
Interrupt and Time Management

Advanced Operating Systems and Virtualization
Alessandro Pellegrini

A.Y. 2018/2019

IDT and GDT Relations

GDTR

IDTR

System IDT

System GDT

offset
selector

segment
descriptor

Kernel Text
Segment

256
entries

Interrupt
Handler

IDT Entries (x64)

struct idt_bits {
 u16 ist : 3,
 zero : 5,
 type : 5,
 dpl : 2,
 p : 1;
} __attribute__((packed));

struct gate_struct {
 u16 offset_low;
 u16 segment;
 struct idt_bits bits;
 u16 offset_middle;
#ifdef CONFIG_X86_64
 u32 offset_high;
 u32 reserved;
#endif
} __attribute__((packed));

IDT Entry Initialization
• /arch/x86/include/asm/desc.h:
static inline void pack_gate(gate_desc *gate, unsigned type,
unsigned long func,unsigned dpl, unsigned ist, unsigned seg) {

gate->offset_low = (u16) func;
gate->bits.p = 1;
gate->bits.dpl = dpl;
gate->bits.zero = 0;
gate->bits.type = type;
gate->offset_middle = (u16) (func >> 16);

#ifdef CONFIG_X86_64
gate->segment = __KERNEL_CS;
gate->bits.ist = ist;
gate->reserved = 0;
gate->offset_high = (u32) (func >> 32);

#else
gate->segment = seg;
gate->bits.ist = 0;

#endif
}

IDT Entries
Vector range Use

0-19 (0x0-0x13) Nonmaskable interrupts and
exceptions

20-31 (0x14-0x1f) Intel-reserved

32-127 (0x20-0x7f) External interrupts (IRQs)

128 (0x80) Programmed exception for
system calls (segmented style)

129-238 (0x81-0xee) External interrupts (IRQs)

239 (0xef) Local APIC timer interrupt

240-250 (0xf0-0xfa) Reserved by Linux for future use

251-255 (0xfb-0xff) Interprocessor interrupts

Gate Descriptors

• A gate descriptor is a segment descriptor of type
system:
– Call-gate descriptors
– Interrupt-gate descriptors
– Trap-gate descriptors
– Task-gate descriptors

• These are referenced by the Interrupt
Descriptor Table (IDT), pointed by the IDTR
register

IDT Entry Types

• /arch/x86/include/asm/desc_defs.h:
enum {

GATE_INTERRUPT = 0xE,

GATE_TRAP = 0xF,

GATE_CALL = 0xC,

GATE_TASK = 0x5,
};

Interrupts vs. Traps

• Interrupts are asynchronous events not related
to the current CPU execution flow

• Interrupts are generated by external devices,
and can be masked or not (NMI)

• Traps (or exceptions) are synchronous events,
strictly related to the current CPU execution (e.g.
division by zero)

• Traps were historically used to demand access to
kernel mode (int $0x80)

Interrupts vs. Traps
• Differently from interrupts, trap management does not

automatically reset the interruptible-state of a CPU core (IF)

• Critical sections in the trap handler must explicitly mask and then
re-enable interrupts (cli and sti instructions)

• For SMP/multi-core machines this might not be enough to
guarantee correctness (atomicity) while handling the trap

• The kernel uses spinlocks, based on atomic test-end-set
primitives

– We have already seen an example of CAS based on cmpxchg
– Another option is the xchg instruction
– Some RMW allow to atomically increment counters (lock incl)

Interrupt Classification
• I/O Interrupts

– This is received every time that an I/O device requests
attention to the kernel

– The interrupt handler must query the device to setup
proper actions

• Timer Interrupts
– The LAPIC timer has issued an interrupt
– This notifies the kernel that some time has passed

• Interprocessor Interrupts (IPI)
– On multicore systems, we must ensure that different cores

synchronize with each other in some circumstances

x86 Interrupt Frame
• Upon an interrupt, the firmware changes stack

– If the IDT has an IST value different from 0 the corresponding
stack from the TSS is taken

– Otherwise, the stack corresponding to the destination
Privilege Level is used

• On the new stack, the following Interrupt Stack Frame
is packed by the firmware:

[error_code/vector #]

RIP

CS

RFLAGS

[SP]

[SS]

RSP

Global Activation Scheme

handler

dispatcher

actual handler

trap/interrupt

jump

call

ret

iret

Switches GS, possibly stack.
Logs the CPU context onto

the stack (pt_regs)

See:
/arch/x86/entry/entry_64.S

Makes uniform the
Interrupt Stack Frame

stub

Push interrupt
vector

jump

Interrupt Entry Points

• The current code is generated by assembly
macros

• An additional push might take place:
– If an exception occurred and no error code is placed

by the firmware, a dummy -1 value is placed on
stack

– If it is an IRQ, the vector number is pushed on stack
• The correct dispatcher is then uniformly

reached

Exception Examples
ENTRY(overflow)

pushl $-1 // No syscall to restart
jmp dispatcher

ENTRY(general_protection)
pushl $-1 // No syscall to restart
jmp dispatcher

ENTRY(page_fault)
jmp dispatcher

This is a severe simplification: actual code is macro-generated and performs more actions

Exception Dispatcher Skeleton
• Again a simplification , the actual code is again macro-assisted

dispatcher:
cld
testq $3, 16(%rsp) // If coming from userspace, switch GS

jz 1f
swapgs

 1:
pushq %rdi
pushq %rsi
pushq %rdx
pushq %rcx
pushq %rax
pushq %r8
pushq %r9
...
pushq %r15

<prepare parameters>
call actual_handler
cli
popq %r15
...
popq %rdi
testq $3, 16(%rsp)
jz 2f
swapgs

 2:
iretq

struct pt_regs
struct pt_regs {

unsigned long r15;
unsigned long r14;
unsigned long r13;
unsigned long r12;
unsigned long bp;
unsigned long bx;
unsigned long r11;
unsigned long r10;
unsigned long r9;
unsigned long r8;
unsigned long ax;
unsigned long cx;
unsigned long dx;
unsigned long si;
unsigned long di;
unsigned long orig_ax; // <- Syscall: syscall#. Exception: error code.
unsigned long ip; // hw interrupt: IRQ number
unsigned long cs;
unsigned long flags;
unsigned long sp;
unsigned long ss;

};

Exception Example: Page Fault Handler

• The page fault handler is do_page_fault(struct pt_regs
*regs, unsigned long error_code)defined in
linux/arch/x86/mm/fault.c

• It takes in input the error code associated with the occurred fault
• The fault type is specified via the three least significant bits of
error_code according to the following rules:
– bit 0 == 0 means no page found, 1 means protection fault
– bit 1 == 0 means read, 1 means write
– bit 2 == 0 means kernel mode, 1 means user mode

• Unaccessible memory address is taken from CR2

Kernel Exception Handling

• When a process runs in kernel mode, it may
have to access user memory passed by an
untrusted process
– verify_area(int type, const void * addr,
unsigned long size)

– access_ok(int type, unsigned long addr,
unsigned long size)

• This may take an unnecessary large amount of
time

• This operation takes place quite often

Kernel Exception Handling

• Linux exploits the MMU to take care of this
• If the kernel accesses an address which is not

accessible, a page fault is generated
• The unaccessible address is taken from CR2

– If the address is within the VA space of the process
we either have to swap in the page or there was an
access in write mode to a read-only page

• Otherwise, a jump to bad_area label tries to
activate a fixup

Kernel Fixups
• In bad_area, the kernel uses the address in
regs->eip to find a suitable place to recover
execution

• This is done by replacing the content of
regs->eip with the fixup address

• This must be executable code in kernel mode
• The fixup is defined by macros
• An example: get_user(c, buf) in
arch/x86/include/asm/uaccess.h as called from
drivers/char/sysrq.c

Fixup: Expanded Macro
(
 {
 long __gu_err = - 14 , __gu_val = 0;
 const __typeof__(*((buf))) *__gu_addr = ((buf));
 if (((((0 + current_set[0])->tss.segment) == 0x18) ||
 (((sizeof(*(buf))) <= 0xC0000000UL) &&
 ((unsigned long)(__gu_addr) <= 0xC0000000UL - (sizeof(*(buf)))))))
 do {
 __gu_err = 0;
 switch ((sizeof(*(buf)))) {
 case 1:
 __asm__ __volatile__(
 "1: mov" "b" " %2,%" "b" "1\n"
 "2:\n"
 ".section .fixup,\"ax\"\n"
 "3: movl %3,%0\n"
 " xor" "b" " %" "b" "1,%" "b" "1\n"
 " jmp 2b\n"
 ".section __ex_table,\"a\"\n"
 " .align 4\n"
 " .long 1b,3b\n"
 ".text" : "=r"(__gu_err), "=q" (__gu_val): "m"((*(struct __large_struct *)
 (__gu_addr))), "i"(- 14), "0"(__gu_err)) ;
 break;
 case 2:
 __asm__ __volatile__(
 "1: mov" "w" " %2,%" "w" "1\n"
 "2:\n"
 ".section .fixup,\"ax\"\n"
 "3: movl %3,%0\n"
 " xor" "w" " %" "w" "1,%" "w" "1\n"
 " jmp 2b\n"

Fixup: Expanded Macro
 ".section __ex_table,\"a\"\n"
 " .align 4\n"
 " .long 1b,3b\n"
 ".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct
*)
 (__gu_addr))), "i"(- 14), "0"(__gu_err));
 break;
 case 4:
 __asm__ __volatile__(
 "1: mov" "l" " %2,%" "" "1\n"
 "2:\n"
 ".section .fixup,\"ax\"\n"
 "3: movl %3,%0\n"
 " xor" "l" " %" "" "1,%" "" "1\n"
 " jmp 2b\n"
 ".section __ex_table,\"a\"\n"
 " .align 4\n" " .long 1b,3b\n"
 ".text" : "=r"(__gu_err), "=r" (__gu_val) : "m"((*(struct __large_struct
*)
 (__gu_addr))), "i"(- 14), "0"(__gu_err));
 break;
 default:
 (__gu_val) = __get_user_bad();
 }
 } while (0) ;
 ((c)) = (__typeof__(*((buf))))__gu_val;
 __gu_err;
 }
);

Fixup: Generated Assembly
 xorl %edx,%edx
 movl current_set,%eax
 cmpl $24,788(%eax)
 je .L1424
 cmpl $-1073741825,64(%esp)
 ja .L1423
 .L1424:
 movl %edx,%eax
 movl 64(%esp),%ebx
 1: movb (%ebx),%dl /* this is the actual user access */
 2:
 .section .fixup,"ax"
 3: movl $-14,%eax
 xorb %dl,%dl
 jmp 2b
 .section __ex_table,"a"
 .align 4
 .long 1b,3b
 .text
 .L1423:
 movzbl %dl,%esi

Non-standard Sections

Fixup: Linked Code
 $ objdump --disassemble --section=.text vmlinux

 c017e785 <do_con_write+c1> xorl %edx,%edx

 c017e787 <do_con_write+c3> movl 0xc01c7bec,%eax

 c017e78c <do_con_write+c8> cmpl $0x18,0x314(%eax)

 c017e793 <do_con_write+cf> je c017e79f <do_con_write+db>

 c017e795 <do_con_write+d1> cmpl $0xbfffffff,0x40(%esp,1)

 c017e79d <do_con_write+d9> ja c017e7a7 <do_con_write+e3>

 c017e79f <do_con_write+db> movl %edx,%eax

 c017e7a1 <do_con_write+dd> movl 0x40(%esp,1),%ebx

 c017e7a5 <do_con_write+e1> movb (%ebx),%dl

 c017e7a7 <do_con_write+e3> movzbl %dl,%esi

Fixup Sections
 $ objdump --section-headers vmlinux

 vmlinux: file format elf32-i386

 Sections:
 Idx Name Size VMA LMA File off Algn
 0 .text 00098f40 c0100000 c0100000 00001000 2**4
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 1 .fixup 000016bc c0198f40 c0198f40 00099f40 2**0
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 2 .rodata 0000f127 c019a5fc c019a5fc 0009b5fc 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 3 __ex_table 000015c0 c01a9724 c01a9724 000aa724 2**2
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 4 .data 0000ea58 c01abcf0 c01abcf0 000abcf0 2**4
 CONTENTS, ALLOC, LOAD, DATA
 5 .bss 00018e21 c01ba748 c01ba748 000ba748 2**2
 ALLOC
 6 .comment 00000ec4 00000000 00000000 000ba748 2**0
 CONTENTS, READONLY
 7 .note 00001068 00000ec4 00000ec4 000bb60c 2**0
 CONTENTS, READONLY

Fixup Non Standard Sections
 $ objdump --disassemble --section=.fixup vmlinux

 c0199ff5 <.fixup+10b5> movl $0xfffffff2,%eax
 c0199ffa <.fixup+10ba> xorb %dl,%dl
 c0199ffc <.fixup+10bc> jmp c017e7a7 <do_con_write+e3>

 $ objdump --full-contents --section=__ex_table vmlinux

 c01aa7c4 93c017c0 e09f19c0 97c017c0 99c017c0
 c01aa7d4 f6c217c0 e99f19c0 a5e717c0 f59f19c0
 c01aa7e4 080a18c0 01a019c0 0a0a18c0 04a019c0

• Remember x86 is little endian!
 c01aa7c4 c017c093 c0199fe0 c017c097 c017c099
 c01aa7d4 c017c2f6 c0199fe9 c017e7a5 c0199ff5
 c01aa7e4 c0180a08 c019a001 c0180a0a c019a004

Fixup Activation Steps
1. access to invalid address: c017e7a5 <do_con_write+e1> movb

(%ebx),%dl

2. MMU generates exception
3. CPU calls do_page_fault
4. do page fault calls search_exception_table (regs->eip == c017e7a5);
5. search_exception_table looks up the address c017e7a5 in the exception table

and returns the address of the associated fault handle code c0199ff5.
6. do_page_fault modifies its own return address to point to the fault handle code

and returns.
7. execution continues in the fault handling code:

a) EAX becomes -EFAULT (== -14)
b) DL becomes zero (the value we "read" from user space)
c) execution continues at local label 2 (address of the instruction

immediately after the faulting user access).

Fixup in 64-bit Kernels

• First possibility: expand the table to handle 64-bit
addresses

• Second possibility: represent offsets from the
table itself

ex_insn_addr(const struct exception_table_entry
*x){

return (unsigned long)&x->insn + x->insn;
}

.long 1b,3b .long (from) - .
.long (to) - .

Interrupts on Multi-Core Machines
• On single core machines, interrupt/trap events are managed by running

operating system code on the single core in the system

• This is sufficient to ensure consistency also in multithreaded applications
– The hardware is time-shared across threads

• In multi-core systems, an interrupt/trap event is delivered to only one core
– Other cores might be running other threads of the same application, though

• This can lead to race conditions or inconsistent state, due to the replication
of hardware
– We need a way to propagate an interrupt/trap event to other cores, if needed

• The same problem holds for synchronous requests from userspace
implemented without using traps (e.g., via the vDSO)

An Example: Memory Unmapping

Userspace
Application

munmap()
Syscall

(a trap on i386)
Kernel
code

from this time on, any time-shared thread sees a consistent
state, as determined by the execution of kernel-level code

The hardware state
(TLB) is in a certain state

The hardware state
(TLB) is in a different
state

An Example: Memory Unmapping

Userspace
Application

munmap()
Syscall

(a trap on i386)
Kernel
code

Hardware state is not updated.
What if a now unmapped page is still cached in the TLB?

The hardware state
(TLB) is in a certain state

The hardware state
(TLB) is in a different
state

Other thread of
the same
application
running on
other core

Inter Processor Interrupts
• IPIs are interrupts also used to trigger the execution of specific operating-

system functions on other cores
• IPI are used to enforce cross-core activities (e.g. request/reply protocols)

allowing a specific core to trigger a change in the state of another
• IPIs are generated at firmware level, but are processed at software level

– Synchronous at the sender, asynchronous at the receiver

• At least two priority levels are available: High and Low
• High priority leads to immediate processing of the IPI at the recipient (a

single IPI is accepted and stands out at any point in time)
• Low priority generally lead to queueing the requests and process them in a

serialized way

Inter Processor Interrupts

• IPIs are generated at firmware, but are processed at
software
– Synchronous at the sender, asynchronous at the

receiver
• IPIs are interrupts also used to trigger the execution of

specific operating-system functions on other cores
– Software-based hardware-assisted cross-core protocols

• Two priorities: high and low
– High priority leads to immediate processing of the IPI at the recipient (a

single IPI is accepted and stands out at any point in time)
– Low priority IPIs are queued and processed in a serialized way

IPI Hardware Support on x86
• We have already seen the registers to

trigger IPIs

– They are also used to power up
additional cores in a machine

• They are an interface to the
APIC/LAPIC circuitry

• LAPIC offers an instance local to any
core

• IPI requests travel along an ad-hoc
APIC bus

– On modern x86 architectures, this
is the QuickPath Interconnect

IPI Software Management

• Immediate handling is allowed when there is no need
to share data across cores (stateless processing)

• An example is system halt (e.g. upon panic)
• Other usages of IPI are:

– Execution of the same function across all the CPU-
cores (cross-core kernel synchronization)

– Change of the hardware state across multiple
cores in the system (e.g. the TLB)

IPI Vectors
• CALL_FUNCTION_VECTOR (vector 0xfb)

– Sent to all CPUs but the sender, forcing those CPUs to run a function
passed by the sender. The corresponding interrupt handler is
call_function_interrupt(). Usually this interrupt is sent to all
CPUs except the CPU executing the calling function by means of the
smp_call_function() facility function.

• RESCHEDULE_VECTOR (vector 0xfc)
– When a CPU receives this type of interrupt, the corresponding handler,

named reschedule_interrupt(), just acknowledges the interrupt.

• INVALIDATE_TLB_VECTOR (vector 0xfd)
– Sent to all CPUs but the sender, forcing them to invalidate their TLBs. The

corresponding handler, named invalidate_interrupt() flushes
some TLB entries of the processor.

IPIs' API (5.0)
• /arch/x86/kernel/apic/ipi.c
• These functions are wrapped in the struct apic data

structure (which is to prefer on direct invocation)

default_send_IPI_all()
Sends an IPI to all CPUs (including the sender)

default_send_IPI_allbutself()
Sends an IPI to all CPUs except the sender

default_send_IPI_self()
Sends an IPI to the sender CPU

default_send_IPI_mask()
Sends an IPI to a group of CPUs specified by a bit mask

Registering IPI Functions
• IPIs are used to scheduled multiple cross-core tasks,

but a single vector exists (CALL_FUNCTION_VECTOR)
• There is the need to register a specific action

associated with the firing of an IPI
• Older version of the kernel were relying on a globlal

data structure protected by a lock
– This solution hampers scalability and performance

• In 5.0, there is a per-CPU linked list of registered
functions and associated data to process
– Concurrent access relies on the lock-free list

Core 0

per-CPU core 1

Trigger IPI

Handle IPI(s)
Core 1

Handle IPI(s)
Core n

...

per-CPU core n

Registering IPI Functions
Get per-CPU

for Core 0
Get per-CPU

for Core n...

post function
& parameter

post function
& parameter

__call_single_data

struct __call_single_data {

struct llist_node llist;

smp_call_func_t func;

void *info;

unsigned int flags;
};

• This is the definition of the list node
• Lists on each CPU are processed by flush_smp_call_function_queue()

– It's invoked by the generic IPI handler
– It is also invoked if a CPU is about to go offline

/* Preemption must be disabled when calling this function. */
void smp_call_function_many(const struct cpumask *mask,

 smp_call_func_t func, void *info, bool wait)
{
 struct call_function_data *cfd;

 ……
 /*Can deadlock when called with interr. disabled*/
 WARN_ON_ONCE(/*...*/ && irqs_disabled());

 for_each_cpu(cpu, cfd->cpumask) {
 call_single_data_t *csd = per_cpu_ptr(cfd->csd, cpu);

 csd_lock(csd);
 if (wait)
 csd->flags |= CSD_FLAG_SYNCHRONOUS;
 csd->func = func;
 csd->info = info;
 if (llist_add(&csd->llist, &per_cpu(call_single_queue, cpu)))
 __cpumask_set_cpu(cpu, cfd->cpumask_ipi);
 }

smp_call_function_many()

 /* Send a message to all CPUs in the map */
 arch_send_call_function_ipi_mask(cfd->cpumask_ipi);

 if (wait) {
 for_each_cpu(cpu, cfd->cpumask) {
 call_single_data_t *csd;

 csd = per_cpu_ptr(cfd->csd, cpu);
 csd_lock_wait(csd);
 }
 }
}

smp_call_function_many()

smp_call_function_many()

• smp_call_function_many()
 arch_send_call_function_ipi_mask()
 native_send_call_func_ipi()
 apic->send_IPI_mask()
 default_send_IPI_mask_logical()
 __default_send_IPI_dest_field()

void __default_send_IPI_dest_field(unsigned int mask, int
vector, unsigned int dest)

{
unsigned long cfg;
// [...]
cfg = __prepare_ICR2(mask);
native_apic_mem_write(APIC_ICR2, cfg);
cfg = __prepare_ICR(0, vector, dest);
native_apic_mem_write(APIC_ICR, cfg);

}

An Example: Synchronize All Cores
static atomic_t synch_leave;

static atomic_t synch_enter;

void synchronize_all(void) {

printk("cpu %d asking from unpreemptive
synchronization\n", smp_processor_id());

atomic_set(&synch_enter, num_online_cpus() - 1);

atomic_set(&synch_leave, 1);

preempt_disable();

smp_call_function_many(cpu_online_mask,
synchronize_all_slaves, NULL , false);

while(atomic_read(&synch_enter) > 0);

printk("cpu %d all kernel threads synchronized\n",
smp_processor_id());

}

An Example: Synchronize All Cores
static void synchronize_all_slaves(void *info) {

(void)info;
printk("cpu %d entering synchronize_all_slaves\n",

smp_processor_id());
atomic_dec(&synch_enter);
preempt_disable();
while(atomic_read(&synch_leave) > 0);
preempt_enable();
printk("cpu %d leaving synchronize_all_slaves\n",

smp_processor_id());
}

void unsynchronize_all(void) {
printk("cpu %d freeing other kernel threads\n",

smp_processor_id());
atomic_set(&synch_leave, 0);
preempt_enable();

}

I/O Interrupt Management
• How much time does it take to handle an interrupt

request?
– We run the IRQ management with IF=0!

• Actions to be performed are split across:
– Critical Actions: acknowledging the interrupt,

reprogramming the device, exchanging data with the
device. Executed in the handlers with IF=0.

– Non-Critical Actions: any management of data structures
in the kernel which are not shared with the device. These
are usually quick, executed in the handler with IF=1.

– Non-Critical Deferrable Actions: anything else (e.g.,
copying data to userspace). This is done eventually.

Performing Critical Actions

• Save IRQ value on
stack

• Acknowledge the IRQ
to the device
– It is thus allowed to

send additional IRQs
• Execute the Interrupt

Service Routines
(ISRs)

• iret

Locating ISRs

• The same IRQ# can be
shared with multiple
devices

• This is why we have
multiple ISRs for an IRQ

• Hardware Geometry
allows ISRs to find out
what is the correct
routine to process the
request

• ISRs are the way to
bridge device drivers and
IRQ management

Private Thread Stack & IRQ Context
dispatcher:
 cld
 testb $0x3, 0x16(%rsp)
 jz 1f
 swapgs
 push %rdi
 mov %rsp,%rdi // Switch stack but keep the current pointer
 mov PER_CPU_VAR(cpu_current_top_of_stack),%rsp // Hard IRQ stack
 pushq 0x38(%rdi) // Copy interrupt frame
 pushq 0x30(%rdi)
 pushq 0x28(%rdi)
 pushq 0x20(%rdi)
 pushq 0x18(%rdi)
 pushq 0x10(%rdi)
 pushq 0x8(%rdi)
 mov (%rdi),%rdi // Restore RDI

1: push %rsi // Get vector number as parameter
 mov 0x8(%rsp),%rsi
 mov %rdi,0x8(%rsp)
 <save registers>

 call do_IRQ // Interrupts are off here

Deferred Work

• Longest part non-critical management of the
interrupt can be deferred to a later time
– when to do that work exactly?

• Temporal reconciliation
– Interrupt management is mapped to regular

execution contexts, and therefore shifted in time
– Management of events in the system can be

aggregated (many-to-one aggregation)
– Care must be taken not to induce starvation

Deferred Work

Wall-clock-time

Interrupt requests

Convenient reconciliation
point

Actual processing
of the requests

grab lock release lock

Critical section

Basic Idea: Top/Bottom Halves

• Management of work comes at two levels: top half and
bottom halves

• The top-half executes a minimal amount of work which
is mandatory to later finalize the whole interrupt
management

• The top-half code is managed according to a non-
interruptible scheme

• The finalization of the work takes place via the bottom-
half level

• The top-half takes care of scheduling the bottom-half
task by queuing a record into a proper data structure

top
half

Task data
structures

interrupt

iret

bottom
half

Per-task information
(parameters and reference to the code)

trap/interrupt-handler
dispatcher

trigger of
different nature

Basic Idea: Top/Bottom Halves

time
execution flow

Deferred Work Main Steps
• Initialization

– Deferrable functions are limited in number
– They are initialized at kernel startup/module load

• Activation
– A deferrable function is marked as “pending”
– It will be run at the next reconciliation point

• Masking
– Single deferrable functions can be selectively disabled

• Execution
– Executed on the same CPU on which it was activated
– Motivated by cache locality
– Can be the cause of sever load unbalance

SoftIRQs
• This is the “Software Interrupt” Linux mechanism

– «it's a conglomerate of mostly unrelated jobs, which run in
the context of a randomly chosen victim w/o the ability to
put any control on them»—Thomas Gleixner

• They are fired at specific reconciliation points
– Coming back from a hard IRQ (with IF = 1)
– Coming back from a syscall
– At specific points in code (e.g., spin_unlock_bh())

• They are interruptible, so they must be reëntrant
– local_irq_save(unsigned long flags)
– local_irq_restore(unsigned long flags)

• They are rarely used directly (Tasklets)

SoftIRQs

do_softIRQ()

1. Checks if invoked in interrupt context
– In this case it returns

2. Calls local_irq_save()
3. Switches to a private stack (similarly to

HardIRQ management)
4. Processes IRQs (__do_softIRQ())
5. Calls local_irq_restore()

__do_softIRQ()

• This function activates the pending actions set in the
local SoftIRQ bitmask

• Other deferrable functions are deactivated locally
while processing actions (local_bh_disable())

• Local HardIRQs are re-enabled
• During the execution of SoftIRQs, other SoftIRQs can

be activated (the bitmask is locally copied)
• After a certain numbers of iterations, it activated the

SoftIRQ Daemon (with low priority)

ksoftirqd

 for(;;) {

 set_current_state(TASK_INTERRUPTIBLE);

 schedule();

 /* now in TASK_RUNNING state */

 while (local_softirq_pending()) {

 preempt_disable();

 do_softirq();

 preempt_enable();

 cond_resched();

 }

 }

Tasklets
• Tasklets are data structures used to track a specific task,

related to the execution of a specific function in the kernel

• They are the preferred way to implement deferrable work
• The function accepts a parameter (an unsigned long)

and is of type void

• Tasklets are declared as
(include/linux/interrupt.h):

• DECLARE_TASKLET(tasklet, function, data)

• DECLARE_TASKLET_DISABLED(tasklet, function, data)

• If declared as disabled, tasks will not be executed until
enabled

Enabling and Running Tasklets
tasklet_enable(struct tasklet_struct *tasklet)
tasklet_hi_enable(struct tasklet_struct *);
tasklet_disable(struct tasklet_struct *tasklet)
void tasklet_schedule(struct tasklet_struct *tasklet)

• Each tasklet represents a single task
• Unless a tasklet reactivates itself, every tasklet activation

triggers at most one execution of the tasklet function
• Management of tasklets is such that a tasklet of the same kind

cannot be run concurrently on two different cores
– If a core is running a tasklet and another core attempts to run it, it

is again deferred to a later time

How Tasklets are Run

• Tasklets are run using Soft IRQs
• Enable functions are mapped to Soft IRQs lines:

– tasklet_enable() mapped to TASKLET_SOFTIRQ
– tasklet_hi_enable() mapped to HI_SOFTIRQ
– No real difference between the two, except that do_softirq()

processes HI_SOFTIRQ before TASKLET_SOFTIRQ

• All non-disabled Tasklets are executed, before the
corresponding SoftIRQ action completes
– Disabled Tasklets are put back in the corresponding list

• Remember that they are run with HardIRQs enabled

Work Queues

• More recent deferral mechanisms introduced in
2.5.41

• Similar in spirit to Tasklets, but they are run by
ad-hoc kernel-level worker threads

• Work Queues are always run in process context
• They can perform blocking operations

• This does not mean that they can access
userspace address space

Work Queue Main Datastructure
• This is defined in linux/workqueue.h as:

struct work_struct {
atomic_long_t data;
struct list_head entry;
work_func_t func;

};

typedef void (*work_func_t)(struct work_struct
*work);

Work Queues Main API Function
INIT_WORK(work, func);

INIT_DELAYED_WORK(work, func);

INIT_DELAYED_WORK_DEFERRABLE(work, func);

struct workqueue_struct *create_workqueue(name);

void destroy_workqueue(struct workqueue_struct *);

int schedule_work(struct work_struct *work);

int schedule_work_on(int cpu, struct work_struct
*work);

int scheduled_delayed_work(struct delayed_work *dwork,
unsigned long delay);

int scheduled_delayed_work_on(int cpu, struct
delayed_work *dwork, unsigned long delay);

struct delayed_work

struct delayed_work {

struct work_struct work;

struct timer_list timer;

/* target workqueue and CPU ->timer uses
to queue ->work */

struct workqueue_struct *wq;

int cpu;
};

struct workqueue_struct

struct workqueue_struct {
 struct list_head pwqs;/* WR: all pwqs of this wq */
 struct list_head list;/* PR: list of all workqueues */
 struct mutex mutex; /* protects this wq */
 int work_color; /* WQ: current work color */
 ...
 struct list_head maydays;/* MD: pwqs requesting rescue */
 struct worker *rescuer; /* I: rescue worker */
 char name[WQ_NAME_LEN];/* I: workqueue name */
 ...
 struct pool_workqueue __percpu *cpu_pwqs;
 ...
};

Work Queue Summary

Predefined Work Queues
• Spawning a set of worker threads to run a function is an

overkill
• There is the events predefined work queue in the kernel

– schedule_work(w) →�queue_work(keventd_wq,w)
– schedule_delayed_work(w,d) →�
queue_delayed_work(keventd_wq,w,d) (on any CPU)

– schedule_delayed_work_on(cpu,w,d) →�
queue_delayed_work(keventd_wq,w,d) (on a given CPU)

– flush_scheduled_work() →�flush_workqueue(keventd_wq)

• Don't block for a long time: functions are serialized on each
CPU

Timekeeping

• A computer would be useless if programs would
not have the possibility to keep track of time
passing

• This fundamental facility is handled by the
kernel

• There are multiple hardware and software
facilities to keep track of time
– They provide different granularity and precision

Kernel-Level Timekeeping Concepts

• Timeouts: used primarily by networking and
device drivers to detect when an event (e.g., I/O
completion) does not occur as expected.
– Low resolution requirements
– Almost always removed before they actually expire

• Timers: used to sequence ongoing events.
– They can have high resolution requirements, and

usually expire

Hardware Clock Sources
• Real Time Clock (RTC)

– Available on all PCs
– Can trigger an interrupt periodically or when the counter reaches a certain value

• Time Stamp Counter (TSC)
– Avilable on x86 CPUs
– Counts the number of CPU clocks
– Can be explicitly read (rdtsc)

• Programmable Interval Timer (PIT)
– Can be programmed explicitly
– Sends an interrupt periodically (the timer interrupt) to all CPUs

• CPU Local Timer (LAPIC)
– Available on x86 CPUs
– Delivers a timer interrupt only to the local CPU

• High Precision Event Timer (HPET)
– Offers multiple timers which can be programmed independently

Clock Events

• They are an abstraction introduced in 2.6
• Clock Events are generated by Clock Event

Devices
• This interface allows to drive hardware which

can be programmed to send interrupts at
different grains (e.g. PITs, HRETs)

Linux Timekeeping Architecture

• Five fundamental goals
1. Update elapsed time since system startup
2. Update time and date
3. Manage process scheduling (time quantum)
4. Update resource usage statistics
5. Check if some software timer has to fire

• The kernel must adapt to the available
hardware and to type of system (unicore vs
multicore)

Tracking Elapsed Time

• In Linux, time is measured by a global variable
named jiffies, which identifies the number
of ticks that have occurred since the system was
booted (in kernel/time/jiffies.c)

• The jiffies global variable is used broadly in
the kernel for a number of purposes

• One purpose is the current absolute time to
calculate the time-out value for a timer

Timer Interrupts Management on 2.4

• They are handled according to the top/bottom half
paradigm (using Task Queues, which have now been
removed from the Kernel)

• The top half executes the following actions:
– Registers the bottom half
– Increments jiffies
– Checks whether the CPU scheduler needs to be

activated, and in the positive case flags
need_resched (more on this later)

Timer Interrupt Activation on 2.4
Linux Timer IRQ
IRQ 0 [Timer]
 |
\|/
|IRQ0x00_interrupt // wrapper IRQ handler
 |SAVE_ALL ---
 |do_IRQ | wrapper routines
 |handle_IRQ_event ---
 |handler() -> timer_interrupt // registered IRQ 0 handler
 |do_timer_interrupt
 |do_timer
 |jiffies++;
 |update_process_times
 |if (--counter <= 0) { // if time slice ended then
 |counter = 0; // reset counter
 |need_resched = 1; // prepare to reschedule
 |}
 |do_softirq
 |while (need_resched) { // if necessary
 |schedule // reschedule
 |handle_softirq
 |}
 |RESTORE_ALL

High-Resolution Timers

• They are based on the ktime_t type
(nanosecond scalar representation) rather than
jiffies

struct hrtimer {
struct timerqueue_node node;
ktime_t _softexpires;
enum hrtimer_restart (*function)(struct hrtimer *);
struct hrtimer_clock_base *base;
u8 state;
u8 is_rel;

};

High-Resolution Timers API
• void hrtimer_init(struct hrtimer *time, clockid_t

which_clock, enum hrtimer_mode mode);

• int hrtimer_start(struct hrtimer *timer, ktime_t
time, const enum hrtimer_mode mode);

• int hrtimer_cancel(struct hrtimer *timer);

• int hrtimer_try_to_cancel(struct hrtimer *timer);

• int hrtimer_callback_running(struct hrtimer
*timer);

Kernel Timers

• A facility to allow a generic function to be
activated at a later time (time out instant)
– Fundamental for applications (e.g., alarm())
– Widely used by device drivers (e.g., to detect

anomalous conditions)
• Timers are associated with deferrable functions

– Linux does not guarantee that activation takes place
at exact time

– They are not appropriate for hard real-time
applications

Dynamic Kernel Timers
• They can be dynamically created and destroyed
• Defined in include/linux/timer.h

struct timer_list {

/*

 * All fields that change during normal runtime

 * grouped to the same cacheline

 */

struct hlist_node entry;

unsigned long expires;

void (*function)(struct timer_list *);

u32 flags;
};

Dynamic Kernel Timer API
• void init_timer(struct timer_list *timer);

• void setup_timer(struct timer_list *timer,
void (*function)(unsigned long), unsigned long data);

• int mod_timer(struct timer_list *timer, unsigned long
expires);

• void del_timer(struct timer_list *timer);

• int timer_pending(const struct timer_list *timer);

• Timers are prone to race conditions (e.g., if resources are released)

• They should be deleted before releasing the resources

Kernel Timer Management

• Early Linux implementations had timers
organized in a single list with nodes (slightly)
ordered according to expiration time

• This was significantly unreliable and inefficient
• The Timer Wheel

– A nested structure

The Timer Wheel (2005)

Timer Interrupt Activation on ≥2.6
__visible void smp_apic_timer_interrupt(struct pt_regs *regs) {
 struct pt_regs *old_regs = set_irq_regs(regs);

 /*
 * NOTE! We'd better ACK the irq immediately,
 * because timer handling can be slow.
 *
 * update_process_times() expects us to have
 * done irq_enter().
 * Besides, if we don't timer interrupts ignore the global
 * interrupt lock, which is the WrongThing (tm) to do.
 */

entering_ack_irq();
trace_local_timer_entry(LOCAL_TIMER_VECTOR);
local_apic_timer_interrupt();
trace_local_timer_exit(LOCAL_TIMER_VECTOR);
exiting_irq();

set_irq_regs(old_regs);
}

Timer Interrupt Activation on ≥2.6
• In arch/x86/kernel/apic/apic.c

static DEFINE_PER_CPU(struct clock_event_device, lapic_events);

static void local_apic_timer_interrupt(void)
{

struct clock_event_device *evt =
this_cpu_ptr(&lapic_events);

...
inc_irq_stat(apic_timer_irqs);

evt->event_handler(evt);
}

POSIX Clocks
• CLOCK_REALTIME: This clock provides a best effort estimate of UTC in a way

that is backwards compatible with existing practice. Very little is guaranteed for
this clock. It will never show leap seconds

• CLOCK_UTC: This clock is only available when the system knows with high
assurance Coordinated Universal Time (UTC) with an estimated accuracy of at
least 1 s

• CLOCK_TAI: This clock is only available when the system knows International
Atomic Time (TAI) with at least an accuracy of 1s

• CLOCK_MONOTONIC: This clock never jumps, it is guaranteed to be available all
the time right after system startup, and its frequency never varies by more than
500 ppm

• CLOCK_THREAD: This clock started its Epoch when the current thread was
created and runs only when the current thread is running on the CPU

• CLOCK_PROCESS: This clock starts its Epoch when the current process was
created and runs only when a thread of the current process is running on the CPU

Overall Timekeeping Architecture

Linux Watchdog

• A watchdog is a component that monitors a system
for “normal” behaviour and if it fails, it performs a
system reset to hopefully recover normal operation.

• This is a last resort to maintain system availability or
to allow sysadmins to remotely log after a restart and
check what happened

• In Linux, this is implemented in two parts:
– A kernel-level module which is able to perform a hard

reset
– A user-space background daemon that refreshes the timer

Linux Whatchdog
• At kernel level, this is implemented using a Non-

Maskable Interrupt (NMI)
• The userspace daemon will notify the kernel

watchdog module via the /dev/watchdog
special device file that userspace is still alive

while (1) {
ioctl(fd, WDIOC_KEEPALIVE, 0);
sleep(10);

}

