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Abstract—Spiking Neural Networks (SNNs) are a class of
Artificial Neural Networks that show a time behaviour that
cannot be computed with single one-shot functions. Therefore,
to study their evolution over time, simulations are typically
employed. Typical simulation approaches rely on time-stepped
simulations, while more recent works have highlighted the
opportunity to rely on Parallel Discrete Event Simulation (PDES)
for improved accuracy. In particular, Speculative PDES has been
shown to be a suitable simulation paradigm to deal with the
peculiar temporal domain of SNNs. In this paper, we perform
an experimental evaluation of these two different approaches,
showing the implications on both simulation performance and
accuracy. Our assessment showcases that Parallel Discrete Event
Simulation can deliver good scaling on parallel architectures
while offering more accurate results.

Index Terms—Spiking Neural Networks, Time-Stepped Sim-
ulation, Speculative Parallel Discrete Event Simulation, Perfor-
mance, Accuracy.

I. INTRODUCTION

Spiking Neural Networks (SNNs) are a particular class of
Artificial Neural Networks (ANNs) that have seen increasing
interest in the last years [1] due to their expressive capabilities.
Indeed, SNNs provide a relevant research tool in multiple do-
mains, such as neuroscience, medicine, artificial intelligence,
or psychology, because they mimic biological neural networks
with high accuracy. When implemented in hardware, they
typically show a remarkably reduced energy footprint. This
latter point has given rise to neuromorphic chips [2]–[4], which
are regarded as a fundamental step ahead in the chase for a
good tradeoff between energy efficiency and performance in
massively-parallel computing systems.

Simulations are typically the exclusive approach to studying
the behaviour of SNNs because their analytical treatment is
only possible for special, simplified cases [5]. SNN simula-
tions are collections of simulations of individual neurons that
interact by the exchange of spikes. The changes in neuron
state may trigger the emission of a spike delivered to the
connected neurons. Since the spikes must be considered in
the target neurons’ future state updates, a neuron’s state can
only be consistently updated once it has received all spikes
with smaller timestamps.

SNNs are therefore more challenging to handle than tradi-
tional ANNs. Indeed, beyond the neural and synaptic states,
SNNs encode data in a temporal domain known as the spike
train [6]. The output of an SNN is a set of impulses that
encode information via their timing, rather than a set of values
computed impulsively as in many other ANNs. Moreover, the
interconnection between neurons can be arbitrary, and a single
neuron can receive multiple spikes in a reduced simulation
time window. This makes SNNs belong to the family of
continuous-time tightly-coupled models, which are inherently
hard to simulate [7]–[9].

In the literature, the complexity of this family of simulations
has been coped with by discretising the continuous time
and applying conservative methods for time-stepped simu-
lations [10]–[12]. This approach entails observing the state
of the simulation at specific time intervals and determining
whether new events should be generated given the observed
condition. The benefit of this approach is that many existing
conservative methods could be employed to efficiently support
this kind of simulation on multiple hardware instances (see,
e.g., [13]–[16]).

Nevertheless, this approach has several drawbacks. First,
typical SNN simulation algorithms rely on a fixed simula-
tion and integration time-step (typically set on the order of
tenths of milliseconds) leading to approximated results [17],
to the extent that some spikes could be missed even when
using neuron models with linear subthreshold dynamics, i.e.,
where its state evolves in the absence of emitted spikes.
Second, the time-stepped nature of SNN simulation algorithms
has favoured the focus on neuron models that are handily
computable via some iterative numerical procedure, such as
the Euler method. Finally, to improve the accuracy of the
results, one should reduce the time step, incurring significant
performance penalties. Recent results [18], [19] have shown
that employing Parallel Discrete Event Simulation (PDES)
methods [20] with optimistic synchronisation [21] allows
for improved performance and improved accuracy. Indeed,
PDES can efficiently skip time intervals where no interaction
among the neurons takes place and can further capture the
exact simulation time instant at which a particular neuron
might spike. At the same time, an optimistic synchronisation
algorithm such as Time Warp [21] can capture the inherent
parallelism of SNNs, where groups of neurons may spike at978-1-6654-9799-2/22/$31.00 ©2022 IEEE
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Fig. 1: A neuron is enclosed by the cell membrane (the circle).
When it receives a positive input current I(t), it increases the
electrical charge inside the cell. The cell membrane acts like
a capacitor in parallel with a resistor, which is in line with a
battery of potential Vr.

different times.
In this paper, we perform an experimental comparison of

these two main simulation techniques. In particular, we focus
on state-of-the-art time-stepped simulation algorithms [22] and
assess the performance and the accuracy when different time
step values are used. We compare these results with a state-
of-the-art simulation algorithm for SNN relying on the Time
Warp synchronisation algorithm [19]. Our results highlight that
if large networks are simulated with high levels of accuracy,
the Time Warp synchronisation algorithm can deliver non-
negligible performance improvements, enabling more complex
scenarios to be feasibly simulated.

The paper is structured as follows. In Section II we intro-
duce some background on SNNs. After an overview of related
work in Section III, we describe the considered simulation
algorithms for SNNs in Section IV. Section V examines
the performance of the reference implementations of these
simulation algorithms under different accuracy configurations.
The paper concludes with a summary and future work.

II. BACKGROUND ON SPIKING NEURAL NETWORKS

SNNs are based on spiking neurons, which communicate by
sending signals (spikes) through synapses. Spiking neurons are
stateful, and the synapses connecting them can be too. Spiking
neurons fire only when their membrane potential reaches a
particular threshold value. When a spiking neuron fires, it
generates a spike propagated to the neurons it is connected
to, which react by increasing or decreasing their membrane
potential accordingly over time. However, before reaching
other neurons, the spike passes through synapses, which are
weighted and introduce a transmission delay.

Spiking-neuron models are derived from experimental ob-
servation of natural neurons’ behaviour. Since the neurons
react to and communicate through electrical stimuli, they can
be modelled as circuits. Neurons’ plasma membrane isolating
properties give rise to a membrane capacitance Cm, and the
potential V (t) at time t between the two sides of the membrane
is what kick-starts the action potential propagation once it

reaches a target threshold value Vth. In the absence of stimuli,
the membrane potential resets to a resting value Vr. This also
holds after the action potential is generated (which we also
refer to as firing or spiking) and the enzyme in charge reverts
the neuron to its resting state over a time period, during which
the neuron membrane does not charge, called the refractory
period τref .

Additionally, for the membrane potential to rise, there must
be some input current I . Typically, it is the sum of the stimuli
I(t) coming at time t from its presynaptic neurons (i.e. those
neurons, the outputs of which the neuron receives, as opposed
to its postsynaptic neurons, which are the ones that receive the
considered neuron’s spikes) and some external current Iext that
can be supplied (e.g. for experimental observation).

The most commonly-used neuron model in large SNN simu-
lations is the Leaky Integrate and Fire (LIF), which is depicted
in Figure 1. Equations (1) describe the subthreshold dynamics
of the neuron, where V (t) is the membrane potential, and I(t)
is the current flowing inside the neuron to the membrane:

dV (t)

dt
=

−V (t) + Vr

τm
+

I(t) + Iext
Cm

dI(t)

dt
= − I(t)

τsyn

(1)

The positive quantities τm and τsyn represent the membrane
time constant and the synaptic time constant, respectively. For
a more thorough discussion of the meaning of all neuronal
parameters, the reader can refer to [6].

Spikes are delivered to post-synaptic neurons with a delay
in virtual time1 and an effect (in terms of delivered potential)
established by the synapse model. The majority of PDES
simulations employ a synapse model, which is extremely sim-
plistic in its workings, typically referred to as jump synapse,
characterised by a fixed transmission delay ttrans and a weight
w. By using this model, a spike causes the post-synaptic
neuron to instantaneously increase its V (t) by w.

A more complex synapse model is the instantaneous raise/
exponential decay synapse, commonly called just exponential
synapse. This type of synapse does not directly act on the
membrane potential. Rather, it generates an instantaneous
increase in the neuron’s incoming current. The current’s effects
are applied over time to the membrane potential: the latter rises
over time, charging similarly to an electronic capacitor. At the
same time, the current’s intensity decreases exponentially with
time. This means that the neuron might spike in the future:
the hypothetical spike time (if any) is computed via numerical
methods (if an analytical solution for spike timing is not
available for the model), and the resulting event is enqueued.

III. RELATED WORK

The problem of accuracy and performance in SNN sim-
ulations is well-known in the literature [17]. In particular,

1In a simulation, three different notions of time can be identified [23]:
physical time refers to the real-world evolution of the process being simulated;
virtual time (or simulation time) refers to the simulated time; wall-clock time
refers to the real-world time necessary to run the simulation model.



it directly derives from the availability of multiple meth-
ods to solve the neuron model equations and handle spike
events [24]–[27]. The technique picked for a particular simu-
lation directly determines the simulation speed and accuracy
of the results [28].

To improve accuracy, several works [17], [29]–[31] have
employed different numerical approaches or parameter esti-
mation. Overall, resorting to a different numerical approach
still depends on the underlying scheduling/synchronisation
algorithm. In this sense, the work in [27] tackles the estimation
of the error introduced by an SNN simulation. In particular,
the authors show that it is possible to separate the numerical
integration error from the spike-detection timing error, proper
of time stepped simulations.

On the performance side, several works have explored
the possibility of running SNN models on various hardware
instances, such as GPUs [29], [32], [33], FPGAs [34], [35], or
even heterogeneous systems [36]. Again, these works mainly
focus on the deployment of time-stepped simulations.

The literature has also considered exploiting different
discrete-event simulation algorithms. In [18], the authors have
shown that relying on speculative PDES simulation using the
Time Warp synchronisation protocol can lead to non-minimal
performance improvement when focusing on the TrueNorth
Leaky Integrate and Fire (TNLIF) [37] architecture. In [38],
discrete-event simulation is used to provide better performance
in the case of synapse models showing a spike latency, i.e. a
delay exhibited in response to depolarization. The work in [19]
is inheriting the approach from [18] and then shows that with
proper event management strategies, it is possible to obtain
good scalability also when using more complex instantaneous
raise/exponential decay synapses.

IV. SIMULATION ALGORITHMS FOR SNN

This section illustrates the inner workings of the two SNN
simulation algorithms we consider in our experimental assess-
ment.

A. Time Stepped Simulations

As mentioned, the largest part of SNN simulations as, e.g.,
implemented by the well-known NEST [22] and Brian [39]
simulators, rely on time-stepped algorithms, whose high-level
pseudocode is provided in Algorithm 1.

This kind of simulation approach is simple. Indeed, all
neuron state updates are evaluated periodically by processing
the incoming spikes. These spikes increase membrane poten-
tial, which is again evaluated numerically in the interval dt.
After updating all neurons’ states, the simulation algorithm
checks which of them (if any) have a membrane potential
Vm that has reached the spiking threshold. If this is the case,
spikes are sent from each of the ready-to-spike neurons to
the respective postsynaptic neurons. To account for synapse
delays, the typical strategy is to rely on some sort of future
event queue, typically implemented as a circular array [6], that
allows keeping track of what spike should be delivered to what
neuron at what time(step) in the future.

Algorithm 1: Time Stepped Simulation Algorithm.
1 t = 0
2 while t < tend do
3 foreach neuron do
4 process incoming spikes
5 advance neuron dynamics by dt

6 foreach neuron do
7 if V (t) > Vth then
8 reset neuron membrane
9 foreach connection do

10 send spike

11 t← t+ dt

The time complexity of this simulation algorithm can be
easily computed. The first inner loop accounts for neuron state
updates. If there are n neurons in the network, the loop has an
O(n) cost. Considering that the physical time of the simulation
is divided into intervals of the same size, the cost is O(n/dt)
per unit of physical time. Concerning the second inner loop, if
we call f the average firing rate of neurons per physical-time
unit, assuming that on average each neuron is connected to s
other neurons, the cost is O(fns). Under general assumptions,
it cannot be stated which of the two components impacts the
overall cost more. We can therefore conclude that the cost of
this algorithm per physical-time unit is:

O
( n

dt
+ fns

)
. (2)

In this computation, we have assumed that activities related
to the computation of neuron dynamics and spike delivery are
negligible, although depending on the specific used neuron
model and the complexity of the topology, it might not always
be the case. Anyhow, Equation (2) indicates that the overall
cost of the time-stepped simulation grows with the network’s
size and the simulation’s precision, which is exactly one of
the key points we assess experimentally in this paper.

An additional issue with the time-stepped simulation algo-
rithm is that spike timings are aligned to a grid defined by the
time steps. Therefore, the final result approximates the actual
behaviour of the network, even when the numerical methods
used to compute differential equations provide exact results.
Similarly, since the check on the threshold is carried out only
at the time steps (see line 7 in Algorithm 1), some spikes
may be missed. This is the second key point that we assess
experimentally in this paper.

B. Speculative Discrete Event Simulations

In a discrete-event simulation adhering to the Time Warp
synchronisation protocol [21], the simulation model is parti-
tioned into different Logical Processes (LPs), which maintain
a portion of the global simulation state with no overlap
across the different LPs. According to the simulation algorithm
described in [19], each neuron is mapped to a single LP.

Spikes are represented by messages, which are delivered to
the destination LP. Since a single neuron can be connected to
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multiple neurons, injecting one spike event for each destination
LP could easily thrash the simulation due to significant time
spent on event management. Therefore, cross-neuron commu-
nication is supported by a form of publish/subscribe events: a
spiking neuron will inject a single instance of the spiking event
into the system. All destination neurons will subscribe to the
events generated by the source one, and the underlying runtime
environment will deliver a copy of the spiking event, thus
significantly reducing the burden on the messaging subsystem.

According to the traditional Time Warp protocol, events
are executed independently of their safety. It means that a
destination neuron could receive a spike after the simulation
time at which it had to be processed. In this case, the state
of the neuron is rolled back to a previous time instant, and
execution is resumed from a consistent snapshot. During roll-
back execution, inconsistently-generated spikes are undone by
generating so-called antimessages. An antimessage reception
could cause additional cascading rollbacks.

Given the nature of the spikes, it is impossible to con-
sistently predict the spiking time given the current state of
the neuron. Indeed, a more accurate spiking time could be
determined after the neuron receives an upcoming spike. A
simple solution at the model level could be to inject in the
system tentative spikes, i.e. events that could be associated
with some per-neuron epoch counter. Every time the neuron
state is updated due to the receipt of an incoming spike,
the new spiking time could be re-computed. A new spiking
event (superseding the previous one) could be injected into
the system. Anyhow, this naı̈ve approach is unlikely to scale
due to the large amount of extremely-fine grained simulation

events that are typically the cause of poor performance in Time
Warp simulations [40]. The performance degradation of this
scheme stems from the strict decoupling between the model
and the runtime environment in Time Warp simulations. In this
scenario, the model cannot inform the runtime environment
that a tentative spiking event should be removed from the
system, and the model can only logically discard it once it
is delivered for execution.

For this reason, in [19] the authors introduce the concept
of retractable events, i.e. events that can be marked by the
model as tentative. Logically speaking, this support allows
implementing tentative spike events, according to the scheme
depicted in Figure 2. After a neuron has sent its spikes, a new
event could update the time of said spikes. This is the case,
e.g., of new spikes being delivered to the neuron, which conse-
quently charges faster, thus reaching the threshold Vth earlier.
In this case, the neuron can inform the receiving neurons
that the spike should be dealt with earlier. At the destination
neurons, if the involved spike has not been processed yet, the
event is simply moved earlier in the future. Conversely, if it
has already been processed, a traditional rollback operation
will restore the neuron state to a consistent timestamp, and
the new spiking time will be considered in the simulation.

The problem with this naı̈ve approach is that the total num-
ber of rollbacks can still be high. Therefore, a straightforward
optimisation is to deal with retractable events locally at a
single neuron. A neuron locally determines its next firing
time and schedules to itself a tentative spike-firing event. This
tentative firing event is managed as a regular firing event (i.e.,
the neuron sends the spikes to all destination neurons upon
receiving it) if no change in the firing time occurs. Conversely,
if the neuron model determines a new timestamp for the firing
event, the runtime environment will accordingly act on the
message queue. In particular, if the firing event is not yet
processed, it will simply be moved to the appropriate new
firing time. In this way, the number of events injected into
the system and the total number of rollbacks are significantly
reduced, as the destination LPs will only receive a spike at the
accurate firing time, after that the firing neuron has correctly
received all pre-synaptic stimuli.

V. EXPERIMENTAL ASSESSMENT

A. Reference Implementations

We rely on two reference implementations for the simulation
algorithms described in Section IV2.

Concerning time-stepped simulations, we rely on the NEST
simulator [22]. NEST comes prepacked with “over 50 neuron
models, many of which have been published” and “over ten
synapse models” that can also be used to implement new
custom neuron and synapse models. NEST can run parallel
simulations through OpenMP. Distributed simulations are also
supported, and MPI is used to take care of message passing

2The source code used in the experimentation is available in the repro-
ducibility package at https://doi.org/10.5281/zenodo.6616651.



Fig. 3: Schema of the Synthetic Model.

between multiple computational nodes. Neurons are instanti-
ated only on the node on which they belong, while synapses
are handled at the receiving node’s end for matters of synapse
plasticity.

The speculative discrete-event simulation algorithm has
been implemented within the ROme OpTimistic Simulator
(ROOT-Sim) [41]. ROOT-Sim is an HPC simulation library
targeting optimistic simulation on massively parallel multicore
machines and distributed compute clusters/supercomputers.
All the facilities related to publish/subscribe events and re-
tractable events have been implemented in the simulation
library3

B. Experimental Setup

The performance experiments were run on an AWS
m5.8xlarge machine with 32 vCPUs. These machines are
based on Intel Xeon® Platinum 8175M processors, running
Ubuntu 20.04.3 LTS, on kernel version 5.13.0-1025-aws. Each
experiment was run with 32, 24, 16, 8, and 4 worker threads.
NEST only has data points for 16 or more worker threads due
to a limitation not allowing more than 227 synaptic connections
per worker thread; as such, only ROOT-Sim was run on 4 and
8 workers.

The standard benchmark we have used to run the perfor-
mance experiments is inspired by a study on signal prop-
agation in linear integrate-and-fire (LIF) models [42]. This
benchmark [6] considers current-based (CUBA) synaptic in-
teractions in a network of 300,000 LIF neurons, separated into
two populations of excitatory and inhibitory neurons, forming
80% and 20% of the neurons, respectively. All neurons are
connected randomly using a connection probability of 2%. The
CUBA model is simulated for 10 seconds of simulation time
with each simulator while varying the simulation precision.
In NEST, this is achieved by selecting a resolution value.
In ROOT-Sim, the time tolerance is currently built into the
model and can be selected deliberately, as long as the hardware
constraints allow it.

For accuracy experiments, we have built a synthetic network
model consisting of 1,000 neurons. The network is acyclic,

3The source code of the ROOT-Sim library is available at https://github.
com/ROOT-Sim/core.

TABLE I: Neurons and populations parameter specification.

Populations and inputs
Name Input L1e L1i L2e L2i Output
Population size 100 200 200 200 200 100

Neuron Model
Name Value Description
τm 10 ms Membrane time constant
τref 2 ms Absolute refractory period
τsyn 0.5 ms Postsynaptic current time constant
Cm 250 pF Membrane capacity
Vreset −65 mV Reset potential
Vth −50 mV Fixed firing threshold

TABLE II: Connectivity map for the generated topology.

to
In L1e L1i L2e L2i Out

from In - 0.292 0.192 0.049 0.237 0.169
L1e - - - 0.106 0.254 0.438
L1i - - - 0.409 0.250 0.309
L2e - - - - - 0.491
L2i - - - - - 0.225

TABLE III: Synaptic parameter specification.

Name Value Description
wexc 200 pA Excitatory synaptic strengths
winh −600pA Inhibitory synaptic strength
de 1.5 ms Excitatory synaptic transmission delays
di 0.8 ms Inhibitory synaptic transmission delays

divided into four layers: Input, L1, L2, and Output. A net-
work topology scheme is found in Figure 3. The Input layer
comprises 100 excitatory neurons, which receive a constant
input current of 1800pA. Layers L1 and L2 both comprise two
populations of 100 excitatory (L1e/L2e) and 100 inhibitory
neurons (L1i/L2i). The Output layer consists of 100 neurons.
The output neurons’ spikes are observed and compared with
the ground truth to determine simulator accuracy. Synapses
all have fixed weights of 200pA with a delay of 1.5ms when
excitatory and a weight of −600pA and delay of 0.8ms when
inhibitory.

The network topology and relevant parameters (initial mem-
brane potential, input current, synaptic weight, synaptic delay)
are generated with a script into a configuration file, which then
is loaded by the models of each simulator, as well as by the
script that computes the ground truth, leading to the exact
same topology and initial conditions for every single neuron
in all three cases.

C. Computing the Ground Truth

As noted earlier, the network chosen for the accuracy evalu-
ation is acyclic, and, conveniently, there is a simple algorithm
able to compute its behaviour. Given such an acyclic network,
we compute a topological order of the neurons n0, n1, ...nk;
then, necessarily, the behaviour of a neuron ni will only
depend on the behaviour of neurons n0, n1, ..., ni−1. That
implies that once a simulation time limit t has been selected, it



TABLE IV: Spiking Times for ROOT-Sim and NEST
(timestep/error: 0.1). For each result, we provide the spike
time (ms) and the neuron number in brackets. The results
relate to the first 10 ms of simulated time.

Spike No. Ground Truth ROOT-Sim NEST
1 2.999 (900) 3.046 (900) 3.200 (900)
2 3.556 (977) 3.615 (977) 3.900 (975)
3 3.598 (975) 3.630 (975) 3.900 (950)
4 3.787 (970) 3.771 (970) 6.200 (912)
5 5.843 (953) 5.955 (953) 6.300 (952)
6 — 6.215 (927) —
7 — 6.667 (923) —

TABLE V: Spiking Times for ROOT-Sim and NEST (timestep/
error: 0.001). For each result, we provide the spike time (ms)
and the neuron number in brackets. The results relate to the
first 10 ms of simulated time.

Spike No. Ground Truth ROOT-Sim NEST
1 2.999 (900) 2.999 (900) 3.110 (900)
2 3.556 (977) 3.556 (977) 3.795 (975)
3 3.598 (975) 3.598 (975) 6.486 (952)
4 3.787 (970) 3.787 (970) —
5 5.843 (953) 5.842 (953) —

is possible to simulate the neurons one by one, starting from
n0 through nk feeding the output from the neurons to the
correct post-synaptic ones. Since there is no analytical closed-
form solution for the spike times for the LIF neuron used in
this network, we still have to resort to numerical methods. We
are not concerned with performance in this case. Therefore,
we implemented a Python script carrying out the described
computations with an error factor of 10−9ms.

D. Accuracy and Performance Results

We report in Tables IV and V the results obtained running
the synthetic model on ROOT-Sim and NEST, compared to
the ground truth results obtained according to the method
described in Section V-C. We have set the timestep/accuracy
factor to 0.1 (Table IV) and 0.001 (Table V). The results report
the spikes obtained in the simulation’s first 10 ms. We provide
the spiking time and the ID of the neuron that generated the
spike in the Output layer for each spike.

By the results in Table IV, we observe that, for both
simulators, the accuracy is not high. In particular, ROOT-
Sim generates spikes at the correct neurons, but the difference
in spiking times is between 1% and 2%, in a significantly
reduced simulation time. Interestingly, this model generates
two additional spurious spikes. Conversely, NEST has a higher
error (up to 60%), but more interestingly, it induces spikes at
the wrong neurons, except for the first one. The number of
spikes is anyhow correct. These results are expected. Indeed,
given the nature of the synthetic model, it is clear that a low
resolution is unlikely to provide accurate results due to the
strong interaction between excitatory and inhibitory neurons.
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Fig. 4: Performance Comparison.

The results with a higher resolution, provided in Table V,
show that the results based on ROOT-Sim deliver much higher
accuracy. Conversely, NEST results show that two spikes are
missing, spikes are induced at the wrong neurons, and the
accuracy is still low (with an error ranging from 3.7% to
80%). One could wonder how the two examined simulators
may deliver a different accuracy even when using the same
value for the time-step/error. As mentioned in Section IV, the
sources of inaccuracy are essentially two. Common to both
algorithms, the first one is due to computational inaccuracy
in spike timings: small deviations can cause post-synaptic
neurons to emit or miss a spike when they should not have.
The second source of accuracy loss is specific to NEST only,
and it is due to how the spike detection works. With the default
settings, a spike is detected only if the firing threshold potential
is overcome at one discrete time-step. In other words, NEST
assumes that a neuron can never overcome the firing threshold
if it has not done so at the beginning and the end of the time
step, which can lead to missing a spike in some edge cases,
even with a single neuron.

As for performance evaluation, we can refer to Fig-
ure 4, where both simulators used the standard current-based
(CUBA) synaptic interactions benchmark [6] to simulate 10
seconds of physical time, with varying degrees of accuracy.
NEST only has data for 16 or more workers because it does
not allow for more than 227 synaptic connections per worker
thread. While NEST outperforms ROOT-Sim in terms of speed
for low-resolution values (10−1 and 10−2), when running with
a resolution of 10−3, the performance dramatically degrades,
leaving the edge to ROOT-Sim, even when the latter runs on
eight workers. With a resolution of 10−4, the NEST time-
to-solution is significantly larger, with the best configura-
tion (using 32 worker threads), taking over 20, 369 seconds
to complete, while ROOT-Sim took 1, 076—this is 18,92x.
This result is expected, as multiplying the resolution tenfold
also multiplies the number of calculations needed. It is not
unreasonable to expect higher resolutions to be practically
unfeasible for sizeable networks.

Increasing simulation resolution appears to have a mini-
mal impact on ROOT-Sim’s performance, allowing it to be
increased almost at will without the risk of running into
prohibitive time costs.



VI. CONCLUSIONS

In this paper, we have presented an experimental assessment
of the tradeoff between the performance and accuracy of two
algorithms to simulate SNNs. By the results, it is clear that
if a high resolution in the results is pursued, traditional time-
stepped simulation algorithms cannot provide results promptly,
while speculative PDES-based ones exhibit only a reduced
performance penalty. At the same time, also with lower time-
step values, although the performance of the time-stepped sim-
ulation outperforms the speculative PDES’ one, the accuracy
of time-stepped algorithms still appears to be lower.

While the considered speculative PDES-based algorithm
allows for the execution of non-trivial models, e.g., based on
exponential synapses, future work will entail implementing
and studying multiple neuron/synapse model to study the
effect on both accuracy and performance.
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