
Advanced Computing Architectures

Alessandro Pellegrini
A.Y. 2019/2020

Intel 8086 (1978)

Intel 8086 (1978)

AMD Ryzen (2017)

AMD Ryzen (2017)

Moore's Law (1965)

Moore's law is dead, long live Moore's law

The number of transistors in a dense integrated circuit
doubles approximately every two years

— Gordon Moore, Co-founder of Intel

Moore's Law (1965)

The free lunch

• Implications of Moore’s
Law have changed since
2003

• 130W is considered an
upper bound (the power
wall)

� = �7���

The Power Wall

The Power Wall

Performance over Time

Mining Moore's Law

• We can look at Moore's law as a gold mine:
– You start from the motherlode
– When it's exhausted, you start with secondary veins
– You continue mining secondary veins, until it's no

longer economically sustainable

1970s 1980s 1990s 2000s 2010s

1975 2005 2011 20??
Exit Moore

single-threaded free lunch multicore

hetero-core

cloud-core

Trying to speedup: the pipeline (1980s)

• Temporal parallelism
• Number of stages increases with each generation
• Maximum Cycles Per Instructions (CPI)=1

Superascalar Architecture (1990s)
• More instructions are simultaneously executed on the

same CPU
• There are redundant functional units that can operate

in parallel
• Run-time scheduling (in contrast to compile-time)

Speculation
• In what stage does the CPU fetch the

next instruction?
• If the instruction is a conditional

branch, when does the CPU know
whether the branch is taken or not?

• Stalling has a cost:
nCycles · branchFrequency

• A guess on the outcome of a
compare is made
– if wrong the result is discarded
– if right the result is flushed

a ← b + c
if a ≥ 0 then

d ← b
else

d ← c
end if

Branch Prediction
• Performance improvement depends on:

– whether the prediction is correct
– how soon you can check the prediction

• Dynamic branch prediction
– the prediction changes as the program behaviour changes
– implemented in hardware
– commonly based on branch history

• predict the branch as taken if it was taken previously

• Static branch prediction
– compiler-determined
– user-assisted (e.g., likely in kernel’s source code; 0x2e,
0x3e prefixes for Pentium 4)

Branch Prediction Table
• Small memory indexed by the lower bits of the address of conditional

branch instruction
• Each instruction is associated with a prediction

– Take or not take the branch
• If the prediction is take and it is correct:

– Only one cycle penalty
• If the prediction is not take and it is correct:

– No penalty
• If the prediction is incorrect:

– Change the prediction
– Flush the pipeline
– Penalty is the same as if there were no branch prediction

Two-bit Saturating Counter

T

NTNT

T
taken

taken

not taken

not taken

not takentaken

not taken

taken

Branch Prediction is Important
• Conditional branches are around 20% of the instructions in the

code
• Pipelines are deeper

– A greater misprediction penalty

• Superscalar architectures execute more instructions at once
– The probability of finding a branch in the pipeline is higher

• Object-oriented programming
– Inheritance adds more branches which are harder to predict

• Two-bits prediction is not enough
– Chips are denser: more sophisticated hardware solutions could be put in

place

How to Improve Branch Prediction?
• Improve the prediction

– Correlated (two-levels) predictors [Pentium]
– Hybrid local/global predictor [Alpha]

• Determine the target earlier
– Branch target buffer [Pentium, Itanium]
– Next address in instruction cache [Alpha, UltraSPARC]
– Return address stack [Consolidated into all architecture]

• Reduce misprediction penalty
– Fetch both instruction streams [IBM mainframes]

Return Address Stack
• Registers are accessed several stages after

instruction’s fetch
• Most of indirect jumps (85%) are function-call

returns
• Return address stack:

– it provides the return address early
– this is pushed on call, popped on return
– works great for procedures that are called from multiple

sites
• BTB would would predict the address of the return from the

last call

Charting the landscape

Memory

Pr
oc

es
so

rs

Charting the landscape: Processors

Memory

Pr
oc

es
so

rs

Complex cores

• The “big” cores: they directly come from the motherlode
• Best at running sequential code
• Any inexperienced programmer should be able to use them effectively

Simultaneous Multi-Threading－SMT (2000s)

• A physical processor appears as multiple logical processors
• There is a copy of the architecture state (e.g., control registers)

for each logical processor
• A single set of physical execution resources is shared among

logical processors
• Requires less hardware, but some sort of arbitration is

mandatory

The Intel case: Hyper-Threading on
Xeon CPUs

• Goal 1: minimize the die area cost (share of the
majority of architecture resources)

• Goal 2: when one logical processor stalls, the other
logical process can progress

• Goal 3: in case the feature is not needed, incur in no
cost penalty

• The architecture is divided into two main parts:
– Front end
– Out-of-order execution engine

Xeon Front End
• The goal of this stage is to deliver instruction to later

pipeline
• stages
• Actual Intel’s cores do not execute CISC instructions

– Intel instructions are cumbersome to decode: variable length,
many different options

– A Microcode ROM decodes instructions and converts them into a
set of semantically-equivalent RISC μ-ops

• μ-ops are cached into the Execution Trace Cache (TC)
• Most of the executed instructions come from the TC

Trace Cache Hit

• Two sets of next-instruction
pointers

• Access to the TC is arbitrated
among logical processors at
each clock cycle

• In case of contention, access
is alternated

• TC entries are tagged with
thread information

• TC is 8-way associative,
entries are replaced
according to a LRU scheme

Trace Cache Miss

Xeon Out-of-order Pipeline

Multicores (2000s)

• First multicore chip: IBM Power4 (1996)
• 1.3 GHz dual-core PowerPC-based CPU

Charting the landscape: Processors

Memory

Pr
oc

es
so

rs

Complex cores Simpler cores

• “small” traditional cores
• Best at running parallelizable code, that still requires the full

expressiveness of a mainstream programming language

• They could require “programming hints” (annotations)
• They make parallelism mode explicit

Charting the landscape: Processors

Memory

Pr
oc

es
so

rs

Complex cores Simpler cores Mixed cores

• A simpler core takes less space
• You can cram more on a single die in place of a complex core

• A good tradeoff for energy consumption
• Good to run legacy code and exploit benefits of Amdahl's law

• Typically they have the same instruction set (ARM big.LITTLE/DynamIQ),
but some don't (CellBE)

The Cell Broadband Engine (Cell BE)

• Produced in co-operation by Sony, Toshiba, and IBM
• Nine cores interconnected through a circular bus—Element

Interconnect Bus (EIB):
– one Power Processing Element (PPE): 3.2 GHz 2-way SMT processor
– eight Synergistic Processing Elements (SPE): SIMD processors, 256 Kb of

local memory
• The priority is performance over programmability
• SPEs need to be managed (offloading) explicitly by the PPE
• SPEs are number crunching elements
• Many applications: video cards, video games (Playstation 3), home

cinema, supercomputing, ...

The Cell Broadband Engine (Cell BE)

Cell BE programming: the PPE

Cell BE programming: the PPE

Cell BE programming: the PPE

Cell BE programming: the PPE

Cell BE programming: the SPE

Why do we need an additional main()?

Charting the landscape: Processors

Memory

Pr
oc

es
so

rs

Complex cores Simpler cores Specialized coresMixed cores

• Typical of GPUs, DSPs, and SPUs
• They are more limited in power, and often do not support all features

of mainstream languages (e.g., exception handling)

• Best at running highly-parallelizable code

Graphics Processing Unit (GPU)

• Born specifically for graphics, then re-adapted
for scientific computation

• The same operation is performed on a large set
of objects (points, lines, triangles)

• Large number of ALUs (∼100)
• Large number of registers (∼32k)
• Large bandwidth

Charting the landscape: Processors

Memory

Pr
oc

es
so

rs

Complex cores Simpler cores Specialized coresMixed cores

SIMD Units

SIMD—Single Instruction Stream,
Multiple Data Stream

• One operation executed on a set of data (e.g.,
matrix operations)

• Data-level Parallelism
• Synchronous operation

Vector Processor (or Array Processor)

• Vector registers
• Vectorized and pipelined functional units
• Vector instructions
• Interleaved memory
• Strided memory access and hardware scatter/gather

Charting the landscape: Processors

Memory

Pr
oc

es
so

rs

Charting the landscape: Memory

Memory

Pr
oc

es
so

rs

Unified

• The “traditional” memory taught in enginering courses, used by all computers
until 2000's

• A single address space
• A single memory hierarchy

• Any inexperienced programmer should be able to use it effectively
• There is the cache anyhow: notion of locality and access order

Charting the landscape: Memory

Memory

Pr
oc

es
so

rs

Unified Multi-Cache

• Still a single chunk or RAM
• Multiple cache hierarchies are introduced

• We still enjoy a single address space, and have increased performance (per-
core caches)

• New “performance effects”:
• locality is more important (L2 cache is shared among subgroups of cores)
• layout matters: the false cache-sharing performance anomaly

Cache Coherence (CC)
• CC defines the correct behaviour of caches, regardless

of how they are employed by the rest of the system
• Typically programmers don’t see caches, but caches are

usually part of shared-memory subsystems

• What is the value of A in C2?

Strong Coherence

• Most intuitive notion of CC is that cores are cache-
oblivious:
– All cores see at any time the same data for a particular

memory address, as they should have if there were no
caches in the system

• Alternative definition:
– All memory read/write operations to a single location A

(coming from all cores) must be executed in a total order
that respects the order in which each core commits its own
memory operations

Strong Coherence

• A sufficient condition for strong coherence is
jointly given by implementing two invariants:
1. Single-Writer/Multiple-Readers (SWMR)

• For any memory location A, at any given epoch, either a
single core may read and write to A or some number of
cores may only read A

2. Data-Value (DV)
• The value of a memory location at the start of an epoch is

the same as its value at the end of its latest read-write
epoch

CC Protocols
• A CC protocol is a distributed algorithm in a message-

passing distributed system model
• It serves two main kinds of memory requests

– Load(A) to read the value of memory location A
– Store(A, v) to write the value v into memory location A

• It involves two main kinds of actors
– Cache controllers (i.e., L1, L2, ..., LLC)
– Memory controllers

• It enforces a given notion of coherence
– Strong, weak, no coherence

Coherency Transactions

• A memory request may traduce into some
coherency transactions and produce the
exchange of multiple coherence messages

• There are two main kinds of coherency
transactions:
– Get: Load a cache block b into cache line l
– Put: Evict a cache block b out of cache line l

Cache and Memory Controllers

Finite-State Machines
• Cache controllers manipulate local finite-state machines (FSMs)
• A single FSM describes the state of a copy of a block (not the block

itself)
• States:

– Stable states, observed at the beginning/end of a transaction
– Transient states, observed in the midst of a transaction

• Events:
– Remote events, representing the reception of a coherency message
– Local events, issued by the parent cache controller

• Actions:
– Remote action, producing the sending of a coherency message
– Local actions, only visible to the parent cache controller

Families of Coherence Protocols

• Invalidate protocols:
– When a core writes to a block, all other copies are

invalidated
– Only the writer has an up-to-date copy of the block
– Trades latency for bandwidth

• Update protocols:
– When a core writes to a block, it updates all other

copies
– All cores have an up-to-date copy of the block
– Trades bandwidth for latency

Families of Coherence Protocols
• Snooping Cache:

– Coherence requests for a block are broadcast to all controllers
– Require an interconnection layer which can total-order requests
– Arbitration on the bus is the serialization point of requests
– Fast, but not scalable

• Directory Based:
– Coherence requests for a block are unicast to a directory
– The directory forwards each request to the appropriate core
– Require no assumptions on the interconnection layer
– Arbitration at the directory is the serialization point of requests
– Scalable, but not fast

Directory System Model

Snooping-Cache System Model

The VI Protocol
• Only one cache controller can read and/or write the block in any

epoch
• Supported transactions:

– Get: to request a block in read-write mode from the LLC controller
– Put: to write the block’s data back to the LLC controller

• • List of events:
– Own-Get: Get transaction issued from local cache controller
– Other-Get: Get transaction issued from remote cache controller
– Any-Get: Get transaction issued from any controller
– Own-Put: Put transaction issued from local cache controller
– Other-Put: Put transaction issued from remote cache controller
– Any-Put: Put transaction issued from any controller
– DataResp: the block’s data has been successfully received

The VI Protocol

The VI Protocol
• It has an implicit notion of dirtiness of a block

– When in state V , the L1 controller can either read-write or just read the
block (can’t distinguish between the two usages)

• It has an implicit notion of exclusiveness for a block
– When in state V , the L1 controller has exclusive access to that block (no

one else has a valid copy)
• It has an implicit notion of ownership of a block

– When in state V , the L1 controller is responsible for transmitting the
updated copy to any other controller requesting it

– In all other states, the LLC is responsible for the data transfer
• This protocol has minimal space overhead (only a few states), but it is

quite inefficient—why?

What a CC Protocol should offer
• We are interested in capturing more aspects of a cache block

– Validity: A valid block has the most up-to-date value for this block. The
block can be read, but can be written only if it is exclusive.

– Dirtiness: A block is dirty if its value is the most up-to-date value, and it
differs from the one stored in the LLC/Memory.

– Exclusivity: A cache block is exclusive if it is the only privately cached copy
of that block in the system (except for the LLC/Memory).

– Ownership: A cache controller is the owner of the block if it is responsible
for responding to coherence requests for that block.

• In principle, the more properties are captured, the more aggressive is
the optimization (and the space overhead!)

MOESI Stable States
• Modified (M): The block is valid, exclusive, owned and potentially dirty. It

can be read or written. The cache has the only valid copy of the block.

• Owned (O): The block is valid, owned, and potentially dirty, but not exclusive.
It can be only read, and the cache must respond to block requests.

• Exclusive (E): The block is valid, exclusive and clean. It can be only read. No
other caches have a valid copy of the block. The LLC/Memory block is up-to-
date.

• Shared (S): The block is valid but not exclusive, not dirty, and not owned. It
can be only read. Other caches may have valid or read-only copies of the
block.

• Invalid (I): The block is invalid. The cache either does not contain the block,
or the block is potentially stale. It cannot be read nor written.

MOESI Stable States

• Many protocols spare one bit and drop the
Owned state (MESI)

• Simpler protocols drop the Exclusive state (MSI)

CC and Write-Through Caches

• Stores immediately propagate to the LLC
– States M and S collapse into V (no dirty copies)
– Eviction only requires a transition from V to I (no

data transfer)
• Write-through requires more bandwidth and

power to write data

CC and False Cache Sharing
• This problem arises whenever two cores access different data items

that lie on the same cache line (e.g., 64B–256B granularity)
• It produces an invalidation although accessed data items are different

• Can be solved using sub-block coherence or speculation
• Better if prevented by good programming practices

The False Cache Sharing Problem

Charting the landscape: Memory

Memory

Pr
oc

es
so

rs

Unified Multi-Cache NUMA RAM

• We have multiple chunks of RAM, yet still a single address space

• The interconnect plays an important role: some memory is closer to some CPU,
farther to others

• Conscious programmers should care about copying: having the possibility to
point a byte could become expensive performance-wise

UMA vs NUMA
• In Symmetric Multiprocessing (SMP) Systems, a single memory

controller is shared among all CPUs (Uniform Memory Access—
UMA)

• To scale more, Non-Uniform Memory Architectures (NUMA)
implement multiple buses and memory controllers

Non-Uniform Memory Access
• Each CPU has its own local memory which is accessed faster
• Shared memory is the union of local memories
• The latency to access remote memory depends on the ‘distance’

[NUMA organization with 4 AMD Opteron 6128 (2010)]

Non-Uniform Memory Access
• A processor (made of multiple cores) and the memory local to it

form a NUMA node
• There are commodity systems which are not fully meshed:

remote nodes can be only accessed with multiple hops
• The effect of a hop on commodity systems has been shown to

produce a performance degradation of even 100%—but it can
be even higher with increased load on the interconnect

NUMA Policies
• Local (first touch): allocation happens on the node the process is

currently running on. Local allocation is the default policy
• Preferred: a set of nodes is specified. Allocation is first tried on these

nodes. If memory is not available, the next closest node is selected
• Bind: similarly to the preferred policy, a set of nodes can be specified.

If no memory is available, the allocation fails
• Interleaved: an allocation can span multiple nodes. Pages are allocated

in a round-robin fashion across several specified nodes.

• Policies can be specified for processes, threads, or particular regions
of virtual memory

NUMA System Calls (Linux)
• Require #include<numaif.h> and must be linked with -lnuma
• int set_mempolicy(int mode, unsigned long *nodemask, unsigned long

maxnode)
– mode is one of MPOL_DEFAULT, MPOL_BIND, MPOL_INTERLEAVE, MPOL_PREFERRED
– nodemask is a bitmask specifying what nodes are affected by the policy
– maxnode tells what is the most significant bit in nodemask which is valid

• int get_mempolicy(int *mode, unsigned long *nodemask, unsigned
long maxnode, unsigned long addr, unsigned long flags)
– If flags is 0, then information about the calling process’s default policy is

returned in nodemask and mode
– If flags is MPOL_F_MEMS_ALLOWED, mode is ignored and nodemask is set

accordingly all available NUMA nodes
– If flags is MPOL_F_ADDR, the policy governing memory at addr is returned

• int mbind(void *addr, unsigned long len, int mode, unsigned long
*nodemask, unsigned long maxnode, unsigned flags)
– Can be used to set a policy for a memory region defined by addr and len

NUMA Page Migration (Linux)
• The kernel itself does not perform automatic memory migration of

pages that are not allocated optimally
• int numa_migrate_pages(int pid, struct bitmask

*fromnodes, struct bitmask *tonodes)
– This system call can be used to migrate all pages that a certain process

allocated on a specific set of nodes to a different set of nodes
• long move_pages(int pid, unsigned long count, void

**pages, const int *nodes, int *status, int flags)
– Allows to move specific pages to any specified node
– The system call is synchronous
– status allows to check the outcome of the move operation

How to Move Pages

libnuma

• This library offers an abstracted interface
• It is the preferred way to interact with a NUMA-aware

kernel
• Requires #include<numa.h> and linking with -lnuma
• Some symbols are exposed through numaif.h

• numactl is a command line tool to run processes with a
specific NUMA policy without changing the code, or to
gather information on the NUMA system

Checking for NUMA

Allocation and Policies
• Different memory allocation APIs for different nodes:

– void *numa_alloc_onnode(size_t size, int node)
– void *numa_alloc_local(size_t size)
– void *numa_alloc_interleaved(size_t size)
– void *numa_alloc_interleaved subset(size_t size,
struct nodemask_t *nodemask)

• The counterpart is numa_free(void *start, size t size)
• How to set a process policy:

Dealing with Nodemasks
• nodemask_t defines a nodemask
• A nodemask can be cleared with
nodemask_zero(nodemask_t *)

• A specific node can be set with
nodemask_set(nodemask_t *, int node), cleared
with nodemask_clear(nodemask_t *, int node),
and checked with nodemask_isset(nodemask_t *,
int node)

• nodemask_equal(nodemask_t *, nodemask_t *)
compares two different nodemasks

Binding to CPUs
• Run current thread on node 1 and allocate memory on node 1:

• Bind process CPU and memory allocation to node 1:

• Allow the thread to run on all CPUs again:

numactl

• numactl --cpubin=0 --membind=0,1 program
– Run program on CPUs of node 0 and allocate memory from nodes 0 and 1

• numactl --preferred=1 numactl --show
– Allocate memory preferably from node 1 and show the resulting state

• numactl --interleave=all program
– Run program with memory interleaved over all available nodes

• numactl --offset=1G --length=1G --membind=1 --file
/dev/shm/A --touch
– Bind the second gigabyte in the tempfs file /dev/shm/A to node 1

• numactl --localalloc /dev/shm/file
– Reset the policy for the shared memory file /dev/shm/file

• numactl --hardware
– Print an overview of the available nodes

Charting the landscape: Memory

Memory

Pr
oc

es
so

rs

Unified Multi-Cache NUMA RAM Incoherent &
weak memory

• The cache subsystem no longer ensures consistency, or ensures “reduced”
consistency

• Different CPUs could see different values at the same byte

• Programmers must take care of synchronization explicitly

• Many of these are performance experiments that are failing in the
marketplace

• Yet, all mainstream architectures have some form of weak memory

Weaker Coherence
• Weaker forms of coherence may exist for performance purposes

– Caches can respond faster to memory read/write requests
• The SWMR invariant might be completely dropped

– Multiple cores might write to the same location A
– One core might read A while another core is writing to it

• The DV invariant might hold only eventually
– Stores are guaranteed to propagate to all cores in d epochs
– Loads see the last value written only after d epochs

• The effects of weak coherency are usually visible to
programmers
– Might affect the memory consistency model (see later)

No Coherence
• The fastest cache is non-coherent

– All read/write operations by all cores can occur
simultaneously

– No guarantees on the value observed by a read
operation

– No guarantees on the propagation of values from
write operations

• Programmers must explicitly coordinate caches
across cores
– Explicit invocation of coherency requests via

C/Assembly APIs

Intel Single-Chip Cloud Computing (SCC)

• 48 Intel cores on a single die
• Power 125W cores @ 1GHz, Mesh @ 2Ghz
• Message Passing Architecture
• No coherent shared memory
• Proof of Concept of a scalable many-core solution

Memory Consistency (MC)
• MC defines the correct behaviour of shared-memory

subsystems, regardless of how they are implemented
• Programmers know what to expect, implementors

know what to provide

• What is the value of r2?

Reordering of Memory Accesses
• Reordering occurs when two memory R/W operations:

– Are committed by a core in order
– Are seen by other cores in a different order

• Mainly for performance reasons
– Out-of-order execution/retirement
– Speculation (e.g., branch prediction)
– Delayed/combined stores

• Four possible reorderings
– Store-store reordering
– Load-load reordering
– Store-load reordering
– Load-store reordering

An example

• Multiple reorderings are possible:
– (r1, r2) = (0, NEW) [S1, L1, S2, L2]
– (r1, r2) = (NEW, 0) [S2, L2, S1, L1]
– (r1, r2) = (NEW, NEW) [S1, S2, L1, L2]
– (r1, r2) = (0, 0) [L1, L2, S1, S2]

Allowed by most real hardware
architectures (also x86!)

Program and Memory Orders

• A program order ≺p is a per-core total order
that captures the order in which each core
logically executes memory operations

• A memory order ≺m is a system-wide total order
that captures the order in which memory
logically serializes memory operations from all
cores

• Memory consistency can be defined imposing
constraints on how ≺p and ≺m relate to each
other

Sequential Consistency
• Let L(a) and S(a) be a Load and a Store to address a,

respectively
• A Sequentially Consistent execution requires that:

– All cores insert their loads and stores into ≺m respecting their
program order regardless of whether they are to the same or
different address (i.e., a = b or a ≠ b):

• If L(a) ≺p L(b) ⇒ L(a) ≺m L(b) (Load/Load)
• If L(a) ≺p S(b) ⇒ L(a) ≺m S(b) (Load/Store)
• If S(a) ≺p S(b) ⇒ S(a) ≺m S(b) (Store/Store)
• If S(a) ≺p L(b) ⇒ S(a) ≺m L(b) (Store/Load)

– Every load gets its value from the last store before it (as seen
in memory order) to the same address:

• value of L(a) = value of max≺m {S(a)|S(a) ≺m L(a)} where max≺m is the
latest in memory order

Sequential Consistency in Practice

• We can globally reorder the execution in four
different ways

• Only three of them are sequentially consistent

Sequential Consistency in Practice

• This is a SC execution

Sequential Consistency in Practice

• This is a SC execution

Sequential Consistency in Practice

• This is a SC execution

Sequential Consistency in Practice

• This is not a SC execution

Why did we say that this outcome
is allowed on common hardware architectures?

Weaker Consistency: Total Store Order

• A FIFO store buffer is
used to hold committed
stores until the memory
subsystem can process it

• When a load is issued by
a core, the store buffer is
looked up for a matching
store
– if found, the load is

served by the store buffer
(forwarding)

– otherwise it is served by
the memory subsystem
(bypassing)

Sequential Consistency in Practice
• This is a valid TSO execution

• A programmer might want to avoid the result
(r1, r2) = (0, 0)

Memory Reordering in the Real World

Type Alpha ARMv7 POWER
SPARC

PSO x86 AMD64 IA-64

LOAD/LOAD ✓ ✓ ✓ ✓
LOAD/STORE ✓ ✓ ✓ ✓
STORE/STORE ✓ ✓ ✓ ✓ ✓
STORE/LOAD ✓ ✓ ✓ ✓ ✓ ✓ ✓
ATOMIC/LOAD ✓ ✓ ✓ ✓
ATOMIC/STORE ✓ ✓ ✓ ✓ ✓
Dependent LOADs ✓
Incoherent I-cache ✓ ✓ ✓ ✓ ✓ ✓

The Effect Seen by Programmers
struct foo {

 int a;

 int b;

 int c;

 };

 struct foo *gp = NULL;

 /* . . . */

 p = malloc(sizeof(*p));

 p->a = 1;

 p->b = 2;

 p->c = 3;

 gp = p;

Is this always correct?

The Effect Seen by Programmers
struct foo {

 int a;

 int b;

 int c;

 };

 struct foo *gp = NULL;

 /* . . . */

 p = malloc(sizeof(*p));

 p->a = 1;

 p->b = 2;

 p->c = 3;

 gp = p;

 SFENCE "publish" the value

The Effect Seen by Programmers

 p = gp;

 if (p != NULL) {

 do_something_with(p->a, p->b, p->c);

 }

Is this always correct?

The Effect Seen by Programmers

 p = gp;
 if (p != NULL) {

 do_something_with(p->a, p->b, p->c);

 }

Memory/compiler barriers here

Memory Fences

• Let X(a) be either a load or a store operation to a
• Memory fences force the memory order of

load/store operations:
– If X(a) ≺p FENCE ⇒ X(a) ≺m FENCE
– If FENCE ≺p X(a) ⇒ FENCE ≺m X(a)
– If FENCE ≺p FENCE ⇒ FENCE ≺m FENCE

• With fences it is possible to implement SC over
TSO (with a significant performance penalty)

x86 Fences
• MFENCE: Full barrier

– If X(a) ≺p MFENCE ≺p X(b) ⇒ X(a) ≺m MFENCE ≺m X(b)
• SFENCE: Store/Store barrier

– If S(a) ≺p SFENCE ≺p S(b) ⇒ S(a) ≺m SFENCE ≺m S(b)
• LFENCE: Load/Load and Load/Store barrier

– If L(a) ≺p LFENCE ≺p X(b) ⇒ L(a) ≺m LFENCE ≺m X(b)

• Both MFENCE and SFENCE drain the store
buffer

Charting the landscape: Memory

Memory

Pr
oc

es
so

rs

Unified Multi-Cache NUMA RAM Incoherent &
weak memory

Disjoint
(tight)

• Different cores see different memory, connected over a shared busnetwork
• Reliability is still evaluated as a single unit
• Typical of ~2010 vintage GPU systems, or in general of systems which require

offloading

• Removed all precedent burdens from programmers
• replaced with that of copying data

Inter-Core Connection

• What is the importance of inter-core connection?

Front-Side Bus (up to 2004)

Front-Side Bus (up to 2004)
• All traffic is sent across a single shared bi-directional bus
• Common width: 64 bits, 128 bits－multiple data bytes at a time
• To increase data throughput, data has been clocked in up to 4x

the bus clock
– double-pumped or quad-pumped bus

Dual Independent Buses (2005)

Dual Independent Buses (2005)

• The single bus is split into two separate buffers
• This doubles the available bandwidth, in

principles

• All snoop traffic had to be broadcast on both
buses

• This would reduce the effective bandwidth
– Snoop filters are introduced in the chipset
– They are used as a cache of snoop messages

Dedicated High-Speed Interconnects (2007)

QuickPath Interconnect (2009)

• Migration to a distributed
shared memory architecture
chipset

• Inter-CPU communication
based on high-speed uni-
directional point-to-point
links

• Data can be sent across
multiple lanes

• Transfers are packetized:
data is broken into multiple
transfers

QPI and Multicores

• The connection
between a core and
QPI is realized using a
crossbar router:

QPI Layers

• Each link is made of 20
signal pairs and a
forwarded clock

• Each port has a link
pair with two uni-
directional link

• Traffic is supported
simultaneously in both
directions

Charting the landscape: Memory

Memory

Pr
oc

es
so

rs

Unified Multi-Cache NUMA RAM Incoherent &
weak memory

Disjoint
(tight)

Disjoint
(loose)

• The memory bus is replaced with a network
• We have islands of computing power, which can be closer of farther apart

• Typical of cloud computing, and the idea of cloud-core

• Two additional concerns for programmers (often abstracted by libraries):
• reliability: nodes come and go
• latency: the network congestion and the distance play an important role

Charting the landscape

Memory

Pr
oc

es
so

rs

Mainstream Hardware: 1970s－today

Memory

Pr
oc

es
so

rs

Mainstream
CPUs (1975–)

(GP)GPU
(2008–)

Mainstream Computers
(2010–)

Recent Hardware Trends

Memory

Pr
oc

es
so

rs

XBOX
360

Intel Sandy Bridge
AMD Fusion
NVIDIA Tegra

Intel MIC
(2012-2019)

PS3
(CellBE)TPU (2016–)

Neuromorphic
(2011–)

The Cloud

Memory

Pr
oc

es
so

rs

Cloud Computing

Cloud Computing
+ Accelerators

Cloud Computing
+ GPU

Memory

Pr
oc

es
so

rs

Welcome to the jungle...

Charting the landscape

Memory

Pr
oc

es
so

rs

+ Performance/Watt
+ Parallel

- Performance/Watt
- Parallel

Petascale Computing

• Petascale: a computer system capable of reaching
performance in excess of one petaflops, i.e. one
quadrillion floating point operations per second.

• Level already reached in ~2007
– Several in the US
– Four in China
– One in Russia
– Some in Europe

Exascale Computing

• Computing systems capable of at least one
exaFLOPS, or a billion billion (i.e. a quintillion)
calculations per second

• Expected to enter the market in 2020/2021
– Involved both research and industrial partners
– Huge effort put by US, Europe, and China

From Petascale to Exascale
Re

la
tiv

e
Tr

an
sis

to
r P

er
fo

rm
an

ce

1000

100

10

1
1986 1991 1992 2001 2006 2011 2016 2021

Giga

Tera

Peta
Exa

32x from transistors
32x from parallelism

8x from transistors
128x from parallelism

1.5x from transistors
670x from parallelism

Complicating the Picture: Dark Silicon

• Dark silicon is increasing (portion of circuitry that cannot be
powered off for TDP constraints)

• We won’t be able to run all computing units powered on and at
the max performance state

• Power management mechanisms
are required to fine-tune
allocation of the power
budget

Recap: The Hardware Perspective
• Parallelism is the de-facto standard to support the exascale transition

• General purpose computing units even through parallelism cannot
reach exascale with tolerable power consumption

• Heterogeneity of specialized computing units is key
– FPGA
– GPUs
– Same ISA heterogeneous chips
– Co-processors (Xeon Phi)

Re
la

tiv
e

Tr
an

sis
to

r P
er

fo
rm

an
ce

1000

100

10

1
1986 1991 1992 2001 2006 2011 2016 2021

Giga

Tera

Peta
Exa

32x from transistors
32x from parallelism

8x from transistors
128x from parallelism

1.5x from transistors
670x from parallelism

The Software Perspective

Sequential programming

Concurrent
programming

Heretogeneous
programming

The Software Perspective
• Applications will need to be at least massively

parallel, and ideally able to use non-local cores
and heterogeneous cores

• Efficiency and performance optimization will
get more, not less, important

• Programming languages and systems will
increasingly be forced to deal with
heterogeneous distributed parallelism

Complexity in Plain Sight
• The hardware is no longer hiding its complexity

• Software libraries (e.g. OpenCL) require
understanding of the underlying hardware
infrastructure

• Who will be using heterogeneous architectures?

• Economists
• Genetic engineers
• Etc.

• Computer scientists
• Biologists
• Medical scientists

Questions?

?

