
1

Anonymous Readers Counting: A Wait-free
Multi-word Atomic Register Algorithm for

Scalable Data Sharing on Multi-core Machines
Mauro Ianni, Alessandro Pellegrini and Francesco Quaglia

Abstract—In this article we present Anonymous Readers Counting (ARC), a multi-word atomic (1,N) register algorithm for multi-core
machines. ARC exploits Read-Modify-Write (RMW) instructions to coordinate the writer and reader threads in a wait-free manner and
enables large-scale data sharing by admitting up to (232 − 2) concurrent readers on off-the-shelf 64-bit machines, as opposed to the
most advanced RMW-based approach which is limited to 58 readers on the same kind of machines. Further, ARC avoids multiple
copies of the register content when accessing it—this is a problem that affects classical register algorithms based on atomic read/write
operations on single words. Thus it allows for higher scalability with respect to the register size. Moreover, ARC explicitly reduces the
overall power consumption, via a proper limitation of RMW instructions in case of read operations re-accessing a still-valid snapshot of
the register content, and by showing constant time for read operations and amortized constant time for write operations. Our proposal
has therefore a strong focus on real-world off-the-shelf architectures, allowing us to capture properties which benefit both performance
and power consumption. A proof of correctness of our register algorithm is also provided, together with experimental data for a
comparison with literature proposals. Beyond assessing ARC on physical platforms, we carry out as well an experimentation on
virtualized infrastructures, which shows the resilience of wait-free synchronization as provided by ARC with respect to CPU-steal times,
proper of modern paradigms such as cloud computing. Finally, we discuss how to extend ARC for scenarios with multiple writers and
multiple readers—the so called (M,N) register. This is achieved not by changing the operations (and their wait-free nature) executed
along the critical path of the threads, rather only changing the ratio between the number of buffers keeping the register snapshots and
the number of threads to coordinate, as well as the number of bits used for counting readers within a 64-bit mask accessed via RMW
instructions—just depending on the target balance between the number of readers and the number of writers to be supported.

Index Terms—Atomic registers, Shared-memory, Multi-core computing, Wait-free synchronization, Instruction-Set-Architecture.

F

1 INTRODUCTION

HARDWARE-BASED atomicity facilities offered by multi-
core computing platforms for managing single-word

shared-objects are not sufficient to automatically guarantee
atomicity when concurrent threads manipulate multi-word
objects. Synchronization algorithms are therefore needed to
enable atomic read/write operations on this type of objects.
Also, the extreme level of scale-up of modern computing
platforms, with projection towards exascale computing, de-
mands for shared-object management algorithms that are
capable of efficiently supporting huge levels of concurrency.

In this article we face such an issue by providing a
pragmatic design and implementation of a shared-object
algorithm in multi-processor/multi-core shared-memory
machines. Specifically, we present Anonymous Readers
Counting (ARC), which is an atomic (1,N)—one writer, N
readers—register of arbitrary length (i.e., made up by an
arbitrary number of words, which can change over time,

• M. Ianni and A. Pellegrini are with the Department of Computer, Control,
and Management Engineering, Sapienza University of Rome.
E-mail: {mianni,pellegrini}@dis.uniroma1.it

• F.Quaglia is with Dipartimento di Ingegneria Civile e Ingegneria Infor-
matica, Università di Roma "Tor Vergata".
E-mail: francesco.quaglia@uniroma2.it

Manuscript received N/A; revised N/A.

possibly upon each update of the register). ARC exhibits
the following capabilities:

• it is devised for a huge scale-up of the number of
concurrent threads to be managed;

• it targets the optimization of the actual execution path
of the threads along multiple dimensions: locality, time
complexity and actual cost of machine instructions to
be executed.

We emphasize that providing optimized (1,N) registers
is a relevant objective since they constitute building blocks
to realize more general (M,N) registers, as already shown
by several works (see, e.g., [1]). We also provide one such
extension in this article, showing how ARC can be trivially
adapted to the (M,N) case, essentially with no change of
the tasks executed along the critical path of read/write
operations as compared to the (1,N) scenario.

As its core property enabling scalability, ARC guarantees
wait-freedom [2] of both write and read operations. Indeed,
it uses no locking scheme, and guarantees that no operation
fails and no retry-cycles are ever needed. This is achieved by
relying on Read-Modify-Write (RMW) instructions offered
by conventional Instruction Set Architectures (ISAs), which
are exploited to manipulate meta-data that are used by con-
current threads to coordinate themselves when performing
register operations. Moreover, ARC does not require strong
memory consistency support in the underlying hardware,

2

such as Sequential Consistency. Indeed, it is suited for off-
the-shelf processors—such as x86 processors—offering the
weaker Total Store Order consistency model. This makes ARC
employable in a wide variety of hardware platforms.

A close literature proposal based on RMW instructions,
which still guarantees wait-freedom of read/write opera-
tions on (1,N) registers, is the one in [3]. However, this pro-
posal allows a maximum of 58 readers on conventional 64-
bit machines, while ARC can manage up to (232−2) readers,
thus enabling a huge scale-up in the level of concurrency.
Also, the approach in [3] deterministically forces synchro-
nization (via RMW instructions) upon any read operation,
even in scenarios where the register’s content has not been
modified by the writer since the last read by the reader. ARC
avoids executing RMW instructions in such situations, since
it detects whether the last accessed snapshot of the register
is still consistent (it is the most up to date one within the
linearizable history of read/write accesses) by only relying
on conventional memory-read instructions.

The benefits by this optimization on performance and
energy efficiency are non-minimal, as we show experimen-
tally, given the effects of RMW instructions on the intercon-
nection among CPU-cores. For example, modern Intel-based
architectures relying the QuickPath Interconnect [4] require
message passing among CPU-cores when executing RMW
instructions. Furthermore, these effects can be amplified
when a memory location updated by a RMW instruction
is split across different cache lines, as shown in [5].

As opposed to more historical solutions for wait-free
atomic (1,N) registers in shared-memory platforms [6],
which only exploit atomic read/write operations of individ-
ual memory words, we avoid multiple copies of the register
content when performing either read or write operations.
This allows for better scalability of ARC with respect to
the size of the register content. Also, ARC adheres to the
classical lower bound of N + 2 buffers [7] keeping the
different snapshots of the (1,N) register content, to be ac-
cessed in wait-free manner in some linearizable execution
of read/write operations by the concurrent threads. Overall,
compared to literature proposals, ARC enables definitely
scaled up amounts of concurrent readers with no increased
memory footprint and by not imposing extra memory-copy
operations, thus favoring locality.

Furthermore, ARC allows constant time for read op-
erations, jointly guaranteeing amortized constant-time for
write operations. This is not guaranteed by the RMW-
based approach in [3], since it requires O(N) time for write
operations—an aspect that is clearly related to the reduced
amount of readers admitted by such register algorithm.

Beyond presenting ARC, we also provide a proof of its
correctness. Further, we report experimental data showing
the benefits from our proposal compared to a few literature
solutions. Performance data have been collected on a phys-
ical machine equipped with 48 CPU-cores and on a virtual
platform hosted by Amazon equipped with 40 vCPUs. As
a last note, our experimental evaluation has been based on
user-space code implementing ARC, but nothing prevents
ARC to be integrated within lower-level software layers,
such as an operating system kernel.

The remainder of this article is organized as follows.
In Section 2 we discuss related work. ARC is presented in

Section 3. Its correctness proof is provided in Section 4. The
variation of ARC coping with multiple writers is provided
in Section 5. Experimental results are reported in Section 6.

2 RELATED WORK

We target shared-objects in multi-processor/multi-core ma-
chines, to be managed in a wait-free manner. According
to [2], wait-freedom allows any concurrent operation on
the shared-object to execute in a finite number of steps,
regardless of any action carried out by other concurrent
operations. This is not guaranteed neither by classical lock-
based synchronization schemes [8] nor by lock-free ones [9],
[10]. Wait-freedom appears as a mandatory means to effi-
ciently handle concurrent operations on shared-objects in
systems with large/huge amounts of concurrent threads.

A (1,N) register algorithm for multi-processors has been
provided by Lamport in [6]. This solution enables wait-
free writes, but only guarantees lock-free read operations,
since the writer can force slow-running readers to retry
their read operations indefinitely. A fully wait-free solution
has been presented by Peterson [11], which marked the
begin of a long running research path towards the construc-
tion of wait-free solutions to the readers/writers problem.
Along this path we find proposals dealing with (1,1) [7],
[12], (1,N) [11], [13], and (M,N) registers [11], [14]. A com-
mon aspect that characterizes these proposals is that they
build wait-free multi-word registers by relying on single-
word read/write registers, just based on atomic single-
word read/write instructions. Thus, they do not exploit
synchronization facilities offered by conventional multi-
processor/multi-core machines, such as RMW instructions
like Compare-and-Swap (CAS). The disadvantage lies in
that, in order to assess the validity of a multi-word atomic
read/write operation, it must be carried out multiple times
(e.g., 2 times in [11]), which may impair performance (as
well as energy efficiency) especially when scaling up the size
of the register. In our approach we avoid this drawback by
avoiding at all multiple copies of the register content upon
both read and write operations. In particular, we support
write operations with a single copy of the new register
content into the target buffer. Also, read operations do not
need any intermediate data copy, since the reading process
can directly read data from the buffer originally targeted by
the write operation that is serialized before the read itself.
Hence, in ARC, accessing the register in read mode only
entails retrieving the correct buffer address.

Several proposals [15], [16], [17], [18] allow to realize a
wait-free register by relying on a wait-free universal con-
struct [19]. This is a design choice that we have explicitly
avoided, making our proposal mostly orthogonal. In fact,
the employment of a universal construct does not allow cap-
turing the intrinsic properties of the different register opera-
tions (read vs write). In turn, this might reduce performance
since the number of synchronization steps might be much
larger than what strictly required (just depending on the
different nature of the operations). As an example, the work
in [18] realizes a read operation as a generic one, making it at
least as heavyweight as a write operation, while in ARC we
have explicitly differentiated the implementations of read

3

and write operations, so as to jointly optimize their execu-
tion path. Moreover, a number of synchronization steps not
adhering to the required minimum might have a negative
impact on both scalability and energy efficiency also because
of the effects on the underlying memory hierarchy.

Another difference with ARC is that the work in [18]
requires O(N2) buffers for achieving wait freedom, while
we stick to the traditional lower bound of N + 2 buffers,
and slide towards quadratic memory only for the case of
multiple writers. Quadratic memory cost is also paid by the
proposal in [17], together withO(N) time due to the reliance
on hazard pointers. ARC shows linear time only in some
corner cases of write operations, since it provides constant-
time for reads and amortized constant-time for writes.

Among the aforementioned works exploiting the con-
cept of universal constructor, [16] is the only one using
RMW instructions. Nevertheless, wait-freedom is guaran-
teed by having all threads record the operation that they
want to do—either a read or a write—in a shared buffer.
Then, all the threads attempt at the same time to complete
all the registered operations, ensuring that only one of them
actually succeeds. This implies a total of O(N2) attempts
to carry out N operations. On the other hand, we keep
the wait-free nature of the algorithm, while avoiding that
multiple threads carry out the same operations.

The interest in exploiting increasingly scalable synchro-
nization approaches while managing shared-objects has re-
cently grown also by the side of operating system software.
Along this path we find the Read-Copy-Update (RCU)
mechanism supported by the Linux kernel [20]. This mech-
anism allows readers not to block and to observe consistent
states of a shared data structure even though updates are in
progress. However, the mechanism is not actually wait-free
since writers experience so called wait-for-readers periods,
which are needed in order to detect whether readers may
still require old and new copies of the data structure to be
still in place for correct finalization of their read operations.
Also, multiple writers need to synchronize in a critical
section. Although the impact of writers’ synchronization
can be reduced by approaches like Read-Log-Update (RLU)
[21], where facilities like Transactional Memory (TM) are
proposed for this kind of synchronization, wait-freedom is
not actually guaranteed. Our solution is instead fully wait-
free, thus not suffering from blocking (or retry) phases. On
the other hand, the approach in [21] targets usability of
the synchronization scheme with different data structures,
while we focus on the register abstraction.

To the best of our knowledge, the only literature pro-
posal based on RMW instructions to support an atomic wait-
free (1,N) register is the one in [3]. Here the authors use
64-bit atomic memory operations to update/retrieve a bit-
mask indicating what is the buffer instance containing the
updated version of the register content and which threads
are reading this content version. The overall number of slots
to be managed is N+2, as a classical minimum requirement
for a wait-free (1,N) register. Hence, by partitioning the
64-bit mask into the two aforementioned portions—one
for the buffer instance and the other for standing reads
identification—the maximum number of admitted concur-
rent readers is 58. Compared to this approach, we use RMW
instructions on 64-bit words in a completely different man-

ner, since we do not associate individual bits with threads
to indicate whether a given thread has a standing read on
a given buffer instance. Rather, we adopt an anonymous
scheme where registering a thread as a reader on a given
buffer instance (a register snapshot) only entails increment-
ing a per-instance counter of standing reads—hence the
name ARC for our proposal. As a consequence, we can host
up to 232− 2 concurrent readers, which is done by still rely-
ing on N + 2 buffers to keep the register content1. Overall,
compared to the work in [3], our proposal handles scenarios
with a large/huge increase of the amount of threads allowed
to concurrently perform read operations. Hence, we enable
scaled-up wait-free concurrency on the atomic register up
to a level fitting the requirements of massively parallel
applications hosted by huge (virtualized) parallel platforms.
Also, the actual number of RMW instructions executed in
our register algorithm under diverse workloads is typically
lower than that of the algorithm in [3]. As we will show via
experimental data, this leads to a reduced impact of RMW
instructions on performance by our proposal.

3 ANONYMOUS READERS COUNTING

3.1 Basics

A multi-word shared register is an abstract data structure that
is shared by a number of concurrent processes2 [6], [11].
Each process is allowed to perform two operations on the
register: a read, which retrieves the most up-to-date value
kept by the register, and a write, which stores a new register
value. We consider asynchronous processes, meaning that
no assumption is made on their relative speed or on the
interleave of their operations. The operations by a same
process are assumed to execute sequentially.

The weakest class to which a register can belong is the
one of safe registers [7]. A register is safe if its correct value
is guaranteed to be retrievable only if no concurrency is
allowed (or happens) among reads and writes. Considering
that we target concurrent objects, we consider a stronger
class, namely regular registers.

Regular registers are defined in terms of possible exe-
cution histories of concurrent read/write operations. In par-
ticular, each operation O on the register has a wall-clock
time duration, which can be denoted as [Os, Oe] where Os

and Oe are the starting and ending instants, respectively.
A regular register is one that is safe, and in which a read
operation that overlaps (in time) a series of write operations
obtains either the register value before the first of these
writes or one of the values being written [7]. Introducing a
reading function π to assign a write w on the register to each
read r such that the value returned by r is the value written
by w, and defining a precedence relation on the operations
leading to a strict partial order ‘→’ [7], a regular register
always respects the following property:

• No-past. There exist no read r and write w such that
π(r)→ w→ r.

1. A slightly different bits-to-counters association scheme is applied
for the case of multiple writers—the (M,N) atomic register case.

2. From now on we use the terms ‘process’ and ‘thread’ interchange-
ably since the classical literature on register algorithms uses the term
‘process’ to indicate the active entity that can operate on the register.

4

In a regular register, multiple reads executed concur-
rently to a write may not “agree” on the same value.

By the linearizability property [10], [22], we can always
find a linearization point which provides the illusion that
each operation O takes effect instantaneously at some point
between Os and Oe. Consequently, a stronger class of reg-
isters is the one of atomic registers, defined according to the
following criterion [3]:

Criterion 1. A shared register is atomic iff it is regular and the
following condition holds for all possible executions:

• No New-Old inversion. There exist no reads r1 and r2 such
that r1→ r2 and π(r2)→ π(r1).

With an atomic register, reads can be separated among
those “happening” before and after the linearization point of
some write. This categorization marks the difference among
the concurrent reads that can return the old value and those
which need to return the new value. If two non-concurrent
reads overlap a write then the later read cannot return the
old value if the earlier read returns the new one. Atomic
registers have been shown to be linearizable [23].

3.2 Memory Consistency Model

Multi-processor/multi-core shared-memory systems offer
memory consistency models [24] as kind of “contracts” among
software developers and hardware manufacturers. They
discriminate what software can expect to be guaranteed by
the underlying hardware. A variety of consistency models
exist, which are often presented as a set of rules.

The simplest memory consistency model is sequential
consistency. In this model “the results of any execution is
the same as if the operations of all the processors were
executed in some sequential order, and the operations of
each individual processor appear in this sequence in the
order specified by its program” [25]. This model ensures that
all read and write instructions executed by any processor
are observed in the same order by all the processors in
the system. Peterson’s algorithm [11] and several lock-based
algorithms [9], [10] require sequential consistency.

We assume a weaker consistency model, namely Total
Store Order (TSO) [24], which is used by most off-the-shelf
platforms, such as x86, thus making our solution of general
applicability. With TSO, CPU-cores usually use store buffers
to hold the stores committed by the overlying pipeline until
the underlying memory hierarchy is able to process them. In
particular, a store leaves the buffer whenever the cache line
to be written is in a coherence state such that the update can
be safely performed. TSO allows what is called store bypass:
even if a CPU-core outputs a write before a read, their order
on memory (as seen by other CPU-cores) can be reversed.

While TSO produces no damage in many applications—
rather, it can provide a significant speedup due to a re-
duced latency on the memory hierarchy—synchronization
based on shared-memory data must explicitly cope with this
scenario. In fact, store bypasses can affect the correctness
of synchronization algorithms (e.g. register algorithms) for
concurrent processes only relying on individual read/write
operations (just like [11]). On the other hand, TSO-based ar-
chitectures offer particular instructions in their ISA, referred

to as memory fences, which enable recovering sequential con-
sistency by explicitly flushing store buffers before executing
any other memory operation, thus allowing to preserve the
ordering across subsequent read/write operations.

However, for scenarios where synchronization among
processes requires to atomically perform pairs of operations
(or more), memory fences do not suffice. To cope with
this issue, TSO-based architectures offer Read-Modify-Write
(RMW) instructions, whose execution directly interacts with
cache controllers so as to ensure that cache lines keeping
synchronization variables are held in an exclusive state un-
til a couple of read/write operations are executed atomi-
cally [24]. This means that no other cache can keep the same
line in read mode until the couple of operations completes.

Classical RMW instructions, which we exploit in ARC,
are: atomic exchange, which atomically reads the content of
a memory location and updates its value; add and fetch,
which increments a memory location and reads the updated
value; atomic inc, which atomically increments the value of
a memory location.

3.3 The Register Algorithm
ARC uses N + 2 buffers to keep different snapshots of the
register value, as produced along time by write operations.
This number has already been proven to be the lower bound
for achieving wait-freedom in (1,N) registers [7]. Having
such a number of buffers allows each reader to keep a buffer
for reading—possibly different across the N readers—while
at least 2 buffers are still available to keep some up-to-
date register value (the one written while the readers were
concurrently reading the register) and the work-in-progress
copy being produced by the writer, if any. We will refer to
each of the N + 2 buffers as a slot of the register.

The core data structure we exploit in ARC is a single-
word shared synchronization variable called current. It
is a 64-bit shared variable divided into two fields: index,
keeping the index of the slot containing the most up-to-date
register value, and counter, namely the readers’ presence
counter—the number of standing concurrent reads on the
slot targeted by index. The index field is 32 bits wide,
therefore up to 232 − 2 concurrent readers are allowed3.

Additionally, our register data structure is made up of
N + 2 meta-data entries forming an array which we refer
to as register[]. Each entry of this array is associated
with a register slot. Also, the entry is an instance of a data
structure containing the following four fields:

1) r_start – the number of read operations started on
the slot since its last update.

2) r_end – the number of read operations completed on
the slot since its last update.

3) size – the size of the register value stored in the slot.
4) content – a pointer to the memory location (the

buffer) where the register content is stored.
The size field is introduced since we support writes

and reads of different sizes, meaning that each register value

3. We have selected 32 as a meaningful value for common off-
the-shelf architectures which use 64-bit words and RMW instructions
targeting 64-bit memory locations. In different (or future) architectures,
this could be set to an even larger value, by simply having the current
variable enlarged in size, depending on the actual size of memory
locations targeted by RMW instructions.

5

Algorithm 1 Register initialization.
1: procedure INIT(content, size)
2: for all slot ∈ [0, N + 1] do
3: register[slot].size← 0
4: register[slot].r_start← 0
5: register[slot].r_end← 0

6: MEMCOPY(register[0].content, content, size)
7: register[0].size← size
8: current← N . I1

Algorithm 2 The atomic register read operation.
1: procedure READ()
2: index← current� 32 . R1
3: if last_index = index then
4: entry ← register[last_index]
5: return 〈entry.content, entry.size〉 . R2
6: ATOMICINC(register[last_index].r_end) . R3
7: tmp_curr ← ATOMICADDANDFETCH(current, 1) . R4
8: last_index← tmp_curr � 32 . R5
9: entry ← register[last_index]

10: return 〈entry.content, entry.size〉

can have a different size. Also, with no loss of generality,
while presenting the register pseudo-code we assume that
the buffer pointed by the content field of the register slot
is already allocated, and that it can host the maximum-
sized register content (depending on the usage scenario). In
any real implementation of our register algorithm, dynamic
buffer allocation/release, with each buffer made up by the
amount of bytes fitting the size of the register value to
be stored upon write operations could be employed. Also,
given that the memory allocation operation by the writer
can be kept out of the critical path of the actual algorithmic
steps of ARC, wait-freedom of read/write operations is still
preserved by ARC even if the memory allocation system can
lead to block the writer for buffer acquisition4.

The initial setup of the register data structure is shown
in Algorithm 1. With no loss of generality, we assume
that the register is initialized to keep its initial value into
register[0], and that the other N + 1 entries are all
available for posting some new register value.

Algorithm 2 shows the pseudo-code for the read oper-
ation. By exploiting the AtomicAddAndFetch instruction
targeting current, a reader process is able to atomically
retrieve the index of the slot containing the most up-to-date
register value and increment the corresponding presence
counter (statement R4). This allows us to enforce visible
reads [26], although we do this in an anonymous way. In fact,
the presence counter is not used to indicate who has started
reading the up-to-date register value, rather how many
processes did it. The index of the slot where the up-to-date
value is to be found is extracted by executing bitwise in-
structions on the value returned by AtomicAddAndFetch.

We consider a read operation from a slot as concluded
as soon as the reader tries to read again from the register.
When, this happens, the r_end counter of the slot from
which the reader took the register value upon its last read

4. Essentially, the problem of allocating memory in a wait-free man-
ner is fully orthogonal to the problem of guaranteeing wait-freedom
of read/write operations on the allocated memory buffers according to
the atomic register rules.

is incremented atomically. A special case occurs when the
already-read slot still keeps the most up-to-date register
value (statement R2). In this case, r_end is not incremented
to indicate that the reader did not yet conclude its operations
on the slot—a new read is just starting, bound to that same
slot. Incrementing r_end only when moving to another slot
(upon a subsequent read that finds a newer register value)
allows us to avoid overflows of counter variables (statement
R3). Thus, we enable an infinite number of reads to occur
on a slot that still keeps the up-to-date register value.

In order to remember from which slot the reader took the
register value upon its last read, we use the last_index
variable (which is local to a reader), where we load the index
of the target slot for the read operation each time the reader
accesses a newer register value (statement R5). The check on
whether the last accessed register value is still the most up-
to-date is executed by loading the index kept by current
(statement R1) as soon as the read operation starts, and
then comparing it with last_index. Given that the value
of current is manipulated by any process—including the
writer, as we will show—via RMW instructions only, then
the index value returned by reading current (statement
R1) is guaranteed to represent a correct snapshot of the
shared synchronization variable we use in our register algo-
rithm under the assumed TSO memory consistency model.

At startup current is initialized to N (statement I1).
This sets its most-significant 32 bits (the index field) to zero
and initializes the counter field as if all the readers had
already started reading from the 0-th (initially-valid) slot5.
Therefore, if no update is ever made to the register’s content,
readers will indefinitely read this value (statement R1).

The pseudo-code for the write operation is shown in
Algorithm 3. Upon writing, the writer process selects a free
slot, namely a slot which is not currently bound to any
not-yet-finalized read operation by whichever process, and
which is different from the slot that was used for the last
write operation (namely, the one kept by current). In com-
pliance with the initialization of the register, we assume that
the last_slot local variable kept by the writer, indicating
the last slot used for a write, is initialized to the value 0.
In fact, at initialization time the initial register content is
posted to the 0-th slot. The writer detects if no other process
is currently reading from a slot by checking whether the two
counters r_start and r_end associated with the slot keep
the same value. The writer then performs a copy operation
of the new value to the selected slot, and updates all the
fields of the slot entry. In particular, it sets both r_start
and r_end to zero, and size to the actual size of the
new register value that is being stored. Then, by using an
AtomicExchange instruction (statement W2), the writer
changes the content of the current shared synchronization
variable so as to publish the index of the new slot from
which readers can start performing read operations. Given
that the update of current is based on the execution of
an RMW instruction, the content of the slot selected for
the new write operation is guaranteed to be coherent when
the current variable is updated under the assumed TSO

5. With no loss of generality our algorithmic notation is assuming
a little-endian 64-bit processor, like x86-64. However, it can be easily
adapted to big-endian processors.

6

Algorithm 3 The atomic register write operation.
1: procedure WRITE(content, size)
2: pick slot such that slot 6= last_slot ∧ register[slot].r_start = register[slot].r_end . W1
3: MEMCOPY(register[slot].content, content, size)
4: register[slot].size← size
5: register[slot].r_start← 0
6: register[slot].r_end← 0
7: old_curr ← ATOMICEXCHANGE(current, slot� 32) . W2
8: old_slot← old_curr � 32
9: register[old_slot].r_start← old_curr & (232 − 1) . W3

10: last_slot← slot

memory consistency model. In other words, if a reader gets
the updated current value (statement R4) and accesses the
target slot, the accessed data are guaranteed to be coherent
with the corresponding updates performed by the writer.

The new value of current, which is atomically written
by the writer (statement W2), has a counter field set to
zero, telling that the new version has not yet been read
by any process. The AtomicExchange allows to retrieve
as well the old value of current, which is loaded into
the old_current variable local to the writer. This is used
by the writer to extract the old counter field, and store its
value in the r_start field of the old (the last-written) slot
(statement W3). In this way, the number (not the identity)
of readers which started an operation on the old slot is
“freezed” into the slot management meta-data. We note that,
after such freezing takes place for some slot, the correspond-
ing values r_start and r_end are such that r_start ≥
r_end. Eventually these two values will be the same, which
is the condition telling the writer that the slot has been
released by all readers since they moved to some fresher
slot. In fact, the condition r_start = r_end indicates to
the writer that the slot is free again (statement W1). On the
other hand, any written slot that is never accessed by any
reader up to the point in time where some newer register
value is atomically published by the writer, will have its
r_start and r_end fields both set to zero, which implies
it is a free slot available for a new write.

3.4 Speeding-up Free Slot Searches
By the pseudo-code of ARC, read operations can be trivially
shown to take constant-time. On the other hand, write
operations require searching for a free slot among N + 2
(statement W1), which would imply linear time complex-
ity. To provide amortized constant time for write opera-
tions, in particular for the slot-search operation, readers
that complete their read from a slot by incrementing the
corresponding r_end counter (i.e. they release the slot), can
check whether this counter is equal to the r_start counter
associated with the same slot. If this is true, then by the
register algorithm structure it means that the slot can be
reused for subsequent writes. Hence, a reader detecting such
an equality can post into another shared variable the index
of the just-released slot. This can be used by the writer as a
proposal to start searching for a free slot. This proposal will
always correspond to an actually-free slot (hence enabling
constant time retrieval of the free slot upon write operations)
except for the corner case where the writer already took the
same slot for some already-issued write having observed its
release before the reader posted its proposal.

4 CORRECTNESS PROOF

By code construction, all invocations to READ() are guar-
anteed to complete in a finite number of steps. Hence reads
are guaranteed to be wait-free. As for the WRITE() operation,
completion within a finite number of steps is guaranteed if
the free-slot search operation carried out at the beginning
of the write operation (statement W1) completes in a finite
number of steps. This is true if it is guaranteed that at least
one slot different from the last one used for a register write
is in a stable state such that its r_start and r_end fields
are equal. This is proven in the following lemma:

Lemma 4.1. Upon starting a write operation at least one of the
N +2 register slots, which is different from last_slot, is such
that r_start and r_end keep the same value. Also, for this slot,
these values do not change while the writer executes statement
W1.

Proof. This proof is based on two disjoint cases analysis:
Case 1. The writer performs its first write on the register. In
this case, all the r_start and r_end fields are still found
to be set to the value 0. This is because no reader could
have updated any r_end field in any slot since this can
only happen if a newer register value is found upon a read
operation, which is not the case since the writer did not yet
post any new value, say current has never been updated.
In fact, for a reader to update the r_end field of any slot,
it necessarily needs to find the predicate in line 2 of the
READ() operation not satisfied, thus sliding to the execution
of statement R4. However, when running the statement
W1 upon its first write operation, the writer did not yet
update the index filed of the current variable, so that no
reader can have found the predicate in line 2 of the READ()
operation unsatisfied. Also, no r_start field in any slot
can ever change while the writer executes the W1 statement
during its first write operation, since this change is allowed
to occur only at statement W3 of the write operation, and
this statement does not precede statement W1.

Overall, given that last_slot is set to 0 upon register
initialization, all the N + 1 slots different from the 0-th one
are such that their r_start and r_end fields are set to
zero and cannot change while the writer executes the W1
statement during its first write operation, at least one slot
different from last_slot is such that its r_start and
r_end fields keep the same value which will not change
while the writer executes W1. Thus the claim follows.
Case 2. The writer performs the i-th write on the register. In
this case, all the writes up to the (i−1)-th one have updated
current, and the readers might have fetched the various
values of current, also releasing a presence count unit each

7

time this happened. By the READ() operation pseudo-code,
a reader leaves a presence count unit on some slot (updating
the counter field of the variable current) only after having
released a count unit on the r_end field of some other slot.
Hence, at the time of executing the W1 statement of the write
operation, for all the r_start units freezed by the writer
into the slots’ meta-data upon performing writes (through
statement W3) up to the (i− 1)-th we have that:

N+1∑
j=0

(register[j].r_start− register[j].r_end) ≤ N (1)

Hence, given that r_start and r_end fields are non-
negative values, at the time of executing statement W1
during the i-th write by the writer, for at least 2 different
slots of the N+2 slots of the register, these same fields must
have the same value.

Let us now prove that these values do not change while
the writer executes statement W1. The r_start value of
any slot can only be modified by the writer at statement
W4 of the WRITE() operation, thus it cannot change while
the writer executes statement W1. Also, for any generic slot,
the reader releases a presence count in the r_end field only
after moving to another slot, and having released a presence
count on the count field of that slot. Hence given that at the
time of executing statement W1 during the i-th write by the
writer all the r_start values of the slots that have been
written by the writer up to the (i− 1)-th write, and possibly
accessed by the readers, are already flushed into the slots’
meta-data (see statement W3 of the WRITE() operation), then
no reader can update the corresponding r_end fields to a
value greater than the corresponding r_start fields. So
these updates cannot occur while the W1 statement is in
progress. Therefore, for the slots for which r_start and
r_end are found to be equal upon starting statement W1
at the writer, they are not allowed to be changed during
the statement execution. Hence at least one slot which is
different from last_slot is such that its r_start and
r_end fields stably keep the same value while the writer
executes statement W1. Thus the claim follows.

We now prove consistency of concurrent read/write
operations in ARC:

Lemma 4.2. While the writer is executing a write operation on a
slot, no reader will read the same slot until the write completes.

Proof. Read operations bound to the initial snapshot of the
register trivially satisfy the claim, since that snapshot is not
written by the writer. Let us therefore focus on reads of
the register snapshots that are different from those bound
to the register initialization value. By the READ() operation
pseudo-code, a read operation is always bound to the slot
index that is returned at some point in time by atomically
executing AtomicAddAndFetch on the current variable
(see statement R4 of the READ() operation). This is true
also when subsequent reads by a reader process take an
unchanged register content from a same slot, since the
first of these reads must have necessarily executed the
AtomicAddAndFetch instruction on current to retrieve
the index of that slot. On the other hand, the r_end field of
some slot is incremented by the reader only after moving

to some new slot upon read operations. In fact, the R3
statement of the READ() operation is executed only if the
predicate in line 3 of that same operation is not satisfied.

Given that (i) the writer selects a slot x for writing only
when it finds its r_start and r_end fields set to the same
value, (ii) r_start is freezed into the meta-data of slot x
only after it is no longer the current one, (iii) whichever slot
x becomes again readable after its index is published into
the current shared variable, (iv) TSO memory consistency
guarantees that when the update of current is performed
by the writer at statement W2 of the WRITE() operation, so
as to point to the x-th slot, all the data associated with the
slot have already been flushed to memory, we have that any
read will always observe a stable snapshot of the register
when reading from the generic x-th slot. Hence the claim
follows.

We now prove regularity and atomicity of ARC:

Theorem 4.3 (Regular Register). Any read operation returns
either the last written value, or one being concurrently written.

Proof. By the structure of Algorithm 3 implementing the
WRITE() operation, the update of current performed at
statement W2 represents the atomic memory operation that
defines the linearization point for any write. If the write
is linearized before the execution of statement R1 of the
READ() operation by some reader, a read always returns
the last written value, say the one posted by the last write
serialized before the read, since the serialization point of the
read is determined by statement R4, which targets the same
shared synchronization variable current whose atomic
updates represent the serialization points of writes. Other-
wise, if the statement R1 of the READ() operation is executed
before the update of the current shared synchronization
variable by the write operation at statement W2, the read
is correctly allowed to return the register value that was
already stored. Hence the claim follows.

Theorem 4.4. Given two read operations r1 and r2 such that
r1 → r2, r2 never returns a value older than the one returned by
r1.

Proof. (By contradiction) By the proof of Theorem 4.3, a read
executed before the linearization point of a write returns the
old value (with respect to the execution of the write). Let
us assume by contradiction that, given two reads r1 and
r2 such that r1 → r2, r2 returns a value older than the
one returned by r1. Yet, the current synchronization vari-
able is updated at statement W2 of the WRITE() operation
whenever the index of the most up-to-date slot changes.
Therefore, for r2 to read a value older than r1, it has to
read current before r1. But this violates the precedence
r1 → r2. Hence the assumption is contradicted and the
claim follows.

Atomicity of our register algorithm trivially follows from
Theorem 4.3 and Theorem 4.4 in combination.

5 EXTENSION TO THE MULTIPLE WRITERS CASE

The extension of ARC to manage multiple writers is im-
mediate, under the scenario where we admit that each of
the M writers is allowed to use N + 2 buffers for posting

8

updated register values. In fact, in this scenario, each of the
M writers is allowed to retrieve a free slot for posting a new
register value in a finite number of steps, independently
of what register versions are currently being accessed by
the N readers. For the (M,N) case, the index field of the
current synchronization variable can keep track of any of
the M × (N +2) buffers, and a writer publishing a new reg-
ister value simply posts the same bit-mask used in the single
writer case onto current, still indicating that initially zero
readers are bound to the register value being posted. On
the other hand, posting the new information on current
via the atomic exchange instruction allows the generic writer
to retrieve the index of the slot keeping the last posted
register value, thus allowing to flush the current readers’
count on the corresponding meta-data even if such slot was
in charge of another writer. Clearly, the only limitation of
this extension, in terms of actual concurrency levels that can
be managed, is that we can no longer support 232−2 readers,
since more bits in the current synchronization variable
needs to be used for keeping track of the index of any of the
possible M × (N + 2) slots used to keep the register values
produced by the M writers. In particular, using h bits to
keep track of all the possible slots in the index field of the
synchronization variable current and k bits for the count
field, the constraints that need to be satisfied, based on a
64-bit representation of current, are the following ones:

2h =M × (N + 2)

2k = N

k + h ≤ 64 (2)

In the following table we list a few possible solutions of the
above equations, in terms of values of M and N which lead
to respect all the expressed constraints:

M (admitted writers) N (admitted readers)
2 231

211 226

223 220

231 216

By these data we see how ARC still allows for extremely
high concurrency of both writers and readers in the multiple
writers scenario, e.g. by admitting the order of one million
writers and one million readers all together.

We additionally note that the pseudo-code presented for
the case of single writer is still fully valid, with the only
need to modify the value used for shifting the current
synchronization variable (or other used bit-masks) in order
to correctly manipulate (retrieve and update) its fields. Also,
the search for a free slot operation executed by the writer
(see line 2 of Algorithm 3) needs to be carried out exclu-
sively among the slots bound to it, which are disjoint with
respect to the slots bound to others. Finally, the mechanism
of speeding up writes by making such a search by the writer
executed in amortized constant time can still be put in place
by simply keeping multiple hint-for-search variables each
associated with a different writer (e.g. via hash association
with the slots managed by that writer), each of which
is updated by a reader that eventually releases a buffer
bound to that writer—recall that such a reader is unique,

since it corresponds to the one that lets the r_end variable
associated with the slot acquire the same value as r_start.

6 EXPERIMENTAL RESULTS

In this section we experimentally compare ARC with the
Readers-Field (RF) wait-free algorithm presented in [3],
still based on RMW instructions, with Peterson’s wait-free
algorithm [11] and with a classical lock-based approach
(using read/write spin-locks) not ensuring wait-freedom.
We decided to focus on the (1,N) configuration in our
experiments, which is the most studied one in terms of
actual optimization of the execution path of the threads. In
any case we recall again that the execution path of ARC in
the (M,N) configuration is essentially identical to the one of
the (1,N) configuration.

All the compared algorithms have been implemented
according to their specification by relying on the C program-
ming language and Posix, plus the nesting of either RMW
machine instructions used to manipulate synchronization
variables (like in ARC and RF) or memory-fence instructions
to guarantee correctness under TSO (like for Peterson’s
algorithm). Also, in all the implementations we relied on
mmap() to pre-allocate all the buffers requested by each
algorithm6. In all the implementations, the “process entity”,
encapsulating the sequence of read or write operations ac-
cessing the register, is instantiated via an individual thread.

We tested the different algorithms deploying their im-
plementations on two different computing platforms, a
physical one and a virtualized one. The former is equipped
with four 1.9 GHz AMD Opteron 6168 processors and 128
GB of RAM. Each processor has 12 cores, for a total of
48 CPU-cores. The operating system is 64-bit Debian, with
Linux Kernel 4.15. The virtualized platform is an Amazon
m4.10xlarge instance equipped with 2.4 GHz Intel Xeon E5-
2676 v3 (Haswell) processors offering a total capacity of 40
vCPUs, equipped with 160 GB of RAM. This virtual machine
runs Ubuntu Server 14.04 LTS as the operating system, with
Linux Kernel 4.2.

We have conducted two different sets of experiments. In
the first set, we generated a workload which is similar in
spirit to the well-known Hold-Model [27]. With this work-
load, all the concurrent threads repeatedly execute kind
of “dummy” operations on the register data structure—
each write operation simply copies the same content to the
register, and a read operation only retrieves the pointer to
the register value. This is an extreme scenario in which
data processing has zero latency, and threads make no other
work than accessing the register data structure. The effect
of this behavior is that the logical contention on the register
data structure is maximal. Then we have associated read and
write operations with actual processing—a write actually
generates some data, and a read scans the register content.
In this second scenario we can study the effect of different
operations’ latencies.

Before discussing performance results, we recall again
that ARC and RF not only differ by the different amounts
of readers they can handle—58 in RF vs 232 − 2 in ARC in
the (1,N) configuration. Rather, they also differ by the way

6. The source code for all the tested implementations is available at
https://github.com/HPDCS/ARC.

9

RMW instructions are exploited along the execution path
of read/write operations accessing the register. This aspect
makes a comparative analysis of these two algorithms in-
teresting independently of the huge scale up of the level of
concurrency admitted by ARC.

In Figure 1 we report throughput values (read/write op-
erations per time unit) while varying the number of threads
for deploys of the different register implementations on the
48 CPU-core physical machine. In these tests, one thread
continuously executes write operations on the register, while
all the others continuously execute read operations. Each
reported sample is the average over 10 runs, with each run
made up by at least 2 × 106 read/write operations. Also,
the different plots refer to 4 different sizes of the register, a
minimal size of 128B, a small size of 4KB, an intermediate
size of 32KB, and a large size of 128KB.

Before entering the discussion of the results, we recall
that ARC and its competitors are essentially synchronization
algorithms, hence we cannot expect to achieve linear (or
close to linear) scalability of throughput values depending
on the variation of the number of threads. Rather, the main
target objective is the one of reducing the negative effects of
synchronization on throughput (and on its fall down) while
moving to higher thread counts.

By the plots we see how both ARC and RF outperform
the other solutions at any thread count. For small register
size ARC outperforms RF as soon as the thread count is
increased beyond the value 4. Also, ARC outperforms RF
at any thread count for other register sizes, providing up
to an order of magnitude better throughput. The reason
for this behavior is that RF executes an RMW instruction
(FetchAndOr) upon any read, while ARC executes RMW
instructions only if the write operation of a newer register
value is serialized before the execution of the statement R1
of the read operation in Algorithm 2. Hence, ARC is more
efficient (since it avoids the execution of RMW instructions)
upon reading a register content that is still valid (i.e. it did
not change since the last read operation executed by the
same thread). This scenario shows up when increasing the
level of concurrency of read operations or when the write
operation takes longer time due to the larger size of the
register content to be posted by the writer—we recall that
a memory copy is executed upon a write. In both cases
more threads will likely find a not-yet-updated register
value upon subsequent reads, a scenario which is captured
more efficiently by ARC, compared to RF, just avoiding the
execution of RMW instructions.

In Figure 2 we report the throughput values that have
been observed when running on top of the virtualized
platform with 40 vCPUs. These data confirm what we al-
ready saw for executions on the physical machine, with the
additional indication that ARC performs better than RF even
with minimal thread counts and for all the register sizes,
which indicates how the avoidance of the execution of RMW
instructions upon read operations in scenarios where newer
writes were not serialized before the reads allows to favor
performance even more than what happens with deploys on
the 48 CPU-core physical machine. Moreover, with respect
to the execution on the physical machine, all the wait-free
algorithms provide a non-negligible performance speedup
over the lock-based implementation. This is an indication

of the benefits which can be obtained when using wait-free
synchronization on virtualized architectures. Indeed, lock-
based implementations can introduce an additional slow
down whenever the virtualized architecture reduces the
computing power allocated to the core holding the lock, due
to CPU stealing by the underlying hypervisor.

In Figure 3 we report throughput data when running on
the 48 CPU-core physical machine with a definitely scaled
up thread count (up to 4000). In this scenario, RF could
not be tested (since, as said, it supports 58 reader threads
only). This test helped us to assess the performance by ARC
compared to Peterson’s algorithm and to the lock-based
one when considering time-sharing concurrency among the
threads, hence interference among them because of compe-
tition on CPU usage. By the data we see that both ARC and
the lock-based algorithm are not sensible to the increase of
the thread count and to the increase of the register size, even
though ARC provides orders of magnitude better through-
put. This is not true for Peterson’s algorithm since it is based
on multiple copies when performing access operations to
the register. Such multiple copies are clearly adverse to
performance in time-sharing concurrency deploys due to
highly negative effects on locality and caching efficiency,
especially for larger register size.

Overall, ARC delivers better performance than all the
tested solutions independently of the type of deploy (phys-
ical vs virtual machine based) and of the readers’ count or
register size. At the same time, it still allows a huge scale-up
in the number of readers compared to RF, which appeared
to be the best performing literature solution (compared to
Peterson’s algorithm and the lock-based one) for deploys
on the used physical machine.

In order to assess the performance and scalability of ARC
under differentiated workload patterns, we have conducted
additional experiments in which we have modified the
latency of read and write operations. In particular, reads
and writes have been realized in a way that mimics real pro-
cessing by the threads, while trying to minimize (for all the
implementations) negative effects on the cache architecture.
Upon a write operation, the thread in charge of executing it
creates (on stack) an array which is filled with random data.
This implies that a non-minimal processing time is required
to generate the new version of the data to be written to the
register, which is typical of real-world applications. Upon a
read operation, after having retrieved the correct snapshot
of the register value, the reader scans its whole content.
No actual copy of the content is made, which is likely to
produce more negative effects on the cache. Anyhow, this
is representative of applications which are interested in the
content of the register, e.g. to produce aggregated values.

In Figure 4 we report experimental data when intro-
ducing a delay among two different write operations of
around 0.5 seconds. This delay is implemented by relying
on usleep(), which ensures that no operation is carried
out by the writer thread for at least 0.5 seconds. This ex-
periment is representative of scenarios where new data to
be exchanged by using the register are produced less fre-
quently (compared to the workload of the Hold-Model), yet
readers continuously try to determine whether some new
data have been posted—for example, like in sensors’ output
monitoring where a thread gets data from a sensor and

10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(a) 128B register size

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(b) 4KB register size

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(c) 32KB register size

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(d) 128KB register size

Fig. 1. Throughput with different register size values (48 CPU-core
physical machine).

then publishes the new data value towards other threads for
specific purposes, such as for allowing them to concurrently
fill in input replicated data processing services [28]. In par-
ticular, the timing of the operations by the writer thread—
which mimics the publishing of new data coming from some
sensing device—in terms of frequency of production of new

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(a) 128B register size

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(b) 4KB register size

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(c) 32KB register size

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(d) 128KB register size

Fig. 2. Throughput with different register size values (40 vCPUs ma-
chine).

data to be posted for processing by the other threads, has
been based on indications provided in the environmental
monitoring project presented in [29]. By the results, we can
see that ARC outperforms all the competitors. This is related
to the fact that, as hinted, ARC avoids executing RMW
instructions to synchronize read operations in case we are

11

 0.1

 1

 10

 100

 1000

 10000

 1000 1500 2000 2500 3000 3500 4000

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC Peterson Lock

(a) 128B register size

 0.1

 1

 10

 100

 1000

 10000

 1000 1500 2000 2500 3000 3500 4000

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC Peterson Lock

(b) 4KB register size

 0.1

 1

 10

 100

 1000

 10000

 1000 1500 2000 2500 3000 3500 4000

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC Peterson Lock

(c) 32KB register size

 0.1

 1

 10

 100

 1000

 10000

 1000 1500 2000 2500 3000 3500 4000

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC Peterson Lock

(d) 128KB register size

Fig. 3. Throughput with largely-increased thread counts (48 CPU-core
physical machine).

able to early determine that no new value has been written
to the register. Since there is a non-minimal delay between
two consecutive write operations, this allows us to obtain a
performance speedup as high as 93% with respect to RF in
the best case.

Data for a different scenario are reported in Figure 5.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(a) 128B register size

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(b) 4KB register size

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(c) 32KB register size

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(d) 128KB register size

Fig. 4. Throughput with a delay of 0.5 seconds among write operations.

Here, no artificial delay is interposed among two consecu-
tive write operations, thus sliding again towards a scenario
similar to the archetypal Hold-Model. Yet, as mentioned
before, both write and read operations carry out work
which can be representative of real-world applications. In
fact, write operations fill the written buffer with new data
(although randomly generated in this test), and read opera-

12

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(a) 128B register size

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(b) 4KB register size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(c) 32KB register size

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(d) 128KB register size

Fig. 5. Throughput when read and write operations carry out actual work,
with no artificial delays.

tions scan through the whole buffer. This scenario slows the
execution of read operations wrt writes, therefore increasing
the likelihood that a new value has been posted by a write
operation when a new read operation is executed. There-
fore, in this configuration the effect of our optimization on
the read operation is reduced, forcing ARC to execute an

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(a) 128B register size

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(b) 4KB register size

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(c) 32KB register size

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Threads

ARC RF Peterson Lock

(d) 128KB register size

Fig. 6. Throughput with high latency of reads, low latency of writes.

increased number of RMW instructions.
By the results, we can see that when the size of the

register is increased, the number of operations per second
falls down. This is an additional indication of the reduced
degree of concurrency shown in this experiment, related to
the fact that both read and write operations spend more
time in scanning/writing the buffers. We can see that due

13

to this different execution pattern the performance gain by
our proposal is reduced, although ARC offers anyhow a
better performance with respect to all the other proposals,
especially with minimal register size. This shows that our
register algorithm is as well resilient to the latency of work
of other nature carried out by the concurrent threads, mak-
ing it a suitable solution in general real-world scenarios.
We also note that for minimal register size, the achieved
throughput does not scale linearly since the incidence of the
relative cost of RMW instructions increases at higher thread
counts.

The performance of an additional scenario, which can
be regarded as an adverse case for ARC, is reported in
Figure 6. In this experimental setting we have reintroduced
the initial “dummy” write operations—no actual content is
generated, rather the same buffer is always copied as a new
instance of the register value—while keeping reads which
scan the whole register content. By having the writer posting
the same content, our optimization of the read operation
cannot take place: a new version is even more likely to
be found. Additionally, the reader scans the whole content
of the register, despite the fact that no new data will be
actually found in it. By the results, we can see that ARC is
still resilient to this negative read/write interleave pattern,
showing a performance which is better than the other al-
gorithms in most settings. The only exceptions are found
with very small thread count in a few configurations of the
register size, where the simple lock-based approach or RF
can pay off, or for large register size and largely increased
thread count, which gives rise to a scenario where the read-
related optimization of ARC very unlikely materializes and
RF shows slightly better performance.

To complete our experimental assessment, in Figure 7
we report data related to per-operation power consump-
tion. These measures have been collected by relying on
the “Power Gov" tool [30]. In particular, we report data
collected in two opposite scenarios. Figure 7(a) is related to
write operations which do not actually generate new data
(the same content is always posted to the register), while
read operations scan the whole content. On the other hand,
Figure 7(b) is related to write operations which undergo a
0.5 seconds delay, while read operations simply retrieve a
pointer to the last-written buffer. Therefore, the first con-
figuration is related to a higher likelihood for a read to
execute the whole synchronization algorithm, while in the
second scenario ARC read-related optimization is likely to
pay off. By the results in Figure 7(a), ARC shows power
consumption that is anyhow smaller than, or close to, the
one of any other algorithm. It is interesting to note that, in
this scenario, Peterson’s algorithm has power consumption
that is even higher than the simple lock-based algorithm. As
for this aspect, we recall that Peterson’s algorithm relies on
multiple buffers—each reader accesses at least two buffers
to complete an operation. This has a non-negligible effect on
the cache hierarchy (also in terms of power usage).

In Figure 7(b), we see that ARC power consumption is
constant with respect to the register size, and is definitely
lower than the one of the competitors. This is related to the
fact that with higher likelihood readers efficiently determine
that no new data has been posted to the register. Therefore,
the amount of executed RMW instructions is significantly

 1

 10

 100

 1000

 10000

 100000

 128B 4KB 32KB 128KB

P
ow

er
 c

on
su

m
pt

io
n

pe
r

op
. (

nW
/o

ps
)

Register size
ARC RF Peterson Lock

(a) Frequent Writes

 1

 10

 100

 1000

 10000

 128B 4KB 32KB 128KB

P
ow

er
 c

on
su

m
pt

io
n

pe
r

op
. (

nW
/o

ps
)

Register size
ARC RF Peterson Lock

(b) Delayed Writes

Fig. 7. Power consumption - runs with 48 threads.

reduced, with benefits on power usage by cache controllers
to access synchronization variables.

7 CONCLUSIONS

In this article we have presented Anonymous Readers
Counting (ARC), a multi-word wait-free atomic (1,N) regis-
ter algorithm targeting shared-memory TSO-consistent par-
allel architectures. Our register enables up to 232−2 readers
on 64-bit machines and avoids any intermediate copy of the
register content upon any operation, while still using the
classical lower bound of N + 2 buffers for ensuring wait-
freedom. It exploits Read-Modify-Write (RMW) instructions
commonly supported by off-the-shelf architectures, by also
reducing the impact of actually running RMW instructions
compared to the reference literature proposal in [3], which
also has the disadvantage of handling up to 58 readers
only. We have also shown how to adapt ARC to manage
the multiple writers case—the so called (M,N) register—still
in wait-free manner and with essentially no change along
the critical path of the operations by the concurrent threads
that write/read the register. The performance benefits from
our proposal compared to literature approaches have been
shown via a study based on deploys of the compared reg-
ister implementations on both a parallel physical machine
and a virtualized one. We have also provided a proof of
correctness of our register algorithm.

14

REFERENCES

[1] M. Li, J. Tromp, and P. M. B. Vitányi, “How to share concurrent
wait-free variables,” Journal of the ACM, vol. 43, no. 4, pp. 723–746,
1996.

[2] M. P. Herlihy, “Wait-free synchronization,” ACM Transactions on
Programming Languages and Systems, vol. 13, no. 1, pp. 124–149,
1991.

[3] A. Larsson, A. Gidenstam, P. H. Ha, M. Papatriantafilou, and P. Tsi-
gas, “Multiword atomic read/write registers on multiprocessor
systems,” Journal of Experimental Algorithmics, vol. 13, no. 1, p. 1.7,
2009.

[4] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek, “Intel
QuickPath interconnect architectural features supporting scalable
system architectures,” in Proceedings of the18th IEEE Symposium on
High Performance Interconnects, pp. 1–6, 2010.

[5] R. J. Safranek and M. J. Moravan, “QuickPath interconnect: Rules
of the revolution,” Dr. Dobb’s Journal, 2009.

[6] L. Lamport, “Concurrent reading and writing,” Communications of
the ACM, vol. 20, no. 11, pp. 806–811, 1977.

[7] L. Lamport, “On interprocess communication,” Distributed Com-
puting, vol. 1, pp. 86–101, jun 1986.

[8] A. Silberschatz and P. Galvin, Operating System Concepts. Addison-
Wesley Publishing Company, 1994.

[9] G. Barrett, “Model checking in practice - The T9000 virtual channel
processor,” in Proceedings of the First International Symposium of For-
mal Methods Europe on Industrial-Strength Formal Methods, pp. 129–
147, 1993.

[10] M. P. Herlihy and J. M. Wing, “Linearizability: a correctness con-
dition for concurrent objects,” ACM Transactions on Programming
Languages and Systems, vol. 12, no. 3, pp. 463–492, 1990.

[11] G. L. Peterson, “Concurrent Reading While Writing,” ACM Trans-
actions on Programming Languages and Systems, vol. 5, no. 1, pp. 46–
55, 1983.

[12] H. Simpson, “Four-slot fully asynchronous communication mech-
anism,” IEE Proceedings E (Computers and Digital Techniques),
vol. 137, no. 1, pp. 17–30, 1990.

[13] S. Haldar and K. Vidyasankar, “Constructing 1-writer multireader
multivalued atomic variables from regular variables,” Journal of
the ACM, vol. 42, no. 1, pp. 186–203, 995.

[14] P. M. B. Vitányi, B. Awerbuch, P. Vitanyi, and B. Awerbuch,
“Atomic shared register access by asynchronous hardware,” in
27th Annual Symposium on Foundations of Computer Science, pp. 233–
243, 1986.

[15] J. H. Anderson and M. Moir, “Universal constructions for multi-
object operations,” in Proceedings of the 14th annual ACM Sympo-
sium on Principles of Distributed Computing, pp. 184–193, 1995.

[16] P. Fatourou and N. D. Kallimanis, “A highly-efficient wait-free
universal construction,” in Proceedings of the 23rd ACM Symposium
on Parallelism in Algorithms and Architectures, p. 325, 2011.

[17] Z. Aghazadeh, W. Golab, and P. Woelfel, “Making objects
writable,” in Proceedings of the 2014 ACM symposium on Principles
of distributed computing, pp. 385–395, 2014.

[18] L. Zhu and F. Ellen, “Atomic snapshots from small registers,”
in Proceedings of the 19th International Conference on Principles of
Distributed Systems, 2015.

[19] M. P. Herlihy, “Impossibility and universality results for wait-free
synchronization,” in Proceedings of the 7th annual ACM Symposium
on Principles of Distributed Computing, pp. 276–290, 1988.

[20] LINUX.ORG, “https://www.linux.org/.”
[21] A. Matveev, N. Shavit, P. Felber, and P. Marlier, “Read-log-

update: a lightweight synchronization mechanism for concurrent
programming,” in Proceedings of the 25th Symposium on Operating
Systems Principles, pp. 168–183, 2015.

[22] M. P. Herlihy and J. M. Wing, “Axioms for concurrent objects,” in
Proceedings of the 14th ACM Symposium on Principles of Programming
Languages, pp. 13–26, 1987.

[23] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[24] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory
consistency and cache coherence,” Synthesis Lectures on Computer
Architecture, vol. 6, no. 3, pp. 1–212, 2011.

[25] L. Lamport, “How to make a multiprocessor computer that
correctly executes multiprocess programs,” IEEE Transactions on
Computers, vol. C-28, no. 9, pp. 690–691, 1979.

[26] J. Burns and N. A. Lynch, “Mutual exclusion using invisible reads
and writes,” in Proceedings of the 18th Annual Allerton Conference on
Commun., Control, and Computing, pp. 833–842, 1980.

[27] J. G. Vaucher and P. Duval, “A comparison of simulation event list
algorithms,” Comm. of the ACM, vol. 18, no. 4, pp. 223–230, 1975.

[28] P. Romano, D. Rughetti, B. Ciciani, and F. Quaglia, “APART: Low
cost active replication for multi-tier data acquisition systems,”
in Proceedings of the 7th EEE International Symposium on Network
Computing and Applications, pp. 1–8, 2008.

[29] B. Ciciani, P. Di Sanzo, U. Nanni, F. Quaglia, and F. Sarracco, “Os-
servambiente - a Project for Territorial Governance,” in Proceedings
of the VI Conference of the Italian Chapter of AIS, 2009.

[30] https://software.intel.com/sites/default/files/managed/13/3d/
power_gov.rev72.tgz.

Mauro Ianni is a PhD student at Sapienza, Uni-
versity of Rome, and is a member of the group
High Performance and Dependable Computing
Systems research group at the same institution.
He achieved the Bachelor’s degree in Computer
Engineering in 2012 and the Master’s degree
in Distributed Systems and Computer Architec-
tures in 2015. His research activities focus on the
development of methodologies and techniques
to ensure the correctness of operations in con-
current environments avoiding explicit synchro-

nization, and applications to support data processing on massively
parallel environments.

Alessandro Pellegrini has received the PhD in
Computer Engineering at Sapienza, University
of Rome in 2014. His main research topic is sim-
ulation on parallel and distributed architectures,
a field where he has published more than 50
among books, book chapters, journal articles,
and international conference proceedings pa-
pers. In 2015 he has won the Sapienza prize for
the best PhD thesis of the year. He has worked
as a researcher at some national and interna-
tional research centers, such as CINI, CINFAI

and IRIANC. His additional competence spans from compilers to high-
performance systems. He has actively contributed to the development
of open-source applications which are currently used at some research
centers in Europe. He has served as TPC member or organizing mem-
ber of several International Conferences.

Francesco Quaglia received his MS in Elec-
tronic Engineering in 1995 and his PhD in Com-
puter Engineering in 1999, both from Sapienza
University of Rome, where he has worked as As-
sistant Professor and then Associate Professor
from September 2000 till June 2017. Currently
he works as a Full Professor at the University
of Rome Tor Vergata. His research interests in-
clude parallel and distributed computing systems
and applications, operating systems, high perfor-
mance computing and fault tolerance. In these

areas, he has authored (or coauthored) more than 180 technical articles.
He has been program or general chair for prestigious international con-
ferences, and has been (unit) coordinator for national and EU projects
addressing topics in the above areas. He has been awarded the best
paper five times at re-known international conferences. He won the
Future Grid 2012 Project Challenge Award thanks to technical results in
the area of distributed/replicated transactional systems achieved within
the Cloud-TM FP7 Project. Currently he is an Associate Editor of ACM
Transactions on Modeling and Computer Simulation.

