x86 Initial Boot Sequence

Advanced Operating Systems and Virtualization

Alessandro Pellegrini
AY.2019/2020

[\

The whole sequence at a glance

TimeFlow Switch to Protected |
\ 1
'y | Mode
"CPU in Real Mode Al T CPU in Protected Mode
2 Early Full First User-
: .EIF}S. T ol Boot Loader Kernel Kernel L Mode
Initializaticn Record i
| Imtlallzatmrr) H'trtlallzatl-::-n Process
b ¥ ¥ | I ¥
BIOS Services | | i Kermel Services
¥ | s \

Hardware

I\\ y & 2

Boot Sequence

p
BIOS/UEFI The actual Hardware Startup
J
>
Executes the Stage 2 bootloader
(skipped in case of UEFI))
-
Loads and starts the Kernel
J
p
The Kernel takes control of and initializes the machine
(machine-dependent operations)
J
-
First process: basic environment initialization
(e.g., SystemV Init, systemd)
J
-
Initializes the user environment
(e.g., single-user mode, multiuser, graphical, ...)
J

|8 W N y & 2 AN

-y (&

Hardware Power Sequences:
The Pre-Pre-Boot

* When someone pushes the power button, the

CPU can't simply jump up and start fetching
code from flash memory

* The hardware waits for the power supply to
settle to its nominal state

* Additional voltages must be supplied:
— On x86 systems: 1.5,3.3,5,and 12V

— Power Sequencing: these must be provided in a
particular order

Hardware Power Sequences:
The Pre-Pre-Boot

 The power is sequenced by controlling analog
switches, typically field-effect transistors

* The sequence is often driven by a Complex
Program Logic Device (CPLD)

* Platform clocks are derived from a small
number of input clock and oscillator sources.

— The devices use phase-locked loop circuitry to
generate the derived clocks used for the platform.

— These clocks take time to converge.

Hardware Power Sequences:
The Pre-Pre-Boot

Board
Clock
S0C
Rieast Device
Power
Sequendng
& E
Control
r x
Field
gl |
[. Effect
Supply (eg 12!:}.1. | 4 : _ Espansion
y ! p Transigors
/ Power Regulation A (switches) ' 5 i
| R Devices
1.5
A3w
Sv
12voits

iaw

'/ V=3 &..Vl)\

Initial life of the System

* The power-sequencing CPLD can de-assert the
reset line to the processor

* At this point, the system is in a very basic state:
— Caches are disabled
— The Memory Management Unit (MMU) is disabled

— The CPU is executing in Real Mode (8086-
compatible)

— Only one core can run actual code
— Nothing is in RAM (what to execute?)

Segmented Memory

Address space

Segment B

Segment C
Segment A

logical address = <seg.id : offset> (e.g. <A : 0x10>)

Segmentation-based addressing

e There are 4 basic 16-

— CS: code segment
— DS: data segment

— SS: stack segment
— ES: extra segment (to !

bit segment registers:

be used by the programmer)

- Intel 80386 (1985) ac

ded two new registers

— FS and GS, with no predefined usage

Segmentation-based addressing

e The CPU resolves addresses as:

Memory Address Translation

/

x86 CPU with segmentation

Assembly
Instructions
in Program

|

.

Logical
Address

iaw

'/ V=3 &.S’l)\

Northbridge
Chip

|

RAM
Modules

Segmentation Nowadays

Segmentation is still present and always
enabled

Each instruction that touches memory
implicitly uses a segment register:

— a jump instruction uses CS

— a push Instruction uses SS

Most segment registers can be loaded using a
mov Instruction

CS can be loaded only with a long ymp or cai1

x86 Real Mode

16-bit instruction execution mode

20-bit segmented memory address space
— 1 MB of total addressable memory

Address in segment registers is the 16-bits
higher part

Each segment can range from 1 byte to 65,536
bytes (16-bit offset)

Real Mode Addressing Resolution

%86 CPU in 16-bit real mode, using cs = 0x1000

L

IMP Bx6825

\\\\\\

"By @

Addressing in x86 Real Mode

FFFEF:FFFFE
Segment 3
Segment address: 0x28C0
Start of segment 3
Address: 0x28C0:0000
= 0r -
0x2143:0x77D0
Linear address: 0x28C00
Growing
Start of segment Segment 2 ;
Address: 0x2143:0000 Segment address: 0x2143 Phy31cal
Linear address: 0x21430 _ Addresses
Segment 1
Segment address: 0xOCEF
Start of segment
Address: 0x0CEF:0000
Linear address: 0xOCEF0
0000:0000

Main memory

y & 2 AN

"By @

Addressing in x86 Real Mc

Weren't they
Segment 3 20 bltS?
Segment address: 0x28C0
Start of segment 3
Address: 0x28C0:0000
= 0r -
0x2143:0x77D0
Linear address: 0x28C00
Growing
Start of segment Segment 2 ;
Address: 0x2143:0000 Segment address: 0x2143 Phy31cal
Linear address: 0x21430 _ Addresses
Segment 1
Segment address: 0xOCEF
Start of segment
Address: 0x0CEF:0000
Linear address: 0xOCEF0
0000:0000

Main memory

y & 2 AN

"By @

"By @

Addressing

y & 2

A N

Start of segment 3
Address: 0x28C0:0000

- 01‘ -
0x2143:0x77D0
Linear address: 0x28C00

Start of segment
Address: 0x2143:0000
Linear address: 0x21430

Start of segment
Address: 0x0CEF:0000
Linear address: 0x0CEFO0

in x86 Real Mc

Segment 3
Segment address: 0x28C0

—>

—_—

Segment 2
Segment address: 0x2143

Segment 1
Segment address: 0xOCEF

Main memory

Weren't they
20 bits?

Largest address
is FFFFF!

Growing
Physical
Addresses

0000:0000

First Fetched Instruction

e The first fetched address is FOOQ : FFFO

— This is known as the reset vector
— On IBM PCs this is mapped to a ROM: the BIOS

— This gives space only to 16 bytes from the top of
ROM memory:

ljmp $0xf000, $0xe05b

e This is where the BIOS code is loaded

BIOS Operations

* The BIOS first looks for video adapters that may
need to load their own routines

— These ROMs are mapped from C000:0000 to
C780:0000

* Power-On Self-Test (POST)
— Depends on the actual BIOS
— Often involves testing devices (keyboard, mouse)
— Video Card Initialization

— RAM consistency check

BIOS Operations

* Boot configuration loaded from CMOS (64 bytes)

— For example, the boot order

 Shadow RAM initialization
— The BIOS copies itself into RAM for faster access
* The BIOS tries to identify the Stage 1 bootloader,

(512 bytes) using the specified boot order and
loads it to memory at 0000:7c00

* Control is given with:
1jmp $0x0000, $0x7c00

The RAM after the BIOS startup

0x00100000 (1 Mb)

BIOS ROM

O0x000F0000 (960 Kb)

16-bit devices,

expansion ROM
0x000C0000 (768 Kb)
VGA Display
0x000A0000 (640 Kb) 7
The bootloader |
is loaded here The only available
Low Memory o "RAM" in the
early days
0x00000000 _

(RYZSYS

Boot Sequence

-
The actual Hardware Startup
J
-
Bootloader Stage 1 Executes the Stage 2 bootloader
ootioader >tage (skipped in case of UEFI)
J
-
Loads and starts the Kernel
J
p
The Kernel takes control of and initializes the machine
(machine-dependent operations)
J
-
First process: basic environment initialization
(e.g., SystemV Init, systemd)
J
-
Initializes the user environment
(e.g., single-user mode, multiuser, graphical, ...)
J

y & 2 AN

-y (&

The Boot Sector

* The first device sector keeps the so called
Master Boot Record (MBR)

* This sector keeps executable code and a 4-entry
partition table, identifying different device
partitions (in terms of its positioning on the
device)

* In case the partition is extended, then it can
additionally keep up to 4 sub-partitions
(extended partition)

The Device Organization

} Boot code

} Partition table

/
[

\
<4

Boot
partition ‘ ‘

~— -
—~— ———

Partition 1 Partition 3 (extended)

I Boot sector: it can contain additional boot code
I Extended partition boot record

iaw y & 2

| W=7

The Master Boot Record (MBR)

* This implements the Stage 1 bootloader

* (Less than) 512 bytes can be used to load the
operating system

Offset Size (bytes) Description

0 436 (to 446, if you need a little extra) | MER Bootstrap (flat binary executable code)
Ox1b4 (10 Optional "unique" disk 1D

Ox1be (64 MER Partition Table, with 4 entries (below)
Ox1be | 16 First partition table entry

Ox1ice | 16 Second partition table entry

Oxl1de |16 Third partition table entry

Oxlee |16 Fourth partition table entry

Ox1fe |2 (0x55, OxAA) "Valid bootsector” signature bytes

The Master Boot Record (MBR)

* The initial bytes of the MBR can contain the
BIOS Parameter Block (BPB)

* [tis a data structure describing the physical
layout of a data storage volume

— [tis used, e.g., by FAT16, FAT32, and NTFS

* This eats up additional space, and must be
placed at the beginning of the MBR!

— How to execute the code?

The Master Boot Record (MBR)

.codelb Sides: .short 2
.text HiddenSectors: .int O
.globl start; LargeSectors: .int O
DriveNo: .short O
_start: Signature: .byte 41 #41 = floppy
Jjmp .stagel start VolumeID: .int 0x00000000
Volumelabel: .string "myOS"
OEMLabel: .string "BOOT" FileSystem: .string "FAT12"
BytesPerSector: .short 512
SectorsPerCluster: .byte 1 .Stagel start:
ReservedForBoot: .short 1 cli # Disable interrupts
NumberOfFats: .byte 2 XOrw %ax,%ax # Segment zero
RootDirEntries: .short 224 movw %ax, $ds
LogicalSectors: .short 2880 MOVW $ax, s€s
MediumByte: .byte 0xO0FO0 MOVW %axX, $SsS
SectorsPerFat: .short 9
SectorsPerTrack: .short 18

V' 4 iaw y & 2 AN

| W=7

The Master Boot Record (MBR)

.codelb Sides: .short 2
.text HiddenSectors: .int O
.globl start; LargeSectors: .int O
DriveNo: .short O
_start: Signature: .byte 41 #41 = floppy
Jjmp .stagel start VolumeID: .int 0x00000000
Volumelabel: .string "myOS"
OEMLabel: .string "BOOT" FileSystem: .string "FAT12"
BytesPerSector: .short 512
SectorsPerCluster: .byte 1 .Stagel start:
ReservedForBoot: .short 1 cli # Not safe here!
NumberOfFats: .byte 2 XOrw %ax,%ax # Segment zero
RootDirEntries: .short 224 movw %ax, $ds
LogicalSectors: .short 2880 MOVW %aX,s€S | yWhat about CS?
MediumByte: .byte 0xO0FO0 MOVW %axX, $SsS
SectorsPerFat: .short 9
SectorsPerTrack: .short 18

V' 4 iaw y & 2 AN

| W=7

The Stage 1 Bootloader must...

* Enable address A20
* Switch to 32-bit protected mode
* Setup a stack

 Load the kernel

— Yet, the kernel is on disk: how to navigate the file
system? There is not much space for code...

— Load the Stage 2 bootloader!

A20 Enable

* Intel 80286 increased the addressable memory
to 16 Mb (24 address lines)

* How to keep backward compatibility with 80867

— "wrap-around” problem

— By default address line 20 is forced to zero!

 How to enable/disable this line?
— Use the 8042 keyboard controller (sic!)

— It had a spare pin which they decided to route the
A20 line through

A20 Enable

The output port of the keyboard controller has a
number of functions.

Bit 1 is used to control A20:

— 1 = enabled

— 0 =disabled

Port 0x64 is used to "communicate” an operation to
the controller

— 0xd1 means "write"

0Oxdd and 0xdf enable/disable A20, when sent to port
0x60

— You have to wait for previous operations to complete (the
controller is slow)

A20 Enable

call wait for 8042

movb $0xdl, %al #command write
outb %al, S0x64

call wait for 8042

movb $O0xdf, %al # Enable A20
outb %al, S50x60

call wait for 8042

walt for 8042:
inb %al, S0xo64

tesb $2, %al # Bit 2 set = busy
Jnz wait for 8042
ret

V' 4 iaw y & 2 AN

| W=7

x86 Protected Mode

This execution mode was introduced in 80286
(1982)

With 80386 (1985) it was extended by adding
paging

CPUs start in Real Mode for backwards
compatibility

Still today, x86 Protected Mode must be
activated during system startup

X86_64 Registers

Registri Fisici e Registri Virtuali

[] ax | EAx RAX |L s |esp RSP| [[=|rew]| reD| RS ’Lmzw R12D|R12
| ox |Ecx RCX |ﬁ a7 | eep RBP| [~ row]|rop | RO ’F_wa r130|R13
(oo | ox |EDX RDX m_ si | Esl |RSI| [[=|r1ow|R10D|R10 m[fﬁmz@w R14D|R14

(e | Bx |EBXx RBX m .| o | eol |RDI| [~ =|r11w|R11D|R11 W =|R15W|R15D|R15

s EFLAGS|RFLAGS n P |EIP| RIP

[64-bit Register [32-bit Register || 16-bit Register [8-bit Register

20 di 75 - Il Processore z64

|8 W N y & 2

-y (&

X86_64 Registers

|ZMMO [YMMO Do | ZMM1 [YMML il | | ST(0)[MMO] | ST(1) [MM1]| [s RAX| R§ [wiren||R12[=] | CRO | CR4 |
(ZMM2 YMM2 D [[ZMM3 - YMM3 Danis | [ST()[(MM2]] ST(3)[MM3]] [T sIsxRBX | R9 [Cwe|[R13[wwe] [CR1 | CRS |
[ZMM4 YMM4 Dona [[ZMMS - [YMMS v | | ST(4) [MM4]][ST(5) [MM5]] [o0ecX RCX|R10[wrwon]| R14[ko] | CR2 || CR6 |
[ZMM6 [YMM6 Do [ZMM7 — [YMM7 Dz | [ST(6)[MM6]][ST(7) [MM7]| [50ex|RDX[R1L[wufaun|[R15[wiws| | CR3 || CR7 |
[ZMM8__ [VMMB VB | ZMM9__[VMMS LR] |[ee]e8 IRBP] | [[orepl |RDI[Iswese] RIP | | CR3 | CR8 |
[ZMMI0_ IMIO o [ZVMIL (VML s | [CW [eee re oe[re-cs] [[estRST] [eslRsP Misw | RO

[ZMM12 [YMM12 o] [[ZMM13 - [YMM13 Daaviss | | SW | CR10
[ZMM14 [YMM14Dania] | ZMM15 [YMMIS5 Dwis || | TW | =§ig’i” o .?f‘gbgf‘;giff‘ff =§‘2‘E't e W 1o-bitRegister [CR1]
|zMm16] zmmi17 | zvmis | zmm19] zMM20] zvmi21 [zvmz2| zvm23| PP DS it Register [l 128 b e o RegEtE CR12
|zMM24] ZMm25] ZMm26 | ZMM27] ZMM28] ZMv20 | ZMm30] ZMm31 | [Fe_orc|FP_DP|FPIP| | CS | SS | DS | [GDTR| IDTR | [DRO | DR6 | |[CR13]

ES | FS | GS | TR | LDTR| DRL|DR7||CR14]
[RFLAGSertAcsigs| _DR2 | DR8 | |CR15|mxcsk

| DR4 || DR10| DR12| DR14|
| DR5 || DR11 | DR13| DR15

4 |8 W N y & 2 A\

| W=7

nwo@m T

CRO

Bit | Name Full Name Description
Protected Mode
0 PE Eivcibi If 1, system is in protected mode, else system is in real mode
nable

1 MP Monitor co-processor | Controls interaction of WAIT/FWAIT instructions with TS flag in CRO

| 2 EM Emulation If set, no x87 FPU is present, if clear, x87 FPU is present
| 3 | TS | Task switched | Allows saving x87 task context upon a task switch only after x87 instruction used
4 ET | Extension type On the 386, it allowed to specify whether the external math coprocessor was an 80287 or 80387
| - | e | Harercera: | Enable internal x87 floating point error reporting when set, else enables PC style x87 error
detection
| 16 | WP | Write protect | When set, the CPU can't write to read-only pages when privilege level is 0
| 18 | AM | Alignment mask | Alignment check enabled if AM set, AC flag (in EFLAGS register) set, and privilege level is 3
29 | NW | Not-write through Globally enables/disable write-through caching
| 30 | cD | Cache disable | Globally enables/disable the memory cache
| 31 | PG | Paging | If 1, enable paging and use the CR3 register, else disable paging

V' 4 iaw y & 2 AN

| W=7

Entering Basic Protected Mode

The code must set bit 0 (PE) of register CRO

Setting PE to 1 does not immediately activate all
its facilites

[t happens when the CS register is first updated

This can be only done using a far jump (1jmp)
instruction, as already mentioned.

After this, code executes in 32/64-bit mode

Entering Basic Protected Mode
1jmp 0x0000, PE mode

.code3?
PE mode:

Set up the protected-mode data segment
reglsters

movw SPROT MODE DSEG, %ax

MOvVw %ax,

Q,
)]

movw %ax,

(D
n

MOvVw %ax,

movw %ax,

Q
0))

o° o© o°© o©° o\©°
Hh
n

MOVW

n
n

Segment Registers in Protected Mode

* In Protected Mode, a segment is no longer a raw
number

* It contains (also) an index into a table of
segment descriptors

* There are three types of segments:

— code
— data
— system

Descriptor Table Entry

63 55 47 32

Limit
4 bytes Base (24-31) G (16-19) 1|DPL Base (16-23)

4 bytes Base (8-15) Limit (@-15)

31 15 a

* Base: 32-bit linear addressing pointing to the
beginning of the segment

* Limit: size of the segment
* G: Granularity. If set, size is to be multiplied by 4096

* Descriptor Privilege Level (DPL): a number in [0-3]
to control access to the segment

Protected Mode: Privilege Levels

Least privileged

Ring 3 has restricted
access to memory
management,
instructions execution
(around 15 allowed
only at ring 0), and
[/0 ports

Most privileged

Device drivers

Device drivers

Applications

iaw y & 2

| W=7

Descriptor Tables

e Two tables are available on x86 architectures
* Global Descriptor Table (GDT):

— This is a system-wide table of descriptors
— It is pointed by the GDTR register

* Local Descriptor Table (LDT):
— Pointed by the LDTR register
— Not used anymore

Segment Selectors

16 bits Index (3-15) Xk RPL

1
15 2 L5

e TI: setto O for the GDT, setto 1 for the LDT

* Index: specifies the segment selector within the
associated table

* Requested Privilege Level (RPL): we'll come to
that later

Segmented Addressing Resolution

GOT
Global Descriptor Table

*
*

Segment Descriptor
— | Segment Descriptor -,
Segment Descriptor

\ J
Base
ndex ¥
+ gdtr " I gdtr Address:
a

[Index: 14 [e]cpL: 3]

€5 register: ax73

Instruction
IMP

Linear Address
GxBBa48393

Base address + offset

 Bx@8848393

Memory Address
{offset)

Bxe8848393

V' 4 iaw y & 2 AN

| W=7

V 4

| W=7

Segmented Addressing Resolution

GOT
Global Descriptor Table

Segment Descriptor
— | Segment Descriptor -,
Segment Descriptor

J 5 Segmentation cannot
ndex * .
e il Mﬂ'":w be disabled

(Index: 14 &I EPL: 3
—

€5 register: ax73

Instruction Linear Address
IMP Base address + offset OxPRE48393
@x@Be48393 .

Memory Address
{offset)

Bxe8848393

iaw y & 2 AN

Segment Caching

* Accessing the GDT for every memory access is
not performance-wise

* Segment registers have a non-programmable
hidden part to store the cached descriptor

4 N

Descriptor , Descriptor Memory
Table) [Segment

Segment Register 4‘[,]7

)\
I Y

Selector Descriptor
(non-programmable)

x86 Enforcing Protection

* A Descriptor Entry has a DPL

* The firmware must check if an access to a
certain segment is allowed

There must be a way to change current privilege

Change always allowed

-3 Should be controlled/denied

iaw

'/ V=3 &..Vl)\

Data Segment vs Code Segment

 RPLis present only in data

segment selectors (e.g. SS Saia 2egnarih scecio
16 bits Index (3-15) RPL
or DS) 15 o
* Current Privilege Level Code segment selector

16 bits Index (3-15)

(CPL): this is only in CS,

CPL

15

which can be loaded only
with a ljmp/lcall

* Overall we have 3 different privilege-level fields:
CPL, RPL, and DPL

Protection upon Segment Load

* CPLis managed by the CPU: it's always equals to
the current CPU privilege level

* CPU Memory protection comes at two points:
— Memory access via a linear address

— Data segment selector load operation

Protection upon Segment Load

Current code For SS, the condition is:
segment register CPL = RPL = DPL

CPL 1

LI Thue:
| Segment load ok

Data segment selector
being loaded
— Index 1 RPL (MAX{CPL, RPL) <= DPL |
Selects False:]
Segment descriptor * GE"EWLPTQIEGUCIH
1 exception |
—# DPL]

iaw y & 2

| W=7

Getting Higher Privileges

* Accessing segment with a higher privilege
(lower ring) with no control might allow
malicious code to subvert the kernel

* To transfer control, code must pass through a
controlled gate

* Gate descriptors are used to identify possible
gates through which control can pass

Controlled Access Through Gates

Kernel Space
(Ring 0)

User Space
(Ring 3)

|

\

/

Kernel routine B

Kernel routine A
Non-admitted
cross-segment
jump
Cross-segment jump
through a gate |

User routine /

Gate Descriptors

* A gate descriptor is a segment descriptor of type
system:

— Call-gate descriptors

— Interrupt-gate descriptors
— Trap-gate descriptors

— Task-gate descriptors

* These are referenced by the Interrupt
Descriptor Table (IDT), pointed by the IDTR
register

(RYZSYS

IDT and GDT Relations

System IDT

/

\

offset

o) |

selector

<

_/

System GDT

/

~

/

N

segment
descriptor

~

-

256
entries

v

Q

/

Interrupt
Handler

Kernel Text
Segment

GDT in Linux

Linux's GDT Segment Selectors Linux's GDT Segment Selectors
null 0x0 155 ox80 < Different for all cores

reserved LDT 0xB8 <—— Shared across all cores
reserved PNPBIOS 32-bit code 0x90

reserved PNPBIOS 16-bit code 0x98

not used PNPBIOS 16-bit data 0xa0

not used PNPBIOS 16-bitdata = OxaB

LS #1 0x33 ~ PNPBIOS16-bitdata | OxbO

S8 ox3b " APMBIOS 32-bitcode | Oxb8

TLS#S Ox43 ~ APMBIOS 16-bit code 0xcO

reserved APMBIOS data Oxcg

reserved not used

reserved not used

kernel code 0x60 (_ KERNEL_CS) not used

kernel data 0x68 (__KERNEL_DS) not used

user code ox73 (__USER_CS) not used

user data ox7b (__USER_DS) doublefaultSS | Oxf8

There 1s one copy of this table for each core

V' 4 iaw y & 2 AN

| W=7

1386 Task State Segment (TSS)

* Its a structure keeping information about a task
* [tisintended to handle task management

e [t stores:
— Processor registers state
—I/0 Port Permissions

— Inner-level Stack Pointers
— Previous TSS link

1386 Task State Segment (TSS)

[t can be everywhere in memory (hence the GDT
entry required to access it)

On Linuy, it's in

kernel data memory

Each TSS is stored in the int tss array.
The selector is |
[t can be loadecd

kept in the Task Register (TR)
| using the privileged 1tr

instruction (CP.

L=0)

1386 Task State Segment (TSS)

Pointer to
a bitmap

V' 4 iaw y & 2

| W=7

]l 15 0
IO Map Base Address |T
LDT Segment Selactor
G5
FS
D5
35
C5
ES
EDI
ESI
EBP
ESP
EBX
EDX
ECX
EAX
EFLAGS
EIP
CR3 (PDER)
| S82
ESP2
| S81
ESP1
| S50
ESPO

| Previous Task Link

[] Reserved bits. Set to 0.

100
96
gz
88
B4
80
76
72
68
64
B0
56
52
48
44
a0
36
az
28
24
20
16
12

- CPU State

~ Privilege-level stacks

1386 Task State Segment (TSS)

* The Base field within the n-th core TSS register
points to the n-th entry of the int tss array

* G=0 and Limit=0xeb
— given that TSS 1s 236 bytes 1n size
* DPL=0

*T'SS cannot be accessed 1n user mode

iaw

'/ V=3 &..Vl)\

I/O Map Base Address |

IST7 (high)

IST7 (low)

IST6 (high)

IST6 (low)

ISTS (high)

ISTS (low)

IST4 (high)

IST4 (low)

IST3 (high)

IST3 (low)

IST2 (high)

IST2 (low)

IST1 (high)

IST1 (low)

RSP2 (high)

RSP2 (low)

RSP1 (high)

RSP1 (low)

RSPO (high)

RSPO (low)

V' 4 iaw y & 2 AN

| W=7

TSS on x64

Registers are gone.

The Interrupt Stack Table
(IST) identifies 7 stack
pointers to handle
interrupts

Entries in the IDT are
modified to allow picking
one of these stacks

Value 0 tells the firmware
not to use the IST
mechanism

V 4

| W=7

Entering Ring 0 from Ring 3

Current code segment register

{ USER C5 or _ KERNEL C5 in Linux)
Y

CPL: 3
ar @

l

Destination Code Segment
{__ KERMEL_CS in Linux)

- fﬂL >= Destination segment DPL

—H DPL: & [——{

- For software-generated interrupt,
- CPL <= gate DPL

Selecls
53 a7 32
Offset (31-16) 1| DPL n—-ﬁﬁate DPL 15 32 or @
L Segment Selector: 8x60 (index is 12) Offset (15-8)
31 15 %]

Interrupt-gate/trap-gate descriptor

iaw y & 2 AN

Protected Mode Paging

* Since 80386, x86 CPUs add an additional step in
address translation

Memory Address Translation

(x86 CPU with segmentation and paging \

| Aiserr;!oly Logical Paging Physical Northbridge
nstructions Address Unit Address Chip
in Program

- v l

RAM
Modules

Protected Mode Paging

* Paging has to be explicitly enabled

— Entering Protected Mode does not enable it
automatically

— Several data structures must be setup before

* Paging allows to manage memory protection at
a smaller granularity than segmentation

1386 Paging Scheme

Linear Address
31 22 21 12 11 0

Directory Table Offset

/
/1 12 4-KByte Page

10 10 Page Table —»| Physical Address
Page Directory

—>» PTE >
20
_»!| PDE with PS=0 <>
B 20
A 32

CR3

iaw y & 2

| W=7

1386 Paging Scheme

* Both levels are based on 4 KB memory blocks
* Each block is an array of 4-byte entries

* Hence we can map 1K x 1K pages

* Since each page is 4 KB in size, we get a 4 GB
virtual addressing space

1386 PDE entries

Page-Directory Entry (4-KByte Page Table)

31 1211 9876543210
PIPIUIR

Page-Table Base Address Avail |G|Plo|A|c|w|/|/]|P
S D|T|S|W

Available for system programmer’s use J |
Global page (Ignored)

Page size (0 indicates 4 KBytes)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

V' 4 iaw y & 2 AN

| W=7

1386 PTE entries

Page-Table Entry (4-KByte Page)

31 12 11 9876543210
P PIP|U[R

Page Base Address Avail |G|A|D|A[C|W|/ |/ |P
T DIT|S|W

Available for system programmer’s use J ‘
Global Page (TLB caching policy)

Page Table Attribute Index
Dirty
Accessed (Sticky bit)
Cache Disabled
Write-Through
User/Supervisor
Read/Write (Used for COW)
Present

V' 4 iaw y & 2 AN

| W=7

Memory Address Translation

Virtual to Physical Translation

/

N

Instructions

Assembly

in Program

Logical
Address

x86 CPU with segmentation and paging

~

Instruction

Bx88848393

GDT
Global Descriptor Table

Segment Descriptor

Segment Descriptor

Segment Descriptor

e

(dex: 14 CPL: 3
BN A R
5 register: @x73

IMP

Memory Address
(offset)

Base address + offset

Bx08648393

Page Directory

PTE

Paging Physical
Unit Address
Linear Address
31 22 21 12 11 0
Directory Table Offset
12 4-KByte Page
10 10 Page Table Physical Address

Linear Address
@x@80848393

20

My y

3

CR3

PDE with PS=0 »>

Y

V 4

/

/&\

iaw y & 2 AN

NV

Northbridge
Chip

RAM
Modules

Translation Lookaside Buffer

Virtual Address

Page # Offset
TLB
VPN | PPN Page Table
TLE miss: use this
—= E:CE
Frirsttry

the TLE =

TLE hir: wse this

Physical Address ¥
Phiysical Page # Offzet
|
Physical Memory
0 L 2 3 4 5 &

iaw y & 2

(BYZSYS

Paging Unit Operations

Upon a TLB miss, firmware accesses the page table
The first checked bit is PRESENT
If this bit is zero, a page fault occurs which gives rise to a trap

CPU registers (including EIP and CS) are saved on the system
stack

They will be restored when returning from trap: the trapped
instruction is re-executed

Re-execution might give rise to additional traps, depending
on firmware checks on the page table

* As an example, the attempt to access a read only page in write
mode will give rise to a trap (which triggers the segmentation
fault handler)

Linux memory layout on i386

OXFFFFFFFF
Kernel
 (1GB)
0xC0000000
OxBFFFFFFF
User Space
(3 GB)
0x00000000

iaw

'/ V=3 &..Vl)\

Physical Address Extension (PAE)

An attempt to extend over the 4GB limit on i386
systems

Present since the Intel Pentium Pro

Supported on Linux since kernel 2.6

Addressing is extended to 36 bits

This allows to drive up to 64 GB of RAM memory

Paging uses 3 levels
CR4.PAE-bit (bit 5) tells if PAE is enabled

Physical Address Extension (PAE)

32-bits Virtual address

Fhysical memo
A B e D x L

2 9 9 12
| Physical address (PA)
Fage table B
TE
Fage directory
Page directory &
pointer table
PDE

IB
PDPTE

CR3

iaw y & 2

| W=7

X64 Paging Scheme

PAE is extended via the so called “long addressing”
264 bytes of logical memory in theory
Bits [49-64] are short-circuited

— Up to 248 canonical form addresses (lower and upper half)

— A total of 256 TB addressable memory

Linux currently allows for 128 TB of logical
addressing of individual processes and 64 TB for
physical addressing

Canonical Addresses

64-bit 48-bit

FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
Canonical "higher half*
FFFF8000 00000000

Higher half

Noncanonical
addresses

00007FFF FFFFFFFF

00000000 PEOODOOD O0eEEOOD OOEEOLOO

V' 4 |8 W N y & 2 AN

-y (&

Linux memory layout on x64

OXFFFF FFFF FFFF FFFF
TEXT

DATA

OxFFFF 8000 0000 0000 ,
Non-canonical

addresses

Stack

Heap

Shared Objects Kernel

N

0x0000 7FFF FFFF FFFF

0x0000 0000 0000 0000

iaw y & 2

| W=7

48-bit Page Table (4KB pages)

Linear Address

A7 39 38 30 29 21 20 12 11 0
PML4 Directory Ptr Directory Table Offset
| 2
/19 "
28 il e flg 4-KByte Page
Physical Addr
PTE ﬁg -
Page-Directory- 3| PDE with PS=0 |—<
Fointer Table 40 Page Table
A Page-Directory
s
“»{PDPTE | /] 40
Ao
-
/40
4 Also referred to as Page
>| PML4E <———— General Directory (PGD)
-
A 40
CR3

V' 4 iaw y & 2 AN

| W=7

CR3 and Paging Structure Entries

[FEEB55555555]5 M1 [M-1 3[3[3[2[2[Z[Z]2]2[Z[2]2[2|T[T{T[T{T[T[T[T[T]1
3/2/1/0(9|8]|7|6/5]4|3|2]1 2/1|10/9(8/7|6(5/4|3|2(1|0/9/8|7|6/5/4|3|2/1|0/9(8(7 6|5

2/1/0

Reserved? Address of PML4 table lgnored

X |
[D lgnored Rsvd. Address of page-directory-pointer table lgn. 53 glA
n

lan. CR3

PML4E:
present

[ws N Buw! Do
|=

—A= v] A= ojw

PML4E:
not
present

PDPTE:
1GB

page

PDPTE:
page
directory

PDTPE:
not
present

l=]

lgnored

X Address of

b lgnored Rsvd. 1GB page frame Reserved

— T
=)
=
(=]
|=
=
=
|=2

|t

lgnored Rsvd. Address of page directory lan.

U i = I IO ey
=] d4=®»
S~X| =~1

(=]
=Y —
=

l=]

Ignored

PDE:
Z2MB

page
PDE:
fable
PDE:

not
present

PTE:
4KB

page

PTE:
not
present

X Address of
ID Ignored Rsvd. 2MB page frame

|=

P
Reserved Al lagn. |G|1|DA
T

(=]
[

=]
|=t

Ib lgnored Rsvd. Address of page table lan.

=~m|s~»

—s v| 457w

>
[N e w] =203

(=]

Ignored

|t

lgnored Rsvd. Address of 4KB page frame lgn. |G

— >0
o
=

[we N inw!

—=
—

[¥a)

=~

(=]

lgnored

V' 4 iaw y & 2 AN

| W=7

Huge Pages

[deally x64 processors support them starting from
PDPT

Linux typically offers the support for huge pages
pointed by the PDE (page size 512*4KB)

See: /proc/meminfo and /proc/sys/vm/nr hugepages

These can be mmap'ed via file descriptors and/or
nmap parameters (e.g. map nuceTLB flag)

They can also be requested via the madvise (void *,
size t, int) System call (with vapv rucerace flag)

How to enable x64 longmode

* The first step is (of course) to setup a coherent page table
 We must then tell the CPU to enable Long Mode

 Referto arch/x86/include/uapi/asm/msr—-index.h
for the definition of the symbols
movl SMSR EFER, $ecx
rdmsr
btsl $ EFER LME, %eax
WIrmsxr
pushl $ KERNEL CS
leal startup 64 (%ebp), S%Seax

pushl %eax

movl $(X86 CRO PG | X86 CRO PE), %eax
movl seax, %cr0

lret

Boot Sequence

-
The actual Hardware Startup
J
;
Executes the Stage 2 bootloader
(skipped in case of UEFI))
-
Bootloader Stage 2 Loads and starts the Kernel
y,
p
The Kernel takes control of and initializes the machine
(machine-dependent operations)
J
-
First process: basic environment initialization
(e.g., SystemV Init, systemd)
J
-
Initializes the user environment
(e.g., single-user mode, multiuser, graphical, ...)
J

|8 W N y & 2 AN

-y (&

Second Stage Bootloader

* There are various versions of this software
— In GRUB it is GRUB Stage 2
— In Win NT itis c:\nt1dr
* The second stage bootloader reads a configuration
file, e.g. to startup a boot selection menu
— grub.conf IN GRUB, voot.ini in Win NT

* The kernel initial image is loaded in memory using
BIOS disk I1/0 services

— For Linux, it IS /boot/vmlinuz-*

— For Win NT, 1t 1S c: \Windows\System32\ntoskrnl.exe

Historical Linux Bootcode

* The historical bootsector code for LINUX (1386) 1s
In arch/i386/bootsect.s (no longer used)

e [t loaded arch/i386/bootsetup.s and the kernel
Image 1n memory

* The code 1n arch/i386/bootsetup.s Initialized the

architecture (e.g. the CPU state for the actual kernel
boot)

* It ultimately gave control to the mitial kernel image

Unified Extensible Firmware Interface
(UEFI)

* Modular (you can extend it with drivers)
* Runs on various platforms
* It's written in C

* [t supports a bytecode (portability to other
architectures)

 It's completely different from BIOS

UEFI Boot

* UEFI boot manager takes control right after the
system is powered on

* Itlooks at the boot configuration

* Itloads the firmware settings into RAM from
nvRAM

 Startup files are stored on a dedicated EFI System
Partition (ESP)

— It's a FAT32 partition
— It has one folder for each OS on the system

 MBR cannot handle disks larger than 2TB

UEFI Boot

[t can automatically detect new uefi-boot targets

— UEFI uses standard path names
* /efi/boot/boot x64.efi
* /efi/boot/bootaabd.efi

* UEFI programs can be easily written

#include <efi.h>
#include <efilib.h>

EFI_STATUS FFIAPT
efi main (EFI HANDLE ImageHandle, EFI SYSTEM TABLE *SystemTable) {

InitializelLib (ImageHandle, SystemTable)
Print (L"Hello World\n");

return EFI SUCCESS;

}

GUID Partition Table

First useable block Start partition

End partition
LBAO LBA1 W W LBAN

Partition 1

ddH 3ige L
uoliped

ddH 91qel
uoned

/N /]

Start partition End partition

L% 7 L

B A
Primary Partition Backup Partition
Table Table

iaw y & 2

| W=7

Secure Boot

* There is a kind of malware which takes control
of the system before the OS starts

— MBR RootKits

* Usually, these RootKits hijack the IDT for I/0
operations, to execute their own wrapper

 When the kernel is being loaded, the RootKit
notices that and patches the binary code while
loading it into RAM

Secure Boot

* UEFI allows to load only signed executables

* Keys to verify signatures are installed in UEFI
configuration

— Platform Keys (PK): tells who “owns and controls”
the hardware platform

— Key-Exchange Keys (KEK): shows who is allowed to
update the hardware platform

— Signature Database Keys (DB): show who is allowed
to boot the platform in secure mode

Dealing with multicores

Who shall execute the startup code?
For legacy reasons, the code is purely sequential

Only one CPU core (the master) should run the
code

At startup, only one core is active, the others are
in an idle state

The startup procedure has to wake up other
cores during kernel startup

Interrupts on Multicore Architectures

* The Advanced Programmable Interrupt Controller
(APIC) is used for sophisticated interrupt
sending/redirection

* Each core has a Local APIC (LAPIC) controller, which
can send Inter-Processor Interrupts (IPIs)
— LAPICs are connected through the (logical) “APIC Bus”
— LINT O : normal interrupts — LINT 1 : Non-maskable
Interrupts

* 1/0 APICs contain a redirection table, which is used to
route the interrupts it receives from peripheral buses
to one or more local APICs

LAPIC

Local Core Local Core
Interrupts Interrupts
LINT; ———= |Local LINT; ——=|Local
LINT; —|APIC LINT; —> | APIC
f APIC Bus *
System /O l
Interrupts
{g > I/O APIC

V' 4 iaw y & 2 AN

| W=7

Interrupt Command Register

* The ICR register is used to initiate an IPI

* Values written into it specify the type of
interrupt to be sent, and the target core

ICR (upper 32-bits) ICR (lower 32-bits)

31 1918 15 0
Vector
field
31 24 0
inati Delivery Mode
Bastiiatioh Destination Shorthand i =n|':ixed
Feld reserved 00 = no shorthand i o
01 = only to self 001 = Lowest Priority
10 = all including self 81? = (SN” i
= ; = (reserve
The Destination Field (8-bits) can be used to specify which el iimg soi 100 = NMI
processor (or group of processors) will receive the message Trigger Mode 101 = INIT
0= Edge Level 110 = Start Up
1 = Level 0 = De-assert 111 = (reserved)
Memory-Mapped Register-Address: 0XFEE00310 g Destination Mode
: Delivery Status 0 = Physical
0 =Idle _ 1 = Logical
1 = Pending Memory-Mapped Register-Address: 0XxFEE00300

iaw y & 2

| W=7

Broadcast INIT-SIPI-SIPI Sequence

address Local-APIC via register FS
mov $sel fs, %ax

mov $ax, %fs

broadcast 'INIT' IPI to 'all-except-self'

mov $0x000C4500, %eax ; 11 00 0 1 0 O O 101 00000000
mov geax, %fs: (0xFEE00300)

.BO: btl $12, %$fs: (0OxXFEE00300)
JjC .BO

broadcast 'Startup' IPI to 'all-except-self'
using vector 0x1ll to specify entry-point
at real memory-address 0x00011000

mov $0x000C4611, %eax ; 11 00 0 0 1 0 O O 110 00010001
mov seax, $fs: (OxFEEQO0300)

.Bl: btl $12, %fs: (0xFEE00300)
Jjc .Bl

V' 4 iaw y & 2 AN

| W=7

