Dealing with Reversibility of Shared Libraries in PDES

Davide Cingolani
Sapienza, University of Rome
Italy
cingolani@dis.uniromal.it

Francesco Quaglia
Sapienza, University of Rome
Italy
quaglia@dis.uniromal.it

ABSTRACT

State recoverability is a crucial aspect of speculative Time Warp-
based Parallel Discrete Event Simulation. In the literature, we can
identify three major classes of techniques to support the correct
restoration of a previous simulation state upon the execution of
a rollback operation: state checkpointing/restore, manual reverse
computation and automatic reverse computation. The latter class
has been recently supported by relying either on binary code in-
strumentation or on source-to-source code transformation. Nev-
ertheless, both solutions are not intrinsically meant to support a
reversible execution of third-party shared libraries, which can be
pretty useful when implementing complex simulation models.

In this paper, we present an architectural solution (realized as
a static C library) which allows to transparently instrument (at
runtime) any third party shared library, with no need for any mod-
ification to the model’s code. We also present preliminary experi-
mental results, based on the integration of our library with ROSS
and ROOT-Sim simulators.

CCS CONCEPTS

+Computing methodologies —Discrete-event simulation; Sim-
ulation environments; Simulation tools; +Hardware — Reversible
logic; +Software and its engineering —Software libraries and
repositories;

KEYWORDS

PDES, Speculative Processing, Code Instrumentation, Reversibility

ACM Reference format:

Davide Cingolani, Alessandro Pellegrini, Markus Schordan, Francesco Quaglia,
and David R. Jefferson. 2017. Dealing with Reversibility of Shared Libraries
in PDES. In Proceedings of ACM/SIGSIM Conference on Principles of Advanced
Discrete Simulation, Singapore, May 2017 (PADS’17), 9 pages.

DOI: 10.475/123 4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PADS’17, Singapore

© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06...$15.00

DOI: 10.475/123_4

Alessandro Pellegrini
Sapienza, University of Rome
Italy
pellegrini@dis.uniromal.it

Markus Schordan
Lawrence Livermore National
Laboratory
USA
schordan1@llnl.gov

David R. Jefferson

Lawrence Livermore National
Laboratory
USA
drjefferson@lInl.gov

1 INTRODUCTION

In the context of Parallel Discrete Event Simulation (PDES) [15],
among the various synchronization protocols, the speculative Time
Warp [18] one has been proven to be particularly effective, as it is
relatively independent (in terms of its run-time dynamics) of both
the the simulation model’s lookahead and the communication la-
tency for exchanging data across threads/processes involved in the
simulation platform. This allows Time Warp systems to guarantee
a high performance as well in systems that are not tightly coupled
and/or encompass millions of processors [3].

The speculative nature of Time Warp allows simulation events
to be processed at any LP independently of their safety (or causal
consistency). If an event is a-posteriori detected to be violating
causality, its effects on the simulation state are undone, via the
rollback operation. Correctly and efficiently rolling back the simula-
tion state is therefore a fundamental building block for an effective
optimistic simulation platform.

Among the different approaches proposed in the literature to
rollback the simulation state, the main two families which are con-
sidered are checkpoint-based [18] and reverse computing-based [7],
depending on the algorithmic technique which is used to bring one
simulation state to a previous (consistent) snapshot. The checkpoint-
based rollback operation has been thoroughly studied to reduce its
cost (both in terms of memory and CPU usage), either by reduc-
ing the checkpointing frequency (the so-called sparse or periodic
state saving) (4, 13, 21, 22, 27, 29, 33] or by reducing the amount of
data copied into a state snapshot (the so-called incremental state
saving) [24, 36].

The reverse computing-based rollback operation, which tries to
cancel the non-negligible memory footprint produced by the state
saving technique, relies on reverse events, which can be generated
either manually [7] or automatically [8, 19, 30, 31]. With respect
to automatic generation of reverse events, the various proposals
address it by relying either on binary instrumentation [8, 19] or
on source-to-source transformation [30, 31]. Nevertheless, none
of these solutions is able to deal with third-party shared libraries,
which could be regarded as an important building block for the
development of complex simulation models. To mention some,
libraries such as ALGLIB [32], GSL [16], FFTW [14], LAPACK [11],
or BLAS [20] might be necessary for the description of statistical

PADS’17, May 2017, Singapore

or algebraic processes, proper of a large number of simulation
scenarios.

These third-party shared libraries are not optimism-aware. In fact,
they are devised for application scenarios which always operate on
committed data, which is something that speculative synchroniza-
tion protocols, such as Time Warp, intentionally do not provide
continuously. While static binary instrumentation and source-to-
source transformation could be directly used on these shared li-
braries to make them reversible, their applicability might fall either
due to the lack of source code (in the case of closed-source libraries)
or due to the fact that instrumenting shared objects could produce
system-wide effects to other programs not related to optimistic
simulation.

In this paper, we propose an alternative technique, based on the
concept of lazy instrumentation, to complement static and source-
to-source instrumentation, for x86 systems. This technique allows
to intercept any call to any third-party shared library function, al-
lowing to create (transparently to the simulation model developer)
an instrumented version which could be easily coupled with any
reversible simulation engine. Moreover, our technique allows to
quickly switch between instrumented and non-instrumented (orig-
inal) functions, opening to the possibility of fine-grained runtime
self-optimization of the simulation run (similarly to the technique
proposed in [25]) and to a different behavior of the engine when
dealing with model vs. platform code.

Our technique allows to be transparently embedded into any
Time Warp-based simulation engine, equipped with a reversible
memory management module, via a set of API functions which
allow to tune its functioning at simulation startup. To assess the
viability of our proposal, and to illustrate as well the working sim-
plicity, we present preliminar experimental results collected using
two simulation engines, namely the Rensselaer’s Optimistic Sim-
ulation System (ROSS) [6], and The ROme OpTimistic Simulator
(ROOT-Sim) [23].

The remainder of this paper is structured as follows. In Section 2
we discuss related work. Section 3 presents the design choices
below our proposal, and its implementation. Experimental data
to assess the viability and effectiveness of our proposal are finally
reported in Section 4.

2 RELATED WORK

Despite the fact that reversibility grounds its roots in the 1970’s [37],
to the best of our knowledge no one has explicitly targeted instru-
mentation of third-party shared libraries for software reversibility
purposes, in any computer science application.

The idea of supporting the rollback operation in the context of
Time Warp systems by relying on reverse computation rather than
on snapshot restoration dates back to 1999 [7], but at the time the
reverse code was hand-generated. A first attempt to automatically
generate reversibility code can be found in [19], where control
flow analysis is used to generate code which allows to reconstruct
the execution path taken in the forward code. Differently to our
proposal, reverse code is generated at compile time, preventing the
possibility to operate to any number of third-party libraries.

Another recent work, which is evaluated in this paper in con-
junction with our proposal, is in [30]. In this work, the authors

D. Cingolani et al.

perform source-to-source transformation of C++ code based on the
ROSE compiler infrastructure [28], intercepting all memory modi-
fying operations and recording information about the performed
updates in a data structure that is used to reverse the effects of
memory updates. As mentioned, our proposal specifically targets
all these scenarios where source code of third-party libraries is not
available, thus preventing source-to-source transformation from
being a viable solution.

The works in [24, 36], similarly to what we do, rely on static
binary instrumentation to track memory updates during the for-
ward execution of the events. Nevertheless, their goal is to use this
information to generate periodic incremental checkpoints, which
we avoid by design in our proposal.

Static binary instrumentation is used in [8] to generate so-called
undo code blocks, which are packed data structures which keep
machine instructions generated on the fly to undo the effects of
the forward execution of events. While this is a proposal similar
in spirit to this work, the authors in [8] do not account for the
presence of third-party libraries, therefore limiting the degree of
programmability of simulation models.

Our proposal is also related to a number of works in the field of
program execution tracing (see, e.g., [1, 2, 26, 38]) for debugging,
vulnerability assessment and repeatability. These approaches pro-
vide detailed analysis of changes in the state of the program, and of
the execution flow. Nevertheless, these works do not explicitly deal
with the possibility to reverse a portion of the program’s execution
by relying on runtime-generated reverse instructions.

The US patent in [17] explicitly deals with reversibility of shared
libraries within executables. Yet, differently from our proposal,
the goal of this work is to make reversible the linking process,
thus allowing for different versions of the library to be attached
to the same program. Differently, we are interested in undoing
the effects of shared libraries on the memory map, to support a
reversibility-based rollback operation.

3 REVERSIBILITY OF SHARED LIBRARIES

Before discussing the approach that we undertake to enact software
reversibility of generic third-party shared libraries, let us summa-
rize how third-party libraries interact with an executable, taking
as an example Linux systems relying on the Executable and Link-
able Format (ELF). Whenever the compiler determines that some
function referenced in the source belongs to a shared library, it
introduces in the program’s image additional pieces of information
to let the system, at runtime, resolve any reference to that some
function to its actual implementation. In particular, the compiler:

e Registers the name of the shared library in the program’s
image. This name often comes with the actual version of
the library in it, so that if the executable is moved to a
different environment where the correct library’s version
is not present, the loader fails to resolve any call, to avoid
undefined behaviors;

e Reserves an entry in a special table, called the Procedure
Linkage Table (PLT) is reserved for the specific library
function. Any call to that function will actually refer the
associated PLT’s entry, which keeps enough space to host
a couple of machine instructions;

Dealing with Reversibility of Shared Libraries in PDES

Code:

call func@PLT

GOT:
PLT: GOT [n] =
= FLT[0] ¢ P <zddr>
call resolver

PLT[n]: -
jmp *GOT[n]
prepare L‘e:‘::.\l'-,'erT

jmp PLT[0O]

(a) GOT and PLT, as organized by the compiler, before any runtime resolution is
carried out. PLT points to the corresponding GOT entry, which in turn points to
the same PLT entry. This circular reference allows the activation of the resolver,
stored in PLT[@], in order to determine where the symbol is actually placed in
memory.

PADS’17, May 2017, Singapore

Code:
call func@PLT
GOT:

PLT: GOT [n] :
PLT[O]: - <addr>

call resolver
FLT[n]: -

Jmp *GOT[n] Code:

prepare resalver

jmp PLT[0] func: -—_

(b) GOT and PLT organization after the first call to a library function is issued.
The dynamic linker has resolved the virtual address of the function, which is
stored into the corresponding entry in the GOT table. Any other invocation to
the function will not activate the linker, rather the address of the function will be
immediately available for activation.

Figure 1: Resolver, GOT, and PLT hooking.

e For any entry in the PLT, it reserves the corresponding
entry in the Global Offset Table (GOT), which only stores a
memory pointer.

The need for two tables arises due to the lazy binding policy
adopted by the dynamic loader. In fact, PLT and GOT reference
each other in a way that allows the system to know whether a
library function is being called for the first time or not. In the
positive case, the library symbol is resolved, otherwise the (already-
resolved) function is simply called.

To illustrate this mechanism—this is exactly where our proposal
acts so as to generate reversibility-enabled copies of third-party
library functions—let us suppose that a program relies on the shared
library’s function func. The GOT and PLT tables are organized as in
Figure 1. As mentioned, the call to func is actually a call to an entry
of the PLT table, namely PLT[n], where n is the entry associated
with func. The first entry of this table, namely PLT[@], is a special
entry, which keeps an instruction to call the resolver, i.e. the
function of the dynamic linker which is in charge of determining
where the entry point of any library function is in memory. Once
the first call to func is issued, the code in PLT[n] takes control.
By PLT contruction, the code jumps to the address pointed by
the corresponding GOT[n] entry. At program startup, this address
points to PLT[n] itself, specifically to a code snippet which prepares
(on the stack) the parameters needed by the dynamic linker to
determine what library call caused its invocation. Then, the actual
resolver is called, by jumping to PLT[@]. The resolver performs the
resolution of the actual address of func, places its actual address
into GOT[n] and calls func. The GOT/PLT organization, after the
symbol’s resolution, is depicted in Figure 1(b). Any other call to
func will not cause the activation of the dynamic resolver, as the

address stored in GOT[n] now points to the actual virtual address
of func.

In order to instrument third-party library function calls, we
specifically intercept the above-described mechanism. In particular,
our approach relies on a static library to be linked to the executable,
which we refer to as 1ibreverse!. This library contains a program
constructor, namely a function which is activated by the program
loader before giving control to the actual main program. The goal
of this constructor is to replace the call to resolver to a different
function, exposed by the library itself, which alter the behavior of
the latter part of the dynamic linking process. In particular, the
custom resolver takes the following steps:

(1) Similarly to the dynamic linker’s resolver, it determines
what is func’s entry point virtual address;

(2) Once func’s address is identified, it creates a copy of the
whole function in memory, instrumenting any instruction
which has a memory operand as the destination—namely,
a memory-write instruction;

(3) The instrumentation is carried in a way such that before ex-
ecuting the actual memory write operation, control is given
to a trampoline which activates a reversibility-oriented fa-
cility of libreverse;

(4) An entry in a custom table, called Library Activation Tram-
poline (LAT), is reserved. This entry keeps a small portion
of code to determine whether the instrumented version of
the library should be called or not;

The whole source code of the library is available at https://github.com/HPDCS/
libreverse.

https://github.com/HPDCS/libreverse
https://github.com/HPDCS/libreverse

PADS’17, May 2017, Singapore

(5) The address of LAT[n] is stored into GOT[n], allowing any
future activation of func to directly give control to the
code in LAT[n];

(6) Control is given to LAT[n], in order to perform the actual
function call.

This general scheme allows to intercept any call to any function
in any third-party shared library, therefore making them aware
of the reversibility requirements required by Time Warp-based
simulations, necessarily to support the rollback operation. All these
points above require special care, and we therefore describe in the
following how these are supported by libreverse.

3.1 Intercepting the Dynamic Linker’s Resolver

Although the steps taken by the dynamic linker’s resolver are
mostly standardized, there could be some variability across systems
and versions of the linker with respects to the actual steps taken.
To make libreverse of general availability, we want our custom
resolver to take the same steps as the system’s dynamic linker. To
this end, we take the following steps to ensure portability across
systems and linker versions.

As mentioned, when the program is launched, libreverse’s
constructor is activated, which replaced in PLT[@] the address of
the resolver with a custom one. Nevertheless, since this custom one
should be compliant with the system’s one, libreverse does not
contain the custom resolver’s code, rather it generates it at program
startup. In particular, any dynamic linker’s resolver has to perform
these tasks:

e Determine whether the image of the shared library is
mapped into the program’s image, if not it has to be mmap’ed;

o Determine where is the function’s entry point in the library
image. This is commonly done by relying on a fast hash-
function based mechanism, relying on the data stored in
the .dynsym section in case of an ELF executable;

o The address is stored in GOT[n], where n is passed as an
argument on stack;

o The function is activated directly by the resolver.

The last point is where we hook our custom code. In particular,
the activation of the library function is made by relying on an
indirect jump. On x86 systems, this is implemented by an instruction
in the form jmp *%reg, i.e. the address of the target function is
stored into a register, which is used as the destination of the jump
instruction. Once libreverse’s constructor takes control, it creates
a copy of the system resolver’s code, and starts scanning its bytes
until such an instruction is found. This jump is then replaced with
a direct jump, whose target is a function within 1ibreverse which
takes care of instrumenting the target function, before the control
is given to it.

This strategy allows libreverse to attach itself to any version of
the dynamic loader’s resolver, independently of the actual way the
identification of the function’s symbol within the shared library’s
image is carried out.

3.2 Instrumentation of Library Functions

Once a library function is first called, by the above interception
of the dynamic linker’s resolver by libreverse, we are able to
take control right after the address of the function is identified. At

D. Cingolani et al.

this point, in order to perform the actual instrumentation of the
function, we must determine its size. To this end, we recall that the
executable keeps track of the library file on disk storage. We are
therefore able to navigate the path of the library file, and open it.
A shared library on Linux systems is represented as an ELF file. By
inspecting the symbol’s table of this file, we can determine what is
the actual size of the called function.

At this point, the instrumentation process can take place. We
allocate a memory area of the same size as the original function via
an mmap, making it both writable and executable, and we copy the
whole content of the functions’ binary representation in it. This
will be the working copy of the function, which we can inspect and
alter accordingly, in order to enable reversibility of its actions.

The instrumentation process requires two logical steps. The first
one entails determining the total number of assembly instructions
which compose the function. Among them, we then must identify
all memory-write instructions, and properly alter them in order to
generate on the fly reverse instructions, namely assembly instruc-
tions whose execution undoes the effects of the original instructions
in memory. To this end, we must determine both the destination
address of the memory write instruction, and its size.

We note that these two steps require two different levels of
detail (and, consequently, of complexity). Indeed, to determine
the number of instructions which compose the library, we do not
need to get into the semantics of the instructions themselves, which
is a non-minimal optimization given that our target is the x86
architecture. In fact, the x86 ISA is a variable-size one. This means
that the length in bytes of a single assembly instruction cannot
be determined beforehand. Only by interpreting the opcode it
is possible to determine the exact amount of parameters to the
instruction, and therefore its length.

For the sake of performance, libreverse is equipped with two
different disassemblers. The first one, which we call a length disas-
sembler, is a fast table-based routine which only tells what is the
length of the actual instruction in bytes, and gives a reference to
the actual opcode?. The second disassembler which is included into
libreverse is a full disassembler: it fully decodes the bytecode
representation of the instruction, evaluating all its fields, allowing
to extract the data of interest. The execution of the length disas-
sembler is 3 times faster than the full disassembler, on any x86
instruction (i.e., independently of its length).

Therefore, libreverse enacts the instrumentation process in
the following way. The length disassembler is invoked on the initial
address of the function, returning the size of the first instruction
and a pointer on its actual opcode. This opcode is matched to a table
which tells whether the instruction could entail a memory-write
operation. In the negative case, the next instruction can be identified
by inspecting the bytecode located n bytes after the initial address,
where n is the length returned by the length disassembler. In the
positive case, the full disassembler is invoked on the same memory
location. This allows to determine whether the involved instruction
is actually a memory-write one and, if it is so, it allows to extract the
size of the memory write (which in case of a simple mov instruction

%In fact, x86 instructions can be preceded by an arbitrary number of prefixes, so that
the first byte in a given instruction is not necessarily the opcode.

Dealing with Reversibility of Shared Libraries in PDES

save CPU context (except RIP)
call reverse

restore CPU context (except RIP)
<original instruction>

jmp <address>

Figure 2: The instruction trampoline

is encoded in the binary representation of the instruction itself)
and the destination address of the memory-write operation.

At this point, the instrumentation process replaces the memory-
write instruction with a jump to a code snippet (which we call the
instruction trampoline) generated on the fly. This snippet is placed
into an additional table, called the INSTRUCTIONS table. This is a
table which, for each memory-write instruction, keeps a portion
of code which prepares the required information to generate the
associated reversible instruction. Since the number of memory-
write instructions is not known beforehand, the INSTRUCTIONS
table is pre-allocated keeping the space for a certain number of
trampolines. If the space in the INSTRUCTIONS table is exhausted,
a new table is silently allocated.

The instruction trampoline’s code is organized as in Figure 2.
The first required action is to save the CPU context. This is because
the original library function must be unaware of the execution of
all the injected code. Unfortunately, since the code was placed after
the program’s compilation, standard setjmp/longjmp functions
cannot be used, as we are explicitly breaking System V ABI’s calling
conventions and caller save registers are not saved by the code.
Therefore, our solution is to perform a fast CPU-context save by
pushing all required general-purpose registers and the flags register.
Since the code is crafted directly in assembly language, we use only
callee-save registers, and we push all of them on stack. In this
way, we do not need to concern about registers used by functions
called by the trampoline, as their code is compiler-generated, and
therefore respects the calling conventions. Since we have saved all
callee-save registers, the consistency of the program’s execution is
preserved.

After having saved the CPU context, we issue a call to reverse, a
libreverse internal function which computes the target memory-
write address and generates the corresponding reverse instruction.
According to the addressing mode of the x86 architecture, each
memory address is identified by the expression base address +
(index * scale) + displacement. While the parameters scale and
displacement are already encoded in the instruction binary repre-
sentation, base address and index refer to the content of registers,
which can be evaluated only at runtime. Therefore, once the control
is given to the trampoline of a certain instructions, some data to
allow the computation of the memory-write target address (and the
size of the write, when available) are placed on stack. These data
are the outcome of the instrumentation process, and are organized
as in the following structure:

PADS’17, May 2017, Singapore

struct insn_entry {
char flags;
char base;
char idx;
char scale;
int size;
long long offset;
}
where flags tells which are the relevant fields to recompute the tar-
get address, or to identify the class of data-movement instructions,
as we will explain later in details; base keeps the (3 or 4 bits) base
register binary representation; idx keeps the (3 or 4 bits) index reg-
ister binary representation; scale is used to store the scale factor
of the addressing mode; size holds the size (in bytes) of the mem-
ory area being affected by the memory-write instruction (when
available at disassemble time); of fset keeps the displacement of
the addressing mode?.

By relying on this information, the reverse function can deter-
mine the size and the target address of the memory-write instruc-
tion. This information is used to generate the corresponding reverse
instruction, as we will discuss later. Nevertheless, so far, the original
instruction has not been executed yet. As mentioned, the original
instruction’s bytecode is replaced with a jump to the corresponding
entry in the INSTRUCTIONS table. In order to execute the original
instruction, we copy the binary representation of the instruction
directly within the corresponding INSTRUCTIONS’ entry, after the
call to the reverse function. Nevertheless, the original instruction
might require contextual information in order to execute properly.
This is due to the fact that many instructions in the x86 ISA use
relative references. As an example, consider an operation used to
store a value into a local variable. These variables are stored on
the stack, and are often referred using a displacement from either
the base frame pointer, or from the stack pointer. Therefore, before
giving control to the copy of the original memory-write instruc-
tion withing the INSTRUCTIONS entry, we restore the CPU context
(except for the value of the RIP register, the program counter). This
allows to correctly execute a large set of instruction, although we
must explicitly account for the fact that the value kept by RIP is
different from the original execution context.

This latter point deserves an additional discussion. In fact, in the
64-bit version of the x64 architecture, a special addressing mode,
which is called RIP-relative, allows to target symbols (e.g., variables)
encoding in the instruction a displacement to the current value of
the RIP register. This addressing mode is particularly important for
library functions. Indeed, a shared library can be remapped to any
virtual memory address range, depending on the set of libraries
and/or runtime dynamics. Therefore, to reduce the overhead related
to library loading, shared libraries code is generated by compilers
as position-independent code (PIC). A PIC library has no indirect
reference to any library or variable. This means that any reference
within a library is expressed as a displacement with respect to the
current instruction. In the 64-bit x86 ISA, this entails a huge usage
of the RIP-relative addressing mode.

3We provide 64-bits space in the insn_entry structure due to the fact that the x86_64
assembly language allows one single instruction, namely movabs, to directly use a
64-bits addressing mode. In all the other cases, only 32 bits of the of fset field are
actually used.

PADS’17, May 2017, Singapore

mov %fs:platform_mode@tpoff, %eax
cmpb $0x0, %eax

jz 1f
call original_function
ret
1: call instrumented_function

ret

Figure 3: Entry of the LAT table (x86 64-bit version)

To cope with this issue, we cannot simply restore the whole CPU
context, including the value of RIP. In fact, at the original address
we no longer have the original instruction. To execute its copy, RIP
must point to the copy, which is at a different address. Therefore,
to correctly execute memory-write operations which rely on RIP-
relative addressing, the only option is to fix the displacement. To
this end, we rely on the length disassembler. In particular, this
disassembler sets a gloabal (per-thread) flag whenever it encounters
an assembly instruction which is using the RIP-relative addressing
mode. Once such an instruction is found, the full disassembler
is invoked on it, allowing to determine whether this addressing
mode is used in the source or in the destination operand. In both
cases, the offset is corrected. This correction is trivial: we can at
any time determine what is the additional offset (either positive
or negative) introduced by the fact that the instruction is being
moved to a different location. Anyhow, the correction of RIP-
relative addressing cannot be limited to instructions copied into
the INSTRUCTIONS table. In fact, since we create a whole copy of
the original library function, all RIP-relative addressing must be
corrected. Anyhow, by relying on the above-described scheme, the
correction can be actuated in place on the copy of the instructions.

To complete the instrumentation process of the library function,
we iterate over all the instructions carrying on the aforementioned
steps, until we reach the end of the function. As mentioned, we
can identify the end of the function by inspecting the library’s
ELF symbol table, to determine its total length in bytes. The final
instruction of the instruction trampoline must give control back to
the library function. Since there is a one-to-one mapping between
the memory-write instruction and the entry in the INSTRUCTIONS
table which keeps its instruction trampoline, the return to the
function’s flow can be implemented with a direct jmp instruction
to the correct address.

After that the whole function is instrumented, we have to hook
the altered version to the GOT/PLT invocation mechanism. As
hinted before, we want to give the possibility to activate both the
original version and the instrumented one, depending on the ex-
ecution context. In particular, the reversibility facilities are only
related to the execution of the simulation models’ event handlers,
while when executing in platform mode (i.e., when the control is
taken by the simulation engine) we do not need to generate reverse
instructions. In this latter case, for the sake of performance, we
want to rely on the original version of the library functions, if they
are used. To allow a fast switching between the two versions, we
rely on the aforementioned LAT table. In particular, the n-th entry
in the LAT, which corresponds to the current function being in-
strumented, is organized (for the case of 64-bit x86 Linux systems)

D. Cingolani et al.

Figure 4: The index of assembly instructions built while in-
strumenting a library function.

as in Figure 3 (for a total of 24 bytes). The goal of this code is to
check a (per-thread) global variable called platform_mode which
tells whether a library function is invoked from the simulation
engine level or from the application-level code. In the former case,
the original (non-instrumented) library function is activated, while
in the latter the instrumented version is called. To change the exe-
cution mode, libreverse offers an internal API function, named
platform_mode(bool) which tells whether control is being passed
to an event handler or it is returning from such a handler. It is
the responsibility of the simulation engine, when integrating with
libreverse, to properly use this function. Overall, the integration
with the GOT/PLT invocation mechanism is simply done by plac-
ing, after the LAT entry is properly crafted, its address within the
corresponding entry of the GOT table.

There are two classes of instructions which cannot be directly
dealt with according to the aforementioned instrumentation scheme,
rather require special management. One is the cmov instruction,
which is managed directly in the trampoline. Specifically, in case
of a cmov, we use 4 bits of the flags field to record what is the
check to be emulated. The trampoline checks whether the bits are
different from zero, and in the positive case the corresponding sta-
tus bits are checked to determine whether the condition is met or
not. Nevertheless, the values of status bits might have been already
altered during the execution of the previous injected operations.
To this end, the trampoline’s code looks on the application stack
for the old value, as stored during the CPU-context save phase. If
the condition is met, the cmov is managed exactly like a standard
mov.

The second one is the movs instruction, for which we use one bit
of the flags field to let the trampoline know whether its invocation
is related to such an instruction. In this specific case, the size flag
tells only the size of one single iteration of the movs instruction.
Therefore, to compute the total size, the trampoline’s code checks
the value of the rcx register, and multiplies it by size. The starting
address of the write is then computed by first checking the direction
flag of the flags register. In case this flag is cleared, the destination
starting address is already present in the rdi register. If the flag
is set, then the movs instruction will make a backwards copy, and
therefore the (logical) initial address of the move is computed as
rdi-recx * size.

An additional note must be discussed to complete our overview
of the instrumentation mechanism. In fact, in order to link the place
where a library function has a memory-write instruction with the
corresponding INSTRUCTIONS entry, a jmp instruction is used to
replace the actual mov. Nevertheless, the x86 ISA has a variable
length. If the size of the jmp (which is 5 bytes) is smaller than
the size of the actual intercepted memory-update instruction, the
remaining space can be easily filled using a nop. On the other hand,
the memory-write instruction’s representation could be shorted
than 5 bytes—the classical example is the aforementioned movs,
which is only 1-byte long.

Dealing with Reversibility of Shared Libraries in PDES

In this case, libreverse “makes room” for the jump instruc-
tion, by coalescing multiple consecutive instructions within the
same INSTRUCTIONS entry. This is done by continuing the disas-
sembly of the library function, until enough room for the jmp is
found. Nevertheless, there could be the possibility that the end of
the function is reached before finding enough room. In this case,
libreverse “backtracks” its execution by coalescing instructions
before the memory-write instruction, until enough space is found.
Anyhow, since the length of an assembly instruction is variable, it
could be resource intensive to perform this latter action. To this
end, while performing the forward instrumentation, libreverse
builds an instruction index, as depicted in Figure 4. This index keeps,
for each instruction, its size in bytes. Therefore, in case while coa-
lescing instructions the end of the function is reached, it is possible
to increase the size up to the required amount of 5 bytes by simply
inspecting this index. Since the number of instructions that com-
pose the function is not known beforehand, the instruction index
is implemented as a wait-free resizable array, as described in [10].

While this approach solves the problem related to the needed
amount of bytes to insert the jmp to the INSTRUCTIONS’ table entry,
it might pose an additional problem. Let us discuss the following
example:

jmp 1f

movl $0x0, %eax

movsl

1: leave

ret
In this case, the instrumentation process will detect that the movs is
a memory-write instrunction, an will trigger the replacement with
a jmp. Since movs is only 1-byte long, the coalescing procedure will
try to expand over subsequent instructions. The next is the 1-byte
long leave, so the coalescing procedure continues, until the end
of the function is reached. At this point, since the total amount of
bytes found amounts to three, the coalescing procedure inspects the
instructions’ index to determine how many instructions behind the
movs should be taken to make enough room to the jmp. Since the
movl $0x0, %eax is 5-byte long, the coalescing procedure takes it
and halts. This give a grand total of 8 bytes (with respect to the 5
needed) to place the jmp. Nevertheless, this action will completely
break the functioning of the program. In fact, the initial instruction
in the example is a jmp which targets one of the instructions which
will be moved into the INSTRUCTIONS’ table entry, having the jmp
target the middle of the (newly-inserted) assembly instruction.

To overcome this issue, we extend the aforementioned instruc-
tions index . In particular, the opcode retrieved by the length
disassembler is matched against a second table, which tells whether
the instruction could have as a parameter a reference to a different
instruction (e.g., the case for a jmp instruction). In the positive case,
the instruction index keeps a reference to the instruction. In case
it is a reference to a future instruction, we keep track of this by
relying on a fast hash table. Once the target instruction is reached,
the link between the two is completed.

Whenever an instruction is moved to an entry of the INSTRUCTIONS
table, the corresponding entry in the instructions index is flagged.
At the end of the intrumentation process, a fast scan of the in-
structions index is performed, so as to determine whether some
instruction referenced by, e.g., a jmp instruction has been moved

PADS’17, May 2017, Singapore

into an entry of the INSTRUCTIONS table. In the positive case, the
referencing instruction’s offset is corrected, simply applying the
corresponding shift to the displacement.

The instructions index becomes handy to solve a couple of ad-
ditional issues, related to the way shared libraries are built. In
particular, any library function within a library can reference any
other function within the library itself. Since a call instruction,
to invoke another function in the library, uses an offset in a way
perfectly similar to a jmp, but this reference will not be found dur-
ing the instrumentation process of the current function. Here, two
situations might arise:

(1) The function is exposed to the application and is actually
used: in this case, an entry in the PLT is present. This
can be verified by inspecting the ELF symbol table of the
running application. The call, therefore, is redirected to the
corresponding PLT entry. While this might reduce a bit
any optimization internal to the library, allows to perform
a lazily instrumentation according to the scheme that we
are presenting in this paper;

(2) The function is exposed to the application but is not used
by the program, or is an internal one: in this second case,
we cannot rely on the PLT to carry on the lazy instru-
mentation. We rather keep within libreverse a list of
functions internal to this library which have already been
instrumented due to this specific scenario taking place. If
the target function is present in this list, then the call is
redirected to this already-instrumented symbol. If it is not,
then the target function is instrumented (exactly according
to the whole aforementioned scheme) and then the symbol
is added to libreverse’s internal list.

As a last note, since libraries are often implemented with high
performance in mind, nothing prevents to “break” the common
idea of function—this is something that, e.g., happens extensively
in glibc. In particular, one function might jump into the middle
of another one, just to execute a portion of its code in case some
optimized condition of the host system is detected. While this
scenario can be detected in a way similar to calls to different
library functions (i.e., the reference of the jmp is not resolved while
scanning the function), handling this condition is less trivial, as
it would entail some code flow analysis like the ones presented
in [12]. Since such an analysis is out of the scope of this paper, and
considering that glibc shows this behavior only in a handful of
functions (like, e.g., memmove ()), for the sake of simplicity we have
simply replaced these functions with less-optimized ones which
are statically linked to the executable.

3.3 Generation and Management of Reverse
Instructions

The instrumentation architecture described so far allows, at runtime,
to activate the reverse function just before any memory-update
operation is performed. At this point, libreverse is notified of
the application code’s will to update the simulation model state,
and therefore reverse instructions (to restore the state in case of a
rollback operation) can be built on-the-fly.

PADS’17, May 2017, Singapore

: —_—

revwin
size
address
pointer
Heap
revwin
L

Figure 5: Revwin descriptor

If the activation of reverse is related to the execution (in the
forward event) of a mov or a cmov instruction, the reverse instruc-
tion is built by accessing memory at the computed address and by
reading the original value (i.e., the one before the write operation
is executed). This value is placed within a data movement instruc-
tion as the source (immediate) operand, having as the destination
address the same address. On the other hand, if the activation of
reverse is due to a movs instruction, this can be easily determined
by the size of the memory-write operation, as it is higher than the
largest representable immediate*. The reverse instruction in this
case can only be another movs instruction, having as the source
operand a properly-allocated memory buffer where the original
content has been copied upon reverse instruction generation.

The generation of reverse instructions is not a costly operation—
except for the movs case where a memory buffer must be explicitly
copied. Indeed, the set of instructions to be generated is very
limited, and the opcodes are known beforehand. Therefore, we
rely on a pre-compiled tables of instructions in which only the
memory address and the old immediate should be packed within.
With this approach, we pay an instrumentation overhead similar
to that of incremental state saving solutions (see, e.g., [24]), but we
are completely avoiding any generation of metadata, thus reducing
the overhead for the installation of a previous snapshot during the
execution of a rollback.

In order to allow the PDES engine to correctly interact with the
management of reversibility of library function calls, libreverse
intrinsically works with the notion of events. Since an event is
an atomic unit of work, libreverse organizes reverse instructions
in atomic blocks, on a per-thread fashion. In particular, in a way
similar to the work presented in [8], reverse instructions are packed
into the reverse window structure, which is depicted in Figure 5.
Every time that a new reverse instruction is generated, it is inserted
right before the address of pointer, whose value is then updated
accordingly, so that they appear in reverse order with respect to the
forward execution. This is a fundamental prerequisite to undo the
effects of library calls within an event, as they can be undone by
simply issuing a call to the first instruction in the reverse window

4We note that, by using this approach, a possible movs instruction involving few bytes
of memory is negated using a standard mov instruction, which is nevertheless correct,
and possibly more efficient.

D. Cingolani et al.

(i.e., the one pointed by pointer). For a thorough description of
the way reverse windows are managed, we refer the reader to our
previous work in [8].

To let the simulation engine keep control of generated reverse
instructions on a per-event basis, libreverse exposes an API func-
tion named finalize_event() which, upon invocation, allocates
(again, on a per-thread basis) a new reverse window and returns
a pointer to the currently-used reverse window. The simulation
engine can then link this structure to any representation of the
event in the just-descheduled LP message queue. To facilitate the
management of the operations, libreverse offers two additional
API functions, namely execute_revwin() and cleanup_revwin().
The former allows to execute the reverse instructions kept by a
reverse window by giving control to the instruction pointed by
pointer. The latter can be used to release all memory buffers
related to a reverse window in case, e.g., an even is deemed commit-
ted or it is removed from the message queue due to the reception
of an antimessage. By relying on this set of API functions, any
Time Warp-based simulation engine can be easily integrated with
libreverse.

3.4 Dealing with Memory Allocations and
Deallocations

The last aspect to be dealt with to support a correct restoration
of a previous state is related to the management of allocation/
deallocation operations. In particular, if during the execution of a
forward event the model’s code invokes a library function which
allocates memory, this memory logically belongs to the LP which
is currently scheduled. While designing libreverse, we have
assumed that the simulation engine has a per-LP memory map
manager, such as the one in [25], as providing a memory manager
is out of the scope of our approach. Therefore, in order to correctly
link libreverse and the simulation engine, we must provide a
means to map a forward memory allocation with the corresponding
memory deallocation and vice versa.

To this end, libreverse offers two additional API functions,
namely register_alloc() and register_dealloc(). These func-
tions accept a function pointer each, which are defined as void
*(*xallocate) (void *ptr, size_t size) for the former function,
and void (*deallocate)(void #*ptr) for the latter. These point-
ers allow to bridge the internals of 1ibreverse with the simulation
engine’s memory manager, so that whenever a library allocates
some memory a call to the deallocate() function is placed within
the reverse window, while when a chunk of memory is deallocated,
acall to allocate() is similarly stored. We emphasize that having
the allocate() function accept a pointer is a strategic choice to
allow piece-wise-deterministic replay of events upon a rollback op-
erations, allowing to retrieve buffers at the same virtual addresses,
and therefore support a memory map laid out in a generic way.

4 EXPERIMENTAL RESULTS
5 CONCLUSIONS
REFERENCES

[1] GDB: The GNU Project Debugger. http://www.gnu.org/software/gdb/. (?2??).
[2] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 2000. Dynamo: a
transparent dynamic optimization system. SIGPLAN Notices 35, 5 (2000), 1-12.

Dealing with Reversibility of Shared Libraries in PDES

[10]

[11]

[12]

[13]

[14]

[17]
(18]

[19]

[20]

[21]

DOI: http://dx.doi.org/10.1145/358438.349303

Peter D. Barnes, Christopher D. Carothers, David R. Jefferson, and Justin M.
LaPre. 2013. Warp speed: executing time warp on 1,966,080 cores. In Proceedings
of the 2013 ACM SIGSIM conference on Principles of advanced discrete simulation -
SIGSIM-PADS °13.327. DOI:http://dx.doi.org/10.1145/2486092.2486134

Steven Bellenot. 1992. State skipping performance with the Time Warp operating
system.. In Proceedings of the 6th Workshop on Parallel and Distributed Simulation
(PADS). 53-64.

RR Branco. 2007. Ltrace internals. Linux Symposium (2007).
fedoraproject.org/OLS/Reprints-2007/OLS2007-Proceedings-V1.pdf
Christopher D Carothers, David W Bauer, and S Pearce. 2000. ROSS: a High
Performance Modular Time Warp System. In Proceedings of the 14th Workshop
on Parallel and Distributed Simulation. IEEE Computer Society, 53-60.
Christopher D Carothers, Kalyan S Perumalla, and Richard M Fujimoto. 1999.
Efficient optimistic parallel simulations using reverse computation. ACM Trans-
actions on Modeling and Computer Simulation 9, 3 (1999), 224-253.

Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2015. Transpar-
ently mixing undo logs and software reversibility for state recovery in optimistic
PDES. In Proceedings of the 2015 ACM SIGSIM Conference on Principles of Advanced
Discrete Simulation (PADS). ACM Press.

Fb Cortellessa V.a Quaglia. 2001. A checkpointing-recovery scheme for Time
Warp parallel simulation. Parallel Comput. 27, 9 (2001), 1227-1252. http://www.
scopus.com/inward/record.url?eid=2-s2.0-0035427584

Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup. 2006. Lock-Free
Dynamically Resizable Arrays. In Proceedings of the 10th international conference
on Principles of Distributed Systems. Springer-Verlag, 142-156. DOI : http://dx.doi.
org/10.1007/11945529_11

James Demmel. 1991. LAPACK: A portable linear algebra library for high-
performance computers. Concurrency: Practice and Experience 3, 6 (dec 1991),
655-666. DOI:http://dx.doi.org/10.1002/cpe.4330030610

Simone Economo, Davide Cingolani, Alessandro Pellegrini, and Francesco
Quaglia. 2016. Configurable and Efficient Memory Access Tracing via Selective
Expression-Based x86 Binary Instrumentation. In 2016 IEEE 24th International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS). IEEE, 261-270. DOI :http://dx.doi.org/10.1109/
MASCOTS.2016.69

Josef Fleischmann and Philip A. Wilsey. 1995. Comparative Analysis of Periodic
State Saving Techniques in Time Warp Simulators. In Proceedings of the 9th
Workshop on Parallel and Distributed Simulation. IEEE Computer Society, 50-58.
Matteo Frigo and Steven G. Johnson. 1998. FFTW: An adaptive software ar-
chitecture for the FFT. In ICASSP, IEEE International Conference on Acous-
tics, Speech and Signal Processing - Proceedings, Vol. 3. 1381-1384. DOI :http:
//dx.doi.org/10.1109/ICASSP.1998.681704

Richard M Fujimoto. 1990. Performance of Time Warp Under Synthetic Work-
loads. In Proceedings of the Multiconference on Distributed Simulation. Society for
Computer Simulation, 23-28.

M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, Michael Booth, and
Fabrice Rossi. 2009. GNU Scientific Library Reference Manual. Distribution
954161734, March (2009), 592. DOI:http://dx.doi.org/ISBN0954612078

Galen C. Hunt. 1998. Reversible load-time dynamic linking. (1998).

David R Jefferson. 1985. Virtual Time. ACM Transactions on Programming
Languages and System 7, 3 (1985), 404-425.

Justin M LaPre, Elsa] Gonsiorowski, and Christopher D Carothers. 2014. LORAIN:
a step closer to the PDES ’holy grail’. In Proceedings of the 2nd ACM SIGSIM/PADS
conference on Principles of Advanced Discrete Simulation (PADS). ACM Press, New
York, New York, USA, 3-14. DOI:http://dx.doi.org/10.1145/2601381.2601397

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. 1979. Basic Linear
Algebra Subprograms for Fortran Usage. ACM Transactions on Mathematical
Software (TOMS) 5, 3 (1979), 308-323. DOI:http://dx.doi.org/10.1145/355841.
355848

Yi-Bing Lin and Edward D Lazowska. 1990. Reducing the saving overhead for Time
Warp parallel simulation. University of Washington Department of Computer

http://ols.

[22

[23

[24

[25

[26

[27

[28

[29

[30

(32]

[33

[34

[35

(37]

(38]

PADS’17, May 2017, Singapore

Science and Engineering.

Avinash C Palaniswamy and Philip A. Wilsey. 1993. An analytical comparison
of periodic checkpointing and incremental state saving. In Proceedings of the 7th
Workshop on Parallel and Distributed Simulation (PADS). ACM, 127-134. DOI:
http://dx.doi.org/10.1145/158459.158475

Alessandro Pellegrini and Francesco Quaglia. 2014. The ROme OpTimistic
Simulator: A tutorial. In Proceedings of the Euro-Par 2013: Parallel Process-
ing Workshops, Dieter an Mey, Michael Alexander, Paolo Bientinesi, Mario
Cannataro, Carsten Clauss, Alexandru Constan, Gabor Kecskemeti, Christine
Morin, Laura Ricci, Julio Sahuquillo, Martin Schulz, Vittorio Scarano, Stephen L.
Scott, and Josef Weidendorfer (Eds.). LNCS, Springer-Verlag, 501-512. DOI:
http://dx.doi.org/10.1007/978-3-642-54420-0_49

Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2009. Di-DyMeLoR:
Logging only dirty chunks for efficient management of dynamic memory based
optimistic simulation objects. In Proceedings - Workshop on Principles of Advanced
and Distributed Simulation, PADS. IEEE, 45-53. DOI : http://dx.doi.org/10.1109/
PADS.2009.24

Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2015. Autonomic
state management for optimistic simulation platforms. IEEE Transactions on
Parallel and Distributed Systems 26, 6 (2015), 1560-1569.

Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou, and Youfeng
Wu. 2006. LIFT: A Low-Overhead Practical Information Flow Tracking System
for Detecting Security Attacks. In 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06). 135-148. DOI :http://dx.doi.org/10.
1109/MICRO.2006.29

Francesco Quaglia. 2001. A Cost Model for Selecting Checkpoint Positions in
Time Warp Parallel Simulation. IEEE Transactions on Parallel and Distributed
Systems 12, 4 (2001), 346-362.

Daniel Quinlan, Chunhua Liao, Justin Too, Robb Matzke, and Markus Schordan.
2013. ROSE Compiler Infrastructure. (2013). http://www.rosecompiler.org
Robert Ronngren and Rassul Ayani. 1994. Adaptive Checkpointing in Time Warp.
In Proceedings of the 8th Workshop on Parallel and Distributed Simulation. Society
for Computer Simulation, 110-117.

Markus Schordan, David Jefferson, Peter Barnes, Tomas Oppelstrup, and Daniel
Quinlan. 2015. Reverse Code Generation for Parallel Discrete Event Simulation.
95-110. DOI: http://dx.doi.org/10.1007/978-3-319-20860-2_6

Markus Schordan, Tomas Oppelstrup, David R. Jefferson, Peter D. Barnes, and
Daniel Quinlan. 2016. Automatic Generation of Reversible C++ Code and Its
Performance in a Scalable Kinetic Monte-Carlo Application. In Proceedings of
the 2016 ACM-SIGSIM Conference on Principles of Advanced Discrete Simulation
(PADS). ACM Press.

J. M. Shearer and M. A. Wolfe. 1985. ALGLIB, a simple symbol-manipulation
package. Commun. ACM 28, 8 (aug 1985), 820-825. DOI :http://dx.doi.org/10.
1145/4021.4023

S Skold and Robert Rénngren. 1996. Event Sensitive State Saving in Time Warp
Parallel Discrete Event Simulation. In Proceedings of the 1996 Winter Simulation
Conference. Society for Computer Simulation, 653-660.

Marc Philippe Vertes. 2002. Method and system for managing shared-library
executables. (2002).

Robert Wahbe, Steven Lucco, and Susan L Graham. 1993. Practical Data Break-
points: Design and Implementation. In Proceedings of the 1993 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). 1-12.
Darrin West and Kiran Panesar. 1996. Automatic Incremental State Saving. In
Proceedings of the 10th Workshop on Parallel and Distributed Simulation (PADS).
IEEE Computer Society, 78-85.

M. V. Zelkowitz. 1973. Reversible execution. Commun. ACM 16, 9 (1973), 566.
DOI : http://dx.doi.org/10.1145/362342.362360

Qin Zhao, Rodric Rabbah, Saman Amarasinghe, Larry Rudolph, and Weng Fai
Wong. 2008. How to do a million watchpoints: Efficient Debugging using dynamic
instrumentation. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4959 LNCS
(2008), 147-162. DOI:http://dx.doi.org/10.1007/978-3-540-78791-4-10

http://dx.doi.org/10.1145/358438.349303
http://dx.doi.org/10.1145/2486092.2486134
http://ols.fedoraproject.org/OLS/Reprints-2007/OLS2007-Proceedings-V1.pdf
http://ols.fedoraproject.org/OLS/Reprints-2007/OLS2007-Proceedings-V1.pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-0035427584
http://www.scopus.com/inward/record.url?eid=2-s2.0-0035427584
http://dx.doi.org/10.1007/11945529_11
http://dx.doi.org/10.1007/11945529_11
http://dx.doi.org/10.1002/cpe.4330030610
http://dx.doi.org/10.1109/MASCOTS.2016.69
http://dx.doi.org/10.1109/MASCOTS.2016.69
http://dx.doi.org/10.1109/ICASSP.1998.681704
http://dx.doi.org/10.1109/ICASSP.1998.681704
http://dx.doi.org/ISBN 0954612078
http://dx.doi.org/10.1145/2601381.2601397
http://dx.doi.org/10.1145/355841.355848
http://dx.doi.org/10.1145/355841.355848
http://dx.doi.org/10.1145/158459.158475
http://dx.doi.org/10.1007/978-3-642-54420-0_49
http://dx.doi.org/10.1109/PADS.2009.24
http://dx.doi.org/10.1109/PADS.2009.24
http://dx.doi.org/10.1109/MICRO.2006.29
http://dx.doi.org/10.1109/MICRO.2006.29
http://www.rosecompiler.org
http://dx.doi.org/10.1007/978-3-319-20860-2_6
http://dx.doi.org/10.1145/4021.4023
http://dx.doi.org/10.1145/4021.4023
http://dx.doi.org/10.1145/362342.362360
http://dx.doi.org/10.1007/978-3-540-78791-4_10

	Abstract
	1 Introduction
	2 Related Work
	3 Reversibility of Shared Libraries
	3.1 Intercepting the Dynamic Linker's Resolver
	3.2 Instrumentation of Library Functions
	3.3 Generation and Management of Reverse Instructions
	3.4 Dealing with Memory Allocations and Deallocations

	4 Experimental Results
	5 Conclusions
	References

