
Multi-threaded Simulation of 4G Cellular Systems
within the LTE-Sim Framework

Alessandro Pellegrini
Dipartimento di Ingegneria Informatica

Automatica e Gestionale
Sapienza, University of Rome

pellegrini@dis.uniroma1.it

Giuseppe Piro
Dipartimento di Elettrotecnica ed Elettronica

Politecnico di Bari
Bari, Italy

g.piro@poliba.it

Abstract—Nowadays, an always increasing number of re-
searchers and industries are putting a large effort in the design
and the implementation of protocols, algorithms, and network ar-
chitectures targeted at the the emerging 4G cellular technology. In
this context, multi-core/multi-processor simulation tools can ac-
celerate their activities by drastically reducing the time required
to simulate complex scenarios. Unfortunately, today’s available
tools are mostly single-threaded and they cannot exploit the
performance gain offered by parallel programming approaches.
To bridge this gap, we have significantly upgraded the LTE-Sim
framework by implementing a concurrent scheduling algorithm,
namely the Multi-Master Scheduler, aimed at efficiently handling
events in a parallel manner, while guaranteeing the correct execu-
tion of the simulation itself. Experimental results will demonstrate
the effectiveness of our proposal and the performance gain that
can be achieved with respect to other classical event scheduling
algorithms.

I. INTRODUCTION

The widespread use of new generation mobile devices,
together with the increasing popularity of Web 2.0 and cloud
applications, will lead to a massive gain of data traffic from/to
mobile users [1]. In order to satisfy these requirements,
and guarantee a good level of Quality of Service (QoS)
offered to mobile users, the 3rd Generation Partnership Project
(3GPP) has introduced Long Term Evolution (LTE) and LTE-
Advanced (LTE-A) specifications as the next step of the
current 3G mobile networks [2].

The optimization of all LTE and LTE-A aspects is a topic
worth of investigation for both the industry and academic
communities. Moreover, current research trends in the LTE
field entail simulations of complex scenarios, involving several
cells and hundreds (if not thousands) of users. At the present
time, the only valuable tools are those developed for NS-3
within the LENA project [3] and LTE-Sim [4]. Unfortunately,
due to the high detail of models they provide, these simulators
require a huge computational power. In addition, since they
have been conceived as a single-thread process, the time
needed for carrying out complex studies mat be unacceptably
large. In fact, it would be desirable to develop more efficient
simulation platforms able to exploit the high computational
performance offered by emerging multi-core computers.

To bridge this gap, we have significantly upgraded the
LTE-Sim framework by implementing a concurrent scheduling

algorithm, namely the Multi-Master Scheduler, which is able
to efficiently schedule those events which can be concurrently
executed, thus allowing a parallel execution of the simulation,
while ensuring its correctness, at the same time. Experimental
results will show the good impact on scalability of the imple-
mentation within the LTE-Sim platform, providing a relevant
benefit on research activities on the LTE-related fields.

The rest of the paper is organized as in the following: Sec. II
describes the LTE-Sim open source framework, highlighting
in what aspects it can be enhanced for supporting a multi-
threaded execution. Sec. III presents our conceived Multi-
Master scheme. Sec. IV presents some significant results for
demonstrating the behavior of the implemented solutions in
some reference scenarios. Finally, Sec. V draws the conclu-
sion.

II. SIMULATING LTE CELLULAR SYSTEMS WITH LTE-SIM

A. Main features covered by LTE-Sim

LTE-Sim is an emerging open source tool conceived for
simulating LTE and LTE-A networks. Its main features have
been summarized in [4]–[6]. It supports single and heteroge-
neous multi-cell environments, QoS management, multi-users
environment, user mobility, handover procedures, frequency-
reuse techniques and several other aspects related to the LTE
technology.

In LTE-Sim, the network topology is composed by a set
of cells and a number of the following network nodes: User
Equipment (UE), evolved Node B (eNB), Home eNB (HeNB),
and Mobility Management Entity/Gateway (MME/GW) [4],
[6]. Each of them is identified by a unique ID, whereas its
position is defined in a cartesian system. Several mobility
models, such as constant position, random way point, random
direction, and manhattan mobility model, are supported for
allowing mobile terminals to move into the network.

At the application layer, four different traffic generators have
been developed: video, VoIP, CBR, and infinite buffer. More-
over, several functionalities of both user-plane and control-
plane protocol stacks are present.

Channel and PHY models have been developed according
to 3GPP specifications. In particular, the LTE radio access
is based on Orthogonal Frequency Division Multiplexing
(OFDM) and provides a highly flexible bandwidth (from

1.4 to 20 MHz). Both frequency-division duplex (FDD) and
time-division duplex (TDD) multiple-access techniques are
supported. At the PHY layer, radio resources are allocated
among users in a time-frequency domain [2]. In the time
domain, radio resources are distributed at every Transmission
Time Interval (TTI), each one composed by two consecutive
time slots of 0.5 ms. In the frequency domain, instead, the
whole bandwidth is divided into 180 KHz sub-channels. A
time/frequency radio resource spanning over one 0.5 ms time
slot in the time domain and over one sub-channel in the fre-
quency domain is called Resource Block (RB) and corresponds
to the smallest radio resource that can be assigned to a UE
for data transmission.

At the beginning of each TTI, each base station is in charge
of performing the radio resource allocation procedure among
the users it serves. In order to offer a valid support to re-
searchers working in the radio resource management research
field, LTE-Sim implements several well-known scheduling
strategies for both the downlink and the uplink [7]. They
distribute radio resources among mobile users by taking into
account, among other parameters, also the channel quality
experienced by them in the downlink and uplink link.

Several propagation-loss models, which consider path-loss
impact, penetration loss, shadowing, and fast fading in a wide
range of urban, sub-urban, and rural environments, as well as
an accurate physical error model based on the estimation of
the Block Error Rate (BLER), have been also implemented.

B. Event management in LTE-Sim

The main goal when depicting the characteristics of a multi-
threaded simulation engine is the throughput maximization, i.e.
enhancing the number of events which can be concurrently
executed. Starting from this assumption, it is very important
to note that the design of a multi-threaded extension of the
presented LTE-Sim platform should be carried out considering
the generation, the management, and the interaction of events
during the simulation.

In LTE-Sim, any operation executed within a network
(e.g. generation of a packet at the application layer, physical
transmission, radio-resources allocation, handover procedure,
...) is modeled, in the vision of an event-driven architecture of
the simulator, as an event. Hence, each event is in charge of
performing a specific activity during the simulation and it is
(impulsively) executed at a specific time instant.

In order to identify the most efficient way to concurrently
execute events, we have to analyze (i) the number of events
that have the same timestamp during the simulation, (ii) the
relation between events marked with the same timestamp,
and (iii) the interaction between events that can be executed
progressively in the time.

To this end, focusing the attention on a simple LTE scenario
composed by one macro cell and a number of users in the
range [50, 150], we report in Fig. 1 both the Cumulative
Distribution Function (CDF) of the number of generated events
with the same timestamp, and their execution times.

0 50 100 150 200 250 300 350 400 450 500
0.88

0.9

0.92

0.94

0.96

0.98

1

of events with the same time stamp

C
D

F

50 users

100 events

150 users

(a)

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

execution time of an event[s]

C
D

F

50 users

100 events

150 users

(b)

Fig. 1. CDF of (a) the number of events with the same time stamp and (b)
their execution time in a scenario with a variable number of users.

It is clear that—with a very high probability—a number
of events slightly greater than the double of the users’ quota
shows the same timestamp. This result is due to radio-
resources’ distribution in a LTE network: Most of the events
are executed at the beginning and at the end of each TTI
(the reader is encouraged to think to the scheduling strategy,
the packet transmission, and the packet reception). Within the
TTI, only a few number of events can be generated, such as
the generation of the packet at the application layer, the bearer
initialization, etc.

In order to ensure the correct execution of the simulation,
we should note that all events with the same timestamp are
safe to be concurrently executed, since they are independent
from each other (i.e. their execution involves updating different
data structures within the simulation model’s state). On the
other hand, events with different timestamps must be executed
in timestamp order because the execution of one event could
influence the system behavior in the future, and out-of-order
execution is likely to lead to wrong results.

We found that the average time required for executing an
event grows with the number of users into the network. The
reason is that a higher number of mobile terminals requires
a higher computational load for those events performing the
radio-resource scheduling algorithm.

All of these findings will be exploited for selecting the
most suitable multi-threading architecture for the considered
network simulator.

III. MULTI-THREADED SCHEDULING AND EXECUTION

When dealing with parallel and concurrent algorithms, three
key factors must be explicitly addressed, in order to efficiently
exploit the increased computational power provided by an
enlarged number of available processing units: i) software

1. get

1. get

2. insert 3. get

4. insert

Event
Queue

Thread Pool
T1 T2 T3 T4

Fig. 2. Symmetric Synchronization

contention, i.e. the amount of shared data which can be
concurrently accessed by different threads, therefore requiring
some sort of serialization (e.g. the definition of critical sections
relying on locking primitives); ii) hardware contention, i.e.
the effects on the memory architecture (entailing, e.g., bus
accesses, cache coherency protocols) when performing con-
current operations on shared data; iii) the degree of paral-
lelism provided by the application being parallelized. This is
extremely true in the context of simulation, where a reduced
set of data structures is used to maintain the event queue
during the execution (if compared, e.g., with the amount of
data structures used by operating systems’ kernels).

If from one side the degree of parallelism exhibited by
an application can be very difficult to be captured, on the
other hand efficiently tuning the parallel application in order
to reduce contention at the minimum can avoid thrashing even
when the number of computational resources being used is
higher than actually needed.

Symmetric synchronization is a classical approach towards
multi-threaded simulation. As shown in Fig. 2, a thread pool
composed by n threads must access the sole event queue
(which maintains timestamp-ordered events) due to two main
typologies of actions, namely insert and get. In order to ensure
event-queue consistency, accesses to this shared resource must
be serialized through the usage of some locking primitive.
This logical contention wastes computational resources and
produces secondary effects (i.e. on memory bus, if synchro-
nization is enforced by relying on spinlocks) to an extent
unbearable in the context of high performance simulations.

As mentioned in Sec. II, the time required for simulating
an event is always lower than 0.1s, therefore an efficient
implementation of a concurrent scheduling algorithm must
guarantee that the cost for selecting the next event(s) to be
executed is likely less than an event’s execution, in order to
provide any benefit. For this reason, we have explicitly dis-
carder the adoption of classical symmetric strategies. Instead,
we propose a novel/specifically-targeted strategy, named the
Multi-Master Scheduler.

By subsystem we define the point of the protocol stack
in which an event can be generated within the LTE-Sim
platform. Considering the number of entities forming up the
LTE protocol stack and the presence of several nodes into the
network, it is easy to understand that events can be generated

...

event

Concurrent
Event
Set

Timestamps
list

Fig. 3. Concurrent Event Queue

inside a wide range of subsystems. As reported in Sec. II,
most of these events are executed at the beginning/end of the
TTI. Moreover, events marked with the same timestamp can
be safely executed in parallel. Hence, we can introduce the
following properties:

Property 1. If two events e and e′ belong to two different sub-
systems, then they access separate portions of the simulation
state.

Property 2. During the execution of a certain event e asso-
ciated with a simulation time Te, we have that ∀e′ generated
during the execution of e, Te′ > Te.

We therefore rely on the notion of worker thread, which
has been recently shown [8], [9] to be a viable means for
supporting the parallel execution of simulation models1. In
particular, to efficiently exploit the parallel computational
power, the scheduling algorithm which we hereby propose will
be able to:
A) return in constant time the whole set of concurrent events

(i.e. all the events associated with the same timestamp);
B) allow wichever worker thread to be recognized by any

thread as the master thread, thus taking care of events
assignment to other worker threads, even if they are still
executing events associated with a previous timestamp.

To fully enforce point A), we propose to organize pending
events (i.e. events which have been already generated, but
still belong to a timestamp in the future) into a Concurrent
Event Queue as depicted in Fig. 3. In particular, we propose
to group all the events marked with the same timestamp Ts
into the same Event Set, and link the various Event Sets into a
Timestamp List ordered according to an increasing timestamp
value. Given this definition, we can introduce the following
operations to manipulate the aforementioned data structure:
Event Insertion: Upon the generation of a new event e′

associated with timestamp Te′ during the execution of an event
e, the Timestamp List is scanned to determine into which
Event Set (if any) the new event must be placed, i.e. the
Event Set S such that Ts = Te′ . If no suitable set is found
(i.e. there is no set associated with the timestamp Te′), a new
set is created and linked in a position such that the timestamp
ordering in the list is maintained. On the other hand, the event

1Nevertheless, the proposals in [8], [9] target an optimistic simulation
framework [10], while we explicitly deal with conservative simulations.

e is simply inserted into the related Event Set. This operation
has an O(n) cost, n being the number of Event Sets in the
list, in the worst case.

Event Scheduling: When the scheduling algorithm is run for
selecting events to be executed, they are extracted from the
first set in the list, and two cases might arise:

1) the number of concurrently-running threads is larger than
concurrent events available in the first set;

2) the number of concurrently-running threads is smaller
than concurrent events available in the first set.

If case 1) is enforced, then the current master thread, which
is executing the scheduling operations, assigns a subset of
events to each thread, which will execute them in parallel when
the tasks currently being carried out (if any) are completed.
On the other hand, case 2) entails a traditional execution by
the master thread, where each event is retrieved from the
Event Queue (i.e. from the first Event Set), executed and then
removed. This choice is related to the fact that, during the
scheduling phase, the master thread is the only worker thread
which we are sure is not currently in charge of executing
any simulation event. In fact, determining which are the idle
threads among the ones in the pool is a costly operation
requiring some synchronization effort. At the same time, a
thread currently becomes the master only if it has finished
its work assignment. Therefore, since point 2) is enforced if
the number of available events for a given time set is limited,
given the medium granularity of events’ durations, it is a more
convenient trade-off to immediately execute events, rather than
deciding which worker thread will be in charge of executing
them in the near future.

In either case, since events are executed in incresing times-
tamp order, either if one event must be simulated, or if a whole
set of events must be divided across the worker threads, the
retrieval cost is constant, as they are at the beginning of the
timestamps list. As shown, the proposed scheduling algorithm
produces no difference in the operations’ costs depending on
the number of worker threads availabe to follow through the
simulation process.

Concerning point B), our scheduling algorithm divides the
simulation’s execution into several rounds, and in each round
t all the k worker threads decide for a master thread via a
specifically-targeted leader election procedure.

In particular, upon each iteration of the main loop, only
the master thread executes the Events Assignment procedure,
which splits (in case its cardinality is large enough) the first
Event Set into k subsets, one for each worker thread. A
synchronization barrier guarantees that if any worker thread
is still processing events from round t − 1, then no events
assigned during the current round is processed. At the same
time, this allows any thread which has finished processing
events from round t − 1 to try being elected as leader, and
then starting the events assignment procedure.

A. Implementation of the Multi-Master Loop architecture
within LTE-Sim

The original version of the LTE-Sim platform adopted a
serial and linear event scheduler where events are organized
into a linked list, ordered according to their timestamp, and
executed once at a time during the simulation.

We extended the simulation framework by implementing the
event management approach reported in Sec. III. To this end,
we have completely re-implemented LTE-Sim’s scheduling
subsystem, relying (for portability reasons) on the Boost
library [11] and the Standard Template Library (STL).

We have implemented the concurrent event queue
presented in Fig. 3 using standard STL C++ containers:
we modeled the timestamps list and the concurrent events
array with the std::list and the std::vector
containers, respectively. In this way we can reduce at the
minimum the number of operations required to obtain a
whole set of events by relying on list::front(),
list::pop_front(), vector::front(),
vector::at(), and vector::erase()) standard
methods. Per-thread data have been implemented
using boost’s Thread Local Storage (TLS), namely
boost::thread_specific_ptr.

The Multi-Master Loop uses boost::barrier()
for handling thread synchronization and the
atomic_test_and_set primitive for implementing
the Leader Election procedure2. In particular, the only thread
which, within a round, is able to successfully execute the
atomic_test_and_set call on the multimaster guard is
elected as leader, is charged of assigning events across all
the available worker threads, and then remises the role by
atomically resetting the multimaster guard.

B. Correctness of the Approach

The scheduling algorithm hereby presented allows dis-
patched simulation events which are marked with the same
timestamp to be concurrently executed, independently of the
generation order and/or the insertion order in the global con-
current event queue. Therefore the implemented concurrency
control scheme maintains a high degree of parallelism by
ensuring that: i) the read/write operations on simulation state
performed by an executed event e on the simulation state S
appear as they happened at same indivisible point in time
associated with the logical simulation time Te in which e
has been processed; ii) all the executed events perform the
same operations and produce the same outcome as they were
processed sequentially without violating logical simulation
time advancement. For this reason, if we model an event e’s
execution as an atomic transaction τe [12] to be considered
committed whenever e is executed (i.e. it can be established
a simulation time T ∗ such that each event e′ executed at a
time Te′ < T ∗ is already committed and Te < T ∗), we can

2We note that although atomic_test_and_set is machine-dependent,
it is available on most off-the-shelf platforms via, e.g., the atomic.h header,
since it can be easily implemented on any modern architecture.

adopt the serializability consistency criteria [12], [13] over
the histories of the committed events as the target correctness
criteria of the proposed solution.

Before showing the proof we formalize the concepts of
history on executed events and operation. A history HT∗ over
a set E of committed events at simulation time T ∗ consists
of i) a partial order of operations that reflect the read/write
operations performed ∀e ∈ E on the simulation state together
with the begin (i.e., the invocation of e) and the complete (i.e.,
the commit of e), and ii) the version order � that specifies a
total order on the logical object’s versions (i.e. variations on
portions of the simulation states during the advancement of
the logical simulation time) created by committed events. A
write operation on an object x issued by an event e is denoted
by we(xe) while a read operation on a version xe′ of object
x is denoted by re(xe′).

Taken any two events e and e′, the following dependencies
might occur: i) e′ directly read-depends on e if there exists
an object x such that e′ executes a read r(xe); ii) e′ directly
write-depends on e if there exists an object x such that e
executes a write w(xe), e′ executes a write w(xe′) and xe′

immediately follows xe in the total order defined by � on x;
By Property 1 and 2, we know that taken a Concurrent Event
Set C associated with a timestamp TC in the Concurrent Event
Queue, ∀e, e′ ∈ C neither dependency i) nor ii) can occur.

We can therefore build a Direct Serialization Graph
DSG(HT∗ ,�) over a history HT∗ as stated in [13] in order to
define serializability in terms of topological properties on that
graph. In particular a graph DSG(HT∗ ,�) contains a node
Ne for each executed event e in HTC

and a directed edge
Ne → Ne′ for each pair of committed events e, e′ in HT∗

such that either dependency i) or ii) occurs. Then a history
HT∗ is serializable if the associated DSG(HT∗ ,�) does not
contain oriented cycles as defined in [12].

Therefore the correctness proof of SSMS is formalized in
the following Theorem:

Theorem 1. For each simulation time value T ∗ and for each
history HT∗ of committed events admitted by the scheduling
algorithm, then the DSG(HT∗ ,�) graph does not contain
any oriented cycle.

Proof: We prove that the DSG(HT∗ ,�) does not contain
any oriented cycle by showing that for each edge Ne −→ Ne′ ,
Te < Te′ always holds.

If an edge Ne −→ Ne′ is in DSG(HT∗ ,�) we have to
distinguish two cases:

1) e′ directly read-depends on e. In this case the event has
performed a read operation on an object x by accessing
logical the version xe having the greatest timestamp Te
less than Te′ . Therefore Te < Te′ .

2) e′ directly write-depends on e. e′ overwrites a value of
an object x already written by e. This is admitted only if
Te < Te′ .

By Theorem 1 follows that every committed history gener-
ated by our scheduling algorithm guarantees serializability.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 5 10 15 20 25 30

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
)

Active Threads (#)

xchgb spinlock
pthread mutex

multimaster

Fig. 4. Comparizon of synchronization cost in a SingleCell Scenario

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance gain achievable by
the adoption of the presented Multi-Master architecture, we
have analyzed both SingleCell and MultiCell scenarios. The
SingleCell scenario is composed by only one LTE cell, one
eNB and 50 users. Each user moves into the network at 3
Km/h and receives a downlink traffic modeled through the
infinite-buffer application. The eNB distributes radio resources
among mobile terminals by means of the PF scheduler. The
MultiCell scenario is composed by 19 cells and a number
of users distributed within the entire network. Similar to the
previous scenario, also in this case each user moves at 3 Km/h
and receives a downlink traffic modeled through the infinite-
buffer application, and the eNB distributes radio resources
among mobile terminals by means of the PF scheduler. All
conducted simulations last 60 simulated seconds each.

The hardware architecture used for testing our proposal
is a 64-bit NUMA machine, namely an HP Proliant server,
equipped with four 2GHz AMD Opteron 6128 processors and
64GB of RAM. Each processor has 8 CPU-cores (for a total
of 32 CPU-cores) that share a 10MB L3 cache (5118KB per
each 4-cores set), and each core has a 512KB private L2 cache.
The operating system is 64-bit Debian 6, with Linux kernel
version 2.6.32.5.

All presented results have been obtained by averaging
5 different simulation runs’ outcomes, and time measures
have been taken via the standard gettimeofday() service,
offering microsecond granularity. The intrusiveness of this
approach is negligible given an overhead of less than 1 ms on
current conventional machines for the couple of calls required
to take start and end time of the interval defining the latency
sample to be evaluated.

The first analysis we propose would demonstrate the effec-
tiveness of the proposed approach compared with respect to
other classical symmetric strategies (see Fig. 2). To this end,
we implemented two types of symmetric schemes. The former
ensures synchronization among threads using the standard
xchgb assembly instruction on Intel-compliant x86 architec-
tures. The latter, instead, uses pthread mutexes to perform

 10

 100

 1000

 5 10 15 20 25 30

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
in

)

Active Threads (#)

Original LTE-Sim Scheduler

50 users
100 users
150 users

Fig. 5. Multi-Master’s Total Execution Time in a MultiCell Scenario

the same task. The SingleCell scenario has been considered
in the comparison. Such scenario allows to measure which
is the actual overhead induced by a parallelized scheduling
algorithm, since it shows a reduced degree of parallelism (i.e.
the number of concurrent events is very limited).

In Fig. 4, we report the simulation execution time by varying
the number of active worker threads in the system. From the
results it is evident that symmetric schemes reach a thrashing
point with a very low number of worker threads, due to
the high logical contention on the event queue. A different
behavior has been registered for the Multi-Master scheme
that always guarantees an evident reduction of the simulation
time with respect to the other approaches and to the single-
tread implementation. Furthermore, we can observe that the
proposed scheme achieves best performance with 10 worker
threads and then mostly stalls.

To provide a further insight, we evaluate the performance
of the proposed Multi-Master scheduler in a more complex
scenario (i.e., the MultiCell) considering different number
of mobile users. The execution time of the simulation is
reported in Fig. 5. We can observe that, despite the high
number of parallel events generated during the simulation, the
performance gain achieved by the presented solution is fully
able to exploit the potential of multi-processing architectures,
thus reaching a maximum speedup in the order of 90%, 90%,
and 80% when the number of users are set to 50, 100, and
150, respectively. It is interesting to additionally note that,
when a high number of concurrent events is generated by the
simulation scenario, the scheduler incurs in no thrashing at all.

Finally, we report in Fig. 6 the the CPU utilization, showing
that it linearly grows with the number of active worker threads
in the system.

V. CONCLUSION

In this work we have presented the new Multi-Master
scheduling algorithm for the LTE-Sim simulation package.
We have presented design indications for our proposal, which
allow any LTE simulation engine to implement its own version

of the algorithm, and we have presented a proof showing the

 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

T
im

e
 S

p
e
n
t
in

 U
s
e
r

M
o
d
e
 (

%
)

Active Threads (#)

50 users
100 users
150 users

Fig. 6. Multi-Master’s CPU Utilization in a MultiCell scenario

correctness of our proposal. We have additionally assessed
the vailidity of our proposal relying on different simulation
scenarios provided by the LTE-Sim simulation package.

REFERENCES

[1] Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2010-2016.

[2] E. Dahlman, S. Parkvall, and J. Skold, 4G LTE/LTE-Advanced for
Mobile Broadband. Academic Press, 2011.

[3] N. Baldo, M. Miozzo, M. Requena-Esteso, and J. Nin-Guerrero, “An
open source product-oriented LTE network simulator based on ns-3,”
in Proceedings of the 14th ACM international conference on Modeling,
analysis and simulation of wireless and mobile systems, ser. MSWiM.
ACM, 2011, pp. 293–298.

[4] G. Piro, L. A. Grieco, G. Boggia, F. Capozzi, and P. Camarda,
“Simulating LTE cellular systems: An open-source framework,” IEEE
Transactions on Vehicular Technology, vol. 60, no. 2, pp. 498–513, feb
2011.

[5] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “A
system-level simulation framework for LTE femtocell,” in Proceedings
of the 5th International ICST Conference on Simulation Tools and
Techniques, ser. SIMUTools. ICST, mar 2012.

[6] F. Capozzi, G. Piro, L. Alfredo Grieco, G. Boggia, and P. Camarda, “On
accurate simulations of lte femtocells using an open source simulator,”
EURASIP Journal on Wireless Communications and Networking, 2012.

[7] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Down-
link packet scheduling in lte cellular networks: Key design issues and a
survey,” IEEE Commun. Surveys and Tutorials, 2012.

[8] R. Vitali, A. Pellegrini, and F. Quaglia, “Towards symmetric multi-
threaded optimistic simulation kernels,” in Proceedings of the 26th
International Workshop on Principles of Advanced and Distributed
Simulation, ser. PADS. IEEE Computer Society, Aug. 2012, pp. 211–
220.

[9] ——, “A load-sharing architecture for high performance optimistic
simulations on multi-core machines,” in Proceedings of the 19th IEEE
International Conference on High Performance Computing, ser. HiPC.
IEEE Computer Society, dec 2012.

[10] A. Pellegrini, R. Vitali, and F. Quaglia, “The ROme OpTimistic Simula-
tor: Core internals and programming model,” in Proceedings of the 4th
ICST Conference of Simulation Tools and Techniques, ser. SIMUTools.
ICST, 2011.

[11] B. Karlsson, Beyond the C++ Standard Library: An Introduction to
Boost. Addison Wesley Professional, aug 2005.

[12] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. Addison-Wesley Longman Publish-
ing Co., Inc., 1986.

[13] A. Adya, “Weak Consistency: A Generalized Theory and Optimistic
Implementations for Distributed Transactions,” Massachusetts Institute
of Technology, Cambridge, MA, USA, Tech. Rep., 1999.

