
A Flexible Framework for Accurate Simulation of

Cloud In-Memory Data Stores1

P. Di Sanzo, F. Quaglia, B. Ciciani, A. Pellegrini

DIAG - Sapienza Universita’ di Roma

D. Didona, P. Romano

INESC-ID, Lisbon

R. Palmieri, S. Peluso

Virginia Tech

Abstract

In-memory (transactional) data stores, also referred to as data grids, are
recognized as a first-class data management technology for cloud platforms,
thanks to their ability to match the elasticity requirements imposed by the
pay-as-you-go cost model. On the other hand, determining how performance
and reliability/availability of these systems vary as a function of configura-
tion parameters, such as the amount of cache servers to be deployed, and the
degree of in-memory replication of slices of data, is far from being a trivial
task. Yet, it is an essential aspect of the provisioning process of cloud plat-
forms, given that it has an impact on the amount of cloud resources that
are planned for usage. To cope with the issue of predicting/analysing the
behavior of different configurations of cloud in-memory data stores, in this
article we present a flexible simulation framework offering skeleton simula-
tion models that can be easily specialized in order to capture the dynamics of
diverse data grid systems, such as those related to the specific (distributed)
protocol used to provide data consistency and/or transactional guarantees.
Besides its flexibility, another peculiar aspect of the framework lies in that it
integrates simulation and machine-learning (black-box) techniques, the latter
being used to capture the dynamics of the data-exchange layer (e.g. the mes-

1The email address of the corresponding author is quaglia@dis.uniroma1.it

Preprint submitted to SIMPAT May 25, 2015

sage passing layer) across the cache servers. This is a relevant aspect when
considering that the actual data-transport/networking infrastructure on top
of which the data grid is deployed might be unknown, hence being not feasi-
ble to be modeled via white-box (namely purely simulative) approaches. We
also provide an extended experimental study aimed at validating instances of
simulation models supported by our framework against execution dynamics
of real data grid systems deployed on top of either private or public cloud
infrastructures. Particularly, our validation test-bed has been based on an
industrial-grade open-source data grid, namely Infinispan by JBoss/Red-Hat,
and a de-facto standard benchmark for NoSQL platforms, namely YCSB by
Yahoo. The validation study has been conducted by relying on both pub-
lic and private cloud systems, scaling the underlying infrastructure up to
100 (resp. 140) Virtual Machines for the public (resp. private) cloud case.
Further, we provide some experimental data related to a scenario where our
framework is used for on-line capacity planning and reconfiguration of the
data grid system.

Keywords: Cloud data stores, in-memory data stores, what-if analysis,
simulation/machine-learning integration

1. Introduction

The advent of cloud computing has led to the proliferation of a new gener-
ation of in-memory, transactional data platforms, often referred to as NoSQL
data grids, among which we can find products such as Red Hat’s Infinispan
[1], VMware vFabric GemFire [2], Oracle Coherence [3] and Apache Cassan-
dra [4]. These platforms well meet the elasticity requirements imposed by the
pay-as-you-go cost model since they (a) rely on a simplified key-value data
model (as opposed to the traditional relational model), (b) employ efficient
in-memory replication mechanisms to achieve data durability (as opposed to
disk-based logging) and (c) natively offer facilities for dynamically resizing
the amount of hosts within the platform. They are therefore widely recog-
nized as a core technology for, e.g., emerging big data applications to be
hosted in the cloud.

However, beyond the simplicity in their deploy and use, one aspect that
still represents a core issue to cope with when adopting in-memory NoSQL
data grids is related to the (dynamic) resize and configuration of the system.
This is of paramount importance in the cloud anytime some predetermined

2

Service Level Agreement (SLA) needs to be matched while also minimizing
operating costs related to, e.g., renting the underlying virtualized infrastruc-
ture. However, accomplishing this goal is far from being trivial, as fore-
casting the scalability trends of real-life, complex applications deployed on
distributed in-memory transactional platforms is very challenging. In fact, as
recently shown in [5], when the number of nodes in the system grows and/or
the workload intensity/profile changes, the performance of these platforms
may exhibit strong non-linear behaviors, which are imputable to the simulta-
neous, and often inter-dependent, effects of contention affecting both physical
(CPU, memory, network) and logical (conflicting data accesses by concurrent
transactions) resources.

Recent approaches have tackled the issue of predicting the performance
of these in-memory data grid platforms (e.g. to assist dynamic reconfigu-
ration processes) by relying on analytical modeling, machine learning or a
combination of the two approaches (see, e.g., [7, 5]). In this article we pro-
vide an orthogonal solution which is based on the combination of discrete
event simulation and machine learning techniques. Specifically, we present
a framework for instantiating discrete event models of data grid platforms,
which can be exploited for what-if analysis in order to determine what would
be the effects of reconfiguring various parameters, like: (i) the number of
cache servers within the platform; (ii) the degree of replication of the data-
objects; (iii) the placement of data-copies across the platform. Hence, it can
be used to determine well-suited configurations (e.g. minimizing the cost
for the underlying virtualized infrastructure) vs variations of the volume of
client requests, the actual data conflict and the locality of data accesses. It
can also be used for long term SLA-driven planning in order to determine
whether the data grid can sustain an increase in the load volume and at
what operational cost–as a reflection of the increased amount of resources
that shall be provisioned from the cloud infrastructures.

The framework has been developed as a C static library implementing
data grid models developed according to the traditional event-driven simula-
tive approach, where the evolution of each individual entity to be simulated
within the model is expressed by a specific event-handler (2). On the other
hand, the library has been structured in order to allow easy development

2The actual code implementing the framework is freely available for download at the
URL http://www.dis.uniroma1.it/˜hpdcs/software/dags-with-cubist.tar

3

of models of data grid systems offering specific facilities and supporting spe-
cific data management algorithms (e.g. for ensuring consistency of replicated
data). As for this aspect, distributed data grids relying on two-phase-commit
(2PC) as the native scheme for cache server coordination, as typical of most
of the mainstream implementations (see, e.g., [1]), have an execution pattern
already captured by the skeleton model offered by the library. Hence, models
of differentiated 2PC-based data management protocols could be easily im-
plemented on top of the framework. Further, models natively offered within
the framework include those of data grids ensuring repeatable read seman-
tics, which are based on lazy locking. Models of primary data ownership vs
multi-master schemes are also natively supported.

The ability of our simulation framework to reliably capture the dynamics
of data grid systems is strengthened by the combination of the white-box
simulative approach with black-box machine learning techniques. The latter
have been demonstrated to represent an essential support for coping with
non-linearity and for complementing white-box approaches (e.g. via ensemble
schemes) especially when predicting performance with specific configurations
of the system (or workload) parameters [6].

In our framework, the usage of a black-box approach aims to capture (and
to predict) the data-transport/networking sub-system dynamics (as observ-
able from outside of such sub-system). This spares users from the burden of
explicitly modeling the internal structure and behavior of the network layer
within the simulation code, which is known to be an error-prone task given
the complexity and heterogeneity of existing network architectures and/or
message-passing/group-communication systems [8] (3). Also, the reliance
on machine learning for modeling network dynamics widens the framework
practical usability in modeling data grid systems deployed over virtualized
cloud environments where users have little or no knowledge of the underlying
network topology/infrastructure and of how the lower level message passing
sub-systems are structured. For these scenarios, the construction of white-
box simulative models would not only be a complex task, rather it would be
unfeasible.

We also present a case study, used as a support for the validity of the pro-

3Group communication systems such as [9] are often used as data exchange layers
within real data grid products. They typically exhibit complex dynamics that can vary on
the basis of several parameters, hence being difficult to be reliably captured via white-box
models.

4

posed modeling approach, where we compare simulation outputs with mea-
surements obtained running the YCSB benchmark by Yahoo [10], in different
configurations, on top of the Infinispan data grid system by JBoss/Red-Hat
[1], namely one of the mainstream data layers for the JBoss application server.
We note that the YCSB benchmark has been designed to explicitly assess
the run-time behavior of cloud data stores, and has been already exploited as
a reference in a set of recent studies (see, e.g., [5]), hence looking as an ideal
candidate for our case study. Also, Infinispan supports distributed data man-
agement schemes that can be considered as instances of “archetypal” ones,
which strengths the relevance of our case study in assessing the actual quality
of the models that can be instantiated via the framework. Further, the exper-
iments have been conducted by relying on both private and public (namely
FutureGrid [35]) cloud systems, by scaling the underlying infrastructure up
to 140 Virtual Machines for the private cloud, and up to 100 Virtual Ma-
chines for the public one. By the validation study, the framework provides
(at least) 80% accuracy in predicting core performance metrics such as the
system throughput across all the tested configurations, and on the order of
95% accuracy for most of them.

Beyond reporting validation data, we also provide experimental results re-
lated to a scenario where the framework is used for on-line capacity planning
and reconfiguration of the data grid system. This part of our experimental
analysis still relies on Infinispan as the data grid system, this time deployed
on a virtualized platform supported by Amazon EC2 [36]. Further, the over-
all description of the experimental settings we adopted allows for providing
information on how the framework can be integrated (e.g. for capacity plan-
ning usage) within an operational data grid environment.

The remainder of this article is structured as follows. In Section 2 we
discuss related work. The framework organization is presented in Section 3.
Experimental data are reported in Section 4.

2. Related Work

The issue of studying/predicting the performance of data grids has been
addressed in literature according to differentiated methodologies. The re-
cent works in [5, 11, 12] provide approaches where analytical modeling and
machine learning are jointly exploited in the context of performance predic-
tion of data grid systems hosted on top of cloud-based infrastructures. The
analytic part is mainly focused to capturing dynamics related to the spe-

5

cific concurrency control algorithm adopted by the data grid system, while
machine learning is targeted at capturing contention effects on infrastructure-
level resources. Differently from our approach, these works cope with specific
data grid configurations (e.g. specific data management algorithms and/or
specific workload profiles) to which the analytical models are targeted. For
example, they assume arrivals of transactions to the system to form a Pois-
son process. However, recent works suggest that, in large scale data centers,
the inter-arrival time of requests to a data grid may not follow the exponen-
tial distribution [13]. In the same guise, those models are bound to specific
data access pattern dynamics (e.g., in terms of data locality), which are not
general enough to encompass complex data-partitioning schemes across the
servers [14]. Instead, we offer a framework allowing the user to flexibly model,
e.g., differentiated data management schemes without imposing specific as-
sumptions on the workload and data access profile (in fact real execution
traces can be used to drive the simulated data access).

The proposals in [15, 16] are based on the exclusive usage of machine
learning, hence they provide performance prediction tools that do not have
the capability to support what-if analysis in the wide (e.g. by studying the
effects of –significant– workload shifts outside the workload-domain used dur-
ing the machine learning training phase). Rather, once a machine learning-
based model is instantiated via these tools, it stays bound to a specific sce-
nario (e.g. to a specific deploy onto a given infrastructure), and can only be
used to (dynamically) reconfigure the target data grid that has been mod-
eled. We retain similar capabilities; however, by limiting the usage of the
machine learning component to predicting messagging/networking dynam-
ics, we also offer the possibility to perform what-if analysis and exploration
of non-instantiated configurations (e.g. in terms of both system setting and
workload profile/intensity).

One approach close to our proposal can be found in [17]. This work
presents a simulation layer entailing the capabilities of simulating data grid
systems. Differently from this approach, which is purely simulative, our pro-
posal exhibits higher flexibility in terms of its ability to reliably model the
dynamics of data grid systems in the cloud thanks to the combination of sim-
ulative and machine learning techniques. In fact, as already pointed out, the
machine learning part allows for employing the framework in scenarios where
no (detailed) knowledge on the structure/internals of the networking/mes-
saging system to be modeled is (or can be) provided. As for this aspect, the
usage of machine learning for the performance prediction of group commu-

6

nication systems has been pioneered in [8]. However, the idea of combining
simulative and machine learning-based models is, to the best of our knowl-
edge, still unexplored in the literature.

Simulation of data grid systems has also been addressed in [18]. In this
proposal, the modeling scheme of the data grid is based on Petri nets, which
are then solved via simulation. With respect to this solution, we propose
a functional model that does not explicitly rely on modeling formalisms,
except for the case of the CPU, which is modeled via queuing approaches.
Further, one relevant difference between the work in [18] and our proposal
lies in that our simulation models are able to simulate complex transactional
interactions entailing multiple read/write (namely get/put) operations within
a same transaction. Instead, the work in [18] only models single get/put
interactions to be issued by the clients.

Still related to our proposal are the simulation models developed in [19].
However, unlike this article, the focus of that work is on modelling lower levels
dynamics related to IaaS management (e.g., scheduling of VMs to a set of
physical resources). Finally, a work still related to our proposal, although
marginally, can be found in [20], where a simulation environment for backup
data storage systems in peer-to-peer networks is presented. Compared to our
proposal, this work is focused on lower level data management aspects, such
as the explicit modeling of actual stable storage devices. Instead, our focus
is on distributed dynamics at the level of in-memory data storing systems,
which are essentially independent of (and orthogonal to) those typical of
stable storage technologies.

3. The Framework

The data grid architectures we target in our framework entail two types
of entities, namely:

• cache servers, which are in charge of maintaining copies of entire, or
partial, data-sets;

• clients, which issue transactional data accesses and/or updates towards
the cache servers.

The cache servers can be configured to run different distributed protocols
in order to guarantee specific levels of isolation and data consistency while
supporting transactional data accesses. For instance, the 2PC protocol can

7

Cache Server

Transaction Manager (TM)

CPU
Concurrency

Control (CC)

Client

begin

put

commit

get

begin_return

get_return

put_return

commit_return

abort

from other cache servers

remote_get

commit

abort

to
 o

th
e

r
ca

ch
e

 s
e

rv
e

rs

prepare

re
m

o
te

_
g

e
t_

re
p

ly

p
re

p
a

re
_

re
p

ly

co
m

m
it

_
re

p
ly

Function call

Event

Distribution

Manager

(DM)

CPU_complete timeout

a
b

o
rt

_
re

p
ly

Figure 1: Client and cache server simulation objects.

be exploited in order to guarantee atomicity while updating distributed repli-
cas of the same data-object, as it typically occurs in commercial in-memory
data platform implementations (see, e.g., [1]). Also, an individual transac-
tional interaction issued by any client can be mapped onto either a single
put/get operation of a data-object, or a more complex transactional manip-
ulation involving several put/get operations on multiple data-objects, which
is demarcated via begin and end statements.

In the next subsections we initially focus on the structure and discrete-
event patterns of cache server and client simulation objects. Successively, we
enter the details of the machine learning approach used to model message
delivery latencies across the system components, and of its integration with
the simulative part of the framework.

3.1. The Cache Server Simulation-Object

A cache sever simulation object can be schematized as shown in Figure
1. By the scheme we can identify four main software components:

• the transaction manager (TM);

• the distribution manager (DM);

8

• the concurrency control (CC); and

• the CPU.

Any simulation event destined to the cache server is eventually passed as
input to TM, which acts therefore as a front-end for event processing. Upon
the scheduling of any event, TM determines the amount of time needed to
process the requested operation, which depends on the type of the scheduled
event, and on the current CPU load. Then, the CPU load is updated on the
basis of the requested operation and a CPU complete event is scheduled at
the proper simulation time.

To determine the CPU processing delay, the CPU has been modeled as
a G/M/K queue, which allows capturing scenarios entailing multiple CPU-
cores. Although more sophisticated models could be employed (see, e.g.,
[21]), we relied on G/M/K queues since, in our target simulation scenarios,
the core dynamics of interest are the ones related to contention on logical
resources, namely data-objects, rather than physical resources, and to dis-
tributed (locking) strategies for the management of atomicity of the updates
of distributed/replicated data copies. Hence, distributed coordination delays
play a major role in the determination of the achievable performance, as
compared to CPU delays for processing local operations. Consequently, the
G/M/K queue is expected to be a fairly adequate model for the objectives
of the framework. Also, given that in conventional operating systems swap
operations of data that are out of the working set are typically executed
out of the critical path of the CPU processing activities (e.g. by relying on
demons, such as kswapd in Linux systems) the effects of virtual memory on
the latency of operations provided within the data grid simulation model are
not explicitly modeled (4).

When a local processing operation is completed, TM takes again control
(via the aforementioned CPU complete event) and updates the cache server

4Virtual memory operations typically occur along the critical path in case of access to
empty-zero memory, the so called minor faults, or when a change of locality towards data
previously swapped-out is experienced, the so called major faults. For minor faults, no
I/O operation is requested, hence these exhibit very limited overhead for their manage-
ment in CPU, neglecting which in the simulative model is expected not to significantly
impact model fidelity. On the other hand, classical locality principles lead the software
to infrequently request the access to data that have gone out of the current working set,
which makes the event of major faults statistically less relevant.

9

simulation state depending on the operation type.
As for events scheduled by client simulation objects towards the cache

servers, the corresponding event-types within the framework skeleton are
listed below:

• begin, used to notify TM that a new transactional interaction has been
issued by some client, which must be processed by the cache server;

• get, used to notify that a read operation on some data-object has been
issued by the client within a transaction;

• put, used to notify that a write operation on some data-object has been
issued by the client within a transaction; and

• commit, used to indicate that the client ended issuing operations within
a transaction, whose commit can therefore be attempted.

The handling of each type of event is explained in the following sections.

3.1.1. The begin Event

In Figure 2 we provide a sequence diagram showing how the begin event is
handled. As illustrated, the interactions between client and cache server sim-
ulation objects ar asynchronous, given that they are based on the exchange
of timestamped events.

The actual processing activities for the begin event at the cache server
side (which are related to the red-box in the diagram) are performed by the
function setupTransaction, which simply takes as input the current simu-
lation time and pointers to two records of type TxInfo and TxStatistics,
which are automatically allocated by the cache server, whose structure can
be defined by the simulation modeler (5).

The reason for allowing the modeler to exploit two different data types
lies in that the content of TxInfo is made valid across cache servers. In fact,
it is automatically transferred to remote cache server simulation objects when
cross scheduling of events is actuated. This is relevant in any simulated sce-
nario where some transaction set-up (or transaction state) information needs

5The only constraint is that the top standing field of TxInfo, must be of type TxId,
which keeps the transaction unique identifier, automatically generated by the cache server
just to facilitate the actual management within model execution.

10

Distribution
Manager

Concurrency
Control

Transaction
Manager:Client

:Cache Server

begin

begin return

begin

Figure 2: Management of the begin event.

to be made available to remote cache servers, e.g., for distributed contention
management purposes. On the other hand, the content of TxStatistics is
not transferred across different simulation objects, being it locally handled
by the cache server acting as the coordinator of the transaction.

3.1.2. get and put Events

In Figure 3 we show the sequence diagram illustrating the handling of get
simulation events, which cause the TM module to query (via synchronous
procedure invocation) the DM module. This is done in order to get informa-
tion about what cache servers figure as the owners of the data-object to be
accessed. In our architecture, the DM module provides this information back
in the form of a pointer to a list of cache server identifiers (hence simulation
object identifiers), where each record also keeps additional information spec-
ifying whether a given cache sever is (or is not) the primary owner of a copy
of the data-object to be accessed.

Then, the cache sever initially determines whether it is the owner of a
copy of the data-object. In the positive case, the read operation on the data-
object will simply result in an invocation of the CC module on this same
cache server instance. Otherwise, remote get simulation events are scheduled
for all the cache servers figuring as owners of a copy of the data-object.

One important aspect associated with the above scheme is that the get
operation may be blocked at the level of CC, depending on the actual policy
for controlling concurrency. On the other hand, even in case of CC simu-
lated algorithms implementing non-blocking read access to data (as typical
of most data grid products guaranteeing weak data consistency, such as read
committed or repeatable read semantics [1]), the read operation may any-

11

alt

Concurrency
Control

Distribution
Manager

Transaction
Manager

:Cache Server

get

Distribution
Manager

Concurrency
Control

Transaction
Manager:Client

:Cache Server

process_request(GET)

remote_get_reply

remote_get

process_request(GET)

[else]

[own.includes(me)]

get return

get_owners()

get

Figure 3: Management of the get event.

way be blocked in case no local copy exists and needs to be fetched by some
remote cache sever. This is automatically handled by our framework since
the TM module records information on any pending simulated read oper-
ation within a proper data structure (this takes place in the ‘else’ part of
the red-box in the diagram). When setting up the record for a given op-
eration, information on the remotely-contacted cache servers, if any, is also
installed. That record will be removed only after processing the correspond-
ing reply simulation events from all those cache servers, which is done for
allowing an optimized execution flow for those reply events. On the other
hand, the operation is unblocked (and a reply event is scheduled towards
the corresponding client) when the first copy of the data becomes available
from whichever cache server, hence after processing the first remote get reply
simulation event.

In Figure 4 we show the sequence diagram associated with the manage-
ment of put events (namely data-object updates). These events trigger the
update of some meta-data locally hosted by the cache server (this takes place
in the red-box in the diagram), which keep the transaction write set into a
record referred to as TxWriteSet. Such an update takes place after having
invoked the CC module.

12

Distribution
Manager

Concurrency
Control

Transaction
Manager:Client

:Cache Server

put

process_request(PUT)

put return

put

Figure 4: Management of the put event.

On the other hand, the meta-data are queried upon simulating a get
operation to determine whether the data-object to be read already belongs
to the transaction read/write set (hence whether the get operation can be
served immediately via information within the read/write set). In such a
case, the simulation-event pattern for handling the get is slightly different
from the general one depicted above since it only entails simulating local CPU
usage required for providing the data-object extracted from the transaction
read/write set to the client. This implicitly leads the framework to provide
support for simulating transactional data management protocols ensuring at
least repeatable-read semantic.

3.1.3. The commit Event

More complex treatments are actuated when handling commit simulation
events incoming at the cache servers. Specifically, as shown by the sequence
diagram in Figure 5, the commit will result in scheduling prepare events to-
wards all the cache servers that figure as owners of the data to be updated.
Each of these events carries the keys associated with the data-objects to
be updated, which are again retrieved via the TxWriteSet data structure
maintained by the cache server acting as transaction coordinator. TM can
determine the set of target cache servers by exploiting the keys associated
with the written data-objects (which are kept within the transaction write
set) by querying the DM module. In case the local cache server is one of
the owners of the data, the interaction between the TM and the local CC

13

takes place as a simple synchronous procedure call. In any case, the CC
module exhibits the same simulated behavior independently of whether the
prepare phase for the transaction needs to run local tasks on the same cache
server, or remote tasks. Hence, the CC module operates seamless of any sim-
ulated data distribution/replication scheme. For the preparing transaction,
the framework logs the identities of the contacted servers, and then waits for
the occurrence of prepare reply simulation events scheduled by any of these
servers.

In case the prepare reply events are positive from all the contacted servers,
final commit events are scheduled for all of them, which will ultimately result
in invocations of the CC module. On the other hand, abort events are sched-
uled in case of negative prepare outcome. Further, for the case of primary
ownership, the commit events are propagated to the non-primary owners, in
order to let them reflect data update operations.

Upon finalization of a transaction, TM automatically invokes the module
finalizeTransaction, which receives as input the pointers to both TxInfo

and TxStatistics records so as to allow for their update (particularly the
statistics). The release of these buffers within the framework is again han-
dled automatically. However, before releasing any of them, the module
statisticsLog is called, passing as input pointers to both of them, allowing
the modeler to finally log any provided statistical data.

3.1.4. Details on the CC Module

Let us now detail the behavior of the CC simulation module. By the
above description, this module is invoked by TM upon the occurrence of get
or remote get events, put events, prepare events, and commit events. The
CC module is oblivious of whether a requested action is associated with
some local or remotely-executed transaction. It takes the following input
parameters:

• a pointer to the TxInfo record;

• a pointer to TxStatistics (or NULL if the cache server is not the
transaction coordinator);

• the type of the operation to be performed (read, write, prepare or
commit);

• the key of the data-object to be involved in the operation.

14

loop [until all remote owners are contacted]

loop [until all remote owners are contacted]

alt

loop

Concurrency
Control

Distribution
Manager

Transaction
Manager

:Cache Server

[until all remote owners are contacted]

commit

Distribution
Manager

Concurrency
Control

Transaction
Manager:Client

:Cache Server

process_request(ABORT)

process_request(COMMIT)

process_request(PREPARE)

abort

abort reply

abort

commit reply

commit

[else]

prepare

prepare reply

[all prepare replies are positive]

commit return

get_owners()

commit

Figure 5: Management of the commit event.

On the other hand, CC can reply to invocations from TM via the return
values listed below:

• WAIT, indicating that the currently requested operation leads to a tem-
porary block of the transaction execution;

• READ DONE, indicating that the data-object can be returned to the read-
ing transaction;

• WRITE DONE, indicating that the write operation has been processed;

• PREPARE DONE, indicating that the transaction has been successfully
prepared;

15

• PREPARE FAIL, indicating that the transaction prepare stage has not
been completed correctly; and

• COMMIT DONE, indicating that the transaction commit request has been
processed.

Once the TM module takes back control upon the return of CC, the
above return values trigger the generation of actual simulation events to be
exchanged across different simulation objects. As an example, PREPARE DONE

and PREPARE FAIL return values give rise to the scheduling of the aforemen-
tioned prepare reply events, with proper payload (indicating positive or neg-
ative prepare outcomes).

Finally, a callback mechanism allows CC to notify to TM the change of
the state of any previously blocked transaction (so as to allow TM to sched-
ule, e.g, the prepare reply event towards the transaction coordinator), and
to request TM to schedule timeout events, which can be useful in scenarios
where CC actions are also triggered on the basis of passage of time.

3.2. The Client Simulation-Object

Client simulation objects have an internal structure that does not need
to be changed by the simulation modeler. In fact, he only needs to specify,
via configuration files within the framework, what type of probability dis-
tribution must be used for determining the data to be accessed, and what
distributions need to be used for determining the number of operations to be
executed within a transaction and the type (read or write) of each operation.

As for this aspect, the framework already offers the possibility to use
differentiated access distributions, some of which are analytic, while others
have been determined by relying on traces of known benchmarks. Further,
the clients can be configured in order to simulate either an open or a closed
system. For the former case, the simulation modeler needs to specify the rate
of generation of transactions at the client side. As a final note, our client
simulation object also embeds the possibility to generate the workload by
directly relying on traces (rather than distributions derived from the traces).

3.3. Modeling Message Exchange Dynamics via Machine-Learning

As hinted, our framework relies on black-box, machine-learning-based
modeling techniques to forecast the dynamics at the level of the message-
passing/networking sub-system. Developing white-box models (e.g. simu-
lative models) capable of capturing accurately the effects by contention at

16

the network level on message exchange latencies can in fact be very com-
plex (or even non-feasible, especially in virtualized cloud infrastructures),
given the difficulty to gain access to detailed information on the internals of
messaging/network-level components [8].

As already mentioned, contention on the network layer, and the associated
message delivery delay, can have a direct impact on the latency of two key
transaction execution phases within the data grid, namely the distributed
commit phase, and the fetch of data whose copies are not locally kept by the
cache server, given that the whole data-set might be only partially replicated
across the nodes (e.g. for scalability purposes). These latencies, in their
turn, may affect the rate of message exchange, and so the actual load on the
messaging system (in the simulated configuration of the workload and for the
specific data grid settings).

More in general, estimating (hence predicting) the message transfer delay
while simulating some data grid system deployed over a specific networking
software/hardware (virtualized) stack boils down in our approach to a non-
linear regression problem, in which we want to learn the value of continuous
functions defined on multivariate domains. Given the nature of the problem,
we decided to rely on the Cubist machine learning framework [27], which
is a decision-tree regressor that approximates non-linear multivariate func-
tions by means of piece-wise linear approximations. Analogously to classic
decision-tree-based classifiers, such as C4.5 and ID3 [28], Cubist builds de-
cision trees choosing the branching attribute such that the resulting split
maximizes the normalized information gain. However, unlike C4.5 and ID3,
which contain elements in a finite discrete domain (i.e., the predicted class)
as leaves of the decision tree, Cubist places a multivariate linear model at
each leaf.

Clearly, the reliance on machine-learning requires building an initial knowl-
edge base in relation to the networking dynamics of the target virtualized
infrastructure (as observable from the outside, in compliance with the black-
box approach that characterizes machine-learning methods), for which we
need to simulate the behavior of some specific data grid system (or config-
uration) run on top of it. This can be achieved by running (possibly once)
a suite of (synthetic) benchmarks that generate heterogeneous workloads in
terms of mean size of messages, memory footprint at each node, CPU utiliza-
tion, and network load (e.g. number of transactions that activate the commit
phase per second). As for this aspect, one could exploit some (open source)
data grid system relying on the specific messaging layer for which the machine

17

learner must provide the predictions. This approach looks perfectly suited
for data-grid providers (namely for scenarios where the data-grid system is
provided as a PaaS [29]), given that they can take advantage of (histori-
cal) profiling data related to specific (group) communication and messaging
systems run on top of given (consolidated) virtualized platforms.

Also, it is well known that the selection of the features to be used by
machine-learning toolkits plays a role of paramount importance, since it has
a dramatic impact on the quality of the resulting prediction models. Such
set of features has to be highly correlated to the parameters the machine
learner is going to predict, namely the message transfer delay across nodes
within the system. In the following, we list the set of features we selected,
also motivating our choices:

• Used memory: it has been shown that the memory footprint of appli-
cations can affect significantly the performance of the messaging layer
[5, 8].

• CPU utilization: this parameter is required given that the message
delivery latency predicted by our machine learner includes a portion
related to CPU processing (such as the marshalling/unmarshalling of
the message payload).

• The message size: this parameter is of course highly related to the
time needed to transmit messages over the (virtualized) networking
infrastructure.

• The number of message exchange requests per second: this parameter
provides a good indicator of the network utilization.

Clearly, predicting metrics such as the message delivery latency under a
specific simulation scenario depends on how the simulation model progresses,
e.g., in terms of simulated system throughput and consequent actual num-
ber of message exchange operations per second (see the last parameter listed
above). These parameters, as well as others (like the average size of ex-
changed messages), are in their turn targeted in the estimation process by
simulation. Hence they might be unknown at the time the machine learner
is queried during the simulation run.

This problem is intrinsically solved by the specific way we couple simu-
lative and machine learning components. Particularly, when a prediction on

18

simulative part

CPU utilization

message size

CPU utilization
.

.

.

.

queryquery

cubist

mtd = F(CPU utilization ,...., message size)

mtd is the expected message transfer delay

in the current (punctual) simulated system state

Figure 6: Coupling of simulative and machine learning components.

the delay of message delivery is required for a specific message send operation,
the simulative components compute (estimate) the values needed as input by
the machine learning component, depending on the current simulated system
state. This is done easily and efficiently given that in our framework all the
values of the parameters required in input by the machine learner (e.g. the
current CPU utilization) to carry out its prediction are constantly updated,
hence they are readily available. By using these values, the actual query to
the machine learner is issued to determine the timestamp of the discrete-
event associated with the message delivery along the simulation time axis.
This coupling scheme is depicted in Figure 6, and the actual implementation
of this kind of interaction within our framework has been based on linking
Cubist as a library directly accessible (invocable) by the simulation software.

This coupling approach leads the machine learner to output “updated”
prediction for the message transfer delay (as a function of the message size),
while the simulation run approaches the steady state value for the targeted
parameters to be estimated (e.g. the system throughput, which may in turn
depend on parameters like CPU usage). Hence, the process of “rejuvenating”
the predictions by the machine learner ends upon converging towards the
actual final estimation of the target parameters by the simulation run.

3.4. A Final Overview of the Framework Architecture

In Figure 7 we present the component diagram of our proposed frame-
work. As mentioned, the essential building blocks are the Client and the
Cache Server components. The former relies on the Configuration & Knowl-
edge Base Manager component, which is in charge of managing the config-
uration file (used by the framework to initialize the simulation and deter-
mine how data access patterns should be driven). Depending on the actual
configuration, the Client component interacts with either the Trace or the

19

Generator component. The former is in charge of telling the Client what
is the actual data pattern access depending on a real-word trace file which
Trace is able to parse and manage. The latter, on the other hand, randomly
generates different data access patterns depending on the configuration of
the framework.

The Client component interacts with the Discrete Event Simulation En-
gine by means of Process and Schedule ports. While our implementation
of the Discrete Event Simulation Engine relies on an optimized sequential
calendar-queue-based scheduler, this component can be easily replaced by
any available Discrete-Event System, provided that the used ports (and their
interface-specification) are the same. The Discrete Event Simulation Engine
component lets the Client and Cache Server components exchange messages
and process them in a timestamp-ordered way, thus ensuring consistency of
the overall simulation. The Cache Server component, on its turn, imple-
ments all the already described facilities, and explicitly interacts with the
Cubist component so as to retrieve Message Latency Predictions, associated
with, e.g. network delays. In order for Cubist to provide predictions which
are representative of the currently-simulated system, it is connected to the
Configuration & Knowledge Base Manager component to retrieve the knowl-
edge base related to the current deployed system, which is in turn used by
Cubist to make actual predictions. The Cache Server component also in-
teracts with the Configuration & Knowledge Base Manager component in
order to get information on the selected policy for placing data-object copies
across the different cache servers. This is required in order to determine data
ownership. In our current implementation Configuration & Knowledge Base
Manager already offers the support for classical placement policies such as
consistent hashing based ones [37].

By the framework structure, the only component that needs to be mod-
ified in order to build models of different data grid systems (e.g. based on
different distributed coordination schemes) is the Cache Server component.
Also, by the capabilities that are already offered by the actual architecture
of this component, re-modeling can be done by only dealing with transaction
identifiers, basic transaction setup information and relations across different
transactions, on the basis of the actual data-objects locally hosted by a given
cache server. This is a relevant achievement when considering that great re-
search effort is currently being spent in the design of concurrency control
algorithms suited for cloud data stores, which provide differentiated consis-
tency vs scalability tradeoffs (see, e.g., [22, 23, 24, 25, 26]), each one fitting

20

Trace

Generator

Data Access

Patterns

Data Access

Patterns

Client

Configuration

& Knowledge Base

Manager

Configuration

Discrete Event Simulation Engine

Schedule

Process

Cache Server

Schedule

Process

Cubist

Knowledge

Base

Message

Latency

Prediction

Data

Placement

Figure 7: Components diagram.

the needs of different application contexts. Having the possibility to provide
simulation models of such differentiated algorithms by exploiting our frame-
work can definitely reduce the time and effort required for assessing their
potential.

To determine what are the locally hosted data-objects, hence the locally
hosted keys, the CC module within the Cache Server component accesses a
hash table that gets automatically setup upon simulation startup (as hinted,
by exploiting the Data Placement port of the Configuration & Knowledge
Base Manager component). On the other hand, the meta-data required to
keep relations across active transactions, (e.g. wait-for relations), and the
corresponding data structure is completely left to the simulation-modeler.
However, the actual instance of this data structure can be accessed via a
special pointer which is passed to the CC module by the framework as an
additional input parameter. We note that if the pointer value is NULL, then
CC has not yet allocated and initialized the structure, hence this must be
done, and the actual pointer to be used in subsequent calls to CC can be
setup and returned upon completion of the current CC execution.

4. Experimental Study: Framework Validation and Usage

The skeleton operations described in the former session, such as the
ones related to 2PC coordination, compose the foundational/base simulative
model of our framework, which users can extend and customize to meet their

21

needs. For this reason, we have decided to provide validation data for a case
study where we compare the framework outputs against real data achieved
by running a data grid system exactly exploiting such an archetypal 2PC co-
ordination paradigm. In particular, we present data from a study where we
compare simulated performance results with the corresponding ones achieved
by running the 2PC-based Infinispan data grid system by JBoss/Red-Hat [1].

Our experimentation has been based on a wide spectrum of system set-
tings given that we consider large scale deployments on top of both public
and private cloud systems. Further, the workloads generated in our tests
are based on various configurations of the YCSB benchmark by Yahoo [10].
Given that this benchmark has been devised just to assess (cloud suited)
in-memory data stores, its employment further contributes to the relevance
of the selected experimental configurations.

The last part of this section is devoted to presenting the results of an ex-
perimentation where the framework is exploited for on-line capacity planning
and reconfiguration purposes. The outcome by this part of the experimental
study complements the validation data we report.

4.1. The Infinispan Data Grid and its Integration with the Framework

Infinispan is a popular open source in-memory data grid developed in Java
currently representing both the reference data platform and the clustering
technology for JBoss, which is the mainstream open source J2EE applica-
tion server. Infinispan exposes a pure key-value data model, and maintains
data entirely in main-memory relying on replication as its primary mecha-
nism to ensure fault-tolerance and data durability. As other recent (NoSQL)
platforms, Infinispan opts for weakening consistency in order to maximize
performance. Specifically, it does not ensure serializability [30], but only
guarantees the Repeatable Read ANSI/ISO isolation level [31]. At the same
time, atomicity of distributed updates is achieved via 2PC. This is used to
lock all the data-objects belonging to the write-set of the committing trans-
action, so as to atomically install the corresponding new data versions. The
old committed version of any data-object remains anyhow available for read
operations until it gets superseded by the new one.

In the Infinispan configuration selected for our experiments, the 2PC
protocol operates according to a primary-owner scheme. Hence, during the
prepare phase, lock acquisition is attempted at all the primary-owner cache
servers keeping copies of the data-objects to be updated. If the lock ac-
quisition phase is successful, the transaction originator broadcasts a commit

22

message, in order to apply the modifications on these remote cache servers,
which are propagated to the non-primary owners.

Clearly, the integration of our simulative framework with a real product
such as Infinispan, for either validation or operations like (on-line) capacity
planning of the data grid system, requires specific steps. In what follows we
presents the steps we have carried out, which led the framework to be fully
integrated within the Cloud-TM open source platform [29], namely a data
grid platform entailing (on-line) reconfiguration and optimization capabili-
ties. Clearly, our explanation can be used as a reference for the integration
and usage of the framework in systems based on data grid products other
than Infinispan.

4.1.1. Infinispan Core Internals

Infinispan relies on an architecture based on Commands and Managers.
A Command is a Java object that represents a single operation, e.g., a begin
transaction or a get key; a Manager is a software component that is responsi-
ble for carrying out operations needed to execute Commands, e.g., acquiring
locks. Infinispan implements the visitor pattern [32] to relate Commands
and the corresponding actions to be executed by Managers. In particular,
an Interceptor is a Java object that serves the role of visitor, i.e., it acts as a
hook between a Command cmd and the set of Managers that have to perform
some operations to bring cmd to completion. A visitCmdCommand method
is exposed by an Interceptor to register the logic that is in charge of dealing
with a command of type cmd, e.g., CommitCommand.

For example, the LockingInterceptor deals with everything pertains locks,
e.g., interacting with a LockManager for their acquisition and release, whereas
the RPCManager handles the interactions with remote nodes, e.g., by invok-
ing remote procedure calls corresponding to remote gets and dissemination
of prepare/commit/rollback operations. Simplified snippets of code illustrat-
ing the tasks performed by the LockingInterceptor and the LockManager are
provided, respectively, in Figures 10 and 8.

In a dual fashion, the CommitCommand is visited by the LockingIn-
terceptor to trigger the release of locks upon the successful execution of a
transaction and by the DistributionInterceptor to communicate the success-
ful outcome of the transaction to other involved nodes. Figure 11 provides
a simplified example of a Command implementation, by reporting how the
CommitCommand accepts visiting Interceptors.

Interceptors are layered in a chain: when a transaction issues an opera-

23

pub l i c c l a s s LockManagerWrapper implements LockManager {
pr i va t e LockManager actualLockManager ; //Actual LockManager implementation

pub l i c LockManagerWrapper (LockManager ac tua l) {
t h i s . actualLockManager = actua l ;

}

pub l i c boolean acquireLock (Object key , . . .) {
boolean locked ;
//Obtain the s t a t i s t i c s ’ conta ine r f o r the cur rent t r an sa c t i on

T r an s a c t i o nS t a t i s t i c s t r a n s a c t i o n S t a t i s t i c s =
Tran s a c t i o n sS t a t i s t i c sReg i s t r y . g e tCur r en tTran sa c t i onS ta t i s t i c s () ;

locked = actua l . acquireLock (key , . . .) ; // invoke the ac tua l LockManager
i f (locked) {

t r a n s a c t i o n S t a t i s t i c s . addTakenLock (key) ; //Keep track o f the
}
e l s e {

updateContent ionStats (t r a n s a c t i o n S t a t i s t i c s , key) ; //Track lock content i ons
}
re turn locked ;

}
. . .

}

Figure 8: The LockManagerWrapper collects locks-related statistics; it encapsulate the
original Infinispan implementation of the LockManager, so as to avoid changing its inter-
nals.

c l a s s T r an s a c t i o nS t a t i s t i c s {
long initTime ; //Wall−c l ock timestamp corresponding to the begin o f the t r an sa c t i on
long endLocalTime ; //Wall−c l o ck Timestamp se t upon the d i s t r i bu t ed commit phase
long initCpuTime ; //CPU Timestamp corresponding to the begin o f the t r an sa c t i on
long endLocalCpuTime ; //CPU Timestamp se t upon reach ing the d i s t r i bu t ed commit phase
Map<Object , Long> acquiredLocks = new HashMap<Object , Long>() ; //Track l o ck s /hold−time
. . .

}

Figure 9: The TransactionStatistics maintains low-level statistics about a single transac-
tion. It is retrieved by invoking the static method getCurrentTransactionStatistics() of
the class TransactionsStatisticsRegistry (not shown), so as to guarantee it is accessible
from any point in the code.

tion, the corresponding Command is created and pushed down the intercep-
tors chain until completion, i.e., until it has been visited by every interceptor
for which it has registered a corresponding hook. This scheme also applies
to operations coming from remote nodes: for example, upon receiving the
request to serve a remote get, the corresponding command is created on the
receiving node and pushed down the Interceptors chain to be executed.

4.1.2. Collecting Run-time Data in Infinispan

Infinispan natively keeps track of basic performance indicators, like the
time it takes to complete a two-phase commit or the ratio between local and
remote operations. On top of that, we have extended Infinispan’s architecture
so as to collect a number of additional low-level statistics aimed at monitoring
the behavior of the running application over time and at characterizing its

24

c l a s s Lock ing Inte r cepto r extends Abst rac tLock ing Inte rceptor implements V i s i t o r {
pr i va t e LockManager lockMager ;
pub l i c Object visitCommitCommand (CommitCommand command , TxInvocationContext ctx)

throws Throwable {
t ry {
re turn super . visitCommitCommand (command , ctx) ; // Cal l parent ’ s method
} f i n a l l y {

lockManager . un lockAl l (ctx) ; // Release a l l l o ck s
}

. . .
}

Figure 10: The LockingInterceptor visits Command objects to specific lock-related oper-
ations of the LockManager.

c l a s s CommitCommand{
pub l i c Object a c c ep tV i s i t o r (Invocat ionContext ctx , V i s i t o r v i s i t o r) throws Throwable {

re turn v i s i t o r . visitCommitCommand ((TxInvocationContext) ctx , t h i s) ;
}
. . .

}

Figure 11: The CommitCommand represents the commit operation of a transaction. It
accepts Visitors, like the LockManagerInterceptor.

@MBean(objectName = ” S t a t i s t i c s ” ,
d e s c r i p t i o n = ”Component managing extended s t a t i s t i c s r e l evan t to t r an s a c t i on s . ”)

c l a s s S t a t s I n t e r c ep t o r {
pub l i c Object visitCommitCommand (TxInvocationContext ctx , CommitCommand command)

throws Throwable {
//Obtain the s t a t i s t i c s ’ conta ine r f o r the cur rent t r an sa c t i on

T r an s a c t i o nS t a t i s t i c s t r a n s a c t i o n S t a t i s t i c s =
Tran s a c t i o n sS t a t i s t i c sReg i s t r y . g e tCur r en tTran sa c t i onS ta t i s t i c s () ;

t r a n s a c t i o n S t a t i s t i c s . setTransactionOutcome (true) ; // Set the t r an sa c t i on as completed
. . .
Object r e t = invokeNext Inte rceptor (ctx , command) ; // Invoke f o l l ow ing i n t e r c e p t o r s
T r an s a c t i o n sS t a t i s t i c sReg i s t r y . terminateTransact ion (t r a n s a c t i o n S t a t i s t i c s) ;

//Gather s t a t i s t i c s
re turn r e t ;

}

@ManagedAttribute (d e s c r i p t i o n = ”Average number o f puts by a s u c c e s s f u l t r an sa c t i on ” ,
displayName = ”No . o f puts per s u c c e s s f u l l o c a l t r an sa c t i on ”)

pub l i c double getAvgNumPutsBySuccessfulLocalTx () {
// Retr i eve the r equ i r ed s t a t i s t i c and return i t

}
. . .

}

Figure 12: The StatsInterceptor is a custom Interceptor, designed by us to expose the
gathered statistics via JMX and to collect some information by visiting commands. Anno-
tations at the class and the method level are used by Infinispan to allow enable interaction
with the class objects via JMX.

25

workload (see Figure 9). This is needed in order to apply the proposed frame-
work not only for performing off-line what-if analysis and capacity planning
(for a real system), but also for carrying out automatic optimization and
resource provisioning at runtime. The collection of statistics is performed
transparently to the running application by injecting lightweight software
probes: these are aimed at measuring CPU demands and response time of
various operations, e.g., local/remote gets, prepare phases, lock hold times,
and at collecting data access pattern information, e.g., data item popularity,
number of puts/gets performed by transactions. These probes are inserted
either at the Interceptor level, by means of specific Interceptors, or at the
Manager level, by means of dedicated wrappers, as sketched in Figures 8
and 12 (6). Aggregated statistics collected on an Infinispan node are stored
in an ad-hoc data-structure, which can be queried by external processes via
the JMX (Java Monitoring Extensions) technology (7). The gathered infor-
mation can be easily accessed either for visual inspection and monitoring,
for example with simple tools like JStat (8), or acquired to be further pro-
cessed (e.g., averaged) so as to be given as input to the proposed simulation
framework.

To this end, we have implemented a distributed monitoring system based
on the Lattice Monitoring Framework, that has been widely used in successful
Cloud monitoring/managemet projects such as the well known RESERVOR
project [34]. This has been extended in order to gather not only statistics
relevant to the utilization of physical resources, e.g., CPU and RAM, but
also to collect the set of measurements taken at the Infinispan level, which
(as pointed out) are exposed via JMX. On a periodical basis, statistics con-
cerning load, resource utilization and workload characterization across the
set of nodes in the data grid are collected by the distributed monitoring
system and conveyed to an aggregator module. This module is responsible
for aggregating and processing statistics, e.g., by computing average values,
and for encoding them in a format that is consumable by the simulation
framework to answer what-if queries. The overview of the final architecture
is presented in Figure 13, which shows how a set of (virtual) machines and
the hosted instances of Infinispan cache servers (the software –SW– part in

6Further details about the collected statistics may be found in [33].
7http://www.oracle.com/technetwork/articles/java/javamanagement-140525.html
8http://docs.oracle.com/javase/7/docs/technotes/tools/share/jstat.html

26

Figure 13: Architectural organization for (run-time) data acquisition and analysis.

the picture) are monitored by using multiple Lattice producer and a single
lattice consumer. Also, the raw-data that are gathered via the log-service
are then filled in input to a workload analyzer subsystem (acting as the ag-
gregator) that is in charge of computing statistically representative average
values, and is also in charge of running time-series analysis so as to embed
capabilities of predicting variations of, e.g., the workload intensity. The lat-
ter aspect can be particularly interesting for on-line capacity planning, where
prediction models as the ones offered by our framework can be queried by
filling them with the predicted workload in order to determine optimal well
suited configurations to be put in place just to cope with expected workload
variations.

4.2. Cloud Infrastructures Exploited in the Validation Study

The experimental test-bed for our validation study consists of a private
and a public cloud infrastructure. The Virtual Machines (VMs) deployed on
both clouds are equipped with 1 Virtual CPU (VCPU) and 2GBs of RAM.
They all run a Fedora 17 Linux distribution with kernel 3.3.4.

The private cloud consists of 140 VMs deployed over a cluster composed
of 18 machines equipped with two 2.13 GHz Quad-Core Intel(R) Xeon(R)
processors and 32 GB of RAM and interconnected via a private Gigabit
Ethernet. Openstack Folsom is employed to regulate the provisioning of re-

27

sources and Xen is used as virtualization software. The public cloud consists
of 100 VMs, deployed over the FutureGrid India infrastructure [35], which
exploits the Openstack Havana virtualization software.

4.3. Workload Configurations

We have implemented an extended version of YCSB where transactions
involving multiple individual get/put operations, as natively specified by the
benchmark, are supported. We rely on three different workload configura-
tions, which we refer to as A, B and F. Workload A has a mix of 50% read
and 50% write (namely update) transactions; workload B contains a mix
with 90% read and 10% write transactions, while in workload F records are
first read and then modified within a transaction. Also, we have carried out
experiments with two different data access profiles. In the first case, the
popularity of data items follows a zipfian distribution with YCSB’s zipfian
constant set to the value 0.7. In the second one, which we name hot spot
case, 99% of the data requests are issued against the 1% of the whole data
set. A total amount of 100000 data-objects constitutes the data set in all the
experiments.

In the plots, we will refer to a specific workload configuration using the
notation N-D-P-I, where: ‘N’ refers to the original workload’s YCSB notation
[10]; ‘D’ is the number of distinct data items that are read by a read-only
transaction; for update transactions, it is the number of distinct data items
that are written (for the ‘F’ workload, which exhibits a read-modify pattern
of update transactions, any accessed data is both read and written); ’P’
encodes the data access pattern (‘Z’ stands for zipfian, ‘H’ for hot-spot);
finally, ‘I’ specifies the cloud infrastructure over which the benchmark has
been run (‘PC’ stands for private cloud, ‘FG’ for FutureGrid).

4.4. Validation Results

All the above illustrated workload configurations have been run on top of
the selected cloud systems while scaling the number of VMs, and relying on a
classical consistent hashing [37] scheme for placing the data copies across the
servers. The run outcomes have been exploited both to collect statistically
relevant values for core performance parameters in the real system and to
determine the value of the input parameters for the simulated data grid (e.g.
the CPU demand for specific operations, to be eployed at the level of the
simulation models).

28

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t (

T
xs

/s
ec

)

Number of Virtual Machines

F-5-H-PC real
F-5-H-PC sim
A-2-Z-PC real
A-2-Z-PC sim
B-5-Z-PC real
B-5-Z-PC sim

(a) Throughput
 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140
C

om
m

it
P

ro
ba

bi
lit

y
(w

rit
e

tx
s)

Number of Virtual Machines

F-5-H-PC real
F-5-H-PC sim
A-2-Z-PC real
A-2-Z-PC sim
B-5-Z-PC real
B-5-Z-PC sim

(b) Commit Probability

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20 40 60 80 100 120 140

R
es

po
ns

e
T

im
e

R
ea

d
O

nl
y

T
xs

 (
m

se
c)

Number of Virtual Machines

F-5-H-PC real
F-5-H-PC sim
A-2-Z-PC real
A-2-Z-PC sim
B-5-Z-PC real
B-5-Z-PC sim

(c) Response Time (Read Only)
 0

 10000

 20000

 30000

 40000

 50000

 20 40 60 80 100 120 140R
es

po
ns

e
T

im
e

R
ea

d/
W

rit
e

T
xs

 (
m

se
c)

Number of Virtual Machines

F-5-H-PC real
F-5-H-PC sim
A-2-Z-PC real
A-2-Z-PC sim
B-5-Z-PC real
B-5-Z-PC sim

(d) Response Time (Read/Write)

Figure 14: Results for deploy on the private cloud (up to 140 VMs).

As a final preliminary note, in the real system the workload generator has
been deployed as a thread running on each VM, which injects requests against
the co-located Infinispan cache sever instance, in closed loop. Consequently,
in the simulation model configuration, no networking/messaging delays have
been modeled between clients and cache server instances. Yet, the (simu-
lated) networking/messaging system plays a core role in the data exchange
and coordination across the different cache server instances. This well fits
the relevant scenarios where the focus of performance analysis/prediction is
on sever side infrastructures.

The validation has been based on measuring the following set of Key Per-
formance Indicators (KPIs), and comparing them with the ones predicted via
simulation: (i) the system throughput, (ii) the transaction commit probability

29

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 20 40 60 80 100

T
hr

ou
gh

pu
t (

T
xs

/s
ec

)

Number of Virtual Machines

A-2-H-FG real
A-2-H-FG sim

(a) Throughput
 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100

C
om

m
it

P
ro

ba
bi

lit
y

(w
rit

e
tx

s)

Number of Virtual Machines

A-2-H-FG real
A-2-H-FG sim

(b) Commit Probability

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20 40 60 80 100

R
es

po
ns

e
T

im
e

R
ea

d
O

nl
y

T
xs

 (
m

se
c)

Number of Virtual Machines

A-2-H-FG real
A-2-H-FG sim

(c) Response Time (Read Only)
 0

 10000

 20000

 30000

 40000

 50000

 20 40 60 80 100R
es

po
ns

e
T

im
e

R
ea

d/
W

rit
e

T
xs

 (
m

se
c)

Number of Virtual Machines

A-2-H-FG real
A-2-H-FG sim

(d) Response Time (Read/Write)

Figure 15: Results for deploy on FutureGrid (up to 100 VMs).

30

(this parameter plays a role for update transactions, given that read-only
transactions are never aborted by the concurrency control algorithm con-
sidered in this study), and (iii) the execution latency of both read-only and
update transactions. The first KPI in the above list provides indications on
the overall behavior of the system, and hence on the accuracy of the corre-
sponding prediction by the framework-supported models. The second one is
more focused to the internal dynamics of the data grid system (e.g. in terms
of the effects of the distributed concurrency control mechanism), which have
anyhow a clear effect on the final delivered performance. Finally, the ex-
ecution latency of the different types of transactions has been included in
order to provide indications on how the simulative models are able to re-
liably capture the dynamics of different kinds of tasks (exhibiting different
execution patters) within the system. In fact, read-only transactions can re-
quire remote data fetches across the cache severs but, differently from update
transactions, they entail no 2PC step. Simulation runs have been stopped as
soon as collected statistics in subsequent periods where tracked to provide
95% confidence interval on the core estimated metric, namely the system
throughput. Also, the running times of simulations on top of an off-the-shelf
Core-i7 processor equipped with 8GB RAM, running Linux (kernel 2.6), were
very limited. In fact, simulations terminated in less than 10 seconds for in-
stances of the problem up to the order of ten cache servers, while a bit more
time has been requested by larger scenarios. Anyhow, simulation execution
times were bounded by 1 min for most of the more complex configurations.

The results for the case of data grid deploy on top of the private cloud
system are reported in Figure 14. For all these tests we considered a configu-
ration where each data-object is replicated two times across the cache servers,
which is a typical settings allowing for system scalability, especially in con-
texts where genuine distributed replication protocols are used to manage the
data access [38, 26] (9). Therefore, this value well matches the nature of
this particular validation study, given that we consider deployments on large
scale infrastructures (up to 140 VMs). Also, the variance of simulation results
across different runs (executed with different random seeds) is not explicitly
plotted given that the obtained simulative values were quite stable, differing

9A distributed transactional replication protocol is said to be genuine if it requires
contacting only the nodes handling the data copies accessed by a transaction in order to
manage any phase of the transaction execution, including its commit phase.

31

by at most 10%.
By the plotted curves we can see how the KPIs’ values predicted via

simulation have a very good match with the corresponding ones measured
in the real system, at any system scale. As an example, the maximum error
on the overall throughput prediction is bounded by 20%, as observed for the
configuration F-5-H-PC when running on top of 25 VMs. However, except
for such a peak value, the error in the final throughput prediction is for most
of the cases lower than 5%. Similar considerations can be drawn for the other
reported KPIs.

Another interesting point is related to the fact that the simulative models
are able to correctly capture the real system dynamics when changing the
workload. As an example, while we observe higher commit probability for an
individual run of an update transaction in the scenario with the 50%/50%
read/write mix and zipfian data accesses, the hot spot configuration allows
for higher throughput values even though the update transaction commit
probability is lower. This is clearly due to the fact that in the used hot spot
configuration only 5% of the whole workload consists of update transactions
that, although being subject to retries due to aborts with non-minimal like-
lihood (especially at larger system scales), impact the system throughput in
a relatively reduced manner.

The results achieved for the case of deploys on top of the FutureGrid
public cloud systems, which are reported in Figure 15, additionally confirm
the accuracy of the models developed via the framework. In these experi-
ments we further enlarge the spectrum of tested scenarios not only because
we move to a public cloud, but also because (compared to the case of private
cloud deploy) we consider a different value for the replication degree of data-
objects across the servers, namely 3. This value leads to the scenario where
fault resiliency is improved over the classical case of replication on only 2
cache servers, which is the usual configuration that has been considered in
the previous experiments. By the data we again observe very good match
between real and simulative results. Further, similarly to the previously
tested configurations, such a matching is maintained at any system scale,
and, importantly, also when the actual dynamics of the data grid system
significantly change while scaling the system size. In fact, we observe that
the commit probability of update transactions significantly changes when in-
creasing the system scale. This phenomenon, and its effects on the delivered
performance, are faithfully captured by the simulator. This is a relevant
achievement when considering that the workload used for the experiments

32

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000

P
re

di
ct

ed
 (

µs
ec

)

Real (µsec)
(a) Private Cloud 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000

P
re

di
ct

ed
 (

µs
ec

)

Real (µsec)
(b) FutureGrid

Figure 16: Scatter plot evaluating the 10-fold cross-validation accuracy of the Cubist
models that predict the message delivery latency.

on top of the FutureGrid public cloud system has been based on a 50%/50%
read/write transactions’ mix, which leads transaction retries to play a rel-
evant role on the final performance given that half of the workload can be
subject to abort events, which become increasingly frequent at larger scales
of the system.

As a final part of our validation study, we assess the effectiveness of
the Machine Learning (ML) based approach to build models to forecast the
latency of network-bound operations. To this end, we evaluate the accuracy
achieved by the Cubist model when trained over the data-set corresponding
to the message delivery latency across instances of the Infinispan cache serves
deployed over both our private Cloud infrastructure and FutureGrid.

The data-sets corresponding to both the private and the public Cloud de-
ployment are composed by around 300 samples each, obtained by deploying
the Infinispan data grid platform over a different number of nodes, config-
uring it to use different replication degrees and while varying the generated
workload (e.g., in terms of written data items, size of the messages and du-
ration of the transactions’ business logic).

Note that the workloads employed to build the knowledge base for the
Cubist regressor do not entail contention of data. In fact, the proposed
framework relies on a detailed simulation of the concurrency and replication
control scheme to predict the impact of data contention on performance.
This allows us to build an accurate performance predictor of the message
delivery latency by requiring a very limited number of training data for the
construction of the embedded ML model, compared to the amount that a
pure ML-based predictor would need to learn the overall performance func-

33

tion, which strongly depends also on data contention [5, 15].
The accuracy of the Cubist model built over a data-set S is measured

by means of a 10-fold cross-validation. This entails partitioning S into 10
bins S1 . . . S10 and then, iteratively for i = 1 . . . 10, training Cubist over
S \ Si and evaluating its accuracy against Si. Figure 16 reports the scatter-
plots obtained when comparing the real and the predicted values for message
delivery latencies, obtained by means of such 10-fold cross-validation; in par-
ticular, Figure 16(a) refers to the private cloud Infinispan deployment and
Figure 16(b) to the FutureGrid one.

The plots show that there is a very good agreement between the predicted
and the observed values, demonstrating the capability of Cubist to infer an
accurate performance model for the target metric. In order to quantitatively
assess accuracy, we provide information about the correlation coefficient and
the relative error computed by Cubist when evaluating the models built dur-
ing the 10-fold cross-validation. The correlation coefficient is a metric that
quantifies the degree of agreement between the real and the predicted val-
ues [27]. The relative error, instead, is computed as the ratio of the average
error magnitude to the error magnitude that would result from always pre-
dicting the mean value [27]. We report that, for the considered data sets,
the correlation coefficient achieved by Cubist is 1 in both cases, which means
perfect agreement between the actual measurement and the values obtained
by querying the Cubist models. This agreement can be witnessed by looking
at Figure 16, where the points in both the plots, corresponding to predicted
values, are tightly cluttered around a fictitious y = x line, which corresponds
to perfect predictions. The accuracy of the Cubist models is also confirmed
by very low values for the relative error metric, which we report to be only
0.05 for both the considered infrastructures.

4.5. On-line Capacity Planning

In this final part of our experimental study we provide data related to
the usage of the framework for on-line capacity planning and reconfiguration
purposes. We still rely on a variation of the aforementioned YCSB bench-
mark, particularly on a setting resembling the one used in [15] based on 10000
data-objects, where each put operation modifies a single data-object, while
each read-access can read a list of data-objects (hence it can be a query on
a range of key values). The size of this list varies, with uniform probability,
between 1 and 40 objects. The accesses of the client to the data-objects
are uniformly distributed, with 2% of the accesses occurring in write mode,

34

which gives rise to a limited contention scenario, as typical of several real life
contexts.

For this part of the experimentation we relied on Cloud resources offered
by Amazon [36], thus further enlarging the spectrum of infrastructures used
in our study. Particularly, clients and Infinispan cache servers were deployed
onto small EC2 instances equipped with 1.7 GB of memory and one virtual
core providing the equivalent CPU capacity of 1.0-1.2 GHz 2007 Opteron or
2007 Xeon processors. Each machine runs Linux Ubuntu 10.04 with kernel
2.6.32-316-ec2. The standard Amazon load balancer has been used to dis-
patch to the server nodes the load generated by the client threads. Also,
each client actually mimics the behavior of a front-end server, which accesses
the in-memory data layer hosted by the back-end cache servers. In fact,
each client continuously executes accesses to the data layer with no think
time between subsequent operations, hence giving rise to a sustained work-
load, as if it was concurrently handling multiple interactions by end-clients,
characterized by non-zero think time.

The on-line capacity planning scenario we consider is based on imposing
a constraint on the cost of the infrastructure, hence on the maximum num-
ber of virtual machines used for hosting the data grid cache servers, while
targeting the maximization of the system throughput. This number has been
set to 4. Also, for fault tolerance purposes, we set the minimal replication
degree of data to the value 2. The on-line reconfiguration of the system
over time (namely, of the actual number of cache servers and replication de-
gree – while still matching the constraints) is actuated on the basis of the
outcome by the framework. For this experiment we consider an already es-
tablished knowledge base in terms of network dynamics, to be exploited by
the machine-learning part of the prediction models, while we resort on on-line
monitoring of the workload parameter to be filled in input to the simulative
part of the framework. Also, on-the-fly what-if analysis and reconfiguration
is carried out each time the workload (depending on the number of client
machines injecting requests towards the cache servers, which we have varied
over time) exhibits a variation leading it to fall out of the 10% with respect
to its value along the last observed window (where a window is set to be of
1 minute in length).

The results for this test are shown in Figure 17, where we report how the
on-line reconfiguration scheme based on the framework output adjusts the
actual number of cache servers to be used, and the data replication degree
(graph at the bottom left of the figure), in face of variations of the number

35

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6

op
er

at
io

ns
/m

se
c

On-line reconfiguration scenario

clients
throughput

 0
 2
 4
 6
 8

 10

 0 10 20 30 40 50 60
 0
 2
 4
 6
 8
 10

Time (minutes)

cache servers
data replication degree

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/m

se
c)

#Client Machines

Throughput vs number of clients and number of cache servers (static case)

1 cache server
2 cache servers
3 cache servers
4 cache servers

Figure 17: Results for the on-line reconfiguration scenario.

of clients (graph at the top left of the figure, left vertical axis). In the same
graph, we also show the system throughput (right vertical axis). In order
to validate the framework based on-line reconfiguration choices, in the same
figure (right side), we report the throughput we measured using static config-
urations of the system, entailing a fixed number of clients and cache servers
(the replication degree is not explicitly plotted given that, in all our tests,
it always matches, in the best case, the corresponding number of servers,
which is exactly the case for the replication degree selected by the on-line
choices based on the framework what if analysis). By the data, we get that
the framework always allows to predict and put in place configurations (while
varying the number of clients) which are aligned with the corresponding opti-
mal static configurations when considering whichever fixed amount of client
machines in the interval between 1 and 17. Also, the identification of the
optimal configuration takes place very promptly (thanks to the very reduced
time required by the simulations), which leads to minimal delay for achieving
optimal throughput by (e.g. by adding new instances of cache servers) when
a ramp up of the workload is experienced, and to a minimal delay for the
shrink of the number of cache servers to the optimal value when a ramp down
of the workload occurs.

5. Conclusions

In this article we have presented a simulation framework for predicting the
performance of (cloud) in-memory data grid systems which can be used for,
e.g., what-if analysis aimed at the identification of the configurations (such
as the number of virtual machines to be employed for hosting the data grid

36

system under a specific workload profile) matching specific cost-vs-benefit
tradeoffs. The design of the discrete event simulative framework has been
based on the use of flexible skeleton models, which can be easily extend-
ed/specialized to capture the dynamics of data grid systems supporting, e.g.,
different distributed coordination schemes across the cache servers in order to
guarantee specific levels of consistency for transactional data manipulation.
The adequacy of the framework, and of its model instances, in predicting the
dynamics of data grid systems hosted in cloud environments is a result of the
combination of the discrete event simulative approach with machine learn-
ing. In our framework architecture, the latter modeling technique is used to
predict the dynamics at the level of networking/messaging sub-subsystems
which, in cloud contexts, are typically unknown in terms of their internal
structure and functioning, and are therefore difficult to be reliably modeled
via white-box approaches.

We have also presented validation data for a case study where the sim-
ulation output by the framework has been compared with real data related
to the execution of an open source data grid system, namely Infinispan by
JBoss/Red-Hat, deployed on both a private and a public cloud infrastruc-
ture. The validation study has been based on large scale deploys on top of
up to 140 Virtual Machines, and on the usage of the YCSB benchmark by
Yahoo, in different configurations, as the generator of the workload profiles
for our test-cases. By the data, the accuracy of the simulations in estimating
core parameters such as the system throughput has been on the order of at
least 80%, and on the order of 95% on the average, for all the tested con-
figurations. Also, a case study where the framework is exploited for on-line
capacity planning and reconfiguration of the data grid system is presented.
Finally, the framework has been released as an open source package available
to the community.

[1] JBoss Infinispan, Infinispan Cache Mode,
http://www.jboss.org/infinispan (2011).

[2] WMware., VMware vFabric GemFire,
http://www.vmware.com/products/application-platform/vfabric-
gemfire/overview.html.

[3] Oracle., Orache Coherence,
http://www.oracle.com/technetwork/middleware/co-
herence/overview/index.html (2011).

37

[4] A. Lakshman, P. Malik, Cassandra: a decentralized structured storage
system, SIGOPS Oper. Syst. Rev. 44.

[5] D. Didona, P. Romano, S. Peluso, F. Quaglia, Transactional auto scaler:
Elastic scaling of replicated in-memory transactional data grids, ACM
Transactions on Autonomous and Adaptive Systems 9 (2) (2014) 11.

[6] D. Didona, F. Quaglia, P. Romano, E. Torre, Enhancing Performance
Prediction Robustness by Combining Analytical Modeling and Machine
Learning, in: Sixth ACM International Conference on Performance En-
gineering, ICPE 2015, Austin, Texas, USA, 2015, pp. 145–156.

[7] C. Stewart, A. Chakrabarti, R. Griffith, Zoolander: Efficiently meeting
very strict, low-latency slos, in: Proceedings of the 10th International
Conference on Autonomic Computing, ICAC 2013, USENIX, San Jose,
CA, 2013, pp. 265–277.

[8] M. Couceiro, P. Romano, L. Rodrigues, A machine learning approach
to performance prediction of total order broadcast protocols, in: Fourth
IEEE International Conference on Self-Adaptive and Self-Organizing
Systems, SASO 2010, Budapest, Hungary, 2010, pp. 184–193.

[9] B. Ban, RedHat, http://www.jgroups.orgJGroups.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears,
Benchmarking cloud serving systems with YCSB, in: Proc. of ACM
Symposium on Cloud Computing, SoCC ’10, ACM, 2010, pp. 143–154.

[11] D. Didona, P. Felber, D. Harmanci, P. Romano, J. Schenker, Identifying
the optimal level of parallelism in transactional memory applications,
in: Networked Systems - First International Conference, NETYS 2013,
Marrakech, Morocco, May 2-4, 2013, Revised Selected Papers, 2013, pp.
233–247.

[12] D. Didona, P. Romano, Performance modelling of partially repli-
cated in-memory transactional stores, in: Proceedings 22nd Interna-
tional Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, MASCOTS, IEEE Computer Society,
2014.

38

[13] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, M. Paleczny, Workload
analysis of a large-scale key-value store, SIGMETRICS Perform. Eval.
Rev. 40 (1) (2012) 53–64.

[14] C. Curino, Y. Zhang, E. P. C. Jones, S. Madden, Schism: a workload-
driven approach to database replication and partitioning, PVLDB 3 (1)
(2010) 48–57.

[15] P. Di Sanzo, D. Rughetti, B. Ciciani, F. Quaglia, Auto-tuning of cloud-
based in-memory transactional data grids via machine learning, in:
Proc. 2nd IEEE International Symposium on Network Cloud Computing
and Applications, NCCA ’12, IEEE Computer Society, 2012.

[16] P. di Sanzo, F. Molfese, D. Rughetti, B. Ciciani, Providing transaction
class-based qos in in-memory data grids via machine learning, in: IEEE
3rd Symposium on Network Cloud Computing and Applications, NCCA
2014, Rome, Italy, February 5-7, 2014, 2014, pp. 46–53.

[17] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, R. Buyya, A toolkit for
modelling and simulating data grids: an extension to gridsim, Concur-
rency and Computation: Practice and Experience 20 (13) (2008) 1591–
1609.

[18] S. Kounev, K. Bender, F. Brosig, N. Huber, R. Okamoto, Automated
simulation-based capacity planning for enterprise data fabrics, in: 4th
International ICST Conference on Simulation Tools and Techniques
(SIMUTools), 2011, pp. 27–36.

[19] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, R. Buyya,
Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms, Softw.,
Pract. Exper. 41 (1) (2011) 23–50.

[20] O. Dalle, E. Mancini, Integrated tools for the simulation analysis of
peer-to-peer backup systems, in: 5th International ICST Conference on
Simulation Tools and Techniques (SIMUTools), 2012, pp. 178–183.

[21] R. M. Fujimoto, W. B. Campbel, Direct execution models of processor
behavior and performance, in: Winter Simulation Conference, 1987, pp.
751–758.

39

[22] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, L. Rodrigues, When Scal-
ability Meets Consistency: Genuine Multiversion Update-Serializable
Partial Data Replication, in: Proceedings of the 32nd IEEE Interna-
tional Conference on Distributed Computing Systems, ICDCS, IEEE
Computer Society, 2012.

[23] M. S. Ardekani, P. Sutra, M. Shapiro, Non-monotonic snapshot isola-
tion: Scalable and strong consistency for geo-replicated transactional
systems, in: IEEE 32nd Symposium on Reliable Distributed Systems,
SRDS 2013, Braga, Portugal, 1-3 October 2013, 2013, pp. 163–172.

[24] M. S. Ardekani, P. Sutra, M. Shapiro, N. M. Preguiça, On the scal-
ability of snapshot isolation, in: Euro-Par 2013 Parallel Processing -
19th International Conference, Aachen, Germany, August 26-30, 2013.
Proceedings, 2013, pp. 369–381.

[25] Y. Sovran, R. Power, M. K. Aguilera, J. Li, Transactional storage for
geo-replicated systems, in: Proceedings of the 23rd ACM Symposium
on Operating Systems Principles 2011, SOSP 2011, Cascais, Portugal,
October 23-26, 2011, 2011, pp. 385–400.

[26] S. Peluso, P. Romano, F. Quaglia, Score: A scalable one-copy seri-
alizable partial replication protocol, in: Middleware 2012 - ACM/I-
FIP/USENIX 13th International Middleware Conference, Montreal,
QC, Canada, December 3-7, 2012. Proceedings, 2012, pp. 456–475.

[27] J. R. Quinlan, Rulequest Cubist, http://www.rulequest.com/cubist-
info.html.

[28] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1993.

[29] Cloud-TM: a Novel Programming Paradigm for the Cloud,
http://http://www.cloudtm.eu/.

[30] P. A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency control and
recovery in database systems, Addison-Wesley Longman Publishing Co.,
Inc., 1986.

[31] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, P. O’Neil, A
critique of ansi sql isolation levels, in: Proceedings of the 1995 ACM

40

SIGMOD International Conference on Management of Data, SIGMOD
’95, 1995.

[32] R.B. Martin, Agile Software Development: Principles, Patterns, and
Practices, Prentice Hall PTR, 2003, isbn: 0135974445

[33] B. Ciciani, D. Didona, P. di Sanzo, R. Palmieri, S. Peluso, F. Quaglia, P.
Romano, Automated Workload Characterization in Cloud-based Trans-
actional Data Grids, in Proceedings of the 26th IEEE International Par-
allel and Distributed Processing Symposium Workshops & PhD Forum,
2012, pp. 1525–1533.

[34] B. Rochwerger , D. Breitgand , E. Levy , A. Galis , K. Nagin , I. M.
Llorente , R. Montero , Y. Wolfsthal , E. Elmroth , J. Cceres , W.
Emmerich , F. Galn, The RESERVOIR model and architecture for open
federated cloud computing, IBM Journal of Research and Development,
2009. ,

[35] G. Fox, G. von Laszewski, J. Diaz, K. Keahey, J. Fortes, R. Figueiredo,
S. Smallen, W. Smith, A. Grimshaw, Futuregrid - a reconfigurable
testbed for cloud, hpc, and grid computing, in: J. Vetter (Ed.), Contem-
porary High Performance Computing: From Petascale toward Exascale,
Chapman & Hall, 2013.

[36] Amazon EC2, http://aws.amazon.com/ec2/.

[37] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, R. P. Ab-
stract, Consistent hashing and random trees: Distributed caching pro-
tocols for relieving hot spots on the world wide web, in: In Proc. 29th
ACM Symposium on Theory of Computing (STOC), 1997, pp. 654–663.

[38] M. K. Aguilera, A. Merchant, M. A. Shah, A. C. Veitch, C. T. Kara-
manolis, Sinfonia: A new paradigm for building scalable distributed
systems, ACM Trans. Comput. Syst. 27 (3).

41

