
1

A Conflict-Resilient Lock-Free Linearizable CalendarQueue∗

ROMOLO MAROTTA, Tor Vergata University of Rome, Italy

MAURO IANNI, Lockless S.r.l., Italy
ALESSANDRO PELLEGRINI, Tor Vergata University of Rome, Italy

FRANCESCO QUAGLIA, Tor Vergata University of Rome, Italy

In the last two decades, great attention has been devoted to the design of non-blocking and linearizable

data structures, which enable exploiting the scaled-up degree of parallelism in off-the-shelf shared-memory

multi-core machines. In this context, priority queues are highly challenging. Indeed, concurrent attempts to

extract the highest-priority item are prone to create detrimental thread conflicts that lead to abort/retry of

the operations. In this article, we present the first priority queue that jointly provides: i) lock-freedom and

linearizability; ii) conflict resiliency against concurrent extractions; iii) adaptiveness to different contention

profiles; and iv) amortized constant-time access for both insertions and extractions. Beyond presenting our

solution, we also provide proof of its correctness based on an assertional approach. Also, we present an

experimental study on a 64-CPU machine, showing that our proposal provides performance improvements

over state-of-the-art non-blocking priority queues.

CCS Concepts: • Theory of computation→ Concurrent algorithms; • Information systems→ Mes-
sage queues; • Computing methodologies→ Discrete-event simulation; • Software and its engineering
→ Synchronization.

Additional KeyWords and Phrases: Data structures design and analysis, Sharedmemory algorithms, Concurrent

algorithms, Non-blocking Priority queue, Pending Event Set

ACM Reference Format:
Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and Francesco Quaglia. 2023. A Conflict-Resilient Lock-

Free Linearizable Calendar Queue. ACM Trans. Parallel Comput. 1, 1, Article 1 (January 2023), 33 pages.

https://doi.org/10.1145/3635163

1 INTRODUCTION
The Pending Event Set (PES) is a building block for event-driven applications, whose computation

advances thanks to the occurrence of timestamped events. In these applications, events are inserted

in a PES—also denoted as event pool—as soon as they are scheduled to occur. They are subsequently

extracted and processed in an order that depends on the associated timestamps. For this reason,

this data structure is often implemented as a priority queue, where timestamps determine priori-

ties. When the event-driven paradigm merges with concurrent and parallel computing, effective

concurrent management of the event pool is mandatory to provide scalability [28, 30].

The extensive literature on event-driven applications (like discrete event simulation) proposes

several event pool data structures with (amortized) constant-time access, such as classical Calendar

Queues [4], Ladder Queues [33] and LOCT [27]. However, these solutions are non-concurrent,
meaning that their usage in concurrent applications requires threads to access the data structure

∗
This is a revised and extended version of a paper presented at the ACM SIGSIM PADS 2017 conference [25].

Authors’ addresses: Romolo Marotta, romolo.marotta@gmail.com, Tor Vergata University of Rome, Rome, Italy; Mauro Ianni,

ianni@lockless.it, Lockless S.r.l., Rome, Italy; Alessandro Pellegrini, a.pellegrini@ing.uniroma2.it, Tor Vergata University of

Rome, Rome, Italy; Francesco Quaglia, francesco.quaglia@uniroma2.it, Tor Vergata University of Rome, Rome, Italy.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in ACM Transactions on Parallel Computing, https://doi.org/10.1145/3635163.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1145/3635163
https://doi.org/10.1145/3635163

1:2 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

in a lock-protected critical section guaranteeing isolation. Clearly, this is a scalability limitation,

despite the advantageous time complexity offered for every single operation on the pool. These

solutions are mainly based on: (i) a multi-dimensional arrangement (e.g., multi lists) of events

where the number of events per dimension is bounded by a constant; (ii) the presence of a reference

always pointing (near) to the maximum priority event (i.e., the one with the minimum timestamp);

(iii) an arrangement of the data structure that can be partially or totally reshuffled to control the

number of events in each dimension.

Recently, concurrent management of the event pool has gained interest to enable its effective

exploitation in shared-memory multi-core architectures [28]. One core point along this direction has

been the exploitation of non-blocking synchronization [16, 18] applied to priority queues [22, 32].

However, none of the recent approaches—like Lock-free Ladder Queues [13] and Splay Trees [1]—

offers a PES that jointly ensures lock freedom, constant-time access and is proved linearizable. On

the other hand, providing concurrent (most notably non-blocking), scalable, and linearizable priority

queues is challenging because of the difficulties in handling the event extraction with the minimum

timestamp. Intuitively, the minimum timestamp event in the PES is materialized at only one item

at any time. Consequently, multiple concurrent extractions cannot succeed at the very same time.

This impacts particularly non-blocking concurrent algorithms, where no isolation is exploited in

the access by threads to the data structure. These algorithms are based on performing work not

visible to other threads—such as reading a few parts of the data structure—and executing an atomic

machine instruction (e.g., Compare&Swap), which can fail while attempting to perform some update.

The failure leads to the abort of the operation (e.g., the extraction of the minimum), which needs

to be retried in the hope not to lose again in any (possible) conflict with other concurrent thread

operations.

We also note that non-blocking PES solutions significantly stress the cache subsystem since

the memory region near the minimum—namely, the data it is represented by—can be frequently

exchanged across threads (in terms of the corresponding cache lines’ state in the cache coherency

protocol) also because of retried operations. A few approaches [22, 25] face this issue by trading

off latency in favour of throughput, with the limitation that the contention level (the number

of threads to be managed) has to be known a priori. Nowadays, satisfying this requirement is

very challenging, especially when considering dynamic workloads or virtualized hardware. Other

solutions try to completely overcome the scalability bottleneck of priority queues by renouncing to

provide linearizability [1, 13].

In this work, we present a lock-free, conflict-resilient and contention-adaptive calendar queue

that is also provably linearizable, which overcomes all the limitations of the results currently

available in the literature. To prove the correctness of our algorithm, we followed an assertional

approach, which offers the reader an alternative perspective compared to the well-known approach

based on the exploitation of fixed-linearization points in the algorithm. Indeed, our algorithm is

based on procedures that do not always linearize at the same machine instructions—hence there is

no a priori identification of what machine instruction will need to be considered as the linearization

point of a method invocation (insertion/extraction)—just depending on what happens in terms

of concurrency of the operations by multiple threads. Beyond presenting our algorithm and its

correctness proof, we also report the results of an experimental study comparing it to literature

references on a 64-CPU machine, showing that our proposal has relevant, pragmatic benefits in

terms of scalability and operations throughput. This study has been based on the well-known Hold

benchmark [29], commonly exploited in the literature to assess the effectiveness of PES algorithms.

The remainder of this article is structured as follows. Related work is discussed in Section 2. The

proposed solution is presented in Section 3. Section 4 and Section 5 give the proof of liveness (lock

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:3

freedom) and safety (linearizability) of our data structure, respectively. The experimental study is

presented in Section 6. Section 7 concludes the article.

2 RELATEDWORK
The original Calendar Queue [4] is a timestamp-ordered data structure based on multi-lists, which

offers amortized constant time insertion of events with generic timestamps and constant-time

extraction of the event with the minimum timestamp. The Ladder Queue [33] is a variant of

the Calendar Queue which is more suited for skewed distributions of the timestamps of the

events, thanks to the possibility to split an individual bucket into sub-intervals dynamically (i.e.,

sublists of records) when the number of elements associated with the bucket exceeds a given

threshold. LOCT [27] is an additional variant that allows reducing the actual overhead for constant-

time insertion/extraction operations thanks to the introduction of a compact hierarchical bitmap

indicating the status of any bucket (empty or not). None of these proposals has been devised for

concurrent accesses. Therefore, their usage by concurrent threads would require locks for serializing

the accesses, which can be detrimental to scalability, as shown in [13].

The work in [2] provides an event-pool data structure enabling parallel accesses via fine-grain

locking of a sub-portion of the data structure upon performing an operation. However, the intrin-

sic scalability limitations of locking still make this proposal unsuitable for significant levels of

parallelism, as also shown in [29].

As for lock-free management of sets by concurrent threads, various proposals exist (e.g., lock-

free linked lists [14] or skip lists [22, 32]), which anyhow do not offer constant-time operations.

The lock-free linked list pays a linear cost for ordered insertions. Skip lists [26] are randomized

multi-linked lists that provide logarithmic access time with guarantees similar to a randomized

binary search tree [9].

Fraser [12] provided a practical lock-free and linearizable implementation of a set of elements

based on a skip list by applying ideas similar to the Harris’ lock-free linked list—namely logical

deletion by node marking. Based on this work, other skip lists have been designed to address

specific subproblems, such as cache locality [7, 10] and Non-Uniform-Memory-Access (NUMA) [8].

Lotan and Shavit [31] employ this data structure as a concurrent priority queue. The original

implementation was not linearizable since extracting an item inserted after the enqueue of a new

minimum was possible. Herlihy and Shavit [17] added a timestamping mechanism to overcome this

problem and achieve linearizability. Sundell and Tsigas [32] proposed a lock-free skip-list-based

implementation that uses the marking strategy for dequeued items. Linearizability is obtained by

imposing that physical removal immediately follows logical deletion. Unfortunately, since threads

continuously compete for memory locations of items close to the minimum, all the above imple-

mentations suffer from very high contention under standard workloads. Lindén and Jonsson [22]

presented an elegant design to reduce the bottleneck of deleting the minimal element. The latter is

considered the state-of-art implementation of lock-free linearizable priority queues [1] but still

does not offer constant-time operations. Another solution based on skip lists is presented in [1],

where the authors propose a priority queue with a relaxed semantics, which allows to retrieve

non-minimum items in favor of an improved scalability.

Lock-free operations in combination with constant-time complexity have been studied in [13],

which presents a variation of the Ladder Queue where the elements are at any time bound to the

correct bucket, but the bucket list is not ordered. Constant-time is achieved since the extraction from

an unordered bucket returns the first available element, which does not necessarily correspond to the

one with the minimum timestamp. At the same time, linearizability is not supported. This proposal

can be exploited in applications relying on speculative processing, where unordered extractions

leading to causal inconsistencies are reversed via proper rollback mechanisms—this is the case of

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:4 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

speculative Parallel Discrete Event Simulation (PDES). However, a few recent results [6, 20, 30] have

shown that linearizable fetching of events from the shared pool still represents the core solution,

even when exploiting speculation. The correct order of delivery is guaranteed by the algorithm we

present in this article since we always deliver the highest priority event currently in the event pool,

which has been inserted by any operation that is linearized before the extraction.

The recent proposal in [15] explores the idea of managing concurrent accesses to a shared pool

by relying on Hardware Transactional Memory (HTM). Insertions and extractions are performed

as HTM-based transactions, hence in non-blocking mode. However, HTM-based transactions can

abort for several reasons, not necessarily related to conflicting concurrent accesses to the same

portion of the data structure. For example, they can abort because of false cache sharing or limited

cache capacity, which might be adverse to executions with very large event pools. The algorithm

we present in this article does not require special hardware support, thus entirely eliminating the

secondary effects caused by HTM limitations on the abort rate of the operations.

The proposal in [24] is based on lock-free access to a multi-bucket data structure and provides

amortized 𝑂 (1) time complexity for both insertion and extraction operations. However, it does not

provide a lock-free scheme for the dynamical resize of the bucket width. Hence, to achieve adequate

amortizing factors, all the threads would need to (periodically) synchronize via locks to change the

bucket width and redistribute events over the reshaped buckets. On the other hand, avoiding at all

the synchronized reshuffle of the buckets might give rise to non-competitive amortizing factors

(e.g., too many elements associated with a bucket). This problem is avoided at all by the algorithm

we present in this article.

Finally, the work in [23] enables a non-blocking reshuffle of the data structure but does not

guarantee conflict resilience of extraction operations targeting the “hot” bucket to which the

locality of the extraction activities is bound. Hence, as soon as two or more extraction operations

are executed concurrently and conflict, just one of them is allowed to be finalized with no retry

cycle. In this article we overcome these issues at all by providing resilience to conflicting extractions.

As we also show in the experimental study, this feature of our algorithm provides clear advantages

in terms of scalability and performance.

As an additional limitation of these recent proposals (i.e., [23, 24]), linearizability is not proven

to be supported. Instead, the lock-free algorithm we present in this article is formally proven

linearizable.

3 THE LOCK-FREE CALENDAR QUEUE
Our proposal, called Lock-Free Calendar Queue (LFCQ), is a non-blocking priority queue tailored

to maintain the PES, directly inspired by the classical Calendar Queue [4]. For this reason, we often

use the words item/event and priority/timestamp interchangeably.

In the Calendar Queue, the priority domain is split into equal partitions, called time slots, each
one covering a given range of priorities, whose length is called bucket width (bw). Each time slot

is served by a dedicated priority queue called virtual bucket (VB). Since the priority domain is an

infinite set of real numbers, the number of VBs is unbounded, and, thus, they are mapped circularly

to a finite array of physical buckets (PBs).
Essentially, a Calendar Queue is a bi-dimensional data structure with an array of lists (the PBs),

each maintaining items of multiple VBs. When a new event 𝑒 with timestamp 𝑇𝑒 is enqueued, the

index 𝐼𝑣𝑏 of the VB associated with the time slot of 𝑒 is computed as 𝐼𝑣𝑏 = ⌊𝑇𝑒/𝑏𝑤⌋. At this point,
the index 𝐼𝑝𝑏 of the target PB is computed as 𝐼𝑝𝑏 = (𝐼𝑣𝑏 mod 𝐿), where 𝐿 is the calendar length,

namely the number of PBs. Finally, 𝑒 is inserted into the 𝐼𝑝𝑏-th physical bucket.

An integer 𝐶 stores the index of the VB containing the event with the minimum timestamp,

namely the one with the highest priority. A dequeue operation starts by retrieving the value 𝐶 to

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:5

LFCQ
table

set table

size=15
bucket_width=1.0

length=8
current=<11,0>

buckets
new_table

H

H

H

H

H

H

H

H

T

T

T

T

T

T

T

T

null

node

payload=0xffff…0
timestamp=22

epoch=0
next= 1111 … 00

mark

Fig. 1. Scheme of the LFCQ data structure.

extract the minimal key stored into the 𝐶-th VB, which is actually stored into the 𝐶𝑝𝑏-th physical

bucket, where𝐶𝑝𝑏 = (𝐶 mod 𝐿). When the VB identified by𝐶 is empty, the operation looks for an

event to extract from the next bucket, thus also performing the update of 𝐶 by one unit.

The Calendar Queue specification achieves amortized constant-time access for insertion and

extraction operations. This is guaranteed by reshuffle operations that keep the number of items in

a PB bounded by a constant. In particular, when the number of events halves or doubles, the data

structure is entirely reshuffled by adopting a new 𝑏𝑤 that changes the partitioning of the priority

domain and, consequently, the mapping between events and buckets.

We recall again that the Calendar Queue is a sequential algorithm, not allowing concurrent

operations by threads. Its usage in applications with multiple concurrent threads requires the

inclusion of mechanisms—like locking—for the isolated execution of its operations.

Key idea. In principle, our LFCQ algorithm implements the same logic as the Calendar Queue but

provides non-blocking progress, particularly lock freedom. Here, the main challenge is guaranteeing

linearizability while jointly providing: 1) lock-free management of physical buckets; 2) lock-free

management of the index pointing to the virtual bucket containing the minimum; 3) non-blocking

reshuffle phases.

For point 1), our algorithm exploits the well-known non-blocking set by Harris [14], which we

have augmented with additional capabilities required to provide the features in points 2) and 3). In

particular, we resort to the notion of logical timestamps, called epochs, but with a different flavour

than just providing correctness, as instead done in [17]. In fact, epochs have a dual role in our LFCQ

algorithm. On the one hand, they ensure both correctness and conflict resilience of extractions

within a single virtual bucket. On the other hand, epochs jointly allow a consistent view of multiple

priority queues (buckets) and act as if they were a single connected queue. Finally, in LFCQ, we

guarantee that active insertion and deletion operations cannot update critical points of the data

structure during the reshuffle phases. This allows items to be moved across calendars without

hampering the consistency of the data structure. To this goal, the state machine representing the

evolution in time of nodes within the non-blocking list has been augmented with additional states

and transitions for event migration that are embedded into both the records keeping individual

events and metadata representing the current state of a physical bucket.

3.1 LFCQ Baseline Organization
The basic organization of our LFCQ is provided in Figure 1. It consists of a pointer table to a

data structure called Set Table, which maintains the metadata required for queue management.

In particular, bucket_width stores the actual 𝑏𝑤 currently used to partition the priority domain;

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:6 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

length is the number of PBs in the calendar; size keeps the number of stored events; current is a
pair ⟨𝑖𝑛𝑑𝑒𝑥, 𝑒𝑝𝑜𝑐ℎ⟩ such that 𝑖𝑛𝑑𝑒𝑥 logically points to the VB containing the minimum and 𝑒𝑝𝑜𝑐ℎ

is a counter which is incremented each time insertion in the past of the current minimum occurs

(a new minimum is inserted); buckets is a pointer to the array of PBs, that are implemented as

non-blocking linked lists; new_table is a reference initialized to null, which is used only during

reshuffle phases.

To ensure consistency with concurrent accesses, the queue operations rely on the following 64-bit

atomic RMW [21] instructions: Fetch&Add(𝑎,𝑏) (FAD) atomically increments the value of a memory

cell 𝑎 with a supplied value 𝑏 and returns its value before the update; Compare&Swap(𝑎,𝑏,𝑐) (CAS)
atomically updates a given memory location 𝑎 with a value 𝑐 only if its current content is equal to

a given value 𝑏, otherwise no memory update takes place and we say that the CAS instruction fails.

3.1.1 Physical Bucket Queues. While PBs in the original non-concurrent Calendar Queue [4]

are priority queues implemented as ordered linked lists, our algorithm is based on a different

specification of PBs called Physical Bucket Queue (PBQ), which is a priority queue with a slightly

modified semantics. First, its enqueue and dequeue APIs, respectively called Connect and GetMin,
take two additional parameters: a VB index and an integer value called epoch. On the one hand,

the Connect procedure adds a new item to the queue and creates an association between the item

and the epoch passed as a parameter. This is kept into the epoch field of a node encapsulating the

new item (see Figure 1). On the other hand, the GetMin procedure tries to extract the highest

priority item belonging to the VB passed as a parameter, which is compatible with the epoch value

provided as input. If there are no items in the PBQ, it returns the special value ∅. Conversely, if the
PBQ is not empty, but no item belongs to the interested VB, it returns ⊥. Finally, if the target VB
is not empty, the result depends on the epoch 𝑒𝑖 associated with the highest priority item 𝑖 . If 𝑒𝑖
is lower than or equal to the epoch value passed as a parameter, GetMin extracts and returns 𝑖;

otherwise, it returns a special value ABORT indicating that the procedure cannot succeed due to

some conflicting concurrent operation.

The second main difference between a PBQ and a priority queue stands in the additional APIs

for migrating items from a PBQ to another one in a non-blocking fashion. These APIs are exploited

during the non-blocking reshuffling of the data structure. In particular, Block atomically puts a

PBQ in a state that does not allow the insertion of a new minimum-timestamped event; BlockNext

atomically puts a PBQ and the successor 𝑒 ′ of the event 𝑒 passed as a parameter in a state that

does not allow the extraction of 𝑒 ′ and the insertion of a timestamp between the one of 𝑒 and

𝑒 ′; Migrate atomically removes and inserts an item from one PBQ to another one. Clearly, both

Connect and GetMin can return the ABORT value when they try to operate on elements whose

state “blocks” extractions/insertions (mainly, during reshuffle operations).

Nodes of Physical Bucket Queues. Our PBQs are mainly based on the non-blocking set implemen-

tation by Harris [14]. Nodes within this data structure have two possible states: valid and logically
deleted. The former signals that the node contains a key that can be safely extracted. Conversely, the

latter indicates that the key has been already extracted, but the node is still connected to the linked

list and must be physically removed. This is because Harris’ linked list exploits lazy deletion to

provide correct concurrent management of the set (e.g., correct concurrent traversal while deleting

nodes). To this end, it embeds the state of a node into the Least Significant Bit (LSB) of the field,

maintaining the pointer to the next node in the list.

Unlike other priority queues based on the Harris’ list, our PBQ needs two additional states to

correctly handle migrations of nodes from one queue to another one. Consequently, we need to

steal an extra bit from the field next of a node (see Figure 1). In particular, we have four states of a

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:7

H

H

H

H

11

T

17

12

T

25

16

T

T

8

1

2

bucket_width = 1.0

current = <11,0>
< 8,1>

Fig. 2. Enqueue main steps.

H

H

H

H

T

17

12

25

16

T

20 T

2

bucket_width = 1.0

T

current = <11,0>
<12,0>1

Fig. 3. Dequeue main steps.

node, each one mapped to different values of the two LSBs, called mark, in the field used to point

to a subsequent node:

VAL: the node stores a valid key, which corresponds to the node timestamp (the value of the mark

field is 00);

DEL: the node stores a key that cannot be extracted (01) since the node encapsulating it is no longer
valid, namely the corresponding key was already extracted or migrated to a new PBQ;

MOV: the node stores a key that cannot be extracted since it is going to be migrated in a new PBQ

(11);

INV: the node stores a key that might be valid in the future (10).

During the extraction, the GetMin procedure applies the transition from VAL to DEL as in the

original non-blocking linked list by Harris. Other states are reachable only during, or due to,

reshuffle phases. Consequently, these transitions will be discussed deeply in Section 3.4 where

details of the reshuffle protocol are given. Both DEL and INV can be considered as logically deleted

nodes and, consequently, they are disconnected while searching for a specific key. However, there

are scenarios related to the reshuffle phase that require only DEL nodes to be actually disconnected.

For this reason, the Search routine takes an additional parameter indicating which states must be

considered for physically removing nodes.

As a last note, we will present LFCQ under the assumption that all the timestamps of different

events have different values. This can be achieved in practice by having a timestamp representation

based on a couple where one field is the actual timestamp, and the other field is a unique identifier

taken, for example, by an atomic counter.

3.2 Enqueue Operation
The Enqeue() procedure of the LFCQ, whose pseudocode is shown in Algorithm 1, has three main

phases. First, it checks if a reshuffle phase has begun (by evaluating the new_table field) or a new

one has to start (line E5). In the positive case, it joins the refactoring protocol and, once completed,

restarts from the beginning. Once the current set table is obtained, it proceeds by inserting the event

𝑒 (received as a parameter) with priority (namely, timestamp) 𝑒.t. To this goal, it determines the

indexes 𝑣𝑏 and 𝐼𝑝𝑏 of the virtual and physical buckets associated with the priority 𝑒.t (lines E8-E10).
At this point, it reads current, obtaining the actual epoch which is written into the new node and

tries to add 𝑒 to the 𝐼𝑝𝑏-th PBQ (denoted as 𝑝𝑏) by invoking the Connect API. Upon the Connect

invocation, if the timestamp to be inserted is already present, the operation fails to notify that no

new node is inserted, and the returned value ⊥ indicates the violation with respect to timestamp

uniqueness. If the timestamp is not already present, it checks if the inserted item belongs to a VB

preceding the one pointed by current. When 𝑣𝑏 ≤ current.index, the enqueue updates the index
kept by current (an item has been inserted in the past of the previous minimum timestamp) and

the epoch of current is incremented by one. In order to guarantee that the insertion becomes

visible to extractions after its completion, this step is performed inside a retry loop (lines E15-E20)

with a CAS. In this way, a new phase of the queue, where all the new items will be associated with

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:8 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

Algorithm 1 lock-free Enqeue

E1: procedure Enqeue(event e)

E2: 𝑟𝑒𝑠 ← ABORT
E3: while 𝑟𝑒𝑠 ≠ ⊤ do
E4: ℎ ← table ⊲ Obtain table
E5: if checkResize(ℎ) ∨ ℎ.new_table ≠ NULL then
E6: Reshuffle() ⊲ Join the reshuffle protocol
E7: continue
E8: 𝑣𝑏← ⌊𝑒.t/ℎ.bw⌋ ⊲ Compute virtual bucket
E9: 𝐼𝑝𝑏 ← 𝑣𝑏 mod ℎ.length
E10: 𝑝𝑏← ℎ.buckets[𝐼𝑝𝑏] ⊲ Obtain PBQ
E11: 𝑒𝑝 ← ℎ.current.epoch ⊲ Obtain current epoch
E12: 𝑟𝑒𝑠 ← 𝑝𝑏.Connect(𝑣𝑏, 𝑒 , 𝑒𝑝) ⊲ Try to add 𝑒 to 𝑝𝑏
E13: if 𝑟𝑒𝑠 = ⊥ then
E14: return ⊥
E15: while ⊤ do
E16: 𝑜𝑙𝑑 ← ℎ.current
E17: 𝑜𝑙𝑑𝐼𝑛 ← 𝑜𝑙𝑑.index
E18: 𝑜𝑙𝑑𝐸𝑝 ← 𝑜𝑙𝑑.epoch
E19: 𝑛𝑒𝑤 ← ⟨𝑣𝑏, 𝑜𝑙𝑑𝐸𝑝 + 1⟩
E20: if 𝑣𝑏 > 𝑜𝑙𝑑𝐼𝑛 ∨ CAS

(
&ℎ.current,𝑜𝑙𝑑,𝑛𝑒𝑤

)
then

E21: break
E22: Fetch&Add(&ℎ.size, 1)
E23: return ⊤

C1: procedure Connect(integer 𝑣𝑏, event 𝑒 , integer 𝑒𝑝)
C2: if RandomClean() then ⊲ Trigger housekeeping task
C3: ⟨𝑙, 𝑙_𝑛𝑒𝑥𝑡, 𝑟 ⟩ ← Search(0, DEL ∨ INV)
C4: CAS(𝑙 .next, 𝑙_𝑛𝑒𝑥𝑡 , 𝑒)

C5: ⟨𝑙, 𝑙_𝑛𝑒𝑥𝑡, 𝑟 ⟩ ← Search(e.t, DEL ∨ INV)
C6: if 𝑙 .t = 𝑒.t then ⊲ Key already present
C7: return ⊥
C8: 𝑒.epoch← 𝑒𝑝

C9: 𝑒.next← 𝑟

C10: if ¬CAS(&𝑙 .next, unmark(𝑙_𝑛𝑒𝑥𝑡), 𝑒) then
C11: return ABORT ⊲ Failed insertion
C12: return ⊤

Algorithm 2 lock-free Deqeue

D1: procedure Deqeue(
˙
)

D2: 𝑖𝑡𝑒𝑟 ← 0

D3: while 𝑡𝑟𝑢𝑒 do
D4: ℎ ← table ⊲ Obtain table
D5: if checkResize(ℎ) ∨ ℎ.new_table ≠ NULL then
D6: Reshuffle() ⊲ Join the reshuffle protocol
D7: continue
D8: 𝑐𝑢𝑟 ← ℎ.current ⊲ Obtain current
D9: 𝑒𝑝𝑜𝑐ℎ← 𝑐𝑢𝑟 .epoch ⊲ Obtain current epoch
D10: 𝑣𝑏← 𝑐𝑢𝑟 .index ⊲ Compute virtual bucket
D11: 𝑛𝑒𝑤𝐶 ← ⟨𝑣𝑏 + 1, 𝑒𝑝𝑜𝑐ℎ⟩
D12: 𝐼𝑝𝑏 ← 𝑣𝑏 mod ℎ.length
D13: 𝑝𝑏 ← ℎ.table[𝐼𝑝𝑏] ⊲ Obtain P-bucket
D14: 𝑟𝑒𝑠 ← 𝑝𝑏.GetMin(𝑣𝑏, 𝑒𝑝𝑜𝑐ℎ)

D15: if 𝑟𝑒𝑠 = ∅ ∧ ℎ.length = 1 then
D16: return ⊥
D17: if 𝑟𝑒𝑠 = ⊥ ∨ 𝑟𝑒𝑠 = ∅ then
D18: CAS

(
&ℎ.current, 𝑐𝑢𝑟 , 𝑛𝑒𝑤𝐶

)
D19: 𝑖𝑡𝑒𝑟++
D20: if 𝑖𝑡𝑒𝑟 > TH then
D21: Reshuffle()

D22: 𝑖𝑡𝑒𝑟 ← 0

D23: else if 𝑟𝑒𝑠 ≠ ABORT then
D24: Fetch&Add(&ℎ.size, -1)
D25: return 𝑣𝑎𝑙𝑢𝑒

G1: procedure GetMin(integer 𝑣𝑏, integer 𝑒𝑝)

G2: 𝑐𝑢𝑟 ← head
G3: while 𝑐𝑢𝑟 .ts ≤ bucket_width·𝑣𝑏 do
G4: 𝑐_𝑛𝑒𝑥𝑡 ← 𝑐𝑢𝑟 .next
G5: if 𝑐𝑢𝑟 .epoch > 𝑒𝑝 ∨ isMarked(𝑐_𝑛𝑒𝑥𝑡 , MOV) then
G6: return ABORT
G7: if ¬isMarked(𝑐_𝑛𝑒𝑥𝑡 , VAL) then
G8: 𝑐𝑢𝑟 ← unmark(𝑐_𝑛𝑒𝑥𝑡)

G9: continue
G10: if 𝑐.ts < bucket_width·𝑣𝑏 ∨ 𝑐𝑢𝑟 == head then
G11: continue
G12: if CAS(&𝑐𝑢𝑟 .next, 𝑐_𝑛𝑒𝑥𝑡 ,

mark(𝑐_𝑛𝑒𝑥𝑡 , DEL)) then
G13: return 𝑐𝑢𝑟 .payload

G14: if isMarked(head.next, MOV) then
G15: return ABORT
G16: if 𝑐𝑢𝑟 = tail then
G17: return ∅
G18: return ⊥

the new epoch, begins. These two main steps (insertion and current update) are depicted in Figure

2. Finally, as the last operation, the size field is incremented by one via an atomic FAD to reflect

that the pool maintains an additional item.

The internals of Connect, shown in Algorithm 1, are quite straightforward. It invokes the search

procedure that scans the linked list looking for the nodes that should surround the new item. The

left node 𝑙 is such that 𝑙 .𝑡 ≤ 𝑒.𝑡 . If both 𝑒 and 𝑙 actually have the same key, the Connect and, hence,

the Enqeue fail. Conversely, if they store a different key, the Connect tries to insert the new

event with a CAS. The CAS might fail not only because of concurrent insertions or extractions but

also due to the left node being marked for migration (as MOV) in the meanwhile. As a last note, the

insertion is used to disconnect items that are no longer needed, i.e., DEL and INV nodes.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:9

3.3 Dequeue Operation
The main steps of the Deqeue in LFCQ are shown in Figure 3 and the pseudocode is given in

Algorithm 2. Similarly to the enqueue operation, a dequeue starts by checking if a reshuffle has

begun and retrieving a valid table reference (lines D4-D7). Then, it fetches the current field to

extract the index of the VB, storing the minimum-timestamp event and the current epoch. At this
point, it invokes the GetMin routine to fetch and remove the highest priority item. If the GetMin

returns ∅, the PBQ has been detected as empty, and there is no reshuffle involving the current

PBQ. In this case, it checks if the whole queue is empty. If the set table size is equal to one and

the unique PBQ in the queue is empty, the Deqeue operation terminates by returning ⊥ (line

D15). Conversely, if the table size is greater than one or GetMin has returned ⊥, the PBQ has no

items belonging to the current VB. Consequently, before restarting from scratch, the Deqeue

increases the value field of current and a local counter 𝑖𝑡𝑒𝑟 (see lines D18-D19 and step 1 of Figure

3). If GetMin returns ABORT or 𝑖𝑡𝑒𝑟 has passed a given threshold—the latter is required to ensure

that eventually an always-empty queue will be represented with a set table of size equal to 1—a

reshuffle will be triggered. Finally, if it succeeds, the size field is decremented by one, and it finally

completes (lines D23-D25).

The internals of GetMin are shown in Algorithm 2. It scans the non-blocking linked list by

looking for a candidate for extraction, namely a valid node with both timestamp and epoch

compatible with the ones passed as parameters. If during this scan a node either marked as MOV or

with an epoch greater than the one passed as parameter has been detected, it returns ABORT (see
lines G5-G6). Conversely, non-valid nodes or nodes with a too small timestamp are simply skipped

(see lines G10-G11). Once a candidate is found, GetMin tries to extract the item by marking it as

DEL. If no item matches the search criteria, the last reached node is analyzed. If it is a tail node, it

means that the end of the linked list has been reached, so the PBQ can be considered empty. In this

case, GetMin returns ∅; otherwise, it means that some item belonging to VBs in the past or future

of the target VB exists. Hence it returns ⊥.

3.4 Resizing theQueue
The pseudocode of the Reshuffle operation of LFCQ is shown in Algorithm 3. 𝑂 (1) amortized

time complexity of insertion/extraction operations is guaranteed because, on average, the number

of elements within each PB is balanced. As said before, every time an operation on the queue is

performed, a Reshuffle procedure might be called to exchange the current set table with a new

one. This happens whenever the number of elements in the queue is unbalanced with the number of

PBQs. In particular, the resize is executed if size oversteps a certain threshold (see the checkSize()

and newSize() procedures in Algorithm 3). During the resize algorithm, it is ensured that the

current set table is somehow frozen in a way that extractions and insertions cannot complete.

Once this freezing stage is completed, we start migrating items from the old set table to the new

one. Whenever a thread detects that the current set-table is (or is going to be) frozen, it starts

collaborating in the migration process.

The first step of Reshuffle consists in announcing the beginning of this protocol by setting

the new_table field of the old set table to refer to a new (just allocated) set table (line R3). This

somehow “freezes” the old table, preventing any new upcoming insertion/extraction operation

into/from it to complete. In fact, from now on, any thread invoking a queue operation will be aware

that a resize operation is taking place and will start participating in building the new table.

However, we still need to take care of those procedures that have been invoked before the new

table has been published. To this goal, once the reference to the new table is public, the procedure

invokes both the Block and BlockNext APIs on each PBQ of the old set table (lines R5-R7). Block

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:10 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

Algorithm 3 Reshuffle

R1: procedure Reshuffle(˙)
R2: ℎ← table
R3: 𝑆′← new SetTable(newSize(ℎ))

R4: CAS(&ℎ->new_table, NULL, 𝑆′)
R5: for 𝑝𝑏 ∈ ℎ do
R6: 𝑝𝑏.Block()

R7: 𝑒 ← 𝑝𝑏.BlockNext(𝑝𝑏.head)

R8: 𝐵𝑊 ← ComputeNewBW(ℎ)

R9: ℎ′← ℎ->new_table
R10: CAS(&ℎ′, −1, 𝐵𝑊)

R11: 𝑡 ′← ℎ′->table
R12: 𝑙 ′← ℎ′->length
R13: 𝑏𝑤′← ℎ′->bw
R14: for 𝑝𝑏 ∈ ℎ do
R15: while True do
R16: 𝑒 ← 𝑝𝑏.BlockNext(𝑝𝑏.head)
R17: if 𝑒 = ⊥ then
R18: break
R19: 𝑝𝑏.BlockNext(𝑒)

R20: 𝑏′← ⌊𝑒.𝑡/𝑏𝑤′⌋
R21: 𝑝𝑏′← 𝑡 ′ [𝑏′ mod 𝑙 ′]
R22: repeat
R23: 𝑜𝑙𝑑 ← ℎ′.current
R24: if 𝑏′ > 𝑜𝑙𝑑.value then
R25: break
R26: until CAS

(
&ℎ′.current, 𝑜𝑙𝑑, ⟨𝑏′, 𝑜𝑙𝑑.epoch+1⟩

)
R27: if 𝑝𝑏.Migrate(𝑒 , 𝑝𝑏′) then
R28: Fetch&Add(&ℎ->new_table->size, 1)

R29: CAS(&table, ℎ, &ℎ->new_table)

C1: procedure checkResize(SetTable h)
C2: return newSize(ℎ) ≠ 0

N1: procedure newSize(SetTable h)

N2: if ℎ.size< ℎ.length/2 then
N3: return min(ℎ.length/2, 1)
N4: else if ℎ.size> 2ℎ.length then
N5: return 2ℎ.length

N6: return 0

B1: procedure block()
B2: 𝑜𝑙𝑑_𝑛𝑒𝑥𝑡 ← NULL
B3: while isMarked(𝑜𝑙𝑑_𝑛𝑒𝑥𝑡 , VAL) do
B4: 𝑜𝑙𝑑 ← head.next
B5: CAS(&𝑝𝑏.next, 𝑜𝑙𝑑 , mark(𝑜𝑙𝑑 , MOV))

BN1: procedure blockNext(Node 𝑛)
BN2: while ⊤ do
BN3: ⟨𝑙, 𝑙_𝑛𝑒𝑥𝑡, 𝑟 ⟩ ← Search(𝑛.ts, DEL ∨ INV)
BN4: if unmark(𝑙 .next) ≠ 𝑟 then
BN5: CAS(&𝑙 .next, 𝑙_𝑛𝑒𝑥𝑡 , mark(𝑟 , MOV))

BN6: if 𝑟 = tail then
BN7: return 𝑟

BN8: 𝑟_𝑛𝑒𝑥𝑡 ← 𝑟 .next
BN9: if isMarked(𝑟_𝑛𝑒𝑥𝑡 , VAL) then
BN10: return 𝑟

BN11: if CAS(&𝑟 .next, mark(𝑟_𝑛𝑒𝑥𝑡 ,VAL),
BN12: mark(𝑟 , MOV)) then
BN13: return 𝑟

M1: procedureMigrate(Node 𝑛, PBQ 𝑏)

M2: 𝑐 ← Clone(𝑛)

M3: 𝑟𝑒𝑠 ←⊥
M4: while 𝑛.replica ≠ NULL do
M5: ⟨𝑙, 𝑙_𝑛𝑒𝑥𝑡, 𝑟 ⟩ ← 𝑏.Search(𝑛.ts, DEL)
M6: if 𝑙 .ts ≠ 𝑐 .ts then
M7: 𝑐 .next← mark(𝑟 , INV)
M8: if CAS(𝑙 .next, unmark(𝑙_𝑛𝑒𝑥𝑡), c) then
M9: break
M10: else
M11: Free(𝑐)

M12: 𝑐 ← 𝑙

M13: break
M14: 𝑟𝑒𝑠 ← CAS(&𝑛.replica, NULL, 𝑐)
M15: 𝑡𝑜𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 ← 𝑛.replica
M16: while ⊤ do
M17: 𝑛𝑒𝑥𝑡 ← 𝑡𝑜𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 .next
M18: if ¬ isMarked(𝑛𝑒𝑥𝑡 , INV) then
M19: break
M20: CAS(&𝑡𝑜𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 .next, 𝑛𝑒𝑥𝑡 , unmark(𝑛𝑒𝑥𝑡))

M21: CAS(&𝑛.next, mark(𝑛𝑒𝑥𝑡 ,MOV), mark(𝑛𝑒𝑥𝑡 ,DEL))
M22: return 𝑟𝑒𝑠

H

11

T

MOV

DEL

H

11

T

MOV

MOV

H

11

T

MOV

MOV

H H

11

T

T

H

T

11

11

old newold old newold

H

T

11

11

old newold

H

T

11

11

old newold

VAL VAL

INV DEL

VAL

Step 1 Step 2 Step 3 Step 4

INV INV

INV

MOV

MOV

VAL VAL

Fig. 4. Main steps of the migration protocol.

makes the insertions of new minimal keys in each bucket fail by returning ABORT. BlockNext
makes new extractions fail. In both cases, the failed invocations make the calling threads restart

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:11

VAL

00
DEL

01

MOV

11
INV

10

Starting state

Ending state

Harris-list states

PBQ-specific states

Harris-list transitions

PBQ-specific transitions

Fig. 5. State machine of nodes in a PBQ.

from scratch and eventually collaborate in the reshuffle phase. As shown in Algorithm 3, these

goals are achieved by marking as MOV the head node of the PBQ (this is done by Block) and the

first valid item (this is done by BlockNext). As hinted before, this avoids the extraction of the

keys of nodes marked as MOV and the insertion of a new item adjacent to a marked one. In fact, the

relative CAS are fated to fail since the old value is always a reference marked as VAL instead of MOV
(see lines C10 of Algorithm 1 and G7-G12 of Algorithm 2). We note that it is still possible that a

prolonged dequeue operation might extract an item that was a minimum in a previous time frame,

and it is currently far away from the actual minimum.

At this point, the algorithm computes the new bucket width (line R8) as in the original calendar

queue, namely by sampling events and computing their mean separation time, and publishes it

with a CAS (line R10). Once the new BW has been decided, the algorithm migrates events from the

old set table to the new one. This is done iteratively for each PBQ by marking the highest priority

event 𝑒 and its successor 𝑒 ′ (lines R16-R19) as migrating, guaranteeing that both items cannot be

extracted due to a dequeue invocation and no insertion of a timestamp 𝑘 such that 𝑘 ∈ [𝑒.𝑡, 𝑒 ′.𝑡]
can complete without participating to the reshuffle phase. Before migrating the item 𝑒 , we update

the current variable of the new set table if 𝑒 is a new minimum (see loop at line R22). Finally, the

item 𝑒 can be migrated from the old PBQ to the corresponding one in the new set table by invoking

the relative API of PBQs (line R27). When the PBQ is empty and blocked (line R17), the algorithm

proceeds to the next bucket until all items have been migrated. At this point, the old set table is

empty and no one can succeed in inserting new items, thus we can exchange it with the new table

with a single CAS (line R29).

The node migration is implemented in the procedure Migrate of Algorithm 3 and its main steps

are depicted in Figure 4. It adopts a copy-and-validate strategy where items to be migrated into

a new PBQ are inserted in possibly multiple invalid copies, one of which will be later validated,

and the others will be removed. To this goal, the state INV plays a key role. In particular, after a

node has been marked as MOV (step 1 of Figure 4), a thread inserts into the new PBQ an INV copy of

the original node (step 2 in Figure 4). As hinted before, this avoids that such a copy can be used

in an extraction for a Deqeue procedure. Clearly, since we are non-blocking, multiple threads

might create an INV copy of the original node (as shown in step 2 of Figure 4). Consequently, we

need to agree on which replica should be considered the valid one and which is just redundant and

can be removed. To this goal, we make the original copy point to precisely one replica by setting a

pointer via CAS as in step 3 of Figure 4. This kind of publishing allows only one thread to choose its

replica. Now, we can validate the unique “master” replica (marking it as VAL), while all the others
(including the original copy) can be deleted (marked as DEL like in step 4 of Figure 4).

At this point, we have explored all the allowed state transitions for nodes in PBQs, which are

summarized in Figure 5.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:12 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

3.5 Performance Optimizations
As discussed in Section 1, priority queues are challenging due to their semantics that make the most

write-accessed region of the data structure be highly shared among threads and hence CPU cores.

Consequently, a large amount of cache-coherency transactions occur during run time, hampering

performance. It follows that trying to reduce the impact of these communications has a key role in

providing a conflict-resilient data structure. To this end, we introduce one principal optimization,

i.e., completely avoiding disconnecting DEL items from the buckets used for extractions. In fact, the

latter will indeed create cache-coherency traffic since the updated pointer is highly shared among

processors.

Further performance optimization is given by reducing the frequency of updates on the current
variable which is highly accessed in both read and write mode. In particular, this field is read at

each operation and written either in case of insertion in a previous bucket or because the current

bucket is empty and we need to check the subsequent one. The second case is likely more frequent

compared to the former and consequently, reducing its impact is crucial for providing conflict

resiliency. To achieve this goal, we need to control the number of events that belong to one virtual

bucket on average (denoted as events per bucket or, shortly, as EPB). For instance, the larger EPB

is, the more extractions can complete without updating current. This can be achieved by simply

scaling the bucket width computed by the original sampling algorithm.

Clearly, such an approach has also its drawbacks. In fact, the number of items traversed by a

Deqeue to find a candidate for extraction increases as the EPB increases. It means that reducing

the impact of RMW instructions on caches increases the execution time of an individual extraction.

Consequently, we need to face the trade-off between the latency of a dequeue and the overall

throughput. This aspect will be deeply discussed in Section 6.

4 LOCK FREEDOM
In order to prove that our algorithm is lock-free, we analyze each method of our proposal, showing

that either each thread executing it eventually terminates or it will loop indefinitely due to the

progress of other threads.

Both enqueue and dequeue operations invoke internal procedures (e.g., reshuffle), which in turn

must guarantee lock freedom to make external procedures (enqueue and dequeue) lock-free. Since

it is not trivial to show that the composition of lock-free methods is still lock-free, we prove that

the reshuffle algorithm provides a stronger progress condition, i.e., wait-freedom, which ensures

that each method invocation completes in a finite number of steps.

Proof structure. We start by showing that the operations on PBQ are lock-free or wait-free. Then,

we will prove that the reshuffle algorithm guarantees wait freedom. Finally, since PBQ methods

and the reshuffle routine are (at least) lock-free, we can easily show that enqueue and dequeue

procedures are lock-free.

Lemma 1. Any execution containing invocations to Connect, GetMin, Block and BlockNext is
lock-free.

Proof. Connect does not contain any retry loop. Hence, it is a wait-free method as long as the

number of items within a bucket is finite—recall that wait freedom implies lock freedom. Under the

same conditions, the GetMin procedure is also wait-free. In fact, it consists of a single loop that

scans the PBQ list to find an item to be extracted. However, threads might be stuck in a Search

invocation, which performs a traversal of the list, because of continuous concurrent insertions

of new items ahead of the scan, which therefore make progress. Consequently, if we consider

executions that only include invocations to Connect and GetMin, they are lock-free methods.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:13

Let us now consider the Block method. It contains a unique loop that tries to mark the head as

MOV via CAS. This loop terminates if and only if either the CAS succeeds or some other thread has

marked the head node as MOV (recall that no transition goes to the INV state, and head nodes are

never marked as DEL). Consequently, if the Block invocation is stuck into the retry loop, this is

due to an unbounded number of completed insertions at the head of the bucket, namely completed

invocations to the Connect procedure, which therefore make progress. On the other hand, the

progress of GetMin and Connect is not hampered by Block invocations. In fact, both GetMin

and Connect complete by returning ABORT if they find an item marked as MOV by a concurrent and

conflicting Block invocation. Consequently, if we consider executions only containing invocations

to GetMin, Connect and Block, they are lock-free methods.

Let us now consider BlockNext, which takes as parameter a node𝑛marked as MOV and completes

when it successfully sets the subsequent VAL node 𝑠 as MOV, or 𝑠 is a tail or 𝑠 is already marked as

MOV. If the unique loop of BlockNext does not complete, it means that the CAS for setting 𝑠 as MOV
always fails due to a concurrent Connect, GetMin or BlockNext invocation. In any case, some

method has completed, hence making progress. Similarly to the Block method, also BlockNext

does not hamper the progress of Connect and GetMin. In fact, when such methods get an item

marked as MOV, their invocation completes. It follows that considering the executions that contain

only invocations to GetMin, Connect, Block and BlockNext, they are lock-free methods. □

Now, we will show that the reshuffle procedure is wait-free. This allows simplifying the lock-

freedom proofs of both the enqueue and dequeue procedures by considering such a complex

algorithm as a black box that cannot hamper the progress of any calling procedure since it is

guaranteed to complete in a finite number of steps.

Lemma 2. The Reshuffle procedure is wait free.

Proof. The first step of the reshuffle consists in publishing a new set table with a single-attempt

CAS (line R3 of Algorithm 3). This makes every new upcoming dequeue or enqueue operation

participate in the reshuffle phase until each item is migrated from the old to the new set table,

and the two are swapped. When such a publishing step has completed, the number of threads

that are currently executing a dequeue or an enqueue and that will not participate in the reshuffle

algorithm—since their operation is not upcoming with respect to the CAS—is finite. Let 𝑇 be the

number of these pending calls.

After publishing the new set table, the reshuffle protocol starts by blocking each PBQ in the

old set table and each event with the minimum timestamp in each bucket. These two operations

are performed by invoking the Block and BlockNext methods, which are lock-free. Since all

threads that execute a reshuffle procedure will invoke Block and BlockNext on each bucket, both

these methods might be blocked only due to concurrent Connect and GetMin invocations as

discussed in Lemma 1. Those Connect and GetMin invocations can be performed only by those

𝑇 pending invocations of enqueue and dequeue operations, which are not participating in the

reshuffle protocol. Eventually, these 𝑇 threads will complete their respective calls of the Connect

and GetMin methods by either successfully inserting/extracting an item or because they access

an item marked as MOV. This ensures that each thread executing a reshuffle will end the first cycle

(lines R5-R7). It follows that there is a moment from which it is guaranteed that the number of

enqueued items in the old set table, which is reshuffled, does not increase, i.e., it is bounded by a

constant.

At this point, every thread tries to migrate each item from the old set table to the new one. Before

such a step, a thread updates the current variable of the new set table with a value corresponding

to the item to be migrated. Since each thread tries to migrate each item, the number of items is

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:14 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

bounded by a constant. Such a loop is guaranteed to complete in a finite number of steps if and only

if the migration is wait-free. Also, at the end of each migration, an item has been removed from the

old set table and added to the new one. It follows that each PBQ is guaranteed to eventually be

emptied if and only if the migration is wait-free. Under this assumption, each thread completes the

loop at line R15, showing that the reshuffle procedure provides wait-freedom. Thus, to conclude

our proof, we need to show that the migration of a single item is wait-free.

Migration consists of: i) creating a copy of an item (line M2); ii) inserting such a copy marked

as INV in the new set table (lines M4-M13); iii) making the original item point to the just inserted

invalid copy (line M14); iv) marking as DEL and as VAL the primary and replica nodes, respectively

(lines M16-M20). Steps i) and iii) do not contain any loop, so they terminate eventually. Conversely,

step ii) and iv) are performed within a retry loop.

Since the new table is not used to add/remove items until the reshuffle is completed, a thread

retries step ii) or step iv) if and only if concurrent reshuffle invocations conflict with each other while

updating a next field of a common item during either step ii) or step iv), namely while inserting

their own copy or validating a replica—marking it as VAL. Since such updates are performed via

CAS, only successful ones can cause other threads to fail and retry.

Let us consider the case where a thread is stuck indefinitely due to other threads performing

step iv) successfully. On the one hand, a thread that successfully validates an item 𝑖 , makes all

other threads trying to validate 𝑖 complete. On the other hand, the number of successful executions

of step iv) is bounded by the number of nodes that can be validated, i.e., those referred to by the

original copy. Clearly, such a number of items is the size of the old set table, which has been shown

to be bounded by a constant. Consequently, the number of retries that a thread performs in step ii)

or iv) is bounded by a constant because other conflicting threads successfully perform step iv).

Let us consider the case in which a thread is stuck due to other threads performing step ii)

successfully. To make this happen, we need an unbounded number of copies to be inserted into

the new set table. This operation is performed via CAS (line M8). Eventually, at least one of these

insertions will proceed with step iii) (line M14), avoiding that other threads create additional copies.

Additionally, if a thread finds an INV copy of the same item it wants to migrate, it releases its own

copy and tries to validate the one found during the scan (see lines M10-M13). This guarantees that,

for a given item 𝑖 , the number of successful replica insertions is finite. Since the number of items is

bounded by a finite constant, the number of successful executions of step ii) is also bounded by a

constant. Consequently, the number of retries that a thread performs in step ii) or iv) is bounded by

a constant due to other conflicting threads successfully performing step ii).

Since step i) and iii) do not contain any loop, and step ii) and iv) can be retried a finite number of

times, each invocation of the reshuffle procedure is guaranteed to complete in a finite number of

steps eventually. Thus, the reshuffle algorithm is wait-free. □

Now, we can show that queue procedures are lock-free.

Lemma 3. The enqueue procedure is lock-free.

Proof. The enqueue has two cycles: a) the one executed to update current (lines E15-E20 of
Algorithm 1) and b) the onewhich includes the invocation to Connect, Reshuffle and checkResize

(lines E4-E7).

We start by analyzing loop b). The checkResize procedure is trivially wait-free since it does

not contain any loop. Since also the Reshuffle procedure is wait-free by Lemma 2, cycle b) might

loop unboundedly only in the following scenarios: S1) each checkResize invocation detects that a

resize is needed and S2) Connect always returns ABORT.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:15

In S1), some other thread is completing its Enqeue or Deqeue invocation and, thus, the

procedure is not making progress due to the progress of other threads.

In S2), some other thread has updated a field that causes the Connect procedure to always abort.

Since reshuffles are wait-free, if such updates are performed by some reshuffle phase, it follows

that the data structure is continuously reshuffled because an unbalanced number of enqueues or

dequeues has completed. If the Connect invocation fails due to a concurrent GetMin the latter

has successfully marked a node as DEL. When this happens, the calling Deqeue will complete.

Consequently, the Enqeue procedure does not complete because of the completion of some other

Deqeue. Finally, a Connect invocation might fail due to successful concurrent Connect calls.

However, we cannot conclude that the respective Enqeue has completed, but only that this thread

has made a step forward in its computation by passing from loop b) to loop a). In fact, such an

Enqeue procedure might be stuck in loop a).

Consequently, we can conclude our proof by showing that a thread might be stuck in loop a)

only because other Enqeue or Deqeue invocations have completed.

A thread𝐴 iterates unboundedly in this loop if and only if the CAS at line E20 always fails, and the
condition at line E20 is always false. It follows that each read operation of current returns an index

greater than the one corresponding to the VB updated by 𝐴. This scenario is feasible due to either

concurrent enqueues that modify current and then complete (making progress) or by concurrent

dequeues that increase the current index (line D18 of Algorithm 2). If those dequeues continue

to increase current without making progress, it means that every VB is empty, a condition that

eventually triggers a reshuffle. When this happens, thread 𝐴 will eventually execute the retry loop

for updating current of the old set table in isolation and completes eventually. □

Lemma 4. The dequeue procedure is lock-free.

Proof. The dequeue has one main cycle that includes invocations to Reshuffle and GetMin

functions. The Reshuffle call is guaranteed to complete as it is a wait-free method by Lemma 2.

The GetMin procedure does not return only because an unbounded number of successful insertions

prevent the scan from completing (see Lemma 1). Consequently, we need to consider only the

conditions that make a thread continuously loop in the main cycle. In particular, a thread 𝐴 iterates

unboundedly if and only if current points to buckets such that the subsequent invocations of

GetMin by 𝐴 fail a) because they are empty (returning ⊥ or ∅); b) due to concurrent insertions

(returning ABORT); c) due to continuous reshuffles.

Case b) implies that some enqueue has completed, hence making progress, and thus it is not

relevant for the discussion (the thread is starving because some other thread is making progress).

Case c) implies that both enqueue and dequeue calls are completing and triggering reshuffles,

thus it is not relevant for the discussion.

Case a) occurs if and only if either i) other threads extract items faster than 𝐴 or ii) 𝐴 always

finds empty PBQs because the queue is actually empty, but the calendar size is greater than one. In

case i), someone is making progress, thus it is not relevant for the discussion. Conversely, case ii)

could lead to a blocking scenario in which thread 𝐴 waits for a new insertion to complete. This is

impossible, because, if such enqueue is never issued, thread 𝐴 repeatedly triggers reshuffles (line

D20 of Algorithm 2) until it meets the empty condition and completes (line D15). □

Theorem 1. The LFCQ data structure is lock-free.

Proof. Since both enqueue and dequeue procedures are lock-free, by Lemmas 3 and 4 respectively,

the LFCQ data structure is lock-free. □

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:16 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

Dequeue()(10)

Enqueue(1)(⊤)

Dequeue()(11)

Read(current)

Read(current)

GetMin(10)

GetMin(11)

A

B

C

Time

Fig. 6. History that cannot be linearized with fixed linearization points.

5 LINEARIZABILITY
A classic approach for proving the safety of a non-blocking data structure consists in individuating

linearization points of its methods into specific atomic instructions. Thus, the algorithm designer

only needs to prove that the ordering of concurrent operations obtained by using those linearization

points as representative of the materialization of the operations is compatible with the semantics

of the managed data structure.

The LFCQ methods have a finite number of instructions that work on shared data, and all of

them are atomic (loads or CAS), but we cannot use them as fixed linearization points. As an example,

let us consider an initialization of the queue with 2 keys, 10 and 11, and the timeline in Figure 6. For

the sake of simplicity, we collapse invocation and termination of a procedure in a single signature.

In particular, 𝐷 () (𝑣) (or𝐷 (𝑣)) denotes a Deqeue returning the value 𝑣 and 𝐸 (𝑒) (𝑤) is an Enqeue

of the event 𝑒 that returns𝑤 , denoted with 𝐸 (𝑒) when𝑤 = ⊤. We have two successful dequeues

extracting items (denoted as 𝐷 () (10) and 𝐷 () (11) respectively) and one enqueue inserting the key

value 1. The three methods are concurrent to each other, and we can easily find an equivalent

sequential history [19] which is linearizable, like 𝐷 () (10) ≺ 𝐷 () (11) ≺ 𝐸 (1) (⊤). However, by
the algorithm structure, dequeues have the successful CAS during the invocation of the GetMin

procedure and have the preceding atomic read of current. Choosing CAS as the linearization point

will result in the following sequential history 𝐸 (1) (⊤) ≺ 𝐷 () (10) ≺ 𝐷 () (11) which is not legal

since it violates the priority queue semantics. On the other hand, choosing the read of current as

the linearization point for dequeues will result in 𝐷 () (11) ≺ 𝐷 () (10) which is not legal regardless

of the enqueue positioning.

To prove that our LFCQ algorithm is correct, we will follow an aspect-oriented approach [5, 11].

It consists of proving the algorithm’s specific invariants to show that each possible run it generates

is correct. We are interested in proving that our algorithm implements the priority-queue semantics,

which is a combination of set semantics with an additional constraint on the values obtained by

extractions. The authors in [11] have shown that the problem of correctly implementing the set

semantics can be reduced to ensuring that the following violations cannot occur:

MultiExt: elements dequeued multiple times;

MultiDeq: a dequeue extracts multiple items;

NotEnq: dequeued elements without a corresponding enqueue;

FalseEm: a dequeue returns ⊥ even though the set was never logically empty during its execution.

Consequently, avoiding the above violations while jointly guaranteeing that the extracted element

has the highest priority leads to the correctness of the priority queue algorithm. The additional

violation to be avoided can be stated as follows:

NotOrd: a dequeue returns a value even though it was never the minimal key during its execution.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:17

Proof structure. The proof follows an incremental approach. We prove the linearizability of LFCQ

in Section 5.1. In particular, Section 5.1.1 shows that LFCQ does not haveMultiDeq,MultiExt and
NotEnq violations. The absence of NotOrd and FalseEm in the LFCQ algorithm are discussed in

Sections 5.1.2 and 5.1.3 respectively. Finally, we conclude the proof in Section 5.1.4.

5.1 Proving the PriorityQueue Semantics of LFCQ
5.1.1 Avoidance of MultiDeq,MultiExt and NotEnq violations.

Lemma 5. An item can be stored in up to one VAL node at a time.

Proof. Items are first inserted as VAL in a PBQ by invoking the Connect API during an Enqeue.

Inspecting the code of Algorithm 1, we have a single successful Connect per each completed

Enqeue, which connects a single VAL node in a PBQ. Finally, items can be migrated from one PBQ

to another one. To this end, the node must be first marked as MOV, a transition that can be applied

once per node. Then, the Migrate API can validate only one replica (the one reachable from the

dedicated field within the original node) by applying the INV to VAL transition. □

Lemma 6. MultiDeq violations cannot occur in any execution obtained by running the LFCQ
algorithm.

Proof. A dequeue operation extracts an item when the corresponding GetMin extracts an item

from an individual PBQ. To reach this goal, the GetMin needs to apply the transition VAL to DEL
on the target node via CAS, which is executed once per dequeue. □

Lemma 7. MultiExt violations cannot occur in any execution obtained by running the LFCQ
algorithm.

Proof. By Lemma 5, we know that an item can be stored in up to one VAL node at a time. It

follows that the VAL to DEL transition can be applied at most once for a given enqueued item. □

Lemma 8. NotEnq violations cannot occur in any execution obtained by running the LFCQ algo-
rithm.

Proof. A Deqeue returns an item that has been extracted by the last successful invocation

of GetMin. By construction, nodes are inserted into a PBQ only by Connect and by Migrate

procedures. From Lemma 5, we know that a migrated item was previously inserted by a previous

Connect. Since Connect procedures are invoked only by Enqeuemethods, theNotEnq violation

cannot occur. □

5.1.2 Avoidance of the NotOrd violation. We now prove that the NotOrd violation cannot occur.

We follow an incremental approach, where we first show that NotOrd does not occur when no

reshuffle occurs. Then, we prove that nothing wrong happens during the reshuffle phases.

Preliminaries. The authors in [3] have shown that there is a complete characterization of the

NotOrd violation. In particular, given a history compliant with the set semantics, there is an

algorithm to check if NotOrd occurs (the pseudocode is shown in Algorithm 4). The method

iteratively removes invocation/completion pairs from the original history until the resulting history

is empty, meaning that the original history is correct. The first step consists in removing pairs

related to the failed extractions, namely those that have detected the queue as empty. Then, it

removes pairs related to the enqueue operations that have inserted the lowest priority element (the

maximum timestamp appearing in the history), but there is no corresponding extraction. Then,

since the set semantics guarantees that failed Deqeue and Enqeue operations do not affect the

queue state, they can be removed from the original history (they are correct by hypothesis). At this

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:18 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

Algorithm 4 Procedure to check NotOrd presence

CH1: procedure checkHistory(𝐻)

CH2: 𝐻 ′ ← 𝐻

CH3: repeat
CH4: Remove from 𝐻 ′ any 𝐸 (𝑣) (⊥)
CH5: Remove from 𝐻 ′ any 𝐷 () (⊥)
CH6: Remove from 𝐻 ′ any 𝐸 (𝑣) such that 𝑣 is a maximal priority in 𝐻 ′ ∧ �𝐷 (𝑣) ∈ 𝐻 ′
CH7: Get current maximal priority 𝑥 in 𝐻 ′

CH8: 𝐺 ← buildLeftRightConstraintGraph(𝑥,𝐻 ′)
CH9: 𝑟𝑒𝑠 ← hasCycle(𝐺)

CH10: if ¬𝑟𝑒𝑠 then
CH11: return 𝑟𝑒𝑠

CH12: 𝐻 ′ ← 𝐻 ′/{𝐸 (𝑥), 𝐷 (𝑥) }
CH13: until 𝐻 ′ = ∅
CH14: return 𝑟𝑒𝑠

point, it considers the lowest priority 𝑥 in the current history and evaluates if the relative extraction

is correct. If the extraction is not correct, the algorithm concludes that the original history is not

correct. Otherwise, it is correct, and the algorithm removes both the insertion and the extraction of

𝑥 and restarts targeting the new lower priority.

In order to check if the extraction of the lowest priority 𝑥 is correct, the authors reduce the

problem into looking for a cycle in a graph built from the history. The graph, called left-right-
constraint graph of x (denoted as 𝐿𝑅𝐶𝐺 (𝑥)), is built in a manner such that if a cycle is present,

it follows that 𝑥 has never been a minimum during the execution of 𝐷 () (𝑥), thus preventing
linearizability. In other words, it represents the relationship of 𝐷 () (𝑥) with all other operations that

prevent 𝑥 from being the highest priority during the execution of 𝐷 () (𝑥) and make the latter not

linearizable. Each node in the graph represents a procedure in 𝐻 , while edges represent a relation

between two operations. We can distinguish three kinds of edges that might appear in an LRCG
1
:

pr: 𝐴
𝑝𝑟
−−→ 𝐵 means that 𝐴 ≺𝐻 𝐵, namely 𝐴 precedes 𝐵 in the real-time order of the analyzed

history 𝐻 ;

val: 𝐷 () (𝑎) 𝑣𝑎𝑙−−→ 𝐸 (𝑏) (⊤) means that 𝐷 () (𝑎) has extracted the item inserted by 𝐸 (𝑏) (⊤) and thus
𝑎 = 𝑏;

lpr: 𝐴
𝑙𝑝𝑟
−−→ 𝐵 means that 𝐴 should logically precede 𝐵 according to the semantics of the priority

queue (for example 𝐸 (𝑥)
𝑙𝑝𝑟
−−→ 𝐷 (𝑥)).

The left-right-constraint graph of 𝑥 can be built by adopting the following rules:

(1) initialize the graph to 𝐸 (𝑥) (⊤)
𝑙𝑝𝑟
−−→ 𝐷 (𝑥);

(2) if 𝐸 (𝑣) ≺𝐻 𝐸 (𝑥) then add the following edges 𝐷 (𝑣) 𝑣𝑎𝑙−−→ 𝐸 (𝑣)
𝑝𝑟
−−→ 𝐸 (𝑥);

(3) if 𝐸 (𝑣) ≺𝐻 𝐷 (𝑥) then add the following edges 𝐷 (𝑣) 𝑣𝑎𝑙−−→ 𝐸 (𝑣)
𝑝𝑟
−−→ 𝐷 (𝑥);

(4) if 𝐸 (𝑣2) ≺ 𝐷 (𝑣1) ∧ 𝐷 (𝑣1) ∈ 𝐺 then add the following edges 𝐷 (𝑣2)
𝑣𝑎𝑙−−→ 𝐸 (𝑣2)

𝑝𝑟
−−→ 𝐷 (𝑣1);

(5) if 𝐷 (𝑥) ≺ 𝐷 (𝑣) then add the edge 𝐷 (𝑥)
𝑝𝑟
−−→ 𝐷 (𝑣);

(6) if it exists an enqueued item with priority 𝑣 which is never extracted add the following edge

𝐷 (𝑥)
𝑙𝑝𝑟
−−→ 𝐷 (𝑣).

Once we have built the graph with the rules mentioned above, we have to look for a cycle. If it

exists, it means that the extraction of 𝑥 is not legal, and thus the history is not linearizable otherwise

we can remove both 𝐸 (𝑥) (⊤) and 𝐷 () (𝑥) and repeat the check for the next lowest priority.

1
The original specification of LRCG does not resort to different kinds of edges. These have been introduced in our work to

simplify the exposition of our proofs.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:19

D()(⊥) E(10)(⊤)

E(10)(⊥)

E(3)(⊤) E(2)(⊤) D(3)(⊥)

E(1)(⊤) D(2)(⊥)

Fig. 7. Timeline of a history with NotOrd violation.

To make this concept clear, consider the timeline in Figure 7 describing an execution running

on a priority queue, which implements set semantics correctly. Dashed blocks correspond to

procedures that do not affect the internal state of the priority queue, and hence they can be ignored

for checking the correctness of successful extractions. According to line CH6 of Algorithm 4, the

successful Enqeue of 10 can be removed since the item has the lowest priority in the history, and

no extraction of it exists in the history. In other words, we only have to consider grey routines for

checking correctness. In particular, we need to check the correctness of each extraction, starting

from the lowest priority, which is 3 in our case. According to rule 1, we initialize the graph as

follows:

𝐷 (3) 𝐸 (3)
lpr

According to rule 3, we can add 𝐸 (2) and 𝐷 (2) nodes and the relative outcoming edges

𝐷 (2) 𝐸 (2) 𝐷 (3) 𝐸 (3)
lprpr

val

Then, rule 4 allows us to add nodes and edges of procedures related to the value 1

𝐷 (1) 𝐸 (1) 𝐷 (2) 𝐸 (2) 𝐷 (3) 𝐸 (3)
lprpr

val
pr

val

Since there is no extraction of 1, we connect 𝐷 (1) to 𝐷 (3) according to rule 6

𝐷 (1) 𝐸 (1) 𝐷 (2) 𝐸 (2) 𝐷 (3) 𝐸 (3)
lprpr

val
pr

val

lpr

Now, we cannot apply any other rule and the LRCG(3) is completed. Since it contains a cycle, the

algorithm concludes that the extraction of 3 violates the priority queue semantics and the history is

not legal, namely there is no equivalent sequential history that is legal and preserves the real-time

order of the original history.

The proof structure. In order to prove the absence of the NotOrd violation in a history of LFCQ

not including reshuffle phases, we will show that starting from LRCG(𝑥) we can build a precedence
graph of 𝑥 (denoted 𝑃𝐺 (𝑥)) such that it preserves the cycles of LRCG(𝑥) (if there is any), its edges

only belong to the real-time precedence relation, and its nodes are atomic operations. Then, we

proceed by contradiction. In fact, assuming the presence of a NotOrd violation requires a cycle in

LRCG(𝑥), which implies a cycle in the precedence graph 𝑃𝐺 (𝑥). However, the atomic instructions

in the precedence graph are totally ordered, which implies the impossibility of the cycle occurrence.

Finally, to conclude the proof, we will show that nothing bad happens during a reshuffle phase.

In order to build a precedence graph from an LRCG, we need some kind of operator to re-

place edges and nodes from LRCG with edges belonging to the precedence relation and nodes

corresponding to atomic instructions.

As the first step, Lemma 9 shows that there is a logical implication that correlates the extraction

of a priority 𝑥 and the insertion of a priority 𝑘 when 𝑘 < 𝑥 and they belong to the same bucket,

namely 𝑏𝑥 = 𝑏𝑘 = 𝑏, where 𝑏𝑖 is the VB of priority 𝑖 . This allows us to replace specific nodes in the

LRCG with the atomic instructions that connect and extract an item within the same PBQ and use

edges from the precedence relationship.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:20 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

Then, Lemma 11 proves the same property for the case of two priorities belonging to two different

buckets. This relies on a specific invariant guaranteed by reads of the current variable, to be shown
in the preliminary Lemma 10.

Lemmas 9 and 11 provide tools to manipulate an LRCG, which will be exploited in Lemma 12 to

show that if a NotOrd violation occurs, the atomic instructions provided by the hardware are not

totally ordered, i.e., they are non-atomic, thus showing that NotOrd cannot occur in our algorithm

when no reshuffle occurs.

At this point, after proving that reshuffle phases do not overlap with each other in Lemma 13, we

prove in Theorem 2 that NotOrd violations cannot occur even in the presence of reshuffle phases.

The proof. In our proofs, we will use the following notations: reads of current with the relative

epoch are denoted as 𝑅(𝑖𝑛𝑑𝑒𝑥, 𝑒𝑝𝑜𝑐ℎ); 𝐹 (𝑖𝑛𝑑𝑒𝑥, 𝑒𝑝𝑜𝑐ℎ) is the atomic update of current made by

enqueues (line E20 of Algorithm 1); 𝐼 (𝑖𝑛𝑑𝑒𝑥, 𝑒𝑝𝑜𝑐ℎ) is the atomic update of current made by

dequeues (line D18 of Algorithm 2); 𝐶 and 𝐺 are abbreviation for the Connect and GetMin

methods of the PBQ API. When successful, such procedures will be considered as materialized at

the atomic CAS contained in their execution which inserts/extracts the relative item.

Lemma 9. Assume that no reshuffle occurs in the history. Let x and k be two priorities such that
k < x and bx = bk = b. If the insertion of k precedes the insertion of x or the extraction of x, then the
successful CAS of the GetMin extracting k precedes the one extracting x.

Proof. By inspecting the pseudo-code of enqueue and dequeue procedures (Algorithms 1 and

2), we know that there must be a unique successful invocation of a PBQ procedure for each

successful API invocation of LFCQ. In more detail, 𝐸 (𝑘) (⊤), 𝐸 (𝑥) (⊤) and𝐷 () (𝑥) executions contain
the execution of one successful PBQ API, namely 𝐶 (𝑏, 𝑘, 𝑡𝑘) (⊤), 𝐶 (𝑏, 𝑥, 𝑡𝑥) (⊤) and 𝐺 (𝑏, 𝑡𝑥

𝐷
) (𝑥)

respectively—recall that the last parameter is the epoch used for the PBQ method invocation.

Consequently, we know that

a) 𝐸 (𝑘) ≺ 𝐷 () (𝑥) −→ 𝐶 (𝑏, 𝑘, 𝑡𝑘) (⊤) ≺ 𝐺 (𝑏, 𝑡𝑥
𝐷
) (𝑥)

or

b) 𝐸 (𝑘) ≺ 𝐸 (𝑥) −→ 𝐶 (𝑏, 𝑘, 𝑡𝑘) (⊤) ≺ 𝐶 (𝑏, 𝑥, 𝑡𝑥) (⊤).
For case a), we know that the extraction 𝐴 of 𝑥 has traversed all the items preceding 𝑥 in the

VB. Since the Connect procedure has completed before the GetMin invocation, it follows that

the item 𝑘 belonged to the VB considered by 𝐴. If the latter has extracted 𝑥 , it means that 𝑘 was

either marked as DEL or disconnected from the list. Consequently, 𝑘 has been extracted before the

extraction of 𝑥 has been completed, proving the lemma.

For case b), we consider all the possible interleavings of the three procedures 𝐸 (𝑘), 𝐸 (𝑥) and
𝐷 () (𝑥). If 𝐸 (𝑥) ≺ 𝐷 () (𝑥) in the real time order, then 𝐸 (𝑘) precedes 𝐷 () (𝑥). Hence, we fall in case

a) which has already been shown to prove the lemma. If 𝐷 () (𝑥) ≺ 𝐸 (𝑘), it means that a dequeue

has extracted a non-enqueued item, a scenario which is ruled out by Lemma 8. Hence, we need to

focus only on executions such that the Deqeue is concurrent with the Enqeue of both 𝑘 and 𝑥 . In

particular, the successful GetMin invoked by the considered Deqeue must be concurrent to both

the Connect invocations that inserted 𝑘 and 𝑥 . This has several implications on the parameter

passed to the successful PBQ method invocations. In more detail, we have that:

• 𝑡𝑥 ≤ 𝑡𝑥
𝐷
otherwise the GetMin could not extract 𝑥 ;

• 𝑡𝑥
𝐷
≤ 𝑡𝑥 since GetMin got a pair index/epoch from a read of current occurred before the

one made by the insertion of 𝑥 .

It follows that 𝑡𝑥 = 𝑡𝑥
𝐷
, implying that no epoch update has been performed between the read of

current, which has returned a value indicating 𝑏 as the current bucket for extraction, and the read

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:21

of current preceding the Connect inserting 𝑥 . It means that the Enqeue of 𝑘 has completed

before both the above-mentioned reads, otherwise the epoch should have been updated by either

the Enqeue of 𝑘 (it has inserted in the current bucket 𝑏) or by another Enqeue that has inserted

in a previous bucket 𝑏 ′ < 𝑏, which is impossible. In other words, the Enqeue of 𝑘 terminates

before the successful attempt of GetMin by 𝐷 () (𝑥). Consequently, all feasible scenarios of case b)
can be reconducted to case a) proving the lemma. □

From the previous lemma, we can easily prove what follows:

Corollary 1. Let 𝑥 and 𝑦 be two priorities such that 𝐸 (𝑥) ≺ 𝐸 (𝑦) and 𝑥 < 𝑦. It does not exist
any successful invocation of GetMin that extracts 𝑦, which is concurrent with both the successful
Connect invocations that inserted 𝑥 and 𝑦.

Proof. Derives directly from case b) in Lemma 9. □

In order to prove the same statement of Lemma 9 when considering a couple of priorities that

belong to different buckets, we need a preliminary lemma. It shows the roles of current and epochs
in our algorithm as a “glue” among different VBs, allowing extractions not to care about what

happens in previous VBs.

Lemma 10. Assume that no reshuffle occurs in the history. The reading of the value ⟨b, t⟩ of current
is an indivisible point in time where each item inserted in a previous bucket of b has been extracted or
its insertion in not completed.

Proof. By construction, the first read of current returns ⟨0, 0⟩. Then, each modification of

current has been applied with a CAS either to increase the epoch or the current bucket. We denote

these CAS instructions as 𝐹 (𝑎, 𝑏) and 𝐼 (𝑎, 𝑏) respectively, where ⟨𝑎, 𝑏⟩ is the new value assumed by

current. Consequently, there is a sequence 𝑆 of updates of current the leads from ⟨0, 0⟩ to ⟨𝑏, 𝑡⟩:
𝑆 = {[𝑊 (_, _)]𝑚 .𝑊 ∈ {𝐼 , 𝐹 }} . 𝑅(0, 0) ≺ 𝑆 ≺ 𝑅(𝑏, 𝑡)

where 𝑅(𝑥,𝑦) is a read of current returning ⟨𝑥,𝑦⟩. We prove the statement by induction on the

number 𝑁𝐹 of occurrences of 𝐹 in 𝑆 .

Case 𝑁𝐹 = 0) It follows that 𝑆 is a sequence of atomic increments that makes current point to the

next bucket and the epoch be still 0 (𝑡 = 0)

𝑆 =

[≺𝑏

𝑖=1𝐼 (𝑖, 0)
]

We know that each increment of bucket 𝐼 (𝑖, 0) is preceded by a failed extraction from bucket 𝑖 − 1.
Consequently: [≺𝑏

𝑖=1 [𝐺 (𝑖 − 1, 0) (𝜖) ≺ 𝐼 (𝑖, 0)]
]
≺ 𝑅(𝑏, 0)

where 𝜖 ∈ {⊥, ∅}—this is because the GetMin API can report the empty VB in two different

ways. We know that an extraction 𝐺 (𝑖, 0) returns 𝜖 if the virtual bucket 𝑖 was traversed without

finding any valid node for extractions. Moreover, the construction of the algorithm implies that

current must point to a virtual bucket before an extraction can use it as a parameter, namely

𝐼 (𝑖, 0) ≺ 𝐺 (𝑖, 0) (𝜖). It follows that any item 𝑒 belonging to the VB 𝑖 ∈ [0, 𝑏) and whose insertion

𝐸 (𝑒) (⊤) ≺ 𝐼 (𝑖, 0) ≺ 𝐺 (𝑖, 0) (𝜖) ≺ 𝑅(𝑏, 0), has been extracted when last 𝐺 (𝑖, 0) (𝜖) completes. On

the other hand, any insertion 𝐸 (𝑒) concurrent to an increment of current 𝐼 (𝑖, 0) also requires an

increment of epoch to complete, which does not occur until 𝑅(𝑏, 0) by hypothesis. This implies

that 𝐸 (𝑒) (⊤) is still pending when 𝑅(𝑏, 0) has been evaluated.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:22 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

Case 𝑁𝐹 = 𝑡) True by inductive hypothesis.

Case 𝑁𝐹 = 𝑡 + 1) Let 𝑆 be a sequence such that:

𝑅(0, 0) ≺ 𝑆 ≺ 𝑅(𝑏, 𝑡 + 1)
Let 𝑆 ′ be a sequence containing all the operations preceding the last 𝐹 in 𝑆 . Thus, we can state:

𝑆 = 𝑆 ′ ≺ 𝐹 (ℎ, 𝑡 + 1) ≺
[≺𝑏

𝑖=ℎ+1𝐼 (𝑖, 𝑡 + 1)
]
.

Moreover, we know that each 𝐹 has to be preceded by a read to obtain the old value for a CAS.
Consequently:

𝑆 ′ ≺ 𝑅(𝑘, 𝑡) ≺ 𝐹 (ℎ, 𝑡 + 1) ≺
[≺𝑏

𝑖=ℎ+1𝐼 (𝑖, 𝑡 + 1)
]
≺ 𝑅(𝑏, 𝑡 + 1),

where 𝑘 ≥ ℎ. We also know that each increment of current requires its reading for getting the old

value, specifically:

𝑅(𝑘, 𝑡) ≺ 𝐹 (ℎ, 𝑡 + 1) ≺ 𝑅(ℎ, 𝑡 + 1) ≺
[≺𝑏

𝑖=ℎ+1𝐼 (𝑖, 𝑡 + 1)
]
≺ 𝑅(𝑏, 𝑡 + 1).

By inductive hypothesis, we know that each insertion in a bucket preceding the 𝑘-th one is still

pending or completed, and its item has been extracted before 𝑅(𝑘, 𝑡) occurs. Since ℎ ≤ 𝑘 , the same

also holds for insertions in a bucket preceding the ℎ-th one. Namely, they are either completed,

and their items have been extracted, or they are still pending when 𝑅(𝑘, 𝑡) occurs.
Consider the insertions in a bucket 𝑗 < ℎ < 𝑘 such that they are alive immediately after 𝑅(𝑘, 𝑡)

and suppose that they have completed before 𝑅(ℎ, 𝑡 + 1). They require to update current to make

it point to the 𝑗-th bucket, to increase epoch and to complete. This is impossible otherwise the total

number of epochs will be greater than 𝑡 + 1. Consequently, they must be alive when both 𝐹 (ℎ, 𝑡 + 1)
and 𝑅(ℎ, 𝑡 + 1) occur. It means that the statement holds for 𝑅(ℎ, 𝑡 + 1) as no epoch updates have

occurred. We can show that the statement holds for 𝑅(𝑏, 𝑡 + 1) by following the same reasoning for

the case 𝑁𝐹 = 0. □

Thanks to the last lemma, we can prove what follows:

Lemma 11. Assume that no reshuffle occurs in the history. Let x and k be two priorities such that
k < x and bk < bx. If the insertion of k precedes the insertion of x or the extraction of x, then the
successful CAS of the GetMin extracting k precedes the read of current used to take the parameters
for the GetMin extracting x.

Proof. By inspecting the code of Deqeue (see Algorithm 2) we know that the successful

invocation of GetMin must be preceded by a read of current. Then, Lemma 10 shows that any

item belonging to a bucket preceding the one returned by a read 𝑅 of current has been already

extracted when 𝑅 occurs if the Enqeue inserting it has completed before such a read. This

concludes our proof when 𝐸 (𝑘) ≺ 𝐷 (𝑥).
Now, we need to show that the statement holds when 𝐸 (𝑘) ≺ 𝐸 (𝑥). However, when considering

the possible interleavings of Deqeue steps, Corollary 1 restricts the set of admissible executions to

those where both the successful GetMin invocation and its previous read of current must occur

after the completion of 𝐸 (𝑘). As in the previous case, Lemma 10 concludes the proof. □

Lemma 12. NotOrd violations cannot happen for any history without failed extractions (denoted
as 𝐷 () (⊥)) generated by running the algorithm without reshuffle.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:23

Proof. Suppose by contradiction that the NotOrd violation occurs. By hypothesis, we know

that there is a cycle in the left-right-constraint graph of a minimal priority 𝑥 as the one shown in

the following graph:

𝐷 (𝑎)

𝐸 (𝑎) 𝐷 (𝑏) 𝐸 (𝑏) · · · 𝐷 (𝑘) 𝐸 (𝑘) 𝐸 (𝑥)

𝐷 (𝑥)

val

pr
val

pr pr
val

pr

lpr

pr

lpr ∨ pr

This cyclic graph is exhaustive since:

• incoming edges of 𝐸 (𝑥) nodes are given only by rule 2;

• outcoming edges of 𝐸 (𝑥) nodes are given only by rule 1;

• incoming edges of 𝐷 (𝑥) nodes are given only by rules 1 and 3;

• outcoming edges of 𝐷 (𝑥) nodes are given only by rules 5 and 6;

• the cycle can be built only by concatenating edges added with rule 4.

Consider the edges relating 𝐷 (𝑘), 𝐸 (𝑘), 𝐸 (𝑥) and 𝐷 (𝑥). We have two cases:

a) 𝑏𝑘 < 𝑏𝑥 = 𝑏 −→ 𝐺 (𝑏𝑘 , 𝑡𝑘𝐷) (𝑘) ≺ 𝑅(𝑏𝑥 , 𝑡𝑥𝐷) by Lemma 11;

b) 𝑏𝑘 = 𝑏𝑥 = 𝑏 −→ 𝐺 (𝑏𝑘 , 𝑡𝑘𝐷) (𝑘) ≺ 𝐺 (𝑏𝑥 , 𝑡𝑥𝐷) (𝑥) by Lemma 9.

Consequently, we can build two graphs by replacing some edges of the left-right-constraint graph

as:

𝐷 (𝑎)

𝐸 (𝑎) · · · 𝐸 (𝑗) 𝑅(𝑏𝑘 , 𝑡𝑘𝐷) 𝐺 (𝑏𝑘 , 𝑘, 𝑡𝑘𝐷) (𝑘)

𝑅(𝑏, 𝑡𝑥
𝐷
)𝐺 (𝑏, 𝑡𝑥

𝐷
) (𝑥)

val

pr
val

pr pr

pr

prpr ∨ lpr

𝐷 (𝑎)

𝐸 (𝑎) · · · 𝐸 (𝑗) 𝑅(𝑏, 𝑡𝑘
𝐷
) 𝐺 (𝑏, 𝑡𝑘

𝐷
) (𝑘)

𝑅(𝑏, 𝑡𝑥
𝐷
)𝐺 (𝑏, 𝑡𝑥

𝐷
) (𝑥)

val

pr
val

pr pr

pr

prpr ∨ lpr

Thanks to Lemma 11, we can ignore nodes related to 𝑘 for case a) (e.g., the above left graph),

and hence add an edge of the precedence relation from 𝐸 (𝑗) to 𝑅(𝑏, 𝑡𝑥
𝐷
). Since 𝐺 (𝑏𝑘 , 𝑡𝑘𝐷) (𝑘) ≺

𝐺 (𝑏𝑥 , 𝑡𝑥𝐷) (𝑥) in both cases a) and b), we can consider one general graph structured as the following:

𝐷 (𝑎)

𝐸 (𝑎) 𝐷 (𝑏) · · · 𝐸 (ℎ) 𝐷 (𝑗) 𝐸 (𝑗) 𝑅(𝑏, _)

𝐺 (𝑏, 𝑡𝑘
𝐷
) (𝑘)𝐺 (𝑏, 𝑡𝑥

𝐷
) (𝑥)

val

pr
val val

pr
val

pr

pr

prlpr ∨ pr

Now, let us consider the relationship obtained from the graph above by taking into account

nodes corresponding to 𝑗, 𝑘 and 𝑥 :

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:24 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

· · · 𝐸 (ℎ) 𝐷 (𝑗) 𝐸 (𝑗) 𝑅(𝑏, _) 𝐺 (𝑏, 𝑡𝑘
𝐷
) (𝑘) 𝐺 (𝑏, 𝑡𝑥

𝐷
) (𝑥) · · ·

val
pr

val
prpr pr lpr ∨ pr

According to the position of 𝑏 𝑗 , we can apply different transformations to the above-mentioned

portion of the graph. In particular, if 𝑏 𝑗 < 𝑏, Lemma 11 tells us that the extraction of 𝑗 has been

completed when the read 𝑅(𝑏, _) occurs, allowing us to apply the following transformation that

completely shortcuts nodes regarding 𝑗 :

· · · 𝐸 (ℎ) 𝑅(𝑏 𝑗 , 𝑡
𝑗

𝐷
) 𝐺 (𝑏 𝑗 , 𝑡

𝑗

𝐷
) (𝑗) 𝑅(𝑏, _) 𝐺 (𝑏, 𝑡𝑘

𝐷
) (𝑘) 𝐺 (𝑏, 𝑡𝑥

𝐷
) (𝑥) · · ·

val
pr pr prpr pr

pr

lpr ∨ pr

Conversely, when 𝑏 𝑗 = 𝑏, the scenario becomes slightly more complex since we need to consider

the specific values of 𝑗 and 𝑘 . In particular, if 𝑗 ≤ 𝑘 , we can obtain the following by exploiting

Lemma 9:

· · · 𝐸 (ℎ) 𝑅(𝑏, 𝑡 𝑗
𝐷
) 𝐺 (𝑏 𝑗 , 𝑡

𝑗

𝐷
) (𝑗) 𝑅(𝑏, _) 𝐺 (𝑏, 𝑡𝑘

𝐷
) (𝑘) 𝐺 (𝑏, 𝑡𝑥

𝐷
) (𝑥) · · ·

val
pr pr pr pr

pr

pr

lpr ∨ pr

and, also in this case, we can shortcut some nodes, in particular those corresponding to 𝑘 . The last

case where 𝑘 ≤ 𝑗 ≤ 𝑥 requires additional considerations. In fact, Lemma 9 does not tell us anything

about insertions and extractions, of which we do not know the relative precedence order. However,

it tells us that the extraction of 𝑥 has seen the effect of the extraction of 𝑘 . Moreover, from the

precedence graph we know that the insertion of 𝑗 is completed before extracting 𝑘 . Consequently,

since PBQ implements set semantics and is an ordered list, we know that the scan performed during

the extraction of 𝑥 has traversed the nodes looking for a key belonging to 𝑏. Since it has seen the

effect of the CAS extracting 𝑘 , it should have seen the effect of the previous CAS inserting 𝑗 . In such

a case, it should have extracted 𝑗 , but since it has extracted 𝑥 and we know 𝑗 < 𝑥 , we know that 𝑗

was marked as DEL or disconnected. In other words, the extraction of 𝑥 has seen the effect of the

extraction of 𝑗 , allowing to shortcut nodes corresponding to 𝑘 as the following:

· · · 𝐸 (ℎ) 𝑅(𝑏, 𝑡 𝑗
𝐷
) 𝐺 (𝑏 𝑗 , 𝑡

𝑗

𝐷
) (𝑗) 𝑅(𝑏, _) 𝐺 (𝑏, 𝑡𝑘

𝐷
) (𝑘) 𝐺 (𝑏, 𝑡𝑥

𝐷
) (𝑥) · · ·

val
pr pr pr pr

pr

lpr ∨ pr

These three transformations can be applied again considering 𝐸 (ℎ) and the subsequent read

𝑅(𝑏, _) and so on until we obtain the following graph:

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:25

𝐷 (𝑎) 𝐸 (𝑎) 𝑅(𝑏, _) 𝐺 (𝑏, 𝑡𝑦
𝐷
) (𝑦) 𝐺 (𝑏, 𝑡𝑥

𝐷
) (𝑥)

val
prpr pr

pr

in which the enqueue of 𝑎 precedes a read of current implying that the extraction of 𝑎 must have

occurred in the history by Lemma 9 or 11. Thus, the edge from 𝐺 (𝑏, 𝑡𝑥
𝐷
) (𝑥) to 𝐷 (𝑎) belongs to

the precedence relation. Now, if we apply the last transformation again, we obtain a graph as the

following:

𝑅(𝑏𝑎, 𝑡𝑎𝐷) 𝐺 (𝑏𝑎, 𝑡𝑎𝐷) (𝑎) 𝑅(𝑏, _) 𝐺 (𝑏, 𝑡𝑦
𝐷
) (𝑦) 𝐺 (𝑏, 𝑡𝑥

𝐷
) (𝑥)

pr pr

pr

pr pr

pr

in which only one of the two dashed edges appears, nodes correspond to atomic instructions (either

reads of current or CAS for extracting an item) and it preserves the cycle. Moreover, this graph

has edges that belong only to the 𝑝𝑟 relation with a cycle. However, since nodes correspond to

linearizable (atomic) instructions, linearizability is a local property (closed under composition), and

atomics are totally ordered w.r.t. the precedence relation, the existence of such a cycle is impossible,

meaning that there is no cycle at all. □

In order to proceed and prove that the algorithm is correct when reshuffles are enabled, we first

need to characterize them.

Definition 1. A reshuffle phase:

• starts with the successful atomic operation at Line R3 of Algorithm 3, denoted as 𝛼 (NULL, 𝑁);
• ends with the successful atomic operation at Line R29 of Algorithm 3, denoted as 𝜔 (𝑁 ′, 𝑁).

Thanks to this, we can prove that a new reshuffle phase cannot start until the previous one has

been completed.

Lemma 13. Reshuffle phases cannot overlap with each other.

Proof. Suppose that 𝑘 reshuffle phases overlap. This means that 𝑘 occurrences of 𝛼 are executed

without being interleaved by any 𝜔 operation. Thus:

· · · ≺ 𝛼 (NULL, 𝑁ℎ−1) ≺ 𝛼 (NULL, 𝑁ℎ) ≺ 𝛼 (NULL, 𝑁ℎ+1) · · ·

and each one succeeds. Since the old value is fixed to NULL in each invocation and new values are

always different from NULL, this is possible if and only if the swapped memory cell has a different

address for each CAS. It means that there is an instruction that updates the address of the current

set table between each pair of consecutive CAS operations starting a reshuffle phase. By analyzing

the code, we know that these are successful 𝜔-CAS operations. It follows that each reshuffle phase

is completed before a new one begins, contradicting the hypothesis. □

Lemma 14. When a reshuffle ends, all the items in the old set table are either extracted or migrated
to the new set table.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:26 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

Proof. From the proof of Lemma 2, we know that the number of items stored in the old set table

is bounded by a constant and a reshuffle phase ends when the old set table is empty. Since an item

is stored in up to one VAL node by Lemma 5, a reshuffle phase eventually ends by Lemma 2, and a

node is removed from a PBQ if it is marked as DEL by algorithm construction, we know that all

VAL items in the old set table have been marked as DEL during a reshuffle. Consequently, any VAL
item in the old set table has been removed from a PBQ by extractions (applying the VAL→ DEL
transitions) and/or migrations (applying the VAL→ MOV→ DEL transition). □

Theorem 2. NotOrd violations cannot happen for any history generated by running the LFCQ
algorithm.

Proof. Lemma 13 tells us that we can focus on a single occurrence of the reshuffle phase from a

set table𝐴 to a set table 𝐵. Without loss of generality, let us assume that there is aNotOrd violation

and that there is an extraction 𝐷 () (𝑥) such that LRCG(𝑥) has a cycle.

Suppose that the successful invocation of GetMin in 𝐷 () (𝑥) completes before the beginning

of the reshuffle phase. It follows that 𝑥 has been extracted from a PBQ 𝑎 belonging to 𝐴. Since

the reshuffle code does not modify current in set table 𝐴, it means that 𝐷 () (𝑥) has extracted 𝑥
regardless of the reshuffle phase, namely by observing an internal state (current and the PBQ)

never modified by the migration protocol. Consequently, it is possible to build a history with no

reshuffle that leads to the same wrong extraction, contradicting Lemma 12.

Consider that the CAS within the successful invocation of GetMin occurs during a reshuffle.

Since GetMin has successfully extracted 𝑥 from a PBQ 𝑎 of set table 𝐴, it means that no migration

has affected such an extraction, otherwise GetMin should have returned MOV. In more detail, before

migrating a node 𝑛, the resize algorithm first ensures that the successor of 𝑛 is also marked as MOV.
This guarantees that if a dequeue has extracted 𝑥 , the relative GetMin could not have traversed

any DEL node due to a migration in the VB. In fact, we know that before deleting a MOV item, its

successor has been marked as MOV. This would end up in having a GetMin detect some node

marked as MOV eventually, making the considered GetMin abort. Thus, similarly to the previous

case, the last successful attempt of the interested dequeue has observed an internal state not yet

updated by the reshuffle protocol. Consequently, it is possible to build a history without reshuffles

that leads to the same wrong extraction, contradicting Lemma 12.

At this point, we need to consider the case where GetMin linearizes after the end of the reshuffle

phase. When a reshuffle phase ends, all nodes have been migrated from the old table to the new

one by Lemma 14. It follows that 𝑥 has been extracted from a PBQ 𝑏 belonging to 𝐵. We know

that priorities in the left-right-constraint graph of 𝑥 have either been inserted directly into 𝐵 or

migrated from 𝐴. Since current in the new table is updated to match the VB of an item before

it is actually migrated (see lines R22-R26 of Algorithm 3), it is guaranteed that when a reshuffle

completes, current points to the VB with the minimal key. It means that 𝐷 () (𝑥) has extracted 𝑥
regardless of the reshuffle phase. Consequently, it is possible to build a history without reshuffle

operations leading to the same wrong extraction, contradicting Lemma 12. □

5.1.3 Avoidance of the FalseEm violation.

Theorem 3. The FalseEm violation cannot occur in any execution obtained by running the LFCQ
algorithm.

Proof. Let us assume that a Deqeue invocation completes by returning ⊥, i.e., detecting the
queue as empty, even though it was never logically empty during the operation. This means that

the current set table has size equal to 1 (see line D15), no migration is occurring (the head node is

not marked as MOV), and the traversal carried out by the respective GetMin has reached the tail

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:27

node. The latter operation consists of a simple read instruction of the next field of the predecessor

of the tail node. We denote such an operation as 𝑟 . Consequently, we can consider such an atomic

operation as a successful extraction of an item whose key has an infinite value 𝑇 , i.e., all keys in

the priority domain have lower values. It follows that we can apply the same reasoning used in

Lemma 12 by building an LRCG for key 𝑇 in which its GetMin is materialized in the atomic read

𝑟 instead of an atomic CAS, which leads to a contradiction. It follows that the unique PBQ in the

current set table is actually empty. Consequently, since FalseEm occurs by hypothesis, it means

that some item inserted in an old set table before the last reshuffle has not been extracted. This is a

contradiction, since Lemma 14 states that all the items are extracted and/or migrated from the old

set into the new set table during reshuffles.

□

5.1.4 LFCQ linearizability.

Theorem 4. The LFCQ implements the Set semantics.

Proof. The LFCQ algorithm is free from MultiDeq, MultiExt, NotEnq, and FalseEm viola-

tions as proven by Lemmas 6, 7, 8 and Theorem 3, respectively. □

Theorem 5. LFCQ algorithm is linearizable w.r.t. the priority queue specification.

Proof. From Theorem 4 we know that LFCQ implements set semantics. Also, Theorem 2 guar-

antees that NotOrd violations do not occur. Hence, LFCQ implements the priority queue seman-

tics. □

6 EXPERIMENTAL EVALUATION
The experimental evaluation of our LFCQ has been conducted on a machine equipped with an Intel

Xeon Gold 6338, for a total of 64 hardware threads, running Linux Kernel 5.15.0 and glibc 2.35. The

test is based on an implementation of the HOLD benchmark [29], where each thread continuously

executes a hold operation, namely a dequeue followed by an enqueue, on a pre-populated queue.

The benchmark runs for 10 seconds, and we used the average throughput of operations as the

performance metric. Finally, the benchmark and implementation of the algorithms
2
that we compare

in this study have been compiled with gcc 11.3.0 and the O3 optimization flag.

Initially, we have comparatively evaluated three different Calendar Queue (CQ) implementations.

The first one, denoted SLCQ, is serialized via a spinlock. It simply consists of an implementation of

the algorithm presented in [4], with the addition of the spinlock acquisition right before executing

any operation. The spinlock is released as soon as the read and write operations on shared data

implementing the calendar queue are completed. The second one is the Non-Blocking Calendar

Queue (NBCQ) that has been presented in [23]. As we already noted, this algorithm has been

devised to handle non-blocking (lock-free) concurrent operations. However, unlike the algorithm

we present in this article, this solution does not offer any conflict resiliency of concurrent operations.

Anyhow, we can consider NBCQ as the unique literature reference in terms of CQ algorithms

offering the non-blocking property. Finally, the third solution is the implementation of the LFCQ

algorithm we have presented.

In all of our experiments, the policy used to trigger the resizing of calendar queues is the one

originally presented in [4]. In particular, the calendar queue is doubled (halved) in size when

the number of items doubles (halves). Hence, for all algorithms, the number of resize operations

occurring in a run with a given workload is the same.

2
Available at https://github.com/HPDCS/LFCQ

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://github.com/HPDCS/LFCQ

1:28 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

Table 1. Distributions used in the evaluation tests.

Probability Distribution Skewness Formula

Uniform (0, 2) 0 2·rand
Triangular (𝑎 = 0, 𝑏 = 𝑐 = 3

2
)

−2
√
2

5

3

2
·
√
rand

(Negative) Triangular (𝑎 = 𝑏 = 0, 𝑐 = 3)
2

√
2

5
3 · (1 −

√
rand)

Exponential (𝜆 = 1) 2 if(𝑥 ← rand = 0) ∞ else − ln(rand)

Camel 0 (see [29])

Pareto (𝑥𝑚 = 3

4
, 𝛼 = 4) 5

√
2

3

4
(rand)− 1

4

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

SLCQ
NBCQ
LFCQ-96

Queue Size ≈ 25600 - Exponential

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

SLCQ
NBCQ
LFCQ-96

Queue Size ≈ 256000 - Exponential

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

SLCQ
NBCQ
LFCQ-96

Queue Size ≈ 2560000 - Exponential

(c)

Fig. 8. Throughput of the hold benchmark with different calendar queue implementations: the original
calendar queue serialized with a spinlock (SLCQ), NBCQ and LFCQ-96.

For both SLCQ and NBCQ, the resize leads to having three events per bucket on average. This

value was initially suggested in [4] and has been adopted in [23] as the reference choice for NBCQ.

For LFCQ, we present data with different choices concerning the number of events per bucket

(EPB). As for this aspect, we note that in LFCQ, when the end of a virtual bucket is reached upon

extractions, several tasks are performed, involving multiple atomic operations (physical removal

of nodes or current updates). Hence, there is a relation between EPB and the frequency of these

operations, which can be investigated by exploiting different choices for EPB. In an initial set of

experiments, we configured LFCQ to maintain 96 items per bucket (denoted as LFCQ-96). From

early data on the performance of LFCQ, we noted that this non-minimal value allows achieving

high performance in scenarios with larger thread counts. This is related to the conflict resiliency

offered by LFCQ. In fact, even if the operations last more clock cycles since the EPB to be scanned

is longer, we do not observe adverse effects on performance caused by the increase of the effects of

conflicts that lead to operation retries. However, to further optimize LFCQ in scenarios where the

number of threads is lower, we also manage the EPB value by relying on an adaptive heuristic-based

mechanism. The latter enables resizing EPB to reduce the impact of the aforementioned scan

operations when this cost has a higher impact than executing actually conflicting atomic operations

on the queue. Data related to this aspect are reported in the second part of this study.

Figure 8 shows the average throughput while executing the benchmark with a priority increment

following an exponential distribution
3
(shown in Table 1) and queue sizes varying in {256 ·102, 256 ·

10
3, 256 · 104}. Clearly, lock-free approaches pay off against SLCQ when the number of threads

is greater than 1. At the same time, the NBCQ algorithm has a scalability collapse with more

3
Each configuration’s experiment has been executed 10 times and we report the average values over all the results.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:29

14 8 16 32 48 64

3

6

12

24

48

96

192

384

768

1536

3072

epb=1*#Threads
epb=2*#Threads
epb=3*#Threads
epb=4*#Threads

#Threads

#
E
l
e
m
.

P
e
r

B
u
c
k
e
t

(
e
p
b
)

0.00

0.90

0.95

1.00

Queue Size ≈ 25600

(a)

14 8 16 32 48 64

3

6

12

24

48

96

192

384

768

1536

3072

epb=1*#Threads
epb=2*#Threads
epb=3*#Threads
epb=4*#Threads

#Threads

#
E
l
e
m
.

P
e
r

B
u
c
k
e
t

(
e
p
b
)

0.00

0.90

0.95

1.00

Queue Size ≈ 256000

(b)

14 8 16 32 48 64

3

6

12

24

48

96

192

384

768

1536

3072

epb=1*#Threads
epb=2*#Threads
epb=3*#Threads
epb=4*#Threads

#Threads

#
E
l
e
m
.

P
e
r

B
u
c
k
e
t

(
e
p
b
)

0.00

0.90

0.95

1.00

Queue Size ≈ 2560000

(c)

Fig. 9. Performance analysis with varying queue sizes, number of events per bucket (EPB) and concurrency
level. Each chart reports a heat map of the ratio between the performance of the given configuration and the
optimum (the darker, the better) for a given queue size.

-20

-15

-10

-5

 0

 5

 10

 3 12 48 192 768 3072R
e
l
a
t
i
v
e

p
e
r
f
o
r
m
a
n
c
e

Elements per bucket

8 threads
64 threads

LFCQ
ALFCQ

Queue Size ≈ 25600 - Exponential

(a)

-20

-15

-10

-5

 0

 5

 10

 3 12 48 192 768 3072R
e
l
a
t
i
v
e

p
e
r
f
o
r
m
a
n
c
e

Elements per bucket

8 threads
64 threads

LFCQ
ALFCQ

Queue Size ≈ 256000 - Exponential

(b)

-20

-15

-10

-5

 0

 5

 10

 3 12 48 192 768 3072R
e
l
a
t
i
v
e

p
e
r
f
o
r
m
a
n
c
e

Elements per bucket

8 threads
64 threads

LFCQ
ALFCQ

Queue Size ≈ 2560000 - Exponential

(c)

Fig. 10. Relative performance of ALFCQ w.r.t the optimal LFCQ configuration with 8 and 64 threads.

than eight threads, while LFCQ-96 maintains a higher and stable throughput, clearly showing the

benefits it can provide.

As noted previously, the static value of 96 used for EPB in these experiments favours the

effectiveness of conflict resiliency when we run with a higher number of threads. In the next part

of this study, we investigate how to improve the performance of LFCQ at lower thread counts

thanks to the dynamic selection of the suited EPB value and the optimization of the aforementioned

trade-off between the latency of scan operations and the effect of atomic instructions.

This trade-off has been explored by evaluating the throughput while varying both EPB and the

number of threads. Figure 9 shows the results with an exponential priority increment distribution.

The charts are heat maps where each tile represents the ratio between the throughput of the current

configuration (active threads and EPB) and the throughput obtained with the optimal bucket width

for the target level of concurrency (number of threads). Light grey tiles are configurations that have

a performance that is lower than 90% of the optimum, while dark grey and black tiles correspond

to the values in [90%, 95%) and [95%, 100%] of the optimum, respectively. The results show that the

higher the concurrency level, the higher the EPB should be to achieve throughput optimization.

Also, the queue size has an impact on the optimal bucket width. In fact, large EPB values are

convenient with small queues. However, choosing the EPB as a linear function of the number of

active threads (T) is sufficient to model the behavior of dark tiles. In particular, choosing EPB = 𝑁 ·𝑇 ,
where 𝑁 ∈ [1, 4], covers most of the region with a distance lower than 10% from the optimum.

Consequently, we suggest configuring the LFCQ data structure by setting the EPB to about three

times the number of active threads.

In the implementation of LFCQ that exploits this approach for the dynamic selection of EPB,

which we denote as Adaptive LFCQ (ALFCQ), we have added an atomic counter for the number

of completed operations, which is updated via FAD. Thanks to this, we can estimate the actual

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

1:30 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 25600 - Uniform

(a) Size ≈ 25600 - Unif. Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 256000 - Uniform

(b) Size ≈ 256000 - Unif. Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 2560000 - Uniform

(c) Size ≈ 2560000 - Unif. Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 25600 - Exponential

(d) Size ≈ 25600 - Exp. Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 256000 - Exponential

(e) Size ≈ 256000 - Exp. Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 2560000 - Exponential

(f) Size ≈ 2560000 - Exp. Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 25600 - Triangular

(g) Size ≈ 25600 - Tria. Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 256000 - Triangular

(h) Size ≈ 256000 - Tria. Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 2560000 - Triangular

(i) Size ≈ 2560000 - Tria. Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 25600 - Neg. Triangular

(j) Size ≈ 25600 - Neg. T. Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 256000 - Neg. Triangular

(k) Size ≈ 256000 - Neg. T. Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 2560000 - Neg. Triangular

(l) Size ≈ 2560000 - Neg. T. Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 25600 - Camel

(m) Size ≈ 25600 - Camel Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 256000 - Camel

(n) Size ≈ 256000 - Camel Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 2560000 - Camel

(o) Size ≈ 2560000 - Camel Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 25600 - Pareto

(p) Size ≈ 25600 - Pareto Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 256000 - Pareto

(q) Size ≈ 256000 - Pareto Dist.

 0

 2

 4

 6

 8

 10

 12

 14

 0 8 16 24 32 40 48 56 64T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
)

#Threads

NBCQ
LFCQ-96
ALFCQ
NBSL

Queue Size ≈ 2560000 - Pareto

(r) Size ≈ 2560000 - Pareto Dist.

Fig. 11. Throughput of the hold benchmark with different priority queue implementations and distributions.

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:31

concurrency level of the data structure and use it during reshuffle phases. Figure 10 shows a

comparison between LFCQ with a static selection of the EPB value and ALFCQ with 8 and 64

threads. On the one hand, ALFCQ configured with 𝑁 = 3 chooses an EPB value that leads to a

performance no more than 5% lower than the optimum. On the other hand, the static choice of EPB

performed by LFCQ might not fit the actual concurrency level, leading to suboptimal performance.

Finally, we can see that ALFCQ always performs as the best of, or better than, LFCQ and NBCQ,

having a throughput consistently higher than both, or at least equal to the best of them. Figure 11

shows that such a result is consistent in all the priority-increment distributions and queue sizes

evaluated. Also, (A)LFCQ provides up to 10% performance improvement over NBSL—which is an

implementation of a non-blocking skip list—for small queue sizes. The speedup increases to 1.30x

for very large queue sizes and up to 1.6x with no concurrency.

7 CONCLUSIONS
In this work, we have presented the Lock-Free-Calendar-Queue (LFCQ) algorithm. It is a priority

queue based on the calendar approach, which provides both constant-time access and lock-free

progress of concurrent operations and is at the same time provably correct. LFCQ embeds new

techniques that provide conflict resilience of operations by concurrent threads. This is an essential

feature for concurrent priority queues. In fact, they are known to be challenging since their semantics

makes extracting threads highly prone to conflicting execution paths, which may require to be

re-executed after an abort. We have proved that our LFCQ algorithm is linearizable by means of an

assertional approach, namely by showing that priority queue invariants are always preserved. Our

correctness proof goes beyond the well-known approach typically exploited for proving correctness

based on fixed linearization points.

We evaluated the effectiveness of the LFCQ algorithm, comparing it to both blocking and lock-

free priority queues available in the literature. The experimental results, achieved running the

hold benchmark on a machine with 64 CPUs, show how LFCQ can provide important performance

boots, particularly in scenarios with larger queue sizes and higher concurrency levels.

REFERENCES
[1] Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. 2015. The SprayList: A Scalable Relaxed Priority Queue. In

Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (San Francisco,

CA, USA) (PPoPP’15). ACM, New York, NY, USA, 11–20. https://doi.org/10.1145/2688500.2688523

[2] Rassul Ayani. 1990. LR-Algorithm: concurrent operations on priority queues. In Proceedings of the 2nd IEEE Symposium
on Parallel and Distributed Processing (SPDP). IEEE Computer Society, Dallas, TX, USA, 22–25.

[3] Ahmed Bouajjani, Constantin Enea, and Chao Wang. 2017. Checking Linearizability of Concurrent Priority Queues. In

Proceedings of the 28th International Conference on Concurrency Theory (Leibniz International Proceedings in Informatics,
Vol. 85), Roland Meyer and Uwe Nestmann (Eds.). Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 16:1–16:16. https://doi.org/10.4230/LIPIcs.CONCUR.2017.16

[4] Randy Brown. 1988. Calendar queues: a fast O(1) priority queue implementation for the simulation event set problem.

Commun. ACM 31, 10 (1988), 1220–1227.

[5] SohamChakraborty, Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. 2015. Aspect-oriented linearizability proofs.

Logical Methods in Computer Science Volume 11, Issue 1 (April 2015), 1–33. https://doi.org/10.2168/LMCS-11(1:20)2015

[6] Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2015. RAMSES: Reversibility-based agent modeling

and simulation environment with speculation-support. In Euro-Par 2015: Parallel Processing Workshops, Sascha
Hunold, Alexandru Costan, Domingo Giménez, Alexandru Iosup, Laura Ricci, María Engracia Gómez Requena,

Vittorio Scarano, Ana Lucia Varbanescu, Stephen L Scott, Stefan Lankes, Josef Weidendorfer, and Michael Alexander

(Eds.). Lecture Notes in Computer Science, Vol. 9523. Springer International Publishing, Cham, Germany, 466–478.

https://doi.org/10.1007/978-3-319-27308-2_38

[7] Tyler Crain, Vincent Gramoli, and Michel Raynal. 2013. No Hot Spot Non-blocking Skip List. In Proceedings of
the 33rd International Conference on Distributed Computing Systems (ICDCS). IEEE, Piscataway, NJ, USA, 196–205.
https://doi.org/10.1109/ICDCS.2013.42

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1145/2688500.2688523
https://doi.org/10.4230/LIPIcs.CONCUR.2017.16
https://doi.org/10.2168/LMCS-11(1:20)2015
https://doi.org/10.1007/978-3-319-27308-2_38
https://doi.org/10.1109/ICDCS.2013.42

1:32 Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and FrancescoQuaglia

[8] Henry Daly, Ahmed Hassan, Michael F. Spear, and Roberto Palmieri. 2018. NUMASK: High Performance Scalable Skip

List for NUMA. In Proceedings of the 32nd International Symposium on Distributed Computing (Leibniz International
Proceedings in Informatics, Vol. 121), Ulrich Schmid and Josef Widder (Eds.). Schloss Dagstuhl—Leibniz-Zentrum fuer

Informatik, Dagstuhl, Germany, 18:1–18:19. https://doi.org/10.4230/LIPIcs.DISC.2018.18

[9] Brian C. Dean and Zachary H. Jones. 2007. Exploring the Duality Between Skip Lists and Binary Search Trees. In

Proceedings of the 45th Annual Southeast Regional Conference (Winston-Salem, North Carolina) (ACM-SE’07). ACM,

New York, NY, USA, 395–399. https://doi.org/10.1145/1233341.1233413

[10] Ian Dick, Alan Fekete, and Vincent Gramoli. 2017. A skip list for multicore. Concurrency and Computation: Practice &
Experience 29, 4 (Jan. 2017), e3876. https://doi.org/10.1002/cpe.3876

[11] Mike Dodds, Andreas Haas, and Christoph M. Kirsch. 2015. A Scalable, Correct Time-Stamped Stack. SIGPLAN Not.
50, 1 (Jan. 2015), 233–246. https://doi.org/10.1145/2775051.2676963

[12] Keir Fraser. 2004. Practical lock-freedom. Ph.D. Dissertation. University of Cambridge.

[13] Sounak Gupta and Philip A. Wilsey. 2014. Lock-free Pending Event Set Management in Time Warp. In Proceedings of
the 2nd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (Denver, Colorado, USA) (SIGSIM PADS
’14). ACM, New York, NY, USA, 15–26. https://doi.org/10.1145/2601381.2601393

[14] Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking Linked-Lists. In Proceedings of the 15th
International Conference on Distributed Computing (DISC’01). Springer-Verlag, London, UK, 300–314. http://dl.acm.

org/citation.cfm?id=645958.676105

[15] Joshua Hay and Philip A.Wilsey. 2015. Experiments with Hardware-based Transactional Memory in Parallel Simulation.

In Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (London, United Kingdom)

(SIGSIM PADS ’15). ACM, New York, NY, USA, 75–86. https://doi.org/10.1145/2769458.2769462

[16] Maurice Herlihy. 1991. Wait-free Synchronization. ACM Transactions on Programming Languages and Systems 13, 1
(Jan. 1991), 124–149. https://doi.org/10.1145/114005.102808

[17] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

[18] Maurice Herlihy and Nir Shavit. 2011. On the Nature of Progress. In Proceedings of the 15th International Conference
on Principles of Distributed Systems (Toulouse, France) (OPODIS’11). Springer-Verlag, Berlin, Heidelberg, 313–328.
https://doi.org/10.1007/978-3-642-25873-2_22

[19] Maurice P. Herlihy and Jeannette M.Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM
Transactions on Programming Languages and Systems 12, 3 (July 1990), 463–492. https://doi.org/10.1145/78969.78972

[20] Mauro Ianni, Romolo Marotta, Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2018. The Ultimate

Share-Everything PDES System. In Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation (Rome, Italy) (SIGSIM-PADS ’18). ACM, New York, NY, USA, 73–84. https://doi.org/10.1145/3200921.3200931

[21] Clyde P Kruskal, Larry Rudolph, and Marc Snir. 1988. Efficient synchronization of multiprocessors with shared memory.

ACM Transactions on Programming Languages and Systems 10, 4 (1988), 579–601.
[22] Jonatan Lindén and Bengt Jonsson. 2013. A Skiplist-Based Concurrent Priority QueuewithMinimalMemory Contention.

In Principles of Distributed Systems, Roberto Baldoni, Nicolas Nisse, and Maarten van Steen (Eds.). Springer International

Publishing, Cham, Germany, 206–220.

[23] Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and Francesco Quaglia. 2016. A Lock-Free O(1) Event Pool and

Its Application to Share-Everything PDES Platforms. In Proceedings of the 20th International Symposium on Distributed
Simulation and Real-Time Applications (Uxbridge, United Kingdom) (DS-RT’16). IEEE Press, Piscataway, NJ, USA, 53–60.

https://doi.org/10.1109/DS-RT.2016.33

[24] Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and Francesco Quaglia. 2016. A Non-Blocking Priority Queue

for the Pending Event Set. In Proceedings of the 9th EAI International Conference on Simulation Tools and Techniques
(Prague, Czech Republic) (SIMUTOOLS’16). ICST, Brussels, Belgium, Belgium, 46–55. http://dl.acm.org/citation.cfm?

id=3021426.3021434

[25] Romolo Marotta, Mauro Ianni, Alessandro Pellegrini, and Francesco Quaglia. 2017. A Conflict-Resilient Lock-Free

Calendar Queue for Scalable Share-Everything PDES Platforms. In Proceedings of the 2017 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation (Singapore) (SIGSIM-PADS’17). ACM, New York, NY, USA, 15–26. https:

//doi.org/10.1145/3064911.3064926

[26] William Pugh. 1990. Skip Lists: A Probabilistic Alternative to Balanced Trees. Commun. ACM 33, 6 (June 1990), 668–676.

https://doi.org/10.1145/78973.78977

[27] Francesco Quaglia. 2015. A low-overhead constant-time Lowest-Timestamp-First CPU scheduler for high-performance

optimistic simulation platforms. Simulation Modelling Practice and Theory 53 (2015), 103 – 122. https://doi.org/10.

1016/j.simpat.2015.01.009

[28] Dhananjai M. Rao and Julius D. Higiro. 2019. Managing Pending Events in Sequential and Parallel Simulations Using

Three-tier Heap and Two-tier Ladder Queue. ACM Transactions on Modeling and Computer Simulation 29, 2, Article 9

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.4230/LIPIcs.DISC.2018.18
https://doi.org/10.1145/1233341.1233413
https://doi.org/10.1002/cpe.3876
https://doi.org/10.1145/2775051.2676963
https://doi.org/10.1145/2601381.2601393
http://dl.acm.org/citation.cfm?id=645958.676105
http://dl.acm.org/citation.cfm?id=645958.676105
https://doi.org/10.1145/2769458.2769462
https://doi.org/10.1145/114005.102808
https://doi.org/10.1007/978-3-642-25873-2_22
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3200921.3200931
https://doi.org/10.1109/DS-RT.2016.33
http://dl.acm.org/citation.cfm?id=3021426.3021434
http://dl.acm.org/citation.cfm?id=3021426.3021434
https://doi.org/10.1145/3064911.3064926
https://doi.org/10.1145/3064911.3064926
https://doi.org/10.1145/78973.78977
https://doi.org/10.1016/j.simpat.2015.01.009
https://doi.org/10.1016/j.simpat.2015.01.009

A Conflict-Resilient Lock-Free Linearizable CalendarQueue 1:33

(March 2019), 28 pages. https://doi.org/10.1145/3265750

[29] Robert Rönngren and Rassul Ayani. 1997. A Comparative Study of Parallel and Sequential Priority Queue Algorithms.

ACM Transactions on Modeling and Computer Simulation 7, 2 (April 1997), 157–209. https://doi.org/10.1145/249204.

249205

[30] Emanuele Santini, Mauro Ianni, Alessandro Pellegrini, and Francesco Quaglia. 2015. Hardware-Transactional-Memory

Based Speculative Parallel Discrete Event Simulation of Very Fine Grain Models. In Proceedings of the 22nd International
Conference on High Performance Computing (HiPC). IEEE, Piscataway, NJ, USA, 145–154. https://doi.org/10.1109/HiPC.

2015.45

[31] N Shavit and I Lotan. 2000. Skiplist-based concurrent priority queues. In Proceedings of the 14th International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, Piscataway, NJ, USA, 263–268. https://doi.org/10.1109/IPDPS.

2000.845994

[32] Håkan Sundell and Philippas Tsigas. 2005. Fast and Lock-free Concurrent Priority Queues for Multi-thread Systems. J.
Parallel Distrib. Comput. 65, 5 (May 2005), 609–627. https://doi.org/10.1016/j.jpdc.2004.12.005

[33] Wai Teng Tang, Rick Siow Mong Goh, and Ian Li-Jin Thng. 2005. Ladder Queue: An O(1) Priority Queue Structure

for Large-scale Discrete Event Simulation. ACM Transactions on Modeling and Computer Simulation 15, 3 (July 2005),

175–204. https://doi.org/10.1145/1103323.1103324

ACM Trans. Parallel Comput., Vol. 1, No. 1, Article 1. Publication date: January 2023.

https://doi.org/10.1145/3265750
https://doi.org/10.1145/249204.249205
https://doi.org/10.1145/249204.249205
https://doi.org/10.1109/HiPC.2015.45
https://doi.org/10.1109/HiPC.2015.45
https://doi.org/10.1109/IPDPS.2000.845994
https://doi.org/10.1109/IPDPS.2000.845994
https://doi.org/10.1016/j.jpdc.2004.12.005
https://doi.org/10.1145/1103323.1103324

	Abstract
	1 Introduction
	2 Related Work
	3 The Lock-Free Calendar Queue
	3.1 LFCQ Baseline Organization
	3.2 Enqueue Operation
	3.3 Dequeue Operation
	3.4 Resizing the Queue
	3.5 Performance Optimizations

	4 Lock Freedom
	5 Linearizability
	5.1 Proving the Priority Queue Semantics of LFCQ

	6 Experimental Evaluation
	7 Conclusions
	References

