SAPIENZA

UNIVERSITA DI ROMA

Asymmetric Runtime Environments for Increased-
Performance Speculative PDES

Dipartimento di Ingegneria Informatica
Automatica e Gestionale "Antonio Ruberti"

Master of Science in Engineering in Computer Science

Candidate

Lorenzo Altamura
ID number 1538468

Thesis Advisor Co-Advisor

Prof. Alessandro Pellegrini Prof. Bruno Ciciani

Academic Year 2018/2019

Thesis defended on 20 January 2020

in front of a Board of Examiners composed by:
Prof. Riccardo Rosati (chairman)

Prof. Aris Anagnostopoulos

Prof. Riccardo Lazzeretti

Prof. Alessandro Pellegrini

Prof. Leonardo Querzoni

Asymmetric Runtime Environments for Increased-Performance Speculative PDES
Master’s thesis. Sapienza — University of Rome

© 2020 Lorenzo Altamura. All rights reserved

This thesis has been typeset by IKTEX and the Sapthesis class.

Version: January 15, 2020

Author’s email: altamura.1538468@studenti.uniromal.it

mailto:altamura.1538468@studenti.uniroma1.it

Acknowledgements

I would like to thank Prof. Alessandro Pellegrini for providing me with all the
support I needed throughout all these months in which I've learned so much.
I would also like to thank Prof. Bruno Ciciani for the precious advice and Dr. Stefano

Conoci for the help offered during the initial phases of this work.

My deepest gratitude goes to everyone who supported me along this journey, to my
parents, sister and grandmother and to my dearest friends Jonattan and Matteo.

A special recognition is addressed to my colleagues at DIAG who shared the path
with me, especially to Roberto Adduci, Roberto Avagliano, Paolo Mastrobuono
Battisti, Domenico Ciampa, Luca Deodati, Andrea Fantoli, Moreno Labbate, Chiara

Mele, Marzio Monticelli, Riccardo Ostani and Riccardo Vecchi.

Abstract

Future exascale systems will require runtime environments able to manage the
complexity of the underlying heterogeneus hardware. This thesis discusses about
asymmetric features in existing high performance applications to obtain consistent
increase in terms of performance by properly exploiting the asymmetry shown by
current pre-exascale systems. In particular, the focus is on parallel discrete events
simulation (PDES) and possible solutions to best exploit asymmetry in threads by
limiting the drawbacks in terms of the overhead brought by the time warp optimistic
synchronization protocol.

Experimental data show how relevant the gain in terms of performance is when
self-adjusting algorithms autonomically manage the balance between asymmetric

thread incarnations.

Contents

(I__Introduction and Context 6
LT Discrete-event simulation] 9
(1.2 Parallel discrete-event simulationl 11

(1.2.1 Introducing PDES| 12
[1.2.2 Implementation of synchronization| 14
[1.2.3 The synchronization problem: stragglers| 16
[1.2.4 Thelocal causality constraint| 16
[I.2.5 Conservative and optimistic synchronization| 17
(1.3 Optimistic Synchronization| 19
(1.3.1 Timewarp|. 20
[I.3.2 Performance of optimistic synchronization| 22
(1.3.3 Asymmetryintimewarp| 23
[1.3.4 The choice of asymmetry| 25

2 Related Work| 26

[3 Asymmetric Time Warp| 29
[3.1 Asymmetric time warp architecture| 30

[3.1.1 Ensuring consistency|. 0L 32
3.1.2 Checkpointing| 37
[3.1.5 Dynamic resources assignation| 37

[3.1.4 A comparison with classic symmetric multithread architecture| 37

[3.2 Dynamic thread role assignment| 38

[3.2.1 How to dynamically assign threads| 39

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

{4 Experimental Assessment] 42
4.1 The ROme OpTimistic Simulator| 42
B2 Parameters| 44
43 Measurementsl o 45

4.3.1 First test pool: fixed loop duration, fanout and random LP |

[eventreceiver] e 45

4.3.2 Second test pool: fixed loop duration, TAU and random LP |

| eVeNt receivVerl v v e e e e e e e e e e e e e 47

4.3.3 Third test pool: fixed loop duration, fanout and close LP event |

[receiver]. e 49

5 Conclusionsl 51

Chapter 1

Introduction and Context

In applied sciences, “simulation” plays a very important role as it is used as a math-
ematical, logical or scientific representation of any form of real phenomenon, may
it be a system, an entity or a process. In cases where it is impossible or not conve-
nient to reproduce in laboratory the real conditions implied in the study, simulation
builds upon mathematical rules a reproduction of the case study, with dynamics and
mechanics modeled as close as possible to the real system: the closer to reality the
simulation is, the more reliable the analysis on behaviors will be. Comprehension
of case studies is easier this way, as it implies less costs and a virtually unlimited
amount of data to analyze. Anyway, this approach incurs some unavoidable approx-
imations and assumptions that sometimes affect the validity of the outcomes.

In recent times, the use of computers widely spread into these practices, bringing
an outstanding amount of benefits: for example, mathematical models were once
used to solve the problem by finding analytical solutions predicting the behavior of
the system by manipulating variables into extremely complex equations; computers
helped to realize models with a much wider scope and reliable results.

Physical and interactive simulations involve the creation of a physical object, usually
smaller and/or cheaper than the original, that takes the place of the actual object.
For example, aircraft pilots train on flight interactive simulators which are safe
and considerably less expensive than an actual plane, especially in case of modern
warplanes. Continuous simulations refer to a computer model of a physical sys-
tem built around differential equations in which variables change continuously in
function of time and system state is updated continuously. Since it’s impossible

to represent continuous time flow, time is increased in small steps to simulate the

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

correct behavior. Monte Carlo methods are a class of algorithms that rely on contin-
uous application of random sampling to obtain numerical results. Those methods
use randomness to solve problems that originally were deterministic. They usually
apply to physical and mathematical problems and are most useful when it is difficult
or impossible to use different approaches.

Simulation has been classified into many subcategories that describe the method-

ologies applied to model the case studies (Fig. [L.1]).

Digital Simulation

e

Discrete Models Continuous Models Monte Carlo Models
Event-driven Time-stepped ODE/PDE Solvers

Figure 1.1. Simulation Taxonomy

Simulations can be roughly split into the following two categories:

e Stochastic simulations depend on variables drawn from some probability
distribution. Any round of the simulation produces different results and, as
outputs are produced, final outcomes converge into a distribution of such
outputs that is the result in which the simulation with a pre-determined set of

values may fall in.

e Deterministic simulations are basically the opposite of stochastic ones: values
for the variables are fixed and the outcomes are always supposed to be the

same.

Actual implementations of the various methods may follow different paradigms.
A distributed simulation is about distributing a single simulation run across multi-
ple processors.

As described by Fujimoto in [[I]], there are many advantages in a distributed sim-
ulation: in a paradigm known as "parallel execution", the run is performed over
a tightly coupled computer system (e.g. a supercomputer or a shared memory

multiprocessor) and the main reason for the distribution is to reduce the execution

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

time of the simulation. The great advantage in sharing the execution between N
processors stands in the possibility to achieve a theoretical maximum speed increase
of (Amdahl’s law applied to parallelism)

1
compared to a single processor run, where F is the portion of the code that can be
parallelized and 1-F the part that remains sequential.
One more advantage resides in the possibility to allow a particularly big execution
to run: if limited to a single computer, memory may not be enough to support the
execution of that particular run, while distributed execution allows the exploitation
of a hugely bigger pool of memory.
A second motivation is the necessity to build a big cooperative simulation envi-
ronment starting from several different simulators: this necessity can be found for
example in military training simulators, flight simulators and various other models
where personnel need to train for hypothetical scenarios and situations.
Recently, this kind of simulations has spread into different scopes in modern society.
In both military and infrastructure simulations, it is far more convenient to create a
bond between existing simulations than to create a brand new one within the context
of a single software. Simulation distribution allows personnel to operate remotely
through internet and cuts lot of the costs; at the same time, high performance simu-
lations have now the possibility to execute on multiprocessor computers situated
in a single cabinet or in a room, as proximity is needed to remove the inefficiencies
caused by the delay that occurs during remote communication between processors.
The terminology may be confusing: the term "parallel simulation" was once used
to qualify simulations executed on a tightly coupled parallel computer, while "dis-
tributed simulation" was about physically distributed simulations; with new com-
puter paradigms (e.g. clusters of workstations or grid computing) the distinction
became less clear. From now on, "distributed simulation" may refer to both.
One more paradigm is sequential simulations and implies a single-threaded exe-

cution.

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

1.1 Discrete-event simulation

Discrete-event simulations (DES) manages the execution of the model as a sequence
of impulsive events, where every event occurs at a certain time instant and nothing
occurs between two of them.

Traditionally, discrete-event simulations employ an inherently sequential algorithm,
but large simulation models are limited by this sequentiality because of the limited
amount of computing resources which are exploited. An interesting overview by
S.Robinson [2]] describes DES as one of the most popular modeling techniques that
has spread in the '50s and kept evolving until today, where it is applied in visual
interactive modeling, simulation optimization, virtual reality, distributed simulation

and the worldwide web. DES features the following characteristics:

e Time in DES advances following two possible approaches: fixed-increment
time progression, in which time is divided in a series of fixed intervals and
the state is updated basing on activities happening between these time slices,
and next-event time progressing, the most used as typically runs much faster,
in which the simulation time jumps between the timestamps of the processed

events.

o A system state is needed to keep track of the main properties of the model
by keeping a set of explanatory variables. One node can change the current
state by processing events, and generate new events destined for other nodes
in the system as a consequence. Fan-out is a messaging characterization to

manage the quantity of events injected inside the system.

e In DES, a clock is used to keep track of the current simulation time by taking
into account the instantaneous "hops" caused by events processing.
Every event is timestamped so that the system evolves by processing the events
in their timestamp order and it’s forbidden for DES models to generate events
in the virtual past.
Time is measured by whatever measure unit is chosen by the simulation
designer. At least one pending event set is required to store and keep track
of all those events that are waiting for their turn to be executed. As already
stated, every event has his own timestamp and must be executed according to

a timestamp-based chronological order over all events.

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

Usually, these sets take the form of priority queues sorted by event timestamp:
the events are inserted in the queues in the order they arrive, but are always

picked in strict chronological order.

e The simulation begins with an initial state and some default starting events as
input; processing these initial events triggers the generation of more events to
be injected inside the system. When new events arrive into the input channel
of a node, the node itself updates its output and generates new events to be

sent to the nodes in its fan-out.

e Ending conditions are determined by the designer, since the simulation may
run forever as it could be a model of a physical system. Typically, parameters
that determine when simulation should stop are (i) time (i.e. "at time ¢ simu-
lation must stop"), (ii) number of processed events and, generally speaking,
(iii) when a specific event occurs (e.g. measure x is greater than a value v or

whatever condition over the state, even more complex than this).

e The main loop of the execution is the core of the simulation and repeats the
following steps until one of the ending conditions is satisfied.
During the first step the "next" event to be processed is picked.
Second step sets the clock to the next slice or to the next-event time, basing
on the "time" pattern chosen.
Third step executes the next event and removes it from the event list.
Last step carries out the message delivery procedure that takes the messages

to their receivers.

10

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

1.2 Parallel discrete-event simulation

Parallel computing is a computation technique where processes calculations are
carried out simultaneously on different processing units, for example by splitting
large problems into smaller ones. Parallelism has been intensively used in high-
performance computing in the past, but now is one possible answer to a variety of
physical constraints, such as power consumption, that have become a concern for
computers in recent years. Power wall and memory wall [3]] are two problems that
affect evolution in computer infrastructures and that need to be faced. Power wall
refers to the theoretical peak of power that a system can sustain: miniaturization
of transistors is leading to an extremely high density of them and, consequently,
even if modern productive processes achieved a very low electricity consumption
over single units, the huge number of simultaneous switching of these transistors
causes a tremendous increase of the temperature: more and more expensive cooling
systems are asked to keep the hardware at a proper working temperature, a task that
is getting very hard to accomplish. In extreme cases, CPU throttling is an automatic
system that reduces operating frequencies to avoid damages to the hardware caused
by high temperatures.

Memory wall, on the other way, was initially theorized in 1994 by Wulf and McKee.
They predicted that sometime in the future, RAM won't be fast enough to keep up
the pace of CPUs frequencies; that means that program execution time will depend
almost entirely on the speed at which RAM can send data to the CPU. Linked to the
memory speed problem, the increase of data size also requires bigger and bigger
size of memory over time, and this is actually a different limit to be faced. With
these two problems to deal with, distributed execution in general (and PDES in
particular), can lighten the weight a single processor must stand by distributing the
load of a single execution into many processing units, may they be cores, sets of
CPUs or cluster of machines. At the same time, the use of many distributed devices

allows systems to access a much bigger pool of memory.

11

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

1.2.1 Introducing PDES

Many fields of application of DES include real-world scenarios, such as engineering,
computer science and military applications.

Parallel Discrete Event Simulation, or PDES, is the parallel (and/or distributed)
execution of DES simulations and responds to the always growing necessity to
optimize time requirements of such fields of large-scale simulations, other than try
to find a solution to problems like "power wall" and "memory wall".

The introduction of parallel computing in DES implies the use of multiple processes
or threads, assigned to different CPUs, to perform a single simulation. Of course,
the final goal of this distribution is to reduce the execution time and increase the
scalability of the simulation.

The infrastructure in which the simulation runs can be divided into two more

categories.

e Shared memory systems (Fig. [1.2]), composed by a group of CPUs that share
a common memory, are the easiest to implement since communication between
different processors is performed on the same memory but, at the same time,
contention over shared resources may limit the scalability of the application

and introduce synchronization problems.

CPU CPU CPU

cache

/O
devices

Figure 1.2. Shared Memory Machines

12

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

e In a distributed memory system (Fig. [1.3), the memory is associated with a

set of processors which are only able to access their own memory. Many refer

to this kind of architecture as a "multicomputer", since the parts that compose

the whole architecture are themselves simple computer systems, complete

with processor and memory.

CPUs can only operate on local data, so it’s harder to grant synchronization: a

message-exchange protocol must be established to regulate the traffic between

nodes, keeping into account that external factors, such network delays, may

affect the causal consistency over the delivery of messages.

communications
controller

communications
controller

e

Figure 1.3. Distributed Memory Machines

Distributed Shared Memory (DSM) architectures implement features of both the

previous architectures, where physically separated memories appear to the system

as a single logically shared address space. Multiple independent nodes have their

own memory connected in a shared interconnected network.

The synchronization protocol is invisible for the developers when implemented in

an operating system but not when implemented at application level. Actually, in

PDES implementations, communication is performed using message passing. The

goal of a DSM system is to apply the shared-memory paradigm to a system with

physically distributed memory.

DSM systems for PDES have been first studied in [4]].

13

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

1.2.2 Implementation of synchronization

Thread synchronization is the mechanism that grants two or more threads or pro-
cesses not to incur into simultaneous execution of some critical section of the code.
Control over accesses on those section is performed by synchronization techniques
that regulate the flow: basically, when one thread executes the code inside a critical
section, the other threads should stop the execution and wait until the previous
thread finishes: this is called "mutual exclusion". Lack of control techniques over
critical section accesses leads into race conditions where the values for variables
may vary in unpredictable ways, basing on the order the threads access to sensible
code. Bad synchronization over threads is the origin of many issues such as the

followings:

e Deadlock is a state of the computation where every member (i.e. thread)
stops the execution waiting for some other member to complete a task, such
as sending messages or releasing a lock; this happens when the state of a
process is unable to change indefinitely because resources it should access to

are always under use.

e Starvation happens when a process can never obtain access over a shared
resource required to continue the computation: other processes may deny
access as consequences of errors in scheduling or in the mutual exclusion

algorithm.

Among all the alternatives, there are three main ways to implement synchronization

over a multi-processes algorithm.

e Spinlock: before accessing a critical section, the processor checks a flag that
states if a concurrent process already accessed that area and is still in it; if
so, it will wait until this process eventually leaves the critical area and the
flag is restored, by spinning in a loop and continuously checking if the flag
variable changes (busy waiting). Busy waiting is the continuous control over
a particular condition (or a series of conditions) to determine if a certain value
has changed. Of course, accesses to flags need to be atomic (i.e. to grant
integrity, contemporary access by concurrent threads to the resource must be

avoided).

14

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

e A barrier is a synchronization method applied to a group of threads or pro-
cesses where a process (or a thread), once incurs in a barrier mechanism, must
stop the execution and wait until every process or thread gets into that same
part of code.

Barriers may be required in cases where particular areas of the code can be

executed only after all the threads performed some required action.

e A semaphore is a structure that controls access to common resources. Every
semaphore has a fixed value that says how many processes can enter the
critical area. Every time a process requests the access into a section controlled
by a semaphore, it checks the counter value: if it is 0, the process must wait,
differently it decreases the value by some amount (wait operation) and enters
the critical section. When critical operations are over, the process exits from the
semaphore-controlled area and increases the value by some amount (signal

operation).

15

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

1.2.3 The synchronization problem: stragglers

Due to the parallelism nature and various external factors such as network delays,
the messages exchanged between threads risk to arrive at their destination without
respecting the causal order in which they are supposed to be processed; that means
that actions may be executed in the wrong order.

If the timestamp of the message is in the local past once it arrives at destination, it is
called a "straggler message" (Fig/l.4]). The system is no longer in a consistent state
and needs to be brought back to a previous "safe" state undoing the effects caused
by the execution of events made out of the causality order. The overall procedure is
called "rollback". On the other hand, conservative synchronization approach aims

to completely avoid violations on local causality constraints.

Execution Time

Message

LP; 6 [9 | 15

/ Execution Time
Straggler Message

Timestamps
Message

LP, 5 11

| 17

Execution Time

Figure 1.4. The Synchronization Problem

1.2.4 The local causality constraint

As concurrent processing may lead into different errors, PDES requires strict controls
over the synchronization of the entities (LPs) in order to grant the correct results.
Synchronization between LPs is violated if a LP receives a straggler (i.e. an event
with arrival time smaller than the current LP clock time) and such violations are
known as "causality errors". There’s a single necessary and sufficient condition
that needs to be satisfied in order to ensure synchronization: the "local causality

constraint". This condition is respected by a discrete event simulation consisting in

16

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

LPs that communicate only by exchanging timestamped messages, if and only if
each LP processes events in non-decreasing timestamp order.

To satisfy the local causality constraint, many different synchronization techniques
have been designed, which generally can be split into two main categories: con-
servative, which are designed to avoid any kind of causality issue; and optimistic,
which don’t prevent causality conflicts from happening, but implement a recovery
pattern to restore the system from inconsistent states. In [5] there’s a review of the
classical and recent efforts in the field of parallel and distributed synchronization
mechanisms. Smallest time-stamp first(STF) is a scheduling strategy that could be
applied to PDES that processes events in increasing order of timestamp: picking
messages in the correct order is crucial in terms of local synchronization, as messages
coming from a “virtual past” can cause conflicts and causality errors into the model

if those singularities are not correctly managed.

1.2.5 Conservative and optimistic synchronization

The nature of PDES itself makes it impossible to find a general solution that puts
an order to sequence of instructions and determines which computations must be
executed first respect to the others.

Two possible synchronization schemes have been introduced to make distributed

simulation respect the local causality constraint:

e Conservative synchronization protocols are about avoiding any kind of causal-
ity error. Nothing is processed as far as it is safe to continue the execution by
checking the processing status of all the events that could affect the execution
of the current event. In brief, causally linked events are never processed in the
wrong order and this is achieved by using a combination of lookahead and
barrier-synchronization strategies. Lookahead could be informally defined as
the skill to predict the future, but Fujimoto in [[6]] defined it more precisely: a
LP is said to contain a lookahead of L at time 7' if it can schedule events with

timestamp at least 7" + L.

e Optimistic synchronization protocols do not care about possible causality
conflicts the execution may encounter. Once errors are a-posteriori detected, a

series of procedures bring back the system into a consistent state (i.e. rollback).

17

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

The first approach ever introduced is the conservative one: as already stated, the
main concern is about determining when an event is free to be processed, and effi-
ciency mainly depends on how good the lookahead strategy is.

Briefly, an event E; with timestamp T, can be processed only if it’s sure that not a
single event E, with timestamp smaller than T; will appear anytime in the future.
Execution of processes with events that are not “safe” must block until the safety
condition is respected: too many blocks can lead into a deadlock, if not correctly
managed with deadlock avoidance mechanisms, and this is a serious concern for
conservative approaches.

Due to the necessity to respect the causal order of the messages” timestamps, many
conservative algorithms are prone to deadlocks. Null messages were created with
the purpose to avoid deadlocks by exchanging dummy messages between LPs.
Dummy messages are created only for deadlock avoidance and do not perform any
simulation activity as they may be considered as a promise made by the sending
LP to the receiver that every message sent after that null message will never have a
timestamp bigger than the null message’s one. The receiving process may use this
information to decide which already received pending messages may be processed.
Processes can communicate with each other to determine a global lower-bound over
the timestamp of the next outgoing message on each output link.

Null messages appear to the LP like ordinary non-null messages, except no activity
is simulated by their processing. Null messages are introduced by Fujimoto in [[7]]
and [8].

We will not go deeper with the conservative approach since the higher grade of
parallelism exploitation makes the optimistic approach the only possible choice for
the purposes of this work: asymmetry in PDES makes sense only with an optimistic

synchronization scheme.

18

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

1.3 Optimistic Synchronization

Runtime environments based on optimistic synchronization do not care of any pos-
sible causality error as they simply keep processing events until a conflict happens.
It may seem to be a risky approach, but it allows the simulator to run in situations
in which a causality error is theoretically very likely but, in the end, nothing bad
happens. Anyway, the simulator incurs into inconsistent states, that’s why designing
a good recovery algorithm is the main deal of an optimistic mechanism. Optimistic
synchronization borrows several concepts from the broader field of speculative
execution.

Speculative execution is an optimization technique in which, in order to improve the
overall performance, some action is performed well before all the inputs required
to make a decision are available. A classic example is branch prediction in CPUs,
where execution paths are chosen basing on which ones are likely to be required
soon; data flow analysis might optimize the order in which instruction must be
processed for an optimal execution. Predictions are often correct and the gain in
terms of performance is real.

Anticipating instructions execution may allow CPUs to prevent delays, reduce total
execution time and improve overall performance. The results may be discarded if
eventually the guess was wrong: all the pipeline is flushed, the state of the program
is rolled back to a certain previous state and the execution on the correct path is
re-started. Speculation is employed in various fields, including branch prediction
in pipelined processors, prefetching memory and files, and optimistic concurrency
control in database systems. Another methodology based on speculation is that
of "transactional memory". Transactional memory is an approach that promotes
transactions rather than locks to synchronize parallel processes with shared memory.
A transactional memory system can be implemented both in hardware and software
and guarantees that, even if transactions in areas that usually would be managed
by a lock are executed in parallel by different threads, the final result would be
equivalent to a series of sequential operations for the same area.

Operations are performed by continuously monitoring the concurrent access to
transaction variables: if a conflict between two transactions accessing the same
variables is detected, it will cause one of the transactions to abort and rollback to

start the procedure anew.

19

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

One of the most important goals is the increase of parallelism when a bunch of
operations access some data structure: a lot of them might read to it, actually just
few of them modify the data. Lock based synchronizations typically require to
assure that the risk to incur in any sort of conflict is totally avoided, allowing only
sequential runs to assure data integrity. As far as some process doesn’t write to the
data structure, transactional memory allows most of all the operations to run in

parallel.

1.3.1 Time warp

Time warp is probably the most used optimistic protocol for PDES and it relies on
the concept of Virtual Time.

In case of straggler messages (Fig[I.4)), a “rollback” procedure manages to bring the
system back into a consistent state by undoing any effect caused by the out-of-order
execution of events. As mentioned, there are two possible effects that the processing
of an event may cause: modification of the state of the logical process and/or sending
of event messages to other processes.

Rollbacks work by bringing back the LP clock to a virtual time that comes before
the straggler’s timestamp and by restoring the LP state into a previous one that
is safe. The appropriate previous LP state is restored by picking it from a list of
checkpointed states; safe messages that come before the new bound and that need to
be reprocessed are immediately reprocessed, while the others are erased by sending
the matching antimessages.

Negative messages, also known as anti-messages, are introduced into the rollback
mechanics to manage messages that need to be discarded. Every negative message
has a corresponding positive message, where the positive one is always an event
that arrived to the LP inbound channel with timestamp bigger than the straggler
message’s one. The work in [9] suggests the use of reverse computation to reduce
the required overhead for state saving in PDES, defining an approach based on
reverse event codes and demonstrating performance advantages of this approach
over traditional state saving for fine-grained applications.

The key property that reverse computation exploits is that most of the operations that

modify the state variables are easy reversible and such operations requires no history.

20

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

Only the most current values of the variables are required to undo the operation.
At the end of the rollback procedure, when the LP’s state is restored to a consistent
one, a negative message is received by the LP and a match is found between the
stored message that was previously received: both negative and positive messages
are canceled. This kind of time warp optimization is known as “lazy cancellation”:
before an antimessage is sent, the process resumes execution from the new LVT and
waits to see if the re-execution of the events regenerates the same message; if so,
there’s no need to cancel the message.

Even if it may look like there’s the possibility for the process as a whole to stop
advancing, it can be shown that the execution always goes on: all the LPs that take
part in the computation are asked to periodically find an agreement upon a common
time barrier (i.e. the global virtual time -[1.3.T)). All the processing made before the
agreed time barrier is considered to be safe. The STF scheduling mechanism always
picks the LP having the lowest "next" event’s timestamp on a single node, yet none
of those timestamps ever come before the global virtual time, that is a value that
can only advance along the computation. Anyway, an overwhelming amount of
rollbacks may drastically slow down the progresses. In Fig[1.5)is depicted a scheme

of the entire recovery procedure.

LP,

, | 3 6 | 15'|

Execution Time
Rollback Execution:

recovering state at
Message VT 6

O B g
/ Antimessage
Straggler Message

Rollback Execution:
recovering state at

Execution Time

Timestamps

Message / LVT 5
LP, s 11 17 |
L= e / L Execution Time

Antimessage
reception

Figure 1.5. Time warp: State Recoverability

21

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

Global Virtual Time

A local time (called Local Virtual Time or LVT) works as a clock and states how far
the computation is gone for a particular entity. Generally speaking, the event with
the smallest timestamp among all the unprocessed or partially processed (in transit)
events in the simulation is considered to be safe.

In time warp this timestamp is better known as “Global Virtual Time” (GVT) and
works like a barrier: it is impossible for a LP to receive a message with a timestamp
smaller than the GVT and not a single event that comes before the GVT will ever
be rollbacked. For this reason, operations that are impossible to be rollbacked

(e.g. outputs) are required to wait that the GVT overcomes the respective events

timestamp.

Fossil collection

As GVT keeps advancing in time, more and more messages fall behind that virtual
line that separates messages that come before the GVT from those whose timestamp
is greater. To save space and avoid lack of memory, a “fossil collection” mechanism
reclaims memory by deleting messages that are no longer needed to be stored and

commits irrevocable operations.

1.3.2 Performance of optimistic synchronization

Time warp succeeded in speeding-up various real-world simulation problems.
The areas that have benefited the most are many: battlefield simulations of military
purposes, communication networks, simulations of digital hardware, biological
systems and many other physical phenomena simulations.

Richard M. Fujimoto measured the performance of time warp by using a workload
model called “parallel hold”, or phold [[10]. The results showed that time warp
increases performance in all cases, but improvements are proportional to the grade
of parallelism that the simulation can offer.

Tests focused on two different settings: the first one involves the use of a bigger
grade of parallelism than the number of available processors, in the second one the
grade of parallelism is lower than processors. In none of those cases there’s the

need for additional information about the state of the execution such as a wider

22

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

use of lookahead. Anyway, the overhead required by state-saving may lead the
simulation into a loss of performance: this is a problem that could be addressed
by implementing hardware support for state saving [[11]], or by ensuring that the

granularity for the event processing pays off the state management overhead.

1.3.3 Asymmetry in time warp

A typical parallel implementation of the time warp paradigm implies a common
control flow for all the threads involved in the execution. This means that every
thread is supposed to take care of both housekeeping tasks and event processing.
In [[12] is proposed an alternative asymmetric implementation of time warp: threads
are split in two different incarnations: a portion of the pool runs less critical tasks
while more critical ones (such as "housekeeping operations") are assigned to the
remaining threads. Housekeeping operations include rollback (with state recon-
struction), communication management, GVT computation, fundamental to avoid
waste of speculative computation, and fossil collection, used to remove from memory
messages that are no longer needed. This discrimination between the roles assigned
to threads, opens to a wide range of possibilities that space from power-capping,
as discussed in [[12]], to load balancing techniques over the assignation of a proper
incarnation to every single thread. This paper puts the basis of the work presented
on this master thesis.

One of the most important aspects to face in optimistic systems is the evaluation of
execution time spent for housekeeping procedures.

Overhead over the critical path is also a concern, since synchronization between
threads requires lots of resources to properly manage communication. If the ap-
plication provides only a limited amount of parallelism in relation to the number
of available processors, it is very likely that the execution will incur a considerable
number of rollbacks. Researchers showed that such behavior is not relevant and can
be bypassed by applying some basic corrections: the cost of rollback needs to be
maintained sufficiently low.

A way more serious problem stays in the need to save periodically the state of each
LP. These problems affect the performance at many levels: finding a particular state

in a complex data structure used for dynamic allocation may take more time than

23

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

expected, and this can increase significantly the overall time passed performing
rollback procedures.

Jefferson [[13] has shown that, if needed, space can be reclaimed back by using “in-
duced” rollbacks, named "cancelbacks", that fit the space required by the simulation
execution basing on the available amount of memory.

An interesting protocol designed by S.R.Das and R.M.Fujimoto [[14]] showed a possi-
ble way to exploit cancelbacks to solve lack-of-free-memory problems for low ends
machines in order to maximize the performance.

In low level languages, where manipulation of pointers is explicit, wrong memory
accesses may lead to some unwanted overwriting: time warp must deal with this
risk, preventing illegal pointer usages that may lead into runtimes errors, and wrong

computations from overwriting crucial memory areas.

24

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

1.3.4 The choice of asymmetry

Asymmetry for time warp implementation in PDES has been a design choice for
this work because it opens to a wide variety of new possibilities.

Though complexity raises, especially due to new synchronization requirements, if
threads are split into different classes with different workflows and computational
weights, the bias of the execution can be changed at will, both "manually” or from
auto-adjusting mechanics. As already discussed, a part of the threads pool is as-
signed to maintenance (or housekeeping) tasks related to the rollback procedures
that time warp needs to manage; as their complexity is prominent if compared to
simple forward processing, it is convenient to separate forward execution from all
the rest and arrange the sets in two different threads classes in order to gain a better

control over computational resources assignation.

25

26

Chapter 2

Related Work

Alfred Park and Richard M. Fujimoto in [[15] introduce a client/server approach
for parallel simulation, where clients repeatedly download state vector of LPs and
associate messages from a remote server (master); there are numerous advantages
over conventional PDES systems, such as support for execution on heterogeneous
distributed computing platforms, load balancing and simple fault tolerance.

There is a prototypical implementation called "Aurora Parallel and Distributed
Simulation System" that aims to fill the gap between general purpose distributed
computing project that operate on the principle of individuals donating spare pro-
cessor cycles toward a common goal and PDES, making use of web services. Because
of the "online" nature of Aurora, node failures require the implementation of a check-
pointing system.

Aurora applies the master/worker paradigm exploiting the advantages of web ser-
vices: logic processes that compose the parallel simulation program communicate
by exchanging timestamped messages and are organized in clusters in "work units".
A single work unit is instantiated by the server-side application containing simula-
tion variables, an event list and a I/O message buffer associated with that work unit.
The buffer is a table of messages destined for LPs contained in the work unit that
have been received from other LPs, and each message is wrapped in a data structure
providing information such as the message timestamp, destination and size of the
packed message.

Once a work unit is successfully executed, the Aurora LP manager updates the state
vector of the LPs contained in the work unit stored in the server, and the messages

packed in the output buffer are sent to the right input buffer of the receiver work

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

units; memory is freed during this process.

Worker threads (or processes) perform the necessary computation on these work
units and return results to the master, while master thread controls the global avail-
able work pool and manages the overhead associated of each worker. The workers
are implemented by Aurora clients that (i) pull the necessary information from
the server through web service requests, (ii) execute the implemented simulation
model, (iii) upload the state vector and message buffers back to the master server
after execution has been completed (according to some criterion).

The work presented in the thesis has some similarities with Aurora, yet there are
a few considerable differences. The asymmetric simulation implementation does
not rely on a web-service infrastructure as only local simulation instances have
been tested at the current state; in later releases, tightly coupled parallel computer
communication based on MPI may be implemented. As it will be later discussed
in details, the master/worker paradigm has been implemented differently as the
pool of threads is dynamically split into different classes: processing threads and
controller threads. Controller threads manage the maintenance work (rollback,
logging, fossil collection) and only one of them is considered as the "master thread",
namely the thread "0" out of n-1. Master thread has more tasks to perform, but most
of the assignments are shared with the other "non-master” controller threads. Of
course, both the simulations rely on optimistic time management, so message ex-
change may incur in causal conflicts that need the be recovered. One of the greatest
disadvantages of developing a PDES framework under web services is the inherent
low performance: the work presented in this thesis is basically performance-oriented
exploiting the asymmetric nature of parallel threads, even if limited to a single local
machine.

The asymmetric master/worker paradigm implementation of PDES has been further
deepened in [[16] and various proposals for performance improvement, such as work
unit caching, pipelined state updating, expedited message delivery and PDES-based
scheduling policies have been proposed.

Differently from a non-parallel infrastructure, optimization techniques are required
for an efficient M/W implementation for PDES. The implementation presented in
this work will make use of its own optimization techniques that best fit to the soft-

ware architecture.

27

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

The work in [[17]] proposes an interesting runtime system that detects and toler-
ates asymmetric races, a problem in which asymmetric runs very often incur. Data
exchange between master/worker threads is crucial: shared variables are locally
copied anytime a thread enters into a critical section and, in case some sort of conflict
change in shared data is detected after the completion of a critical section, modifica-

tions over those variables are later notified to all the participants.

The work in [[18]] addresses the same problem and proposes a synchronization
mechanism that allows non-dominant processes to push to a dominant process
the access to the shared values in the critical section via a set of message-passing
mechanisms instead of waiting to be granted access to the shared resource.

The term "asymmetry" in this case is mainly referred to the privileges the "dominant"
thread has comparing to the others, as all the critical operations are performed only

by it.

This last two works introduce different approaches for synchronization manage-
ment over critical area access. Further studies over the implementation presented in
this work may be made in this directions, possibly achieving consistent improve-
ments on time wasted on locks. Currently, the asymmetric implementation provides

a mixture of synchronization techniques as spinlocks and barriers.

28

29

Chapter 3

Asymmetric Time Warp

As anticipated in the chapter 1, the asymmetric approach for PDES has been chosen
to achieve better results in terms of balance over different classes of tasks.

Optimistic mechanisms require a huge load of work to ensure consistency on the
simulation, and asymmetry over threads might allow a considerable improvement
of adaptability over different tasks and load balance. In particular, separation be-
tween tasks allows the removal of the housekeeping operations from the critical path
of the computation. In this chapter we initially focus on architectural differences
between symmetric and asymmetric PDES architectures, comparing improvements
and drawbacks that each one can offer. After that, a possible implementation that
takes into account all the problems that need to be addressed for such architecture is
introduced. The asymmetric implementation analyzed in this work is based on the
observations made in [[12]]. The same paper theorizes an architecture for asymmetry
and proposes a preliminary version of the implementation; while the core of this
work puts its roots in it, many changes have been made in both the theoretical model

and in the code implementation.

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

3.1 Asymmetric time warp architecture

Implementation of asymmetry in time warp is introduced by discriminating all the
tasks performed during the execution into two different classes. Those two classes
of operations are assigned to distinct threads that are indeed "asymmetric", as they
perform different operations in terms of computational weight and number/typology

of the operations. Each class corresponds to a different thread incarnation.
e Class-1: Forward mode processing of simulation events;

o Class-2: All the rest: GVT (Global Virtual Time) computation, fossil collection,
state saving, rollback, scheduling events to be processed in forward mode,

message exchange, and so on

Class-1 tasks are assigned to so-called "Processing Threads" (PTs) and Class-2 tasks
are assigned to "Controller Threads" (CTs).

Processing threads do all the housekeeping work and their execution is crucial to the
progress of the asymmetric synchronization dynamics: if they don’t act reactively,
there’s a high risk to waste speculative computation.

We refer to Neores as the number of available CPU-cores in the system in which the
simulation runs; Ncr and Npr represent the number of used CTs and PTs respec-
tively. Of course, the relation Ncoes = Ncr + Npr is always valid.

One more fundamental rule holds in the design: Ncr < Npr, and suggests that
usually there’s a smaller number of threads running the most critical housekeeping
tasks.

Every CT is asked to manage a subset of the pool of simulation objects, namely the
LPs.

Every LP, according to a partitioning scheme (Fig. .1]), is bound to one and only
one CT and is also associated with one of the PTs that are bound with that CT. In
particular, CTj associates its LPs only with its bound PTs, so a partition p; of all the
LPs managed by CTj is bound to a single PTj, meaning that a certain LP can be
scheduled only by a single PT: this arrangement assures that no two different PTs
can ever schedule the same LP, preventing any conflict on its state. Both PTs and
CTs will need to alter the data structures used to manage their associated LPs and
even if the tasks belong to disjoint classes by design, still they may need work on

the same LP memory image.

30

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

T 1L 11 1]
T 17 1T 1

Figure 3.1. The LP partitioning scheme

A CT and its PTs live in the same machine and both may require memory write
operations on a particular LP: PT is in charge of manipulating the state during for-
ward execution of an event, CT can require the access to the memory image during
a rollback procedure in case the state must be restored. The use of shared-memory
multi-core machines allows CTs and their bound PTs to have always access to the
shared data related to the simulation execution.

The following architectural details take their base organization from [[19]].

Every LP has its inbound events queue, where events picked from the logic pro-
cess’ bottom half (i.e. a FIFO queue with the inbound events) are sorted by their
timestamps. CTs should manage scheduling and the insertion of those events into
the proper input port and, in case, discard those events that received a matching
anti-message after a rollback procedure. Anti-messages are a special kind of events
(i.e. "negative events") used by the rollback mechanism to tell which messages
should be canceled from the target LP’s input queue. Management of the queue
that keeps the LP’s checkpointed states is one more task left to the CT: snapshots of
states are taken and logged into this queue when required.

Communication between CTs and PTs is managed via the notion of ports, a bidirec-

31

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

tional communication structure working on a shared memory support that multi-
plexes data flows. Communication that flows from the CT to the PT is multiplexed
in two channels with different priorities (i.e. low and high) and is referred as input
port or channel. A single output channel manages communication flowing from
the PT to the CT and low priority input channel receives events to be processed in
forward mode.

CT implements a scheduling mechanism that cyclically picks the event to be pro-
cessed with the lowest timestamp from the LPs” event queue (Smaller Timestamp
First -STF- policy) and sends it to the low priority input channel of a bound PT.
STF grants that events are picked from a LP according to their timestamp order,
excluding a few particular cases: (i) the arrival of a straggler message reveals causal
inconsistencies, or (ii) the cancellation of some event in the queue, or (iii) the LP
produces a new event for itself with timestamp lower than ones already in the queue.
If the execution of an event produces events, those new events (if any) are posted
by the PT to its output channel to be later extracted by the bound CT; if the receiver
LP belongs to the current CT domain, events are put in the event queue of that LP,
otherwise are sent to the appropriate CT.

There is no blocking synchronization between the two threads for accessing the I/O
ports, meaning that the CT is not supposed to wait the production of outputs from
the PT he just sent some messages to, instead is free to manage other PTs that are

bound to it.

3.1.1 Ensuring consistency

The double priority structure in the PTs” input ports has been designed to manage
cases in with causality is compromised and inconsistencies are detected in already
scheduled events (i.e. that were previously inserted in the low priority input port).
The detection of a straggler message starts a series of procedures involving state
restoration, out-of-order messages removal from PT input port and possible rollback
if some unwanted processing has already been made. High priority port is designed
to receive messages that are created by the CT with the only purpose of warning
the PT in case the simulation ran into one of the previous scenarios.

When the scheduling routine notices that one of the bound LP needs to be rollbacked,

a special procedure sends to the LP’s assigned PT a couple control messages: this

32

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

kind of messages created inside the simulation have just maintenance functions and
are not involved in forward execution.

A control message, better known as "notice", is sent to the high priority input port;
immediately after one more control message, the "bubble”, is sent to the low priority
input port. The two control messages are initialized with the same mark (i.e. a
non-decreasing object identifier) and with the timestamp of the new "last correctly
processed" event of the LP to be rollbacked.

The PT’s processing routine in charge of picking messages from the input ports
always check first if any high priority message (i.e. a "notice") is waiting to be
extracted. When a "notice" high priority message is picked, all the messages in the
low priority port with same receiver as the "notice" and higher timestamp need to
be discarded because are no longer consistent; others are free to be processed. The
procedure keeps extracting low priority messages until at some point the "bubble"

message appears.

PTi

CTJ Eventflow | — - - - - — — = =
Low priority : :D]:D] :
| |
| |
Control flow [:[D] 1
High priority linput | I
R S : New events
I . fl
T
Loutput '
PORT

Figure 3.2. The ports

Bubble and notice messages match if and only if they have the same mark. When the
routine eventually incurs into the matching "bubble", it means that the "cleaning"
procedure is over, the port is free from out-of-orders messages and the CT can
proceed with the next phases of the rollback procedure for the LP.

The PT notices its CT that the "bubble" and the "notice" matched by sending back

33

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

one more control message, known as "ack", through the output port; when the pro-
cessing thread receives such type of message, it continues the restoration procedure
for the LP.

Fig[3.2] depicts how events flow into the PT’s input and output ports and the pseu-
docode of the main routine performed by the processing thread is shown in the
algorithm 1. Messages that follow the bubble are safe by design, since the port
is organized as a FIFO channel and messages are always extracted by the LP and
scheduled in (virtual) time order. It is possible that the only out-of-order messages
are the ones standing in the CT’s input port: this means that the last processed event
is still compliant with the casual order and state restoration is not required.
Asymmetry on simulation threads may cause overlaps between distinct rollback
procedures for the same LP: the risk is that an "ack" message may be mistakenly
confused as the response to a more recent causality conflict. Measures have been
taken to solve this issue by splitting the rollback procedure into various phases
organized in a finite state machine, this should grant that conflicts between two or

more different stragglers are avoided.

34

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

Algorithm 1 Asymmetric Process
while there’s a rollback NOTICE in the hi priority channel do

hp_msg < pick a message fromthe hi priority channel
while true do
Ip_msg < pick a message fromthelopriority channel
if I[p_msgisarollback BUBBLE then
send rollback ACK
elseif Ip_msg'stimestamp <NOTICE's timestamp || dif ferent message receivers
then
process lp_msg
else
discardlp_msg
end if
end while
end while
Ilp_msg < pick amessage fromthelo priority channel
if [p_msgisarollback BUBBLE then
wait for the matching NOTICE (external algorithm)
end if

processlp_msg

35

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

The finite state machine depicted above shows the states of a logic process during
the rollback signaling phase in which the processing thread is asked to empty both
the high and the low priority channels. This is a control system required to avoid

unwanted rollback instances overlaps.

o IDLE STATE: is the starting state, where a logic process should stay when no

rollback procedure is required.

e REQUESTED STATE: a straggler message has been picked up during the LP’s
bottom half processing phase and LP needs to be rollbacked. Signaling proce-

dure will actually begin when the LP is scheduled by its controller process.

o PROCESSING STATE: the to-be-rollbacked LP has been scheduled and the
couple of NOTICE/BUBBLE messages have been immediately sent to the PT. It
may happen that one more straggler message is received by the same LP before
the "PT channel cleaning" procedure is completed and the ACK message, if
received too late, may be mistakenly confused to be referring to this last request
of rollback. To avoid cases like this, the state goes back to "REQUESTED". The
ACK event has a "rollback mark" that identifies what instance of rollback
procedure the LP is running: once the CT receives the ACK, it first checks the
state of LP, then verifies that the rollback marks match. If the CT finds the LP
in the REQUESTED STATE upon the arrival of an ACK event, it immediately

discards that event since there must be a new ACK arriving. Discarding non-

36

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

completed rollback procedures is possible since new procedures involve at

least the same amount of messages that an older procedure do.

3.1.2 Checkpointing

When talking about task separation, checkpointing is one important aspect and is
crucial for state restoring procedures.

In this time warp architecture, checkpointing is a Class-2 task, so is carried by the
CT: the system periodically takes a snapshot of the logic processes by creating a new
log instance. This instance contains all the crucial information required to safely
restore a previous state of the LP. All those logs are inserted into a queue, ready to

be picked once requested.

3.1.3 Dynamic resources assignation

Degree of speculation is also managed by the CT through a short-term self-tuning
mechanism that decides the proper number of events to be injected into each of the
input ports at every iteration of the scheduling routine. The amount of events to
be inserted in a port at each turn totally depends on the utilization rate of the same
channel during the previous scheduling iterations.

This way, performance is maximized by finding the best trade-off between specula-
tion and efficiency. The equation that regulates the number of events to be added

into a PT input channel at every CT round is the following:
Nevents = current_PT _batch_size — current_PT _port_size

Where the first term represents a dynamic boundary used to put a limit on the
number of messages sent toward a particular PT; variations over this boundary
depend on the utilization rate of the PT’s low priority input channel.

Second term is the number of events that currently are in the low priority input

channel for the same PT.

3.1.4 A comparison with classic symmetric multithread architecture

In a classic multithreaded implementation with no discrimination between roles as-
signed to threads, there’s a considerable smaller amount of elements to be taken into

account. All the threads manage both the scheduling and the processing routines,

37

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

rollback procedures are free from collisions, inter-threads communication is less
complex and there are definitely less race conditions to deal with, so synchronization
is much easier to achieve. Of course, compared to an asymmetric implementation, a
symmetric approach allows a smaller grade of granularity into the simulation.

Asymmetry of threads is the starting point for the purposes of this work, as many

of the features introduced will be exploited to drastically improve performance.

3.2 Dynamic thread role assignment

Asymmetry in threads introduces a discrepancy between the load the two incar-
nations must carry: CTs are in charge of governing the lifetime of the application
(in terms of scheduling and correctness control), from all perspectives (energy
efficiency, performance, self-tuning, etc.) while PTs are much simpler and process
units of work, so it is very likely that input ports remain empty due to the fact that
the CT could be running housekeeping routines instead of sending to the PT new
events to be processed. This is the case in which thread incarnation balancing could
be useful: dynamism in thread role assignment is meant for a general purpose
simulation, so the auto-adjusting balance system adapts the simulation settings for
different workloads.

So far, we have discussed about features, advantages and drawbacks of the asymmet-
ric implementation of PDES applied to an existing parallel/distributed simulation
platform. Asymmetry in an actual run implies some sort of role-assignment proce-
dure during the threads initialization routine; of course the constraints Neyes = Ncr
+ Npr and Ncr < Npr are always valid.

The provisional asymmetric implementation required to receive as input both the
number of working threads involved in the simulation and the number of threads
that would have been assigned the incarnation of "CT"; of course the remaining
threads were initialized as PTs. This working mode obviously lacks any sort of as-
signment criteria but (i) any model that is ran requires settings based on its nature,
so blindly deciding the proportion between PTs and CTs, or empiric evaluation over
running times, are not viable choices; (ii) different time intervals of the simulation
may require a different arrangement between PTs and CTs to improve performance.
Dynamic assignment for thread incarnation was initially not planned: the previously

introduced short-term self-tuning mechanism has a much smaller scope and PTs

38

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

still risked to waste computational time with no events to process in their ports. An
implementation for a long-term self-tuning mechanism for dynamic thread role

assignment in an asymmetric environment is therefore introduced.

3.2.1 How to dynamically assign threads

Every thread is identified by a unique ID starting from 0, controller threads are
assigned to values from 0 to the number of CTs the simulation is running with
(e.g. with 24 threads and 8 controller thread, IDs from 0 to 7 are assigned to CTS,
while IDs from 8 to 23 belong to processing threads). Controller thread with ID 0 is
the "master thread" and has a special role over various simulation mechanics. In
particular, the master thread is in charge of managing all the procedures related to
the auto-tuning procedure to dynamically assign thread incarnations.

PT/CT balancing system is built around a "score" system: every iteration of the
main loop begins with the evaluation of a "score" that is the composition of various
efficiency parameters over the last run of the loop. The score is reset at the end
of the evaluation process, ready to be updated by a series of assessments made
from data and statistics analysis. Score starts from 0 and can assume both positive
and negative values; if score evaluation is made over a positive value, more CTs
may be required, conversely, negative score values may suggest that PTs are not
enough and need to be increased in number. Of course, constraints on the rates
between the number of PTs and CTs are always valid. There is an upper bound and
a lower bound over the values the score can get: if value goes over the upper bound,
threads’ incarnations must be rearranged and, if possible, one of the processing
threads changes his nature into "controller thread". Conversely, if score falls behind
the lower bound, processing threads are increased by one at the expense of the
controller threads pool. This process has some similarities with the "hill climbing"
heuristic search.

Once one of the bounds is exceeded, the threads rearrangement is performed basing
on the new outcomes: simulation is temporarily paused, all the threads receive a
signal and start the "emptying" procedure by processing all the events inside the PT’s
I/O ports until all the channels are empty. Only after all the I/O ports are emptied,
incarnations are reassigned and logic processed are linked to threads following

the new system settings. The execution can now be resumed from the point it was

39

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

stopped.

The following pseudocode shows the score evaluation procedure.

Algorithm 2 Score evaluation procedure

if current thread is master thread then
if SCORE >= higherthreshold AN D it's possible toincrease controllers
then
controller_threads modi fier < +1
else if SCORE <= lower threshold AN D it's possible to decrease controllers
then
controller_threads modi fier + —1
else
nothread balance required
end if
end if

At the end of the evaluation procedure, the modified value is used to determine
the new balance on threads assignment.
The score is the outcome of evaluations made over various criteria: the goal of the
score is to summarize in an indicative value the "health" status in terms of balancing
between threads incarnations.
Different models have different behaviors, so different necessities in terms of balance
between resources. The simulation currently has four criteria to be evaluated, each

one has its weight and its methodology for evaluation.

e The first criterion is related to the overcoming of the upper or lower bound
of the port utilization rate of a single PT. Every time a bound is passed, we can
get hints about the necessity to find a new balance between PTs and CTs. If
the upper bound is passed, it means that the current size of the input channel
must be increased, unless it already reached the size limit: more PTs may be
required.

At the same time, passing some PT’s port utilization rate lower bound can
suggest that one of the PTs is underused and its input port may be getting

empty soon: it can be useful to reduce the number of processing threads

40

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

because events injection from CTs probably won't match the pace of the event
processing rate of the PTs. Anytime a bound is hit, the score is immediately

modified.

e The second criterion is linked to the first but is more accurate: during the
scheduling process, but before the injection of an event into the proper PT,
the CT checks if the input ports of that PT are empty or not. This time,
evaluations are made through an exponential moving average on the number
of times the ports have been found empty.

There are definitely not enough controller threads if ports of whatever PT are
found empty for too many times; this means that the amount of events sent by

the controller threads is not enough to keep all the PTs busy.

e The third criterion is again made through exponential moving average but
this time the matter of the calculation is the bubble turnaround time (i.e. the
interval of time between the instant in which the couple of control messages
notice/bubble is sent to the processing thread and the moment in which the CT
whose PT must be rollbacked receives the acknowledgment control message).
This value in very meaningful since the more time passes between the request
sending and the acknowledgment receiving, the more messages had to be
discarded (or processed) before notice and bubble messages matched. If
average values go over a pre-defined bound, it means that ports are full of
events and rollback procedures drastically slow down, this may cause overlaps
on various rollback instances.

More processing threads may help in achieving faster notice/bubble matching,

in order to speed up the overall rollback procedures.

e The last criterion is the arrival rate of straggler messages: evaluations are
made on the number of LP that picked stragglers during the current iteration
of main loop and if the pre-defined bound is passed, the score needs to be
modified. Evaluation on how many LPs require to be rollbacked out of all
of them is an index that worth to be checked: speculation grade needs to be
decreased to avoid situations in which too many rollbacks can drastically slow

down the simulation, so the better choice is to reduce the number of PTs.

41

42

Chapter 4

Experimental Assessment

The implementation of the asymmetric variant and the self-adjusting balancing
mechanism has been made over a preexisting simulation platform named ROOT-
Sim. In this chapter, the results of a series of runs made with different settings are
shown and discussed to asses our proposal. All the following experimental runs
have been executed on a 12 cores/24 threads CPU machine (AMD Opteron 6174)
with 2.2 Ghz of running frequency, 32GiB of system memory running on Debian
GNU/Linux 9, kernel version 4.9.88-1+deb9ul. For every run, the model used is
based on the "phold" benchmark [[10].

4.1 The ROme OpTimistic Simulator

The ROme OpTimistic Simulator [20] is an x86-64 Open Source, parallel/distributed
simulation platform developed using C/POSIX technology, which is based on a
simulation kernel layer that ultimately relies on MPI for data exchange across dif-
ferent kernel instances. The platform transparently supports all the mechanisms
associated with parallelization (e.g., mapping of simulation objects on different
kernel instances) and optimistic synchronization (e.g., state recoverability).

The programming model supported by ROOT-Sim allows the simulation-model
developer to use a simple application-callback function named ProcessEvent() as
the event handler, whose parameters determine which simulation object is currently
taking control for processing its next event, and where the state of this object is
located in memory. In ROOT-Sim, a simulation object is a data structure, whose

state can be scattered on dynamically allocated memory chunks, hence the memory

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

address passed to the callback locates a top level data structure implementing the
object state-layout.

ROOT-Sim’s development started as a research project, and is currently run by the
High Performance and Dependable Computing Systems group at Dipartimento di

Ingegneria Informatica, Automatica e Gestionale, Sapienza, University of Rome.

Application Level Software

grpcgstxenE . function calls
cheduleNewEven " N
oneur to libraries
A4 !
I Call/Callback Interfaces I Third Party Library Wrappers

L

! ! ‘
Y —, Y
Schedul >]
Intermediate Buffers cheduler DyMeLoR Even'&grr;sse?tate
—_ g
' Y

malloc/free
hook

| Input/Output Queues Manager I

| |

| |

| |

I i |« GVT Manager | | CCGS Manager Output Manager
|

|

| I
|

|
|

A\
Low-Level Allocator |

______________ S =

MPI, Standard Libraries,
and Third Party Libraries

| Remote Messaging Manager I

Y Y
Operating System Kernel I Page Table Manager Module l

Memory Fault

Interception Module

Figure 4.1. ROOT-Sim Internals

43

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

4.2 Parameters

The results discussed in this thesis have been calculated with a combination of the

following parameters:

e LP: the number of logic processes used during the run.

e Loop Duration: for how long the model waits upon the arrival of an event,

before sending a new event (or events) to the simulation.

e Fanout: how many events with different timestamps are sent from the model

to the simulation.

e TAU: it is the average of an esponential distribution used to describe the

interarrival time of events.

e Event Receiver: criterion used to decide which LP is the receiver of a new event
created by the model. Tests are performed according to the following different

running modes: symmetric/asymmetric (auto-adjusting/2/8/12 CTs)

The termination condition is that every logic process must have successfully pro-

cessed at least 2000 events, and runs are always performed with 24 threads.

44

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

4.3 Measurements

4.3.1 First test pool: fixed loop duration, fanout and random LP event

receiver

Fig. and Fig. show the execution time of runs made by keeping constant
the loop duration, the fanout and the event receiver. It is immediately clear that
the number of LPs involved in the execution is extremely important in terms of
execution time. As the number of the LPs increases, the asymmetric structure suffers
when is ran with a fixed rate between PTs and CTs: at a first sight, it may seems that
best results are obtained by just increasing the number of controller threads but,
considering that 12 over a total of 24 threads is, by design, the maximum allowed
number of CTs, it is clear that best performance is obtained by dynamically varying
the PT/CT rate due to some internal dynamics that may require different settings in
different moments of the simulation. TAU variance doesn’t seem to be influencing
results enough to be considered a crucial factor. Anyway, it can be noticed that
the advantages of the auto-adjusting balance system are extremely evident as the
number of involved LPs increases.

The difference between Fig. and Fig. is the loop duration, and the overall
simulation seems to benefit from less channel occupation rate. Anyway, the auto-
adjusting asymmetric simulation seems to work slightly better with a smaller loop

duration.

45

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

800

700
600
500
400
300
200
100
0 -

TAU 15 TAU 5.0 TAU: 10.0
S5

“% “, 2, %, % 2, %%, % 2,
Symmetric mmmm ~ Asymmetric(auto) mmmm Asymmetric(2CTs) mmmm Asymmetric(8CTs) mmmm Asymmetric(12CTs)
Figure 4.2. Loop duration: 15 musec, Fanout: 1, Random LP event receiver
700
600
500
400
300
200
! L L
o ———— EE II —— I I [N | I I
TAU 15 TAU 5.0 TAU 10.0
%, % %, %, %, %, % % .

Symmetric mm— Asymmetric(auto) mmmm Asymmetric(2CTs) mmmm Asymmetric(8CTs) mmmm Asymmetric(12CTs)

Figure 4.3. Loop duration: 135 musec, Fanout: 1, Random LP event receiver

46

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

4.3.2 Second test pool: fixed loop duration, TAU and random LP event

receiver

Fig. Fig. and Fig. compare two different values for fanout. With a
random fanout that varies from one to three messages sent by the model, the load
over channels is considerably higher than sending just one message at a time, and
execution is subsequently slowed down. The asymmetric runs with 2 controller
threads incur into unusual time peaks even with only 128 LPs: the conclusions are
that simulation registers considerably higher execution times even with a slightly
higher fanout. Anyway, the trend seems to be confirmed: as execution times in-
crease over all the running modes, the advantages brought by the auto-adjusting

mechanism are evident and substantial.

1600
1400
1200
1000 -
800
600 -

400 -

200 I
o —_ —r— —_— |

Z 5. & 3
s FANOUT = 1 2% <%, FANOUT RANDOM (1-3) "%,
Symmetric m— Asymmetric(auto) Asymmetric(2CTs) Asymmetric(8CTs) Asymmetric(12CTs)

Figure 4.4. Loop duration: 15 musec, TAU: 1.5, Random LP event receiver

47

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

1400

1200
1000
800
600
400

200

0 —_— _=H __I_ II
& 5. >
2

< %
% FANOUT = 1 <%, FANOUT RANDOM (1-3) %y,
Symmetric mm— Asymmetric(auto) mm ic(2CTs) y ic(8CTs) mwwm Asymmetric(12CTs)

Figure 4.5. Loop duration: 15 musec, TAU: 5.0, Random LP event receiver

1600
1400
1200 -
1000 -
800 -
600

400

) I I
o o Ili — |
5 S

K = e kS 02
ec%o FANOUT = 1 2% %, FANOUT RANDOM (1-3) 2%
Symmetric m— Asymmetric(auto) ic(2CTs)

y ic(BCTS) mmmmm Asymmetric(12CTs)

Figure 4.6. Loop duration: 15 musec, TAU: 10.0, Random LP event receiver

48

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

4.3.3 Third test pool: fixed loop duration, fanout and close LP event re-

ceiver

Fig. [4.7) and Fig. [4.8)are the graphical representation of the last series of tests. They
aim to compare execution times with models having different sending strategies
with a constant fanout setting of 1-3(random) messages. With "close LP" event
receiver, executions with a smaller number of processing threads (2-8) seem to have
a benefit, especially with higher values for TAU. Overall, the execution times with
a slightly bigger fanout are considerably higher than those in previous tests with
fanout limited to just one message. Execution is drastically slowed down when

channels are overloaded with messages.

1600
1400

1200 -

1000 - ‘|

8

600

400

] I I I
0 _—I I ——I ———

eo(TAU: 1.5 e(e% TAU: 5.0 *’co @Q TAU: 10.0 Je
Symmetric m— ic(auto) Y ic(2CTS) Asymmetric(8CTs) mmmsm Asymmetric(12CTs)

3
3

3
]

3
3

S
S

Figure 4.7. Loop duration: 15 musec, Fanout: 1-3(random), Close LP event receiver

49

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

1600

1400
1200
1000
800
600 -
400 -
] I I I
: __l_ Il __I_ nl ——_ In
%

K
- 4 i
%, TAU: L5 %, TAU:10.0

S

5
2

N <9, TAU:5.0 %

Symmetric m— ic(auto) y ic(2CTs) mmmm Asymmetric(8CTs) mmmm Asymmetric(12CTs)

Figure 4.8. Loop duration: 15 musec, Fanout: 1-3(random), Random LP event receiver

50

51

Chapter 5

Conclusions

As shown by experimental data, the asymmetric implementation of PDES needs
an auto-adjusting algorithm in order to be effective; without it, manual settings
on the thread balance do not offer any kind of gain in terms of performance. In
fact, simulation completion times are extremely higher with bigger model sizes (i.e.
the number of PTs). When threads assignation is managed automatically by an
internal algorithm, the asymmetric approach generally grants better results, but
performance considerably improves as the model size increases.

Contrarily, runs with fixed balance between treads suffer from the exceeding of
events that occupy the channels: the increased amount of rollbacks causes most of
those events to be discarded, leading into a considerable waste of speculation.
Possible future studies could be directed towards improvement of the internal
management of message channels, trying to design a better scheduling strategy,
especially in terms of per-thread number of events to be scheduled at every round
of the control thread loop. Furthermore, it may be interesting to deepen the criteria
behind the control strategies that converge into the score mechanism that supports

the self-balancing system.

52

Bibliography

[1] R. Fujimoto, "Distributed Simulation Systems", College of Computing Georgia
Institute of Technology Atlanta, GA 30332, U.S.A. Proceedings of the 2003 Winter

Simulation Conference.

[2] S. Robinson, "Discrete-event simulation: from the pioneers to the present, what

next?", Journal of the Operational Research Society.

[3] W. Wulf and S. McKee, "Hitting the Memory Wall: Implications of the Obvious",

Department of Computer Science University of Virginia, December 1994.

[4] M. Principe, T. Tocci, P. Di Sanzo, F. Quaglia, and A. Pellegrini, “A Distributed
Shared-Memory Middleware for Speculative Parallel Discrete Event Simulation,”

ACM Transactions on Modeling and Computer Simulation, Dec. 2020.

[5] S.Jafer, G. A. Wainer and Qi Liu, "Synchronization Methods in Parallel and

Distributed Discrete-Event Simulation".

[6] R.Fujimoto, "Performance Measurements of Distributed Simulation Strategies",

in Proc. of the Distributed Simulation Conference, 1988, p. 14-20.

[7] R.Fujimoto, “Parallel Discrete Event Simulation”, Communications of the ACM,

pp. 30-53, 1990.

[8] R.Fujimoto, "Distribuited Symulation Systems", Proceedings of the 2003 Winter
Simulation Conference, College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332, U.S.A.

[9] C.Carothers, K. Perumalla, R. Fujimoto, "Efficient optimistic parallel simulations
using reverse computation”, ACM Transactions on Modeling and Computer

Simulation.

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

[10] R. Fujimoto, R. Bagrodia, R. Bryant, K. Chandy, D. Jefferson, J. Misra, D. Nicol,
and B. Unger, "Parallel discrete event simulation: the making of a field", In
Proceedings of the 2017 Winter Simulation Conference (WSC "17), IEEE Press,
Piscataway, NJ, USA, Article 16, 30 pages.

[11] S. Carna, S. Ferracci, E. De Santis, A. Pellegrini, and F. Quaglia, "Hardware-
assisted incremental checkpointing in speculative parallel discrete event simu-

lation".

[12] S. Conoci, D. Cingolani, P. Di Sanzo, B. Ciciani, A. Pellegrini, and F. Quaglia.
2018, "A Power Cap Oriented Time Warp Architecture”, In SIGSIM-PADS
18 : SIGSIM-PADS’18: SIGSIM Principles of Advanced Discrete Simulation
CD-ROM, May 23-25,2018, Rome, Italy. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3200921.3200930

[13] D. Jefferson, "Virtual Time II: Storage Management in Distributed Simulation",

UCLA, May 1990.

[14] S. Das and R. Fujimoto. "An Adaptive Memory Management Protocol for Time
Warp Parallel Simulation", Georgia Institute of Technology, Atlanta, Georgia
30332-0280.

[15] A. Park and R. Fujimoto, "Aurora: An Approach to High Throughput Paral-
lel Simulation", Computational Science and Engineering Division College of

Computing, Georgia Institute of Technology Atlanta, Georgia, USA 30332-0280

[16] A. Park and R. Fujimoto. "Efficient Master/Worker Parallel Discrete Event
Simulation on Metacomputing Systems", IEEE Transactions on Parallel and

Distributed Systems, Vol.23, No.5, May 2012.

[17] P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. Zorn, R. Nagpal and K. Pat-
tabiraman, "Efficient Runtime Detection and Toleration of Asymmetric Races",

IEEE Transactions on computers, vol. 61, no. 4, april 2012.

[18] J. Cleary, O. Callanan, M. Purcell, and D. Gregg, "Fast asymmetric thread
synchronization", ACM Trans. Architec. Code Optim. 9, 4, Article 27 (January
2013), 22 pages.

53

Asymmetric Runtime Environments for Increased-Performance Speculative PDES

[19] R.Vitali, A Pellegrini, F.Quaglia. "Towards Symmetric Multi-Threaded Opti-
mitic Simulation Kernels",2012 (PADS)

[20] https://github.com/HPDCS/ROOT-Sim/wiki

54

	Introduction and Context
	Discrete-event simulation
	Parallel discrete-event simulation
	Introducing PDES
	Implementation of synchronization
	The synchronization problem: stragglers
	The local causality constraint
	Conservative and optimistic synchronization

	Optimistic Synchronization
	Time warp
	Performance of optimistic synchronization
	Asymmetry in time warp
	The choice of asymmetry

	Related Work
	Asymmetric Time Warp
	Asymmetric time warp architecture
	Ensuring consistency
	Checkpointing
	Dynamic resources assignation
	A comparison with classic symmetric multithread architecture

	Dynamic thread role assignment
	How to dynamically assign threads

	Experimental Assessment
	The ROme OpTimistic Simulator
	Parameters
	Measurements
	First test pool: fixed loop duration, fanout and random LP event receiver
	Second test pool: fixed loop duration, TAU and random LP event receiver
	Third test pool: fixed loop duration, fanout and close LP event receiver

	Conclusions

