, the hardware sup-
ports come along with a set of registers decoupled in configuration registers
and data registers. Both are logically mapped by the interface so that a ho-
mogeneous view can be provided independently from the hardware details.
Compared to other tools, the access point is not stated by a device file, but
it is implemented by system calls which give a more flexible approach for
checking argument number and types than ioctl file operation. The PMU
register access results to be direct through those calls. Moreover, to lower
the cost of invoking the system calls several times for accessing multiple
registers, a single system call can operate on a set of registers in one-shot.
Perfmon2 works using contexts that can be of the following types:

• per-thread : this context allows the profiling of individual threads ex-
ecution exploiting some nested operations in the context switch func-
tion (e.g., PMU state saving and loading)

• system-wide: this context spreads the analysis activity on the entire
system (under some limitation).

The kind of a context is defined at creation-time and a file-descriptor, re-
turned after a context creation syscall (pfm_create_context), represents
the related id for further operations. Per-thread and system-wide contexts
are mutually exclusive. Thus a context cannot provide dual analysis. A
context extends it activity after an exec syscall, but it does not persist on
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child threads born from a fork or pthread_create invocation. Directly at-
taching the child process to the context does not always make sense and can
be easily done in a second moment by the child itself. Moreover, a thread
can be attached or detached from a context at runtime. Unfortunately, a
system-wide context can work only on a CPU at a time. As a consequence,
all the threads that want to be subject to that analysis must be bound to
that CPU too. Furthermore, the controlling thread accessing the PMU data
registers, because of the Perfmon2 implementation, must run on the CPU of
interest to successfully complete the request. In order to ease the user-level
process of working on several CPU contexts, a library has been released as
part of the libpfm [Lab] package. Perfmon2 can execute the monitoring ac-
tivity by means of the hardware counters programmed in counting mode, or
the sampling mode that may use a more advanced technology such as Intel
PEBS. Even if the latter method is entirely manageable from the user-level,
some kernel support has been provided to mitigate the overhead incurred
during sampling action.

overflow
processing

monitoring
stopped

program executes

monitoring active

short period short periodlong period

recovery 
period

program executes

monitoring active

Figure 2.3: perfmon2 short an long values usage [Era08].

Perfmon2 takes advantage of three different values for managing the
sampling period during the profiling activity:

• value: represents the first value used. It is usually quite large in order
to avoid sampling of preliminary tasks like start-up activity.

• short : is used as normal sampling period when the analysis is at
steady-state.

• long : after counter(s) overflow, some extra actions should take place
such as the execution of the notification routine. To hide the pertur-
bation of such a mechanism, a longer (than usual) period is supplied.

The sample collection is performed by using a kernel-memory buffer
which is directly mapped in user-space in read-only mode. This overcomes
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some performance problems allowing fast12 writes, upon sample generation,
without incurring in swapped-out memory handling. Additionally, the cost
to access the buffer turns to be far smaller than other ways such as system-
call approach.

The interface implementation also provides some precautions to enhance
security aspects. Since every user in the system may use the perfmon2
functionalities without the requirement of particular privileges (e.g., being
the administrator) it is not possible to ensure a well-behaved monitoring
activity. An user can retrieve information about the activity of specific
thread only if he or she has the permission to do that. Generally speaking,
access to a thread data can be successfully performed only if it is possible
to signal that thread.

2.3.2 OProfile

OProfile is a system-wide statistical profiler for Linux able to perform the
code execution analysis with low overhead [OPr17] [Coh04]. It provides a
large support for performance monitor units on a variety of architectures
and is compatible with most of Linux distributions.
Its activity can be used to monitor processes either at thread granularity,
thus specifying a process or a set of threads to observe, or at the system level,
watching the entire system progress including interrupt handlers, shared
libraries and kernel modules.

Oprfiler design can be divided into three different blocks: kernel driver,
user-space data collection, user-space data processing. The figure 2.4 depicts
a schema of how these components are linked together.

The kernel driver represents the central part where the profiling activity
takes place. Upon support activation, the underlying hardware registers
are saved into an old state variable then configured13. In the setup stage,
along with the counters programming, some extra elements may need to be
configured such as the APIC in order to enable interruption mechanisms
for sampling notification. The driver provides a per-CPU buffer which will
be used to contain the data samples. Because the sample insertions may
occur in NMI context, it is not possible to adopt locking synchronization
mechanisms. Consequently, it is adopted a lock-free implementation, which
takes advantage of two indices for reading (tail) and writing (head) samples.
This small buffer is later accessed by the user-space daemon that reads its
content and populates a bigger buffer known as event buffer. This is used

12Kernel memory cannot be swapped out, so it is always available when requested.
13Saving the old values allows the driver to restore the last context once the support

is shut down. This can result useful in a situation such as the NMI watchdog takes
advantage of performance counters.
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Figure 2.4: OProfile general schema.

as the bridge between the kernel monitoring activity and the final analysis
stage. Furthermore, the per-CPU buffers adopt an overwriting policy such
that when a new data element is ready, it is discarded if there is no space
left in the buffer. A handy ability, especially when working in sampling
mode, is the throttling control. In fact, during monitoring activity, the
sampling rate may be too high and produce a consistent slowdown. Even
if throttling events are notified to the user through console messages, there
is no automatic sampling period adjustment which is demanded to the user
action. Oprofile can be split into a set of tools and command that regulate
the interaction with the profiler, each one designed for specific purpose
[Cor16]:

• operf and ocount : these are profiling tools. While the former bases its
activity on the perf_events subsystem provided by the Linux kernel,
the latter is used to count some hardware-event occurrences. Both
can be used to monitor a single processor the entire system.

• opannotate: this command enhances the source or binary code with
annotation obtained from sampled data.

• oparchive: this utility clusters profiled data and executable in a spe-
cific directory for further analysis.

• opcontrol : this is the old method to manage OProfile. Now it is
deprecated in favor of the operf.



CHAPTER 2. PROGRAM PROFILING 22

The figure 2.4 depicts a high-level view of the oprofile structure also
illustrating the different phases during a profiling session.

2.3.3 Perf Events

Perf, also known as perf_events, Linux perf events or perf tools, represents
the most advanced analysis suite already built in the Linux distributions
[Gre17] [Gho16]. Initially, its name stood for Performance Counters for
Linux (PCL), and it was created with the purpose of accessing the func-
tionalities provided by the available hardware units. However, as the time
went on, its scope has been extended by adding more analysis capabili-
ties such as software events observation and tracing support. At present,
perf supplies a large collection of events from both software and hardware
side. Although the hardware information comes from on-chip performance
counters, the software events are provided by the Linux kprobe and uprobe
debugging utilities. Because of this wide range, some other solutions, like
perfmon2, have been abandoned in favor of perf, while APIs, like PAPI,
now take advantage of its facilities. As consequence of the fact that perf is
not only intended for PMU access and use, studying all its components may
result extremely time expensive besides the fact that those are not directly
related to this work.

Figure 2.5: Perf structure map [Gre17].

When attempting to study perf architecture, the first obstacle is the
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insufficient documentation apart from some useful comments within the
kernel source code. In this section, we try to describe the perf working
principles connected to the only hardware profiling activity.

The perf core is shipped within the Linux kernel and includes the mini
drivers needed to configure, enable and stop the PMU activity. It is impor-
tant to state that the primary perf target is not an uniform PMU interface
to work with, but maximizing the usage of the available hardware support.
Even though perf_events is able to work with several hardware supports,
the software interface is biased and event-oriented rather than instruction-
oriented. Some supports instruction-based like IBS are forced to be used
through this interface, resulting in an events remapping. Along with the
perf_events, the system is equipped with a user-space tool, simply perf,
that allows interacting with its kernel counterpart. It provides the useful
perf list command which returns the list of all events (also highlighting if
the event is a hardware or a software type) that can be observed. If the
present hardware counters cannot work with some event, cache L1 hit for
instance, that will not be reported.

Even though the user-space tool represent a ready-to-use solution which
helps users carry out either advanced or straightforward evaluation ses-
sions, there is no employment of an user-space daemon for retrieving col-
lected data. Thus a user program can conduct the entire analysis by it-
self with a direct access to perf core. This point of access is given by the
perf_event_open system call [Man17]. By studying its parameters, it is
possible to look at several implementation choices.

A single perf_event_open invocation is intended for a single event ac-
tivation, and further events require additional calls. Perf can conduct its
analysis by following the activity of a single process/thread14 or even the
entire system. Furthermore, it is possible to bound the event collection to
specific CPU such that different groups of events may be observed on dif-
ferent CPUs. Starting a system-wide profiling operation requires the root
permission as well as registering a thread analysis by another thread requires
the right credentials. Upon perf_event_open completion, a file descriptor
is returned and then used to obtain the generated data. Perf automatically
understands how to perform the required event profiling, and does not ex-
pect the user to have any knowledge of the underlying hardware platform.
For instance, if a measurement requires a specific precision level (skid de-
gree), only sophisticated support like Intel PEBS and AMD IBS are taken
into account because these are the unique mean to accomplish this request.

14The user-space perf application allows supplying a set of thread/process IDs for a
single evaluation. This is translated into a series of perf_event_open calls, one for each
thread/process.
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However, besides these general events, the user may ask for more specific
events that cannot be associated to any of the available options. To cope
with this issue it is possible to specify the event code as provided from the
vendor manuals [Dev10b] [Cor17].
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Figure 2.6: Perf simplified control flow for sampling mode analysis
[Gho16].

Perf handles either counting or sampling events. Overall, the two types
of events follow the rules described in the previous sections, but, according
to the event type, perf may adopt different structural techniques. As a
matter of fact, in the former case, the result is just a value (aggregation
value) and can be retrieved via a read system call on the event associated
file descriptor. The sampling case is managed differently because the size
of the data is determined by the number of sampling elements generated
during the profiling activity. Every time a sample is generated, it does not
matter where it comes from (counter overflow or advanced support), it is
saved in a ring buffer. This buffer can be directly mapped in the user-space
memory region through a mmap system call15. Indeed, perf’s job is samples
gathering, and the buffer needs to be empty before incurring in sample
overwriting. The reading process can be registered to a notify mechanism
such that it is always informed via a wakeup signal whenever the buffer is

15The memory size should be of the form 1 + 2N , where N is the number of pages
(generally a page is 4Kb) and 1 refers to a metadata page.
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about to be full. The way to perform this registration can be through a
select, poll or fcntl calls on the file descriptor of interest. While the
first twos put the process into a waiting state until the reading conditions
are met, the third requires the implementation of the signal handler for the
management of the SIGIO signal.

Although some supports like AMD instruction-based Sampling provide
the possibility to define the sampling period by the number of instruction
retired, perf considers only the time domain. Perf is extraordinarily flexible
and can enhance the event analysis in several ways. Besides the ability
to extends the ongoing profiling activity on child threads, it can create
powerful event groups. This allows treating grouped events as a unit which
benefits from context execution. Moreover, it is possible to discriminate the
kernel-side activity so that it will not be part of the analysis.

2.3.4 Comparison

We cannot directly make a comparison among the above-described tools
because those do not turn out to be direct competitors, but represent the
set of elements that defined the evolution of the profiling tools on Linux
systems. OProfile — which has been used for many years as principal
profiling tool by Linux users — can be considered as the predecessor of perf
(both kernel and user parts), while perfmon2, more appropriately, represents
an interface for accessing the PMU as well as perfctr. Both defined the base
APIs such as PAPI before perf_event coming.

Primary interfaces have been designed with a specific purpose or tool
in mind and, most of the times provided orthogonal features. For instance,
early versions of OProfile allowed only system-wide analysis, making a sim-
ple activity like specific thread retired instructions counting unavailable. On
the other hand, perfmon2 — which represents a finer tool for system-wide
and per-thread profiling — did not provide any automatic means for data
retrieval — such as the OProfile daemon — and the application should be
given with an own method to access PMUs content.

Even though OProfile takes advantage of a device file for retrieving data
from profiling analysis, perfmon2 does not seem to have direct support
for saving gathered data. As a consequence, there must be a controlling
thread accessing the PMUs state which is required to be running on the
CPU hosting the PMU of interest. A user-space library helps the user to
accomplish such a strategy.

Perf_events comes up from the need for a standard interface to access
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the PMCs functionalities. The new project is built upon the perfmon2 fun-
damentals which aimed at a direct implementation in the Linux kernel to
overcome approaches such as module loading and kernel patching adopted
by OProfile. Perfomon2 initially provided the system with as many as 12
system calls, that, after some improvement and code redesigning, were re-
duced to 4. On the contrary, perf_events provides just a system call to
create and manage a whole monitoring session for a specified event. This
tool has been broadly appreciated by the community which made it be the
principal analysis tool on Linux. Its support to PMUs has been further
improved by providing software event inspection along with tracing capa-
bilities provided by additional tools such as kprobe and uprobe. We cannot
directly compare OProfile with perf. As a matter of fact, the former is
strictly a profiler tool while the latter is definitely something more.

The number of events that is possible to observe on several architec-
tures represents a big problem which makes a sophisticated system like
perf_events take some compromises. Kernel-side perf, named perf_events,
is shipped with a user-space tool, simply perf, which allows starting profil-
ing session and analysing information offline. Decoding of such data is an
essential operation with the purpose of associating a useful meaning to the
gathered information. Although the perf_events features may be explicitly
used by an application, the developer should know the complex hierarchy
of the perf data structures as well as how to interpret them.

Our work comes into the world from the dual need of exploring the
potentiality of the most advanced PMU supports — such as PEBS and IBS
— and conducting such a study on machines at our disposal. In accordance
with our machines, which are equipped with AMD Opteron processors, we
decided to start investigating the IBS technology capabilities. We wanted
to evaluated the such a support on its performance impact as well as its
accuracy. By taking advantage of other tool to access PMUs, we would not
be able to obtain a direct control of the hardware. Furthermore, analysing
specific questions such as the influence of the NMI handler routine on the
execution efficiency would be impossible because those logics are internal
parts of the tool implementation. Finally, although it is not compliant with
the advanced functionalities perf provides, it grants a better focusing on
hardware support that turns out to be effortlessly configurable and easily
adaptable for our other research purposes.



CHAPTER3
The HOP Kernel Module

Don’t lower your expectations to meet your performance. Raise your level of
performance to meet your expectations.

— Ralph Marston

The Hardware-based Online Profiler (HOP) is a kernel module for Linux
x86-64 based on Instruction-based Sampling (IBS) technology by Advanced
Micro Devices. It aims to provide statistics of running applications by
profiling their behavior in the system. Unlike most profilers, it provides
information in on-line fashion at low overhead so that an on demand tuning
of the application being observed can be applied according to the execution
flow. HOP is a pure-hardware profiler and its engine is powered by the
underlying architecture. The version presented in this thesis takes advan-
tage of AMD Instruction-based Sampling support. This statistical approach
allows collecting data in form of samples whose presence is notified via sys-
tem interrupts. Keeping the overhead as low as possible is one of the HOP
priorities, and this was the reason for a direct interface to the hardware
elements. Many software applications, due to the problematic way of inter-
facing to the PMUs, make use of the facility provided by third-party codes
like external libraries. However, this method does not give the possibility of
a full control on hardware, increasing the code dependability and sometimes
resulting in a disappointing solution.
HOP directly works on model-specific registers (MSRs) and this naturally
requires a broad knowledge of the hardware architecture, which most of the
time is specific for each processor model. The required ad-hoc code to make
the profiler portable on several architectures has been the primary reason to
limit the actual HOP compatibility to the AMD Family 10Th architecture
only. Although Linux is an operating system not directly designed to sup-
port multi-threads activity, the increasing number of SMP machines made
its developers adopt some solutions. Briefly, in modern Linux versions we
can find processes and threads1. The former group is used to wrap kernel

1Some authors refer to them as lightweight processes.

27



CHAPTER 3. THE HOP KERNEL MODULE 28

and user tasks which can be represented by an application, a service and
so on. The latter instead, concerns the use of multi-threading execution
to concurrently carry out one or more sub-jobs2 within the original process
task. Having more logic units lets programs exploit the parallelism given
by multicore architecture since each thread can be concurrently executed
on a different computing unit. HOP is created to observe the activity of
each process meticulously by working at thread-granularity. This ability
is compelling because it lets the user analyse particular components of the
processes by focusing on specific threads of the program. Furthermore, it is
possible to perform a combined profiling activity on more processes at the
same time.

3.1 Management

When HOP is loaded to be part of the active Linux modules, it makes an
underlying architecture support audit.

1. First of all, it checks whether the current operating system is running
on an AMD Fam. 10Th processor(s) and consequently the Instruction-
based Sampling support availability. This step is based on a series of
CPUID queries3 [Dev11] executed in order to identify processor vendor
(AMD required), family (FAM10th required), IBS supports (IBS_OP
required) and some extra features like Branch target support4.

2. After the hardware check, the next phase is the system setup. The
section 3.2 will explain in detail how this step is performed. As a
little preview, the IBS support has to be activated, and the system
must be informed of its presence. The Local APIC within each core
is configured for handling the IBS samples generation, and the Linux
system is equipped with a new interrupt handler that is in charge of
collecting the records upon their presentation.

3. Finally, the hardware and the system are ready such that HOP can
proceed to allocate its internal structures.

The stage we are going to present in the rest of this section represents the
hearth of the management system in HOP. HOP exposes a special control

2A good parallel code must take care of the synchronization activity that manages the
job performed by each thread solving the possible conflicts arising in the critical sections.

3CPUID stands for CPU IDentification, and it has been designed to allow software to
identify details of processor.

4This technique is a primary form of portability check. In fact, it is possible to design
the software to work with the available supports without considering missing capabilities.
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device, placed at /dev/hop/, named ctl. The user uses that as unique point
of interaction with the module by performing a set of ioctl commands5.
The most important operation is the thread registration that inserts a new
Thread ID (TID) into the module logic. This registration can be performed
either by the thread itself or in another element such as a pairing thread
or a direct user action. Internally, there is a special hash table which keeps
track of the already registered threads and it is intended for a quick lookup
for further operations. Upon thread registration, a new metadata structure
called pt_info (profiled thread information) is built and inserted into the
module hash table. pt_info provides several information, which will be de-
scribed in the next sections, concerning the thread management and related
components among which:

• tid: thread ID.

• mn: minor number of the related character device.

• ctl: reference to the last stack entry.

• dbuf: reference to the pt_dbuf (profiled thread dedicated buffer).

• analysis variables: set of variables holding extra information concern-
ing the profiling activity.

Listing 3.1 provides the complete structure.
1 /* profiled thread information */
2 struct pt_info {
3 int tid;
4 struct minor *mn;
5 unsigned long *ctl;
6 struct pt_dbuf *dbuf; /* sample buffer */
7 volatile unsigned long busy;
8 volatile unsigned long kernel;
9 volatile unsigned long memory;

10 volatile unsigned long samples;
11 volatile unsigned long overwritten;
12 wait_queue_head_t readq;/* used for poll fop */
13 struct mutex readl; /* read lock */
14 struct cdev cdev; /* cdev for char dev */
15 struct hlist_node node; /* hashtable struct */
16 };

Moreover, the module makes a character device per each thread such
that the user can access it and read the gathered data. However, the maxi-
mum number of available devices is limited to 255 thus limiting the number
of profiled thread concurrently registered as a consequence.

Even though the hash table provides a fast way to look for registered
threads, it is not used during profiling activity to discriminate analysis ac-
tions. We adopted an alternative approach which links all the data related

5IOCTL is a special system call that lets the user manipulate the device state through
a set of custom operations.
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Figure 3.1: Stack patching schema

to a profiled thread to its kernel stack. The figure 3.1 helps to understand
this operation. At any time, the process control block (PCB) of the cur-
rently scheduled thread can be accessed via the current macro available in
Linux. The PCB contains a reference to the kernel stack associated with the
process and can be always obtained in a constant time6 when the process is
scheduled. This approach lets the pt_info structure potentially be accessed
in a very fast way because it just requires the traversal of a few memory
pointers. When an interrupt arises for a new sample creation, the han-
dler can easily access the current thread stack since it is being nested into
the currently scheduled thread which is also the owner of the sample (see
3.2). Thus, the last kernel entry contains the address pointing to the pro-
filed thread info structure which provides the information about the related
thread state, collected statistics and buffer. When the buffer is requested to
be read, its position is retrieved by scanning the hash table instead, mak-
ing all the process logically simpler. The registration counterpart is the
unregistering of a thread which disables analysis activity, waits for pending
writes, and eventually cleans up the thread metadata removing its entry in
the hash table.
The profiling activity can be globally controlled by enabling/disabling the
monitoring at the module level. This directly affects the monitor function
that starts IBS at runtime (more details in the section 3.3). Additionally,
we designed another control mechanism that directly handles the thread
exercise. In fact, it is possible to define the profiling policy for each register

6Compared to searching in a generic data structure.
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thread such that some can be profiled and other just ignored by the IBS
support although they are still registered. This capability turns out to be
very useful in complex studies that require disabling and enabling thread
activity more time per execution.

Thread 0 Thread 1 … Thread $

context switch context switch

current

PCB 0

IBS NMI

PCB 1

stack

last

...
buffer

Figure 3.2: NMI handler access to profiled thread buffer exploiting stack
patching solution.

HOP is a flexible solution that tries to adapt to several contexts. This
is enforced by the ability to modify at runtime some parameters as the
sampling rate and the buffer size. While the latter is not retroactive and af-
fects only the subsequent thread registrations, the former is instantaneously
updated such that a malleable activity can be executed. This competence
lets the profiler be tuned according to the working load and contextually
leverage the overhead in extreme cases.
The last but not the least, the thread devices can be accessed both by a
read and ioctl system calls. The former, as already introduced, is used to
obtain the profiled data while a set of aggregated statistics, such as the
number of generated samples, can be received concurrently by the latter.
All these features aim to make the HOP interface very simple so that a
smooth integration is guaranteed. Table 3.1 provides available commands
along with a brief description.

3.2 The IBS Setup

The first task the module executes is checking the compatibility of the un-
derlying platform against IBS capability, understanding which features are
available for the given support (e.g. branch prediction support) and, ulti-
mately, it setups the environment making all the elements ready to be used.
Even though the support has been limited to AMD Fam. 10Th architec-
ture, conceptually, the operating principle is shared among all AMD archi-
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Command Description Action
PROFILER_ON globally turns on the profiling activity CTL
PROFILER_OFF globally turns off the profiling activity CTL
CLEAN_TIDS removes all the registered thread and re-

sets the sampling information
CTL

TID_STATS retrieves aggregated information such as
number of generated sample or kernel
mode

THD

ADD_TID adds a new thread to be profiled. When
the action completes a new thread device
is available

CTL

DEL_TID deletes a registered thread from the mod-
ule. All its data will not be accessible

CTL

START_TID enables the profling activity for the speci-
fied thread

CTL

STOP_TID disables the profling activity for the spec-
ified thread

CTL

SET_BUF_SIZE sets a new per-thread buffer size CTL
SET_SAMPLING sets a new sampling frequency value CTL
READ reads the collected samples THD

Table 3.1: Main functionalities provide by HOP. The action column refers
the target of the command: ctl indicates the control device and thd refers
to the thread device
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tectures that support IBS. Of course, several improvements and extensions
of the capabilities took place during years and, hopefully, new models pro-
vide a far better support than AMD Fam. 10Th, which represents the first
architectural solution with IBS. The more exciting part of this preliminary
phase, without a doubt, was represented by the IBS support configuration.
Notwithstanding, before going deeper into details, it is worth providing a
little overview of the components which play a role in this stage.

The Advanced Programmable Interrupt Controller

The Advanced Programmable Interrupt Controller (also called Local APIC),
within any individual core, is an essential element used to manage the in-
terrupt redirection and interrupt exchanging among processors.

Figure 3.3: Block Diagram of a Typical APIC Implementation [Dev17]

It has been designed to overcome the limitation of the older PIC in
the SMP systems. Along with the per-core Local APICs, the architecture
provides an extra element called IO-APIC. It is designed for the interrupt
management within a multi-processor system and acts as a dispatcher for
interrupts coming from out-of-core sources. It can redirect interrupts in
both dynamic and static fashion, thus managing the distribution across all
CPUs. The IO-APIC does not directly present the interrupt to the target
processor, but, exploiting the presence of the APIC bus which interconnects
all the APIC elements, redirects that interrupt to the related Local APIC.
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When something wants to cause an interrupt to a core, it will send a
request to that core’s APIC, which handles interrupting the core and sending
it to the correct interrupt handler for that event. Taking into account
the AMD Family 10Th architecture, there are several sources of possible
interrupts that can be sent into a CPU core’s APIC:

• I/O interrupts : interrupts coming from I/O devices or redirected from
the IO-APIC.

• Legacy Interrupts : legacy interrupts managed by the PIC and redi-
rected to Local APIC.

• Interprocessor (IPI): interprocessor interrupts.

• APIC Timer : interrupts coming from the programmed APIC timer.

• Performance Monitor Counter : interrupts from the performance mon-
itoring counters.

• Thermal Sensor : interrupts from internal thermal sensors.

• Extended Interrupt : programmable interrupts (see below).

• APIC Internal Error : interrupts caused by an error detection within
Local APIC.

The figure 3.3 depicts the scheme of a typical APIC implementation. Al-
though one of those sources is Performance Monitor Counter, it shall not
be considered valid for IBS, but rather for traditional performance counters.
IBS, instead, exploits the "extended interrupts" mechanism. Extended in-
terrupts is a method used by AMD to extend the local interrupts by adding
more interrupt sources. This is made possible by adding some extra en-
tries into the Local Vector Table (LVT), which can be configured to handle
new interrupt types [Dev10b]. Precisely, by exploiting this mechanism, each
time an IBS sample is ready and signalled by the core, it tells the APIC
to cause an extended interrupt for type IBS Sample. The APIC performs
this operation by looking up the LVT where a particular interrupt number
should redirect the processor. The terminology used here is that we are
vectoring the processor to the handler location. It is possible to configure
the entry associated to IBS for generating a specific kind of interrupt, which
can be one among

1. Normal Interrupt, used to signal the CPU that something at hardware
or software level happened during code execution,

2. System Management Interrupt (SMI), used to manage firmware-level
functionalities such as power management, and
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3. Non-Maskable Interrupt (NMI) that, as the name suggests, cannot be
masked, thus it is always presented to the CPU.

The last type is the one used in this module implementation. The reasons
for this choice are discussed in the section 3.4. Generally speaking, this kind
of interrupt is used to signal critical event like a hardware fault. The way an
NMI is associated with its handler is entirely different from the technique
used for the normal interrupts. On each x86 core, there is only a single
non-maskable interrupt handler7. When performing the registration of a
new NMI handler, actually, the system put it into a chain that is walked
through every time an NMI is generated. In that case, all the handlers will
get called until one will handle the interrupt. How can is it possible to
discriminate the right handler among all?
The handler routine shall bear the audit part, which queries specific reg-
isters (or memory locations) and looks for particular conditions that may
generate its event, revealing if the interrupt was intended for it or if this
NMI came from someone else. For instance, the IBS handler reads a defined
MSR and checks whether valid sample bit is set.
Indeed, the NMI management is far complicated [Ros12] and some condi-
tions could arise such that when an NMI is signalled, more than one handler
may concurrently execute. However, most of this job is directly done by the
Linux operating system, while the only responsibility left to the program-
mer is the right implementation of the handler routine.
The NMIs provide an excellent flexibility because it is possible to watch what
is happening inside normal interrupt handlers, and so to take related IBS
samples. Only NMIs can interrupt regular interrupt handlers 8. Nonethe-
less, it is possible to set up the support on a specific sub-set of available
cores, such that more adaptive policies can be applied.

3.3 The Schedule Hook

One of the problems of the AMD Instruction-based Sampling implementa-
tion is the lack of conducting the sampling activity on specific threads in
the system. Moreover, this shortfall affects the overall system performance
since the IBS support extends its activity not only on system threads, but
also on kernel code nested during the execution of a user-space code. In fact,
during such an execution some events may occur—for instance the system
tick interrupt which might trigger the system context switch—and their
handling is performed over the current thread context. From the user and

7All NMIs go into interrupt handler number 2.
8Actually, an interrupt priority-based policy allows higher-priority interrupts to stop

lower-ones.
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system point of view, such an event management and related code execution
is nested into the thread activity. This job may not be directly related to the
current thread work, but to other element like operating system housekeep-
ing. Furthermore, code instructions concerning those tasks executed during
IBS support analysis will be part of the sample collection leading in some
cases to a resource waste because kernel investigation is not always relevant
for final analysis. The simplest solution to cope with this lack is the filtering
out of undesired samples at either collection or analysis time. Although it is
not a system-intrusive solution because does not need any particular system
capability or dependence, it cannot discriminate the sampling on determi-
nate threads nor save time to perform the profiling only on the wanted code
domain (kernel or user). However, we decided to face this problem in an
advanced fashion by directly operating on the schedule function within the
Linux kernel. The general idea is inserting extra code to be executed at
the end of the function, such that, after each context switch, it is possible
to know which thread is currently scheduled. Based on this concept, the
module can activate or deactivate the IBS sampling, which, potentially9,
will monitor only the profiled thread activity. Therefore, the sampling even
works on the kernel side code executed during the profiled thread perform-
ing. HOP exposes a parameter that represents the preference to keep kernel
sample (samples are tagged with a kernel flag) or discard them inside the
NMI handler function, thus saving the overhead of reading all IBS data
from registers. Coming back to the scheduling hooking process, we thought
several ways to perform it. A compiled custom version of the kernel could
be a solution, however, from the point of view of the final user, it is too
invasive and complicated to be adopted. We decided to embrace, instead, a
different solution, which acts by dynamically patching the schedule function
at runtime [PQ17]. The authors introduce this module that, by inspecting
the system-map10, rewrites parts of the executable of the kernel upon being
loaded. The patching operation inserts at the end of the schedule routine a
flow variation such that the control is given to a custom function, defined
by the authors as schedule-hook. According to the patching schema, the
original schedule function will never reach the return instruction, which in-
stead, will be executed by schedule-hook as the natural continuation of the
function. It is important to highlight that the schedule-hook code comes
just after the context switch is finalized, thus the action is performed in the
new thread context. The power of this solution lies in its nature of being
a module, that, once loaded, provides the possibility to hook any function

9During the thread execution, other code may be nested to be executed like kernel
housekeeping, or interrupt routines.

10The system-map, generally places into /boot, represents a symbol table used by the
kernel which provides an association between symbols names and memory addresses.
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to be executed in place of schedule-hook. Moreover, it perfectly matches
our goal. The algorithm 3.1 shows the thread_monitor_hook function in
charge of enabling and disabling IBS during module activity. Its routine is
straightforward and is kept as light as possible. As the first step, it checks
the global profiler state. If it is disabled, IBS is not required, and the sup-
port is turned off (1-2). Otherwise, according to the stack patching solution
described above, the last entry of the current thread stack is inspected, and
a quality audit is performed (4). In particular, the CRC code allows filter-
ing out threads for which its content is not consistent, while the per-thread
ENABLED bit identifies whether or not the profiling analysis is required for
that thread. The enableIBS and disableIBS methods do not work on
the MSRs each time their are invoked. That would be very expensive since
this function is invoked at a very high rate. Instead, a logical state—tied to
the per-core IBS structure—is given such that it is possible to make a fast
check before acting on registers. For instance, if the support is disabled, the
scheduling of a not profiled thread would invoke the disableIBS method
which results in a useless operation. Our technique catches such situations.

Algorithm 3.1 Thread monitor hook
1: if profilerState = disabled then
2: disableIBS()
3: else
4: if validCRC(current) ∧ isEnabled(current) then
5: enableIBS()
6: else
7: disableIBS()
8: end if
9: end if

3.4 NMI Handler

The NMI handler represents the hearth of the module profiling activity. As
anticipated in the previous section, in the Linux system an NMI handler
routine is registered in a list (chain) and potentially invoked for each NMI
that is generated. The routine must investigate the reason of its invoca-
tion by checking if the conditions of the event for which is designed match
the actual state. The main problem to deal with when designing an NMI
handler, even more important than a regular interrupt one, is its complex-
ity. An NMI runs in a very particular context which stops the execution of
the other code, no matter of which task was executing. Moreover it enjoys
the ability of not being interrupted which means that no one can block its
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execution11. If the routine takes too much time to complete, it will cause
the delay of all planned activities. Additionally, a routine stall due to any
reason turns out to be a system hang. In our case the IBS NMIs occur very
frequently, thousands or even millions per second, representing the primary
source of overhead. The less the time spent in processing the interrupt han-
dler routine, the more the time assigned for the thread task execution. The
handler function is shown in the 3.2 algorithm. Basically, it makes several
fast tests before performing the IBS sample collecting.

Algorithm 3.2 NMI handler
1: retval← nmi_done
2: msr ← rdmsr(ibsOpCtl)
3: if not validSample(msr) then
4: goto out
5: end if
6: retval ← nmi_handled
7: if not isActive(logicIbs) then
8: goto out
9: end if
10: if not (validCRC(current) ∧ isEnabled(current)) then
11: goto out
12: end if
13: if testAndSet(current.processBit) then
14: goto out
15: end if
16: if not kernelSampling( ) ∧CPL( ) 6= 3 then
17: goto skip
18: end if
19: sample ← readAllMSRs()
20: addExtraInfo(sample)
21: insert(current.buffer, sample)
22: skip :
23: randomizeAndEnableIbs()
24: clear(current.processBit)
25: out :
26: return retval

According to the Linux policy, a generic NMI handler must tell, at the
end of its execution, if the interrupt was intended for it or someone else. To

11In particular cases such as the generation of an exception during the NMI execution,
it can be stopped to handle that exception. This advanced mechanism is part of the
Linux system logic [Ros12].
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indicate that, the handler returns a 0 value (NMI_DONE) if it could not man-
age the event, or a positive value (potentially NMI_HANDLED (1)) whether
it handled the interrupt12.
Even though IBS provides two different sampling support types, fetch and
op, our module takes advantage only from the latter which produces data
related to code execution. Examining if the interrupt is an IBS type is
relatively simple and is done through a query on define IBS_OP_CTL MSR
[Dev11]. This register holds all the control information related to IBS Exe-
cution activity among which the IBS_OP_VAL bit that tells if a valid sample
is ready to be read (1-5 in 3.2). Every time an IBS sample is generated,
that bit is set and, consequently, an interrupt is fired13.
Once this step is over, the handler function is sure that the NMI was pro-
duced for it and can carry on its job. At this point the return flag can be
set to HANDLED so that the system NMI handler is informed to stop running
other routines because the interrupt was already handled. A series of extra
checks are required to save in the best way the retrieved data:

• Catching of spurious interrupts (7-9): this is a critical audit that al-
lows decoupling the logical state of the IBS system from the hardware
one. Turning off the IBS support by writing on the related register
is not an action which is executed atomically, so an NMI may occur
meanwhile. In order to avoid the gathering of unwanted samples, an
IBS logical state is kept by HOP and inspected every time a profiler-
related action should be taken. The IBS real state is always consistent
with the logical one, except during these small delays.

• Thread state (10-15): although advanced mechanisms are provided to
ensure the cleanest activity, the NMI generation is not deterministic
and may occur during the execution on any thread. To cope with
this problem each profiled thread keeps status information within the
last entry of its kernel stack14. In particular, beside the structure
that contains the buffer information, two more bits are provided. The
ENABLED bit identifies that the thread is marked for profiling activity
so that IBS can be activated during its execution. The PROCESSING
bit is a sort of internal consistency guarantee. From the handler point
of view, it is used to signal to other parts of the module acting on the

12An handler may manage more than one NMI at a time, like in the IBS case. Op and
fetch supports are decoupled and they generate interruption independently.

13If both fetch and op support were active, the check would be doubled on two MSRs
because the handler must catch both sample types. A curious case is presented when dur-
ing an interrupt generation both fetch and op samples are available and as a consequence,
those two are taken at the same handler invocation.

14A CRC code is used to discriminate all the system threads such that only registered
threads are considered
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buffer that this is already in use and cannot be touched. Therefore,
this is used to prevent conflicts during a thread check-out. It may
happen that during an NMI processing on a core for thread T, another
core is performing the log out for T, upon user request. During the
clean up phase, the memory allocated for the buffer is freed so the
handler may work on wrong memory space. As a way of protection,
the handler notifies in an atomic manner its activity on the buffer
and every cleaning action will be locked until a job termination is
sent back. Therefore, in case the handler arrives after the cleaning
activity, it will directly jump to the end of the routine by reading a
busy PROCESSING bit.

• Kernel samples (16-18): the section 3.3 largely describes how an IBS
NMI may arise during kernel-space code execution. HOP provides
the possibility of either processing the kernel samples as part of the
ongoing analysis or directly skipping them and so saving execution
time.

• Sample collection (20-21): once the validity of the new sample is
confirmed, the handler proceeds to gather the related data, packing it
into a structure. According to AMD Fam10Th architecture specifics
[Dev10b], the information can be retrieved by reading up six MSRs,
each one giving specific details. Additionally, the sample is enhanced
by extra fields such as time stamp counter (TSC) value and sample
mode-type (user or kernel space). The strategy used to write the
sample into the buffer is meticulously detailed in the following section.

• Next cycle (23-24): at the end of its activity, the handler must reset
the IBS register for a new sampling cycle. Actually, this is done by
clearing the new-sample OP_VAL bit (see section 2.2.2) and by random-
izing the counter value within the control register. The randomization
technique is extremely useful because allows going over the determin-
ism of a loop, preventing the sampling of the same instruction.

3.5 Buffering Strategy

HOP has not been specialised for a determined profiling activity yet. In-
deed, it can be considered a general-purpose profiler. Because of this, we
provided a buffering mechanism for samples recording that aims to provide
an idea of how the buffer structure should be implemented to guarantee the
best performance. As already discussed, the critical issue of the NMI han-
dler is the speed related to its code execution. The meaning of speed does
not stop at the size of code, but it also comprises the quality of the code



CHAPTER 3. THE HOP KERNEL MODULE 41

itself. The NMI routine is the crucial part of the module that is started
upon a valid IBS sample generation, and it is in charge of checking some
conditions, and, if true, eventually saving the new record in a dedicated
buffer. We provide within the module only one level of buffering such that
the buffer structure is directly shared among the writer and the possible
readers. Considering the Linux system policy, a thread cannot be sched-
uled on more than one processors at the same time. Therefore two NMIs
cannot arise for the generation of a sample related to the same thread. Since
the NMI is the only part of the module allowed to write the buffer, we can
conclude that there is only one writer at time and we can avoid managing
concurrency for multiple writers. A different situation is presented during
the reading phase. For each thread registered to the module for the mon-
itoring activity, a character device is built and used as the main point to
retrieve the data. The read operation that can be performed on that device
is mapped on a file read function (exposed by Linux file operations inter-
face). This function represents the unique way to access the collected data
by the userspace-level applications. There is no limit for the number of
the processes that can access a specific device. Thus the presence of more
readers must be managed in the buffering policy. To cope with this matter,
we arrange the data structure as a Single Writer - Multiple Readers buffer.
Moreover, the concurrent accesses among writer and readers, and readers
themselves are managed by atomic operations15 which are implemented in
order to guarantee a non-blocking logic. The introduction of atomic op-
erations perfectly matches the need of a light execution, especially for the
writer that might not be easy to provide using other synchronisation meth-
ods. Before proceeding to the implementation details, it would be worth to
have a look at the used atomic operations. The operations mentioned above
are the fetch_and_add (FAA) and the compare_and_swap (CAS). The for-
mer belongs to the fetch_and_*op family, where *op identifies an operation
among add, sub, and, or and so on. FAA takes as parameters a memory
address and value; it first reads the content of the specificated address, then
operates on the two operands and eventually update the memory content
returning the old value. The operations are executed atomically without the
risk that another operation reads or writes the memory address before these
end. Conversely, compare_and_swap allows swapping two different values,
but it completes without undertaking any action. The accepted parameters
are a memory address and two values. The former represents the memory
actual value, while the latter the new value. Before updating the memory

15Generally speaking, this group of operations represent the class of Read-Modify-Write
operations. These are executed atomically, such that, working on the same value, do not
incur into the interleaving of sub-operations. Their support is part of the hardware itself
and Linux system, to keep compatibility among several architectures, emulates such
operations even on lacking ones.
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address with the third parameter, it checks if the memory content matches
the old value. If so, the swap is performed. Otherwise, it means that another
write happened meanwhile and the CAS simply leaves the memory address
untouched. Due to its nature, commonly a CAS is sited inside a loop that
tries to execute the operation until success. Indeed, atomic operations turn
out to be slight slower16 than an equivalent sequence of normal operations,
yet provide an excellent resource for synchronisation that in many cases
overcomes the traditional techniques.

element

   HEAD          tail  

63                           32                            0 

tail 

head

64 bits

- A
- b
...

  0        1                                                           size-1

 

IDX

Figure 3.4: General structure of the buffer

Coming back the buffer implementation, the figure 3.4 depicts a high-
level description of the data structure. The buffer implements a circular
logic such as the central structure can be realised with an array and two
more indices: head and tail. The former represents the position where
someone can start reading while the latter is the index reserved for a new
element. The buffer follows a First-In-First-Out (FIFO) behaviour and
exposes only two methods: insert() and remove(). The former method
can always be performed, even if the buffer results full. In that case, an
overriding policy is applied, and the just arrived element substitutes the
oldest one. The latter, instead, is for reading elements from the buffer,
consequently, if it is empty, the function will fail.

The insert() method algorithm 3.3 is invoked during the NMI handler
task, and as such it must be suitable for a fast computation. To guarantee
this, we implemented a wait-free function that never blocks the writer while
attempting to insert a new element, by designing a synchronisation logic
that always gives the go-ahead to the writer.

At any moment, the buffer state can be one of the following:

• EMPTY: head and tail are equals. Only insert() can be performed.
16They directly affect the cache adding some overhead.
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Algorithm 3.3 Buffer insert()
1: midx← idx
2: if head(midx) + size = tail(midx) then
3: if cas(idx,midx,tail(midx) + 1) then
4: write(elem,tail(midx))
5: idx← head(idx) + 1
6: exit
7: end if
8: end if
9: write(elem,tail(midx))
10: faa(idx,midx,tail(midx) + 1)

  empty                     empty

tail (cycle = x)

head (cycle = x)

EMPTY
tail (cycle = y)

head (cycle = x)

FULL

(x < y)

       available   samples

tail (cycle = x)

head (cycle = x)

NORMAL

         available samp.

head (cycle = x)

tail (cycle = y)

                    empty

Figure 3.5: All possible states of the buffer
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• FULL: head and tail are logically equal, but the tail is one cycle17

forward. Both insert() and remove() can be performed, but the
former implies an override.

• NORMAL: head and tail are different18, and both methods can be
called.

The tail and head indices are saved into the same 64-bit variable19 (IDX).
This choice is necessary because we can save an extra read to verify certain
conditions while performing the remove(). The first 32-bit of the IDX
represents the tail while the other half is reserved for the head. As the first
operation, the insert() reads the IDX value and checks if the head is a
cycle back the tail (FULL) (2 in 3.3). If so, it tries to perform a CAS to
increase the tail (3)20 and two cases may be possible:

• Success: Between the state audit and the increment read a sample
(head untouched). The tail is advanced so that any reader is informed
and potentially blocked (see remove() algorithm 3.4). Then the insert
operation is started causing the old element rewrite (4). In the end,
the head is incremented, and any reading action can be executed (5).

• Failure: After the index check, a reader executed the remove() func-
tion. This case brings back to the NORMAL state like the initial
audit was not true.

If the first check did not succeed, then we are in the NORMAL or EMPTY
state. In this situation, any reader, it does not matter how many times the
remove() is invoked, eventually will stop, taking the head to the tail value
(EMPTY). Thus, the writer can simply write the new element (9) then
advance the tail to inform all the readers of the presence of a new sample
(10). This increment must be done via a FAA operation because the IDX
is shared by head and tail and possible concurrent accesses by readers and
writer may occur. Even if the latter can be incremented without any trouble,
the higher part of the IDX value must be consistent to concurrent reader
access, so a reliable atomic operation is required. Despite the presence of
atomic operations which are slightly slower than normal ones, the general
execution it quite fast, and above all, it never waits.

17The circular logic implies that an index logically ranges from 0 and length - 1, but its
real value may only increments. A cycle represents one walk through the entire buffer.
For the tail, one cycle forward means that REAL(tail) = REAL(head) + length.

18The logic value of head can be greater or smaller of the tail one depending on the
respective cycles.

19On Linux x86-64 system the atomic operations can work on 64-bit variables
20Even though a fetch_and_add may seem more suitable, it is not because between

the first read and the performed increment, atomicity is not guaranteed.
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Algorithm 3.4 Buffer remove()
1: loop
2: midx← idx
3: while head(midx) + size < tail(midx) do
4: midx← idx
5: end while
6: if head(midx) = tail(midx) then
7: return empty
8: end if
9: elem← read(tail(midx))
10: if cas(idx,midx,head(midx) + 1) then
11: return success
12: end if
13: end loop

Finally, by looking at the remove() function 3.4, we can observe the
entire strategy. Recalling the reader can be blocked in case of concurrent
action, it does not wait actually, but it aborts and restarts the remove()
procedure. This justifies the code wrapping in a while loop. A reader must
wait if the state is FULL and the tail is a step forward (3-5 in 3.4) because
the writer is overwriting the element referenced by the head. It identifies
an ongoing write that is performing an overwrite, and then the read sample
may not be consistent. A second step verifies the buffer is not EMPTY. If
so, the method returns with EMPTY_BUFFER value (6-8). If the state is
NORMAL or FULL, the reader can start reading the first available element
(9). Once finished, the last condition that is verified is intended to guarantee
that readers and writer did not mix their tasks (10-12). The CAS on the
entire IDX let the reader check both the tail (writer collision) and the head
(reader conflict) so that if the old value of IDX does not match the value
read at the begin of the procedure, everything is lost and the loop restarted.
In this model, the reader is dominated by the writer that has preemption
rights. We did not investigate if this solution is suitable for a generic use
case because we did not provide any analysis application able to enable
some readers. Indeed, the performance depends on several factors like the
sampling rate, which determines the write frequency, as well as the number
of readers that increase the number of conflicts. The main target of this
buffer structure implementation is providing a basic support to deal with
the critical sections of the module.



CHAPTER4
Experimental Assessment

The best way to show that a stick is crooked is not to argue about it or to spend
time denouncing it, but to lay a straight stick alongside it.

— Dwight L. Moody

In this chapter we are going to show the experimental results obtained
from several tests conducted to measure the performance impact of the HOP
activity. All the tests have been conducted on Linux Debian 8.0 (Jessie)
kernel 3.16.36 running on HP Proliant NUMA machine equipped with 4
x AMD Opteron(tm) Processor 6128 and 64 Gb of memory. This lets us
benefit from the non uniform memory access system extending the testing
phase to an increasingly common architectural organization.
In order to evaluate the performance of the proposed solution we adopted
some benchmarks from the PARSEC Benchmarks Suite[BKSL08] :

• BlackScholes : is a Recognition, Mining, and Synthesis (RMS) ap-
plication based on Black-Scholes partial differential application and
used as a method for emulating general PDE programs. Its perfor-
mance is bounded by the floating-point computing capability of the
underlying hardware. More precisely, it simulates a set of financial
calculus operation and spreads the computation among the available
threads.

• Canneal : implements a Simulated Annealing (SA) algorithm using
to simulate some problems in chip design. SA belongs to the class
of the local searches algorithm which aim to find a local optimum
over a big search space. This application uses sophisticated lock-
free synchronization techniques and enforces its execution via a cache-
aware design.

• Fluidanimate : is another Intel RMS application used to simulated
the behaviour of a fluid with free surfaces. It has been included in the
PARSEC suite because of the always increasing software tendency of
exploiting physical natural simulation (e.g., computer games).

46
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• Swaptions : takes advantage of the Monte Carlo simulation which
represents the base for the PDE simulators. This is an RMS applica-
tions which operate in the economic context.

Each benchmark has been compiled via the PARSEC utility script such
that the underlying parallelism technique1 relies on the pthreads library.
Additionally, every configuration has been run five times2 so that, eventu-
ally, an average value could be computed. We employed the time program,
natively available on Unix-based and Linux systems, to record the execution
durations. In this way, we were able to obtain the real time along with cpu
and sys time at the end of a run. Compared to the real time, the latter
represents the aggregated result value of all the engaged threads. Every
used benchmark has been slightly patched so that each thread, upon its
creation, could register its presence to HOP by itself. The module structure
lets a natural check-in phase because the profiler can keep its state (active
or not) and automatically insert the thread being added to the monitoring
activity. Statics are collect thread by thread to guarantee a more detailed
study. PARSEC provides several datasets to be fed to the considered appli-
cation. simsmall, simmedium and simlarge are intended for testing runs or
a very light execution (also launched on a simulator), while native, which
presents a different grade of magnitude, is used for observing the applica-
tion behavior during an extended activity. We adopted the native dataset
so that, besides the study in a more realistic execution context, also startup
times and other secondary costs due to initial works could be considered
negligible compared to the overall thread task.

Benchmark Parallelization Data Usage
Model Granularity Sharing Exchange

blackscholes data-parallel coarse low low
swaptions data-parallel medium low low

fluidanimate data-parallel fine low medium
canneal unstructured fine high high

Table 4.1: Key characteristics of the PARSEC benchmarks employed in
this experimental phase [BKSL08].

The bench configuration varies on the number of the used threads and
the IBS sampling periods. We tested for a number o threads belonging to

1PARSEC provides both a serial and parallel version of a given benchmark. Several
parallelism approaches are available and comprise even advanced technique like open-mp.

2We experienced a low deviation, namely about 2%, among the results of the
deterministic-nature benchmarks.
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the [1, 2, 4, 8, 16, 32, 64, 128] set because we wanted to study the serial
execution along with the parallel one, even reaching the hardware capability
saturation (introducing an extra cost for the high context switching). The
frequency values range from 4096 to 32678 by an incrementing step of 4096
and are based on instructions counting rather than clock cycles counting.
This choice was taken according to some experimental results illustrated in
other works and those obtained in some preliminary tests that revealed the
chosen frequencies to be an optimal bound. Actually, it is possible to exploit
a smaller period as lower-bound such as 2048. However, in some contexts,
the high number of generated NMIs would induce a huge interruptions oc-
currences making the per-thread progress to go forward at very low rate.
Furthermore, we observed the attitude of small sampling period may cause
stalls of the CPU because of the NMI management side effects. We con-
sidered the collected samples by the 4096 sampling period as the maximum
accuracy we can reach in this tests for the purpose of this investigation.

4.1 Overhead

We decided to consider the cpu and sys time combination instead that
the real-time taken by a single run. This choice enabled us to study the
benchmark behavior deeply while under monitoring, observing the cost of
the module task too. As the cpu-time plots show, incrementing the sample
period accentuates the overhead curve which always follows a main trend.
As we step closer to the core number saturation point by increasing the
number of employed threads, the curve slope raises. In particular, the cpu-
time curve obtained during execution at low frequency rates (at least 16k
instructions) keep the same ratio with the curve generated by the plain run
in all the points. Intermediate cases (12k < x < 16k) start introducing a
soft ratio increment as soon as the threads number reaches and goes over
32 (hardware limit). By setting smaller sampling periods, this phenomenon
may be experienced earlier in conformity of smaller threads employment.
Observing the cpu-time plot of the blackscholes test (figure 4.4), by using a
4096 sampling period, the rise starts after 8 threads. We already know that
the number of NMIs remarkably increases as we lower the sampling rate.
By analyzing the plain-execution curve at a microscopic level, we noticed a
minimal rising curve slope so that the profiled curves potentially share the
same trend. The NMIs nesting in such points exacerbates this behavior,
due to the application’s own nature, by several orders of magnitude. As a
matter of fact, faster NMIs generation highlights with higher certainty some
application weaknesses due to dominant effects such as synchronization.
The bottleneck gradually tends to move toward the left part of the graph
(lower number of threads) leaving its ideal location. Canneal stands out
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for the profiled activity execution times that accurately follows the trend
of the plain-run. The delta factor is kept constant even at high threads
employment without incurring in a scalability decline. Moreover, the ratio
between two periods is equal to the ratio of their time values. The overhead
values are reported by the table 4.6 and represents the duration value for
each sampling rate compared to the same configuration plain execution.
The numbers tell that to obtain an operating cost less than 20% the period
must be kept quite high (over 16k). Furthermore, the grade of accuracy is
a parameter to focus on while configuring the profiler. However, this results
highly depends on the kind of profiled application as it is possible to observe
in some cases (e.g., canneal) overhead values which are about 15% in the
worst case. Canneal is highly dominated by synchronization effects which
allow us to intensify the profiling activity without linearly adding overhead.
Being aware of the internal mechanisms of the looked application represents
an aid element to configure the profiler activity.

4.2 Accuracy

Even though the application takes different times to complete according to
the set sampling frequency, it is possible to note how the benchmark ex-
ecution, over different threads configuration, provides an almost constant
number of generated samples. Data-partitioning nature accounts for that
outcome because even spreading the job over different threads, the amount
of work to be performed is untouched. Fluidanimate differs from this prop-
erty because of its internal synchronization techniques. It primarily takes
advantage of lock primitives[BKSL08] which turn out to add extra work
during thread task execution, influencing the sample collection.
By taking into account two sampling rates, the number of samples respec-
tively gathered in each one follows the ratio between the two used frequency
period. For instance, by looking at the curves described by 4096, 8192 and
32768 in the figure 4.8, the values comply with the gap among the rates
such that 2.5 * 100m at 4096 is halved to about 1.2 * 100m at 8192, which
in turn is reduced by a factor 4 at 32768, obtaining about 4 * 10m. This lin-
ear factor is critical and should be taken into account during the calibration
step.

4.3 Efficiency

We investigated the efficiency of adopting a configuration as a trade-off be-
tween generated samples and produced overhead. The figure 4.12 depicts
the plot derived from the number of collected samples and the cpu-times
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required to complete the run. We named this samples-per-second (SPS)
graph. The drawn curve represents the ratio between two aggregated value
(all available threads outcome) and identifies the average samples contri-
bution given by each thread per second. We already saw the number of
collected samples being constant varying the parallelism degree of the appli-
cation, thus what we expect is the reflected image of the cpu-time graph. As
a consequence, the scalability starts progressively downgrading with lower
sampling period. An interesting fact that may not easily observe in other
graphs is the goodness attributed to each sampling rate. Goodness means
the contribution a thread gives for a specific configuration. According to
the data-parallel nature, we would expect the ratio of different curves to be
compliant with the ratio of the considered sampling period values. It is not.
The cost due to secondary effect and other background jobs exponentially
increase for lower periods. This side-effect makes the SPS value generated
by certain periods not to produce a benefit with respect to slower frequen-
cies as the parallelism rises. Consequently, this property may be useful for
a runtime tuning of the monitoring activity so that the wanted SPS value
can always be satisfied. Canneal is the only one that shows a nearly optimal
behavior that perfectly scales according to threads and period variation. As
matter of fact, the graph depicts almost constant SPS curves that keep that
ratio untouched.

4.4 Bottleneck

Threads Full No Sample Void
1 70% 41% 40%
2 89% 59% 55%
4 89% 62% 61%
8 98% 70% 69%
16 204% 200% 196%
32 461% 446% 437%
64 398% 367% 361%
128 348% 307% 306%

Table 4.2: CPU times overhead incurred while executing blackscholes
subject to a 4096 freq. rate profiling analysis. Full, No Sample and Void
are different NMI handler routine implementations. This evaluation has
been conducted on the simlarge dataset.
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Besides the studies conducted above, we also wanted to analyse the
impact of our implementation choices regarding the IBS support. In partic-
ular, we evaluate the repercussion of the NMI management during sampling
activity. As largely described in the previous chapter, the NMI generation
represents the only way to notify the availability of a new IBS sample. We
reduced the job performed by the NMI handler routine by removing sec-
ondary operations from those used in the final logic. Notably, a test has
been configured limiting the handler activity for just managing the IBS in-
terrupt(lines 1-6 in the algorithm 3.2) and returning the control without
taking any further operation. We label this handler function implementa-
tion Void. A second test performed the full logic function without managing
the sample collection (it does not executes lines 19-21), thus saving time in
buffer writing and data reading. This implementation is called No Sample.
The table 4.2 extracts some results from the cpu-times overhead compar-
ison of these two tests and the full execution. Although the time values
reduce with the logic simplification (the most expensive section is the sam-
ple write), the overhead is definitively still high. It is possible to conclude
that the significant number of NMI occurrences is the primary source of
slow down (related to secondary events such as cache pollution and pipeline
flushing during context switches) that affects whatever IBS-based solution.

Figure 4.1: Blackscholes: cpu-time execution
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Figure 4.2: Fluidanimate: cpu-time execution

Figure 4.3: Swaptions: cpu-time execution
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Figure 4.4: Canneal: cpu-time execution

Figure 4.5: Blackscholes: number of generated samples
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Figure 4.6: Fluidanimate: number of generated samples

Figure 4.7: Swaptions: number of generated samples
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Figure 4.8: Canneal: number of generated samples

Figure 4.9: Blackscholes: per-second generated samples over cpu-time
execution
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Figure 4.10: Fluidanimate: per-second generated samples over cpu-time
execution

Figure 4.11: Swaptions: per-second generated samples over cpu-time ex-
ecution
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Figure 4.12: Cannel: per-second generated samples over cpu-time execu-
tion

Period Threads Number
1 2 4 8 16 32 64 128

4096 77.08 93.84 99.30 106.0 244.8 576.97 587.91 587.05
8192 35.79 43.60 45.39 47.63 75.99 238.46 227.75 230.00
12288 23.34 28.20 29.69 29.79 35.13 121.84 121.05 117.34
16384 17.24 20.70 22.24 22.42 24.30 67.31 68.37 64.05
24576 11.42 13.96 14.83 14.47 15.44 19.97 20.63 19.31
32768 8.37 10.66 10.84 10.82 11.72 12.63 12.96 12.88

Table 4.3: Blackscholes: overhead percentage according to a plain cpu-
time execution.
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Period Threads Number
1 2 4 8 16 32 64 128

4096 80.77 87.90 92.93 106.7 203.76 419.76 370.84 318.7
8192 37.86 40.39 43.49 46.57 60.00 150.98 121.54 98.64
12288 25.61 25.30 28.87 30.56 32.77 71.85 52.96 41.12
16384 18.80 20.38 20.45 22.47 22.99 36.11 27.34 21.97
24576 12.49 10.90 13.86 14.47 14.86 17.77 13.41 12.21
32768 10.00 9.07 10.33 10.97 10.81 12.54 10.14 8.66

Table 4.4: Fluidanimate: overhead percentage according to a plain cpu-
time execution.

Period Threads Number
1 2 4 8 16 32 64 128

4096 99.50 120.2 131.1 148.8 316.4 714.31 722.03 724.89
8192 46.36 57.19 60.31 64.92 94.26 268.63 280.01 280.33
12288 30.70 36.30 39.16 40.74 49.77 136.84 146.90 146.91
16384 22.71 27.24 29.01 29.87 33.82 79.04 83.24 84.09
24576 15.07 18.33 19.16 19.44 20.94 28.86 30.11 29.71
32768 12.80 13.65 14.94 14.34 15.34 17.15 17.96 18.34

Table 4.5: Swaptions: overhead percentage according to a plain cpu-time
execution.

Period Threads Number
1 2 4 8 16 32 64 128

4096 15.55 17.15 16.17 16.77 17.18 17.29 16.65 16.97
8192 7.58 8.93 7.47 8.24 8.31 8.09 7.95 8.44
12288 5.13 6.30 5.13 5.58 5.18 5.65 4.85 4.98
16384 2.95 4.53 3.35 3.58 4.10 4.30 3.65 4.35
24576 1.97 2.94 2.13 2.47 2.51 3.00 2.13 2.98
32768 1.73 1.79 1.45 1.54 2.15 2.00 2.02 1.82

Table 4.6: Canneal: overhead percentage according to a plain cpu-time
execution.
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Conclusions and Future Work

If you want to go somewhere, goto is the best way to get there.
— Ken Thompson

In this thesis we presented a new solution for on-line profiling of appli-
cations based on the AMD Instruction-based Sampling feature. The main
idea of this proposal is using the hardware support provided by most of
modern processors to obtain information about the application execution.
This technique is almost transparent to the analysed software because the
only required operation is the process registration for the monitoring ac-
tivity. However, this may be directly performed by the user or another
process. The performance monitor units provide a high precision measure-
ment of hardware events—for instance cache miss/hit events o number of
retired instructions—that software-based supports might only estimate. To
obtain the best efficiency and the maximum control of underlying hardware,
the communication with IBS registers is direct. Moreover, the module con-
figures both the PMU and the operating system in order to handle the in-
terruption upon sample generation (IBS interrupts). HOP works on thread
context discriminating the activity of the execution flow of interest during
the monitoring. To achieve such a capability, we directly operate on the
context switch system function through an external module, so that PMU
activity can be activates or deactivated when needed. Our solution high-
lights a delicate context when working with PMU. As a matter of fact, the
samples collection occurs in the interrupt context, which requires specific
precautions in terms of execution complexity. In such a context the per-
formed routine should be as light as possible and furthermore, it must never
block. This means that synchronization mechanisms have to be sophisti-
cated and not rely on blocking technique like spinlocks. For each registered
thread the application builds a ring-buffer that keeps the generated samples,
whose access is managed through non-blocking atomic operations. Several
tests have been conducted to evaluate the goodness of our module and the
IBS subsystem. The generated overhead is highly dependent on the config-
ured sampling frequency, the number of profiled threads in the system and
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the application workload. In particular the highest application parallelism
degree tends to move backwards on a smaller value than the number of avail-
able cores when increasing the frequency rate. Generally, this behaviour is
due to the cpu-bounded nature of the application. Memory-bounded appli-
cation tests present an overhead of about 15% in the worst cases. Extra
tests have been carried out to study the IBS support implementation. We
analysed the application behaviour change — in terms of slowdown — when
varying the tasks performed by the IBS NMI handler. By adopting a mini-
mal handling job, that is the mere IBS interrupt catching without executing
other logic, the overhead curve follows the same trend of the full implemen-
tation used in the module. Indeed, this clearly identifies an intrinsic deficit
of IBS which will be reported on all the solutions based on such an approach.
We already planned several improvement for the future version of HOP:

• more architectures : we are going to extend the set of architectures
which can be supported. In particular, we would like exploring the
Intel PEBS. It works on the events domain and is enhanced by an
advanced mechanism that allows samples buffering at firmware level.
Saving an interrupt generation for each sample occurrence may be
extremely useful and certainly lowers the incurred slow-down.

• event set : currently HOP is a general-purpose profiler. This implies
that the type of the observed events cannot be customized, thus it
not possible to specialise its activity. We would like to provide an
interface for supporting specific events such as memory-related ones.

• autonomous rate: although HOP already provides a facility for at
runtime tuning of the sampling rate, we would like introducing an
automatic management of the sampling rate. This may reduce the
probability of throttling events and provide a more advanced form
of sampling. In some cases, it may be preferable to intensify the
observation during a specific execution period and keep it as low as
possible in other situations. This logic can be paired with an ideal
overhead value that represent the maximum slowdown admitted for
that profiling session.

• specialization: besides the general-purpose nature for building sophis-
ticated analysis system, we think that directly specializing HOP for
a specific context would turn out to be extremely useful. We are
going to instantiate a particular module structure in order to take ad-
vantage of the profiling activity for optimizing NUMA systems. The
low-profile monitoring activity would identify sub-optimal executions
such that optimization actions like page or thread migration may be
undertaken.



Bibliography

[AH17] Soramichi Akiyama and Takahiro Hirofuchi. Quantitative eval-
uation of intel pebs overhead for online system-noise analysis.
In Proceedings of the 7th International Workshop on Runtime
and Operating Systems for Supercomputers ROSS 2017, ROSS
’17, pages 3:1–3:8, New York, NY, USA, 2017. ACM.

[BDG+00] Shirley Browne, Jack J. Dongarra, Nathan Garner, George Ho,
and Philip Mucci. A portable programming interface for perfor-
mance evaluation on modern processors. IJHPCA, 14(3):189–
204, 2000.

[BKSL08] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and
Kai Li. The PARSEC benchmark suite: characterization and
architectural implications. In 17th International Conference on
Parallel Architecture and Compilation Techniques, PACT 2008,
Toronto, Ontario, Canada, October 25-29, 2008, pages 72–81,
2008.

[BN14] G. Bitzes and A. Nowak. The overhead of profiling using pmu
hardware counters. In CERN openlab report, 2014.

[Coh04] William E. Cohen. Tuning programs with oprofile. In Wide
Open Magazine 1, pages 53–62, 2004.

[Cor16] IBM Corporation. Getting started with oprofile. 2016. Available
at: https://www.ibm.com/support - Accessed: 2017-12-29.

[Cor17] Intel Corporation. Intel R© 64 and IA-32 Architectures Software
Developer’s Manual. 2017.

[CVH+10] Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-wei Liao,
Vinodha Ramasamy, Paul Yuan, Wenguang Chen, and Weimin
Zheng. Taming hardware event samples for FDO compilation.
In Proceedings of the CGO 2010, The 8th International Sympo-
sium on Code Generation and Optimization, Toronto, Ontario,
Canada, April 24-28, 2010, pages 42–52, 2010.

[Dev10a] Advanced Micro Devices. AMD64 Technology - Lightweight Pro-
filing Specification. 2010.

61



BIBLIOGRAPHY 62

[Dev10b] Advanced Micro Devices. BIOS and Kernel Developer’s Guide
(BKDG) For AMD Family 10h Processors. 2010.

[Dev11] Advanced Micro Devices. Software Optimization Guide for
AMD Family 10h and 12h Processors. 2011.

[Dev17] Advanced Micro Devices. AMD64 Technology - AMD64 Archi-
tecture Programmer’s Manual Volume 2: System Programming.
2017.

[DFF+13] Mohammad Dashti, Alexandra Fedorova, Justin R. Funston,
Fabien Gaud, Renaud Lachaize, Baptiste Lepers, Vivien
Quéma, and Mark Roth. Traffic management: a holistic ap-
proach to memory placement on NUMA systems. In Architec-
tural Support for Programming Languages and Operating Sys-
tems, ASPLOS ’13, Houston, TX, USA - March 16 - 20, 2013,
pages 381–394, 2013.

[DHW+97] Jeffrey Dean, James E. Hicks, Carl A. Waldspurger, William E.
Weihl, and George Z. Chrysos. ProfileMe: Hardware support for
instruction-level profiling on out-of-order processors. In Proceed-
ings of the Thirtieth Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 30, Research Triangle
Park, North Carolina, USA, December 1-3, 1997, pages 292–
302, 1997.

[Era08] Stéphane Eranian. Perfmon2 : a standard performance
monitoring interface for linux. 2008. Available at:
http://perfmon2.sourceforge.net/perfmon2-20080124.pdf - Ac-
cessed: 2017-12-29.

[Gho16] Amir Reza Ghods. A Study of Linux Perf and Slab Allocation
Sub-Systems. 2016.

[Gre17] Brendan Gregg. Linux performance, 12 2017. Available
at: http://www.brendangregg.com/linuxperf.html - Accessed:
2017-12-30.

[JJN08] S Jarp, R Jurga, and A Nowak. Perfmon2: a leap forward
in performance monitoring. Journal of Physics: Conference
Series, 119(4):042017, 2008.

[KTC01] W Korn, Patricia Teller, and Gilbert Castillo. Just how accurate
are performance counters? pages 303 – 310, 05 2001.



BIBLIOGRAPHY 63

[Lab] Hewlett-Packard Laboratories. The pfmon tool and the libpfm
library. Available at: http://perfmon2.sourceforge.net - Ac-
cessed: 2017-12-29.

[LLQ12] Renaud Lachaize, Baptiste Lepers, and Vivien Quéma. Mem-
prof: A memory profiler for NUMA multicore systems. In 2012
USENIX Annual Technical Conference, Boston, MA, USA,
June 13-15, 2012, pages 53–64, 2012.

[LMW15] Ivonne López, Shirley Moore, and Vincent M. Weaver. A pro-
totype sampling interface for PAPI. In Proceedings of the 2015
XSEDE Conference: Scientific Advancements Enabled by En-
hanced Cyberinfrastructure, St. Louis, MO, USA, July 26 - 30,
2015, pages 27:1–27:4, 2015.

[LTCS10] Michael Laurenzano, Mustafa M. Tikir, Laura Carrington, and
Allan Snavely. PEBIL: efficient static binary instrumentation
for linux. In IEEE International Symposium on Performance
Analysis of Systems and Software, ISPASS 2010, 28-30 March
2010, White Plains, NY, USA, pages 175–183, 2010.

[Man17] Linux Programmer’s Manual. Perf_event_open(2),
09 2017. Available at: http://man7.org/linux/man-
pages/man2/perf_event_open.2.html - Accessed: 2017-12-30.

[Moo02] Shirley Moore. A comparison of counting and sampling modes
of using performance monitoring hardware. In Computational
Science - ICCS 2002, International Conference, Amsterdam,
The Netherlands, April 21-24, 2002. Proceedings, Part II, pages
904–912, 2002.

[MSHN17] Daniel Molka, Robert Schöne, Daniel Hackenberg, and Wolf-
gang E. Nagel. Detecting memory-boundedness with hardware
performance counters. In Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering, ICPE
2017, L’Aquila, Italy, April 22-26, 2017, pages 27–38, 2017.

[MV10] Collin McCurdy and Jeffrey S. Vetter. Memphis: Finding and
fixing numa-related performance problems on multi-core plat-
forms. In IEEE International Symposium on Performance Anal-
ysis of Systems and Software, ISPASS 2010, 28-30 March 2010,
White Plains, NY, USA, pages 87–96, 2010.

[OPr17] Oprofile, 2017. Available at: http://oprofile.sourceforge.net -
Accessed: 2017-12-29.



BIBLIOGRAPHY 64

[Pel13] Alessandro Pellegrini. Hijacker: Efficient static software instru-
mentation with applications in high performance computing:
Poster paper. In International Conference on High Performance
Computing & Simulation, HPCS 2013, Helsinki, Finland, July
1-5, 2013, pages 650–655, 2013.

[Pet11] M. Pettersson. The perfctr interface, 2011. Available at:
http://user.it.uu.se/ mikpe/linux/perfctr - Accessed: 2018-01-
01.

[PQ17] Alessandro Pellegrini and Francesco Quaglia. A fine-grain time-
sharing time warp system. ACM Trans. Model. Comput. Simul.,
27(2):10:1–10:25, 2017.

[Ros12] Steven Rostedt. The x86 nmi iret problem, 2012. Available at:
www.lwn.net/Articles/484932 - Accessed: 2017-09-30.

[SA00] Harsh Sharangpani and Ken Arora. Itanium processor microar-
chitecture. IEEE Micro, 20(5):24–43, 2000.

[SMM16] Manuel Selva, Lionel Morel, and Kevin Marquet. numap: A
portable library for low-level memory profiling. In Interna-
tional Conference on Embedded Computer Systems: Architec-
tures, Modeling and Simulation, SAMOS 2016, Agios Kon-
stantinos, Samos Island, Greece, July 17-21, 2016, pages 55–62,
2016.

[SS10] Livio Soares and Michael Stumm. Flexsc: Flexible system call
scheduling with exception-less system calls. In 9th USENIX
Symposium on Operating Systems Design and Implementation,
OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada, Pro-
ceedings, pages 33–46, 2010.

[TWF17] Roman Dementiev Thomas Willhalm and Patrick Fay. Intel
performance counter monitor - a better way to measure cpu
utilization, 2017. Available at: https://software.intel.com/en-
us/articles/intel-performance-counter-monitor - Accessed:
2018-01-01.

[ZJH09] Dmitrijs Zaparanuks, Milan Jovic, and Matthias Hauswirth.
Accuracy of performance counter measurements. In IEEE In-
ternational Symposium on Performance Analysis of Systems
and Software, ISPASS 2009, April 26-28, 2009, Boston, Mas-
sachusetts, USA, Proceedings, pages 23–32, 2009.


	Acknowledgment
	1 Introduction
	2 Program Profiling
	2.1 Profiling Techniques
	2.1.1 Software Instrumentation
	2.1.2 Hardware Instrumentation

	2.2 Performance Monitor Units
	2.2.1 Intel Precise Event-Based Sampling
	2.2.2 AMD Instruction-Based Sampling
	2.2.3 Overhead
	2.2.4 Portability

	2.3 State of the Art
	2.3.1 Perfmon2
	2.3.2 OProfile
	2.3.3 Perf Events
	2.3.4 Comparison


	3 The HOP Kernel Module
	3.1 Management
	3.2 The IBS Setup
	3.3 The Schedule Hook
	3.4 NMI Handler
	3.5 Buffering Strategy

	4 Experimental Assessment
	4.1 Overhead
	4.2 Accuracy
	4.3 Efficiency
	4.4 Bottleneck

	5 Conclusions and Future Work

