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Abstract

The parallel hold (PHOLD) model is proposed for performing per-
formance analyses of paralleldiscrete event simulation programs. The
PHOLD model is based on the hold model that is widely used to eval-
uate the performance of aeguentml event list algorithms. .

Using the PHOLD model, an empirical performance evaluation of
the Time Warp mechanism was perform Performance measure-
ments of Time Warp executing on a shared-memory multiprocessor
were completed using both saturated (more parallelism than proces-
sors) and unsaturated (less parallelism than processors) workloads.
Workload parameters that were tested included computation grain
size and variance, spatial locality, temporal locality, and lookahead.

Based on these experiments, it appears that Time Warp perfor-
mance is very robust across 8 wide range workloads. Speedups as
high as 32 using 64 processors were obtained under fairly adverse
conditions (a fully connected network containing no lookeheed and
minimum timestamp increment of zero). Workloads containing more

favorable parameters obtained speedups as high as 54 on 64 proces-
80TS.

1 Introduction

The heavy computational demands of large discrete event simu-
lation programs, coupled with the increasing availability of parallel
computers, has heightened interest in lel discrete event simula-
tion (PDES). Specifically, this paper is concerned with simulations
of asynchronous systems where the synchronous, lock step mode of
operation degenerates to largely sequential execution because too few
stmulator events occur at a single point in simulated time. The ex-
ploitation of parallelism in these applications has been elusive because
the global notion of time does not easily map to a distributed com-
puter; sophisticated clock synchronization algorithms are required to
ensure that cause-and-effect relationships are faithfully reproduced
by the simulator. . . .

Jeflferson’s Time Warp mechanism based on the Virtual Time
paradigm offers great potential as a “general purpose” PDES strat-
egy [4). Recently, numerous successes have been reported using Time
Warp to speed up simulations, e.g., see [2, 7). These results are en-
couraging, but provide only limited insight into the behavior of Time
Warp as a function of characteristics of the simulation application.

aﬁae work described here characterizes the performance of Time
Warp for various synthetic workloads covering a wide range of appli-
cation specific parameters. By :fn:hcu'c we mean the workloads do
not attempt to simulate any real-world system, but rather, attempt
to emulate essential characteristics of a wide range of “typical” sim-
ulations that arise in practice. This sllows one to assess performance
based on certain characteristics of the application without becoming
entangled in the details and peculiarities of a specific application.
The workloads are designed to be relatively simple in order to facil
itate understanding the behavior of the simulation a‘_}gorathm. Here,
we use synthetic workloads to test the robustness of Time Warp per-
formance as various workload parameters are changed.

2 The Parallel Hold Workload Model

Because parallel simulation algorithms perform the same logical
function as the event list in a sequential simulator (ensuring proper
sequencing of events), it is natural to examine the workload models
that are used there. In sequential simulation, the hold modelhas be-
come the most widely used approach for evaiuatmg the performance
of event list (priority queue) implementations (e.g., see [5]). In this
model, the event list consists of a fixed number of unprocessed events,
each containing a timestamp to indicate its priority. The iterative
step used by the model is to first dequeue the smallest timestamped
event, and then enqueue a single new event using a timestamp equal
to that of the removed event plus some increment selected from a
probabilistic distribution. The parameters of this model are the size
of the event list, the distribution of the timestamp increment func-
tion, the initial distribution of the timestampsa of events in the queue,
and the initial shape of the data structure holding the events.

Though adequate for evalyating seguentia! simulations, the hold
model does not consider certain characteristics that greatly affect the
performance of parallelsimulation programs. In particular, the model
says nothing concerning the spatial characteristics of the application,
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Figure 1: Space-time diagram. (a) one dimensional. (b) two dimen-
sional.

which greatly irgf»actn the amount of parallelism that is available.
Therefore, the hold model must be extended to accommodate analy-
ses of PDES algorithms.

We propose the parallel hold model(PHOLD) for this purpose. We
previously reported use of an earlier version of this workload model to
evaluate the performance of conservative simulation algorithms based
on deadlock avoidance and deadlock detection and recovery [1].

The sections that follow first define the workload model with the
aid of space-time diagrams. A specific instance of the model is de-

veloped for evaluating the Time Warp mechanism. Finally, results of
the performance study for Time Warp are presented.

2.1 Space-Time Diagrams

We use space-time diagrams (time refers to simulated time) to
illustrate the behavior of the simulation. From this perspective, the
sequential hold model is one dimensional, with simulated time as
the dimension. The diagram in figure 1a depicts the operation of this
mode)]. Each arc represents the scheduling of an event. The time
coordinate of the head and tail denote, respectively, the simulated
time at which the event is to occur and the simulated time st which
it was scheduled. We refer to a sequence of arcs Ey, E3,... where
processing event E; causes E;4) to be scheduled, as a tgreod. The
head of E; will always coincide with the tail of E;4; in the space-
time dia . When the sequential hold model is used, the din%'p.rn
in figure 1a can be viewed as M threads mapped onto the linear time
scale, where M is the number of elements in the event list. In actual
simulations, one event can schedule any number of other events; this
leads to trees rather than the linear threads described above. .

The PHOLD model extends the space-time e‘g;r.a.ph to higher di-
mensions. A two dimensional mede] is depicted in figure Ib. The
spatial axis is discrete, and represents the state of the entire simula-
tion. Most existing _Pl‘.)ES algorithms are based on process oriented
paradigms, so we will assume each spatial coordinate represents a
distinc??ogicnl process. In particular, let us assume that there are N
logical processes LPg...LPy_1 and process LP, is mapped to spatial
coordinate i, .

Like the hold model, PHOLD assumes there is a fixed number of
threads, with the exact number specified as a parameter. An arc ex-
tending from space-time coordinate (s,T,) to (r, T;) denotes the fact
that an event at LP, and simulated time 7, sent an event message

to LP, with timestamp T, where T, > 7,.} In Time Warp, 7, and
T, denote the send ang receive time of the message, respectively.
The benchmarks used to evaluate Time Warp are based on a minor
extension of the two dimensional model: two dimensions are used to
represent the spatial characteristics of the simulation rather than one.
Each logical processes occupies & unique, integral Cartesian coordi-

nate position in the two-dimensional plane. The point (S;, S, T') de-

]FOI some simulation mechanlems, it may be necessary 1o use & strict ig-
equality,i.e., Ty > T;.



T+TSInc u

(a)

T+TSInc a
/ lookahead
T+(1.0-ILAR)
*TSInc ?
r | B
LP LP
1 ]
(®)

Figure 2: Lookahead in the PHOLD model. (8) an event when lookahead is not considered. (b) a model that considers lockahead.

notes the state of the logical process at Cartesian coordinate (§;,5;)
at simulated time T. The movement function parameter of the model
govemns the incremental movement of an event in space, just as the
timestamp increment function governs the movement in simulated
time. The extension of space to two dimensions better refiects sim-
ulations of many real world systems, e.g., networks, and interactin
ph)&sifai entities moving across a plane. than the one dimensiona
models.

2.2 Model Parameters
The PHOLD workload model contains the following parameters:

1. number of logjcal processes: this provides an upper bound on
the amount of parallelism that is available.

wa

message population: this positive integer indicates the number
of causality threads migrating through the space-time diagram.
It i‘; lidentlca! to the "event list size” parameter of the hold
moae.

3. timestamp increment function: this function is identical to
that used in the sequential hold model. Given an event E;
at point (8z,5,,T) in the space time diagram, and the state
of the corresponding logical process, it returns the (receive)
timestamp of the new event scheduled by F;.

4. movement function: this function describes the spatial move-
ment of threads in the space-time diagram. Given an event E)
at point (8¢, 5,,T) in the diagram, and the state of the cor.

responding logical process, it returns the spatial coordinate of
the event scheduled by E;.

5. computation grain: this function defines the amount of com-
putation required to process a sm%le event, excluding the time
required to schedule the next event. In general, the granularity
depends on the event and process state.

6. initial configuration: this function defines the location (in
space and time) of each initial event before the simulation be-
Bins.

It is assumed that all user computation performed by the workload
model is the result of processing an event; no computations may be
“spontaneously” created. One other important aspect of the workload
model is that we do not explicitly model event cancellations by the
application program. We model simulators proqrarpqu to allow the
possibility of cancellation, though not the cancellation itself, th:;ouEh
a lookahead parameter. 'This_aspect of the workload model will be
described momentarily. Lookahead is incorporated into the model
through the timestamp increment and movement functions.

2.3 Lookahead

It is widely recognized that the degree to which processes can “look
shead” into the simulated time future can have a dramatic impact on

the performance of PDES algorithms {1}. If a process at simulated
time T can predict with complete certainty all events it will generate
ip to simulated time T 4+ L, we say the process has lookahead ability

We characterize the lockahead of the process by a parameter called
the inverse lookahead ratio (ILAR), where 0 < JLAR < 1. This
quantity is essentially the reciprocal of the lookahead ratio parame-
ter defined in [1]. ILAR is defined on an event-by-event basis as the

lookahead divided by the timestamp increment assigned to the sched-
uled event; it 15 assumed that the lookahead ia no greater than the

timestamp increment (having more lookahead provides no benefit in
the model). In order to send an event message with timestamp incre-

ment T'SIne, the simulated time of the process seqdini the message
must have advanced in simulated time up to within JLAR « TSInc

(the process’s lookahead) of the timestamp of the mesasage.

Distnibution Expression Grain | Rate 1 | Rate 2 |
usec ev/sec | ev/sec

Deterministic | 1.0 190 1827 1857 |
Biased 0.9 4 0.2 rand 258 1362 1630
Uniform rand 250 1271 1599
Exponential -In(rand) 339 1187 1405
Bimodal 0.95238 rand + 260 1303 1605

if rand £ 0.}

then 9.5238 else 0

Table 1: Timestamp Increment Distributions. rand returns a random
value uniformly distributed between 0 and 1.

Lookahead is illustrated graphically in figure 2. Figure 2a shows
a single event in a space-time dmgre.m without any consideration
to lookahead. Figure 2b reflects the operation of the simulator in
processing this event when lookahead is considered. The logical
process first schedules an event to itself with timestamp increment
(1.0 - ILAR)T SInc because at that point, it can “see” sufficiently
far into the future to schedule the subsequent event. The thread is
continued by asecond event with timestamp increment JLAR«TSInc
(the lookehead of the process). Assume the three event times in fig-
ure 2b are T, T 4+ (1.0 = ILAR)TSInc, and T 4 TSine. The self
event is essential because events contrining a timestamp in the inter-
val [T, (1.0= JLAR)TSInc] could affect the event scheduled to occur
at T j- TSInc. Here, to simply the model, we assume this “effect”
'f":ch"i" §.} the possibility of changing the timestamp on the event at

+ ne.

The extreme points of the inverse lookahead ratio (0.0 and 1.0)
are noteworthy because they represent cases that frequently arise in
practice. For example, an ILAR of 1.0 (extremely good lookahead)
arises in a queuein%network simulation using a first-come-first-serve
service discipline. There, the arrival event of a job at the next server
in a tandem queue can be scheduled as soon as the arrival event at
the current server is processed because the computation of the depar-
ture time is invariant to the arrival of subsequent jobs. Conversely,
an ILAR of 0.0 corresponds to the case when one first schedules a
departure event to one's sell beflore scheduling the arrival, a com-
mon way of programming a queueing network simulator. Simulators
modeling preemption also behave in a similar fashion, although in
that case, the preempting event changes the timestamp of the event
it pé'efmpu, a behavior that is disallowed in our simplified workload
model.

In our study of the Time Warp mechanism, we assume the amount
of the timestamp increment (T'S/ne above) is selected from one of the
following distributions (see table 1): deterministic, binsed, exponen-
tial, uniform, or bimodal. The exponential and uniform distributions
use a minimum value of 0.0. These distributions are commonly used
in performance evaluations of sequential event list implementations
of simulation programs and represent distributions often observed in
practice [5).

We also assume that initiallz, events are uniformly distributed
among the logical processes. The initial timestamp distribution is
selected according to the timestamp increment function.

2.4 Spatial Locality

We define the movement function to allow spatial locality to t=
easily parameterized. Each process may only send messagea to a
fixed set of other ?rocesses called its neighborhood. We assume that
the neighborhood for process LP, consista of those processes that are
closest to LP; in the two dimensional coordinate plane. The size
of the neighborhood.controls the degree to which processes exhibit
spatial locality. L.

The second aspect of the movement function is the selection of a
specific process within the neighborhood. In our initial experiments,
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Figure 3: Effect of varying the size and distribution of the event computation. (a) efficiency (b) speedup.

each process in the neighborhood is equally likely to be selected. Ex-
periments using other selection functions are planned.

3 The Parallel Simulation Testbed

~ An 18 processor BBN Butterfly GP1000 multiprocessor was used
in most of the experiments described here. Each node contains a 16
MHz MC68020 microprocessor, MC68881 fioating point coxrocessor,
MCe68851 paged MMU, 4 MBytes of main memeory, and an AMD 2901
microcoded engine for interfacing the processor node to the switch.
The interconnection switch is configured as an Omega network. In-
structions that access non.local memory require approximately five
times more time than those accessing local memory.

The GP1000 uses a version of the Mach operating system. Pro
cessors used for each experiment were dedicated to the application to
avoid interference from other users. Care was taken to ensure that
the amount of memory used hi each processor was much less than
the 4 MBytes available on each node in order to minimize pertur.
bations due to the paging mechanism. Also, pages were pre-written
during the initialization phase of the simulation to further reduce
interference from the memory system. To evaluate the affect of oper-
ating system overhead, selected simulations were also performed on
Chrysallis, a.fnmntwe_operatmg system for the Butteerfg that has
minimal interference with the application program. Speedup figures
under Chrysallis were typically 10% higher than those obtained un-
der Mach, 50 we consider the performance data reported here to be
conservative.

_The logical processes mapped to & single processor were executed
within a single Mach process to reduce the cost of context switches.
After initialization is completed, all synchronization is performed us-
ing primitive atomic operations (e.g., atomic.add) that are provided
by the Butterfly hardware.

_The Time Warp system uses_direct cancellation, an optimization
using shared memory to streamline the cancellation of incorrect com-
putations [2]. All measurements reported here use aggressive cancel-
lation.

. Processes are mapped to processors by partitioning the twodimen-
sional spatial plane inte a grid, and mapping the processes in each
grid sector to a separate processor. This minimizes interprocessor
communications when the application has good spatial locality. No
dynami¢ load balancing or process migration is performed.

4 Performance Measurements

Performance measurements were made usig the PHOLD meode)
described above. The two principal metrics used are speedup relative
to a sequential simulator and efficiency. Efficiency is defined as the
number of events that were eventually committed (i.e., neither rolled
back nor cancelled) divided by the total number of events executed.
Except in the cases where the computation grain was artificially in.
creased by inserting delays, each data point represents the execution
of over a million committed events.

A set of “default” parameters were defined for initial benchmarks,
The default settings assume the process topology is a teroid, and
each neighbor is ¢equally likely to be selected. The exponential times-
tamp increment is used, and good lookahead assumed. No delay is
inserted to aruﬁc}aller increase the computation grain. Initial exper-
iments varied a single parameter {rom the default setting, and later
€xperiments varied many parameters in order to construct some very
challenging benchmarks. Unless stated otherwise, all experiments use
16 processors on the GP1000.
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4.1 The Sequential Simulator

The sequential simulator was developed by modifying the paral-
lel simulator; all code related to parallel execution (e.g., locks for

synchronization) was removed. Identical application code is used by
both the paraliel and sequential simulator. |

The priority queue used by the sequential simulator is implemented
using a splay tree [6]. Empirical evidence suggests that splay trees
are among the fastest methods for implementing an event list [5]. The
splay tree code used by Jones in his experiments was translated to C,
and adapted for use in the testbed simulator. It uses the top-down

version of the splay algorithm, and is optimized to efficiently execute
event.list operations. .

Table 1 indicates the amount of execution time required to process
an event in the workload model for each of the timestamp increment
functions. This number indicates the size of the computation grain in
the “no delay” case. Also indicated are measurements of the number
of events processed per second (the event rate) for event lists of size
16 and 4096. The event rate achieved by the parallelsimulator is this

figure multiplied by the speedup? In addition to the event execution
and splay tree operations, the sequential simulator requires approx-
u'qatefv 50 microseconds overhead for each event to perform other
miscellaneous functions, e.g., allocating storage from the free list,
loop overhead, message copying (one per scheduled event), statistics
collection, etc.

4.2 Varying the CPU Grain and Distribution

Our first set of experiments were designed to evaluate the effect
of the computation grain size and distribution on performance. The
computation time to process each event is selected {rom a random
variable, and a busy wait loop was inserted to increase the total com-
putation time of the event (excluding sending the event) up to this
value. If the selected value is smaller than that required to otherwise
process the event (as described above), no delay is inserted.

Four cases were examined: no delay inserted (i.e., the granularity
corresponds to the figures reported in table 1), a computation grain
selected from an exponentially distributed random variable with a
mean of 1 millisecond, and grains selected from normally distributed
random variables with mean of 50 milliseconds, and standard devia-
tion of either 1 or 40 milliseconds.

The efficiency of the Time Warp mechanism for these computation
grains is shown in figure 3a as the message density (message popu-
lation divided by the number of processes) is varied. Experiments
using_16 and 64 processes, i.e., 1 and 4 processes per processor, re-
spectively, were performed. Increasing the computation grain from a
few hundred microseconds to (on average) 50 milliseconds improves
efficiency in the one process per processor case by as much as 10%,
but less than 5% in the 4 process per processor case. The latter case
achieves much higher efficiency figures because there is much more

parallelism, so processors are more likely to be working on correct
€vents.

In Time Warp, errors tend to propagate more rapidly relative to
the speed of the correction (anti-messages) if the grain of computation
is small. This accounts for the improvement in _the efficiency of the
algorithm with larger grains. However, the effect of computation
Fra.m is modest, indicating that the efficiency of the mechanism is
Targely unaffected by computation grain. The amount of parallelism
is a much more impertant factor.

2E:uej.rl when the event grain is artificially increased, or if ILAR is not 1.0,
1o the latier cane, “self” events containing even smaller grains arc alsc executed.



Number of ILAR=1.0 ILAR=0.0
Processes dens=1 dens=16 dens=1 dens=16
16 5.6 11.5 40 5.9
64 19.1 42.7 129 19.6
256 71.4 160.0 46.2 72.0

Table 2: Average parallelism for fully connected network.

Speedup figures are shown in figure 3b. It can be seen that the
computation grain has a much more significant effect on speedup
than efficiency. This is because the larger computation grain tends to
mask the differences in overhead between the sequential simulator and
Time Warp. This behavior exists for any parallel computation, and is
not unexpected, It is worth pointing out, however, that Time Warp
achieves respectable speedups even with small grains of computation,
and high variance in the grain size.

4.3 Average Parallelism

Here, average parallelism is defined as the total amount of time
required to process events (excluding all simulator overheads, e.g., for
synchronization) divided by the length of the critical path through
the simulation. This indicates the amount of speedup that a hy-
pothetical machine containing an infinite number of processors and
zero synchronization overheadcould obtain. The average parallelism
figure reported here should be regarded as an upper bound on the

speedup that_can be achieved.® .

A simulation tool developed at the Jet Propulsion Laboratory
was used to determine the critical path length [3]. A version of the
PHOLD workload using a fully connected network and fixed execution
time per event was implemented. Average parallelism measurements
of these workloads were then performed. Average parallelism for 16
64, and 256 process simulations with message densities of 1 and 16
are shown in table 2. Data for ILAR values of 1.0 and 0.0 are shown.

Consider the data points in figure 3 that yielded the poorest per-
formance, i.e., the simulations containing one process per processor,
and a message dens:tﬁy of 1. Here, speedups ranged from 2.6 when no
delay is added, to 4.6 when event times are 50 milliseconds. The av-
erage parallelism is only 5.6, so under the circumstances, Time Warp
is_actually performing reasonably well. We make special mention
of this simulation because it contains substantially [ess parallelism
than the number of processors. This “unsaturated” case is consid-
ered particularly stressful for Time Warp because it provides incorrect
computations ample opportunity to spread very rapidly.

4.4 Spatial Locality

The next set of experiments were designed to test the degree to
which spatial locality affects Time Warp performance. For these ex-
periments, the size of the neighborhood of each logical process was
varied. Experiments ranging from the nearest neighbor (toroid) con-

nection up to a fully connected network were performed. .

Flﬁurp 4a shows the effect of varying spatial locality on efficiency.
The horizontal axis indicates the size of the neighborhood divided
by the number of logical processes in the network. The end points
of each curve denote the toroid connection (the left end point) and
a fully connected network (right end point). Processes do not send
mess to themselves, accounting for the fact that the right end
point does not lie at locality 1.0. e curves correspond to bench-
marks using 1, 4, and 16 processes on each of the 16 processors. As
can be seen, the efficiency of the Time Watxsmechamam is virtually
unaffected by changes in spatial locality. in the previous set of
experiments, efficiency is determined by the amount of parallelism
in the application, which is largely controlled by the number of IoE:-
cal processes and the message density. The relative orderings of the
curves in figure 4a are consistent with this observation.

Speedup curves are shown in ﬁﬁiure 4b. Somewhat higher speedups
are obtained when locality is high. This is because more messages
are sent to processes on the same processor as the sender if locality is
high, reducing the overhead for message communications. This effect
18 not observed in the 16 process simulation because each processor
contains only one process, so all messages require non-local commu-
nications, regardless of the size of the neighborhood.

4,5 Varying the Timestamp Increment Function

The next round of experiments examined the effect of the times-
tamp increment function on performance. The timestamp increment
affects temporal locality. Jeflerson has hypothesized that good tem-
poral locality enhances the performance of the Time Warp mechanism
in & manner similar to the way locality improves virtual memory sys-
tems [4].

Figure 5a shows Time Warp efficiency as a function of message
density for the 1 process and 4 processes per processor cases as the
timestamp increment function is varied. In both cases, the uniform,

3Actua.lly, one might be able to achieve somewhat higher speedups, depend-
ing on particulars of the implementation of the event list and the paralle]l sim-
ulator. Here, we consider this poasibility to be remote because a reasonably
efficient sequential simulator ia used to derive speedup {igures.
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16 processes 64 processes
Distribution Bias [ den=1 | den=1 den=1 | den=18 |
Deterministic 1.0 8.3 15.0 304 | :
Biased 0.97 8.2 14.7 30.3 57.3
Uniform 0.66 6.6 12.2 23.2 46.6
Exponential 0.50 6.6 11.3 18.1 42.7
Bimodal 0.13 4.5 12.0 15.6 4B8.7

Table 3: Average parallelism as timestamp distribution changes (fully
connected network).

exponential, and bimodal distributions yield significantly lower effi-
ciencies than the deterministic and bi distributions. The vari-
ation in efficiency as the timestamp increment function changes is
often rs much as 30% in the one process per processor case, but typ-
icallir from 5 to 10% in the four processes per processor case. These
results are consistent with Jefferson’s assertion that good temporal
locality improves performance (the deterministic and biased distribu-
tions exhibit very good temporal locality). We present an alternative
explanation below. .

_The higher efficiency figures for the biased and deterministic dis-
tributions is & consequence of the fact that these distributions lead
to ﬁreater parallelism in the PHOLD model. In the sequential hold
model, the biased and deterministic distributions cause new events to
tend to have timestamps larger than the other events already residing
in the queue, so new events are usually inserted near the end of the
event list, assuming ties are resolved in FIFO order. The behavior of
the pnoru‘ig' cgteua resembles that of a FIFO queue.

In the PHOLD model, this FIFO like behavior is preserved in the
queue of each !o%cal process. If event E, on processor PE, sched-
ules 8 new event E; on processor PE,, and E: contains a timestamp
larger than any other event on PEy, then E, may be able to execute
concurrently with these other events. On the other hand, if E; con-
tained a timestamp smallerthan the events on PE;, as would Be the
case if the queue were being used in a LIFO-like fashion, E, would
have to be processed before these events, precluding the possibility of
paralle] execution. Thus, “FIFO-like” queue behavior leads to better
parallelism, accounting for the better performance of the binsed and
deterministic distributions.

. This aspect of queue behavior is t&‘;a.ntitativ_ely described as bias,
with a bias of 1.0 indicating purely FIFO behavior, and 0.0 indicating
purely LIFO behavior [5]. The biases of these timestamp distributions
are listed in table 3. The relative orderings of the efficiency curves are
consistent with the biases of these distributions. The corresponding
speedul: curves for these experimenta are shown in figure 5b.

Table 3 also showa the average parallelism of simulations using
different timestamp increment functions (as before, a fully connected

network is assumed). It is seen that the average parallelism generally
increases with the bias of the distribution, as expected,

4.6 Effect of Lookahead

The next set of experiments were designed to evaluate the effect
of lookahead on performance. The preceding experiments assumed
an ILAR value of 1.0 (good lockahead), so each process could im-
mediately generate a new event as soon as the “causing” event were
received, With smaller ILAR values, each process must first send a
message to itself (and receive it) before generating the event, as was
described earlier.

Efficiency curves for the 1, 4, and 16 processes per processor cases
at message densities of 1 and 16 are shown in figure 6a. The cor-
responding speedup curves are shown in figure 6b. As can be seen,
lookahead has a modest impact on performance except for the case
when the message density is high, and there is zero lookahead (ILAR
equal to 0.0), where a significant degradation occurs.

. In the zero lookahead case, the process computes a timestamp
increment T'SIn¢, and then sends a message to itself using that value.
The send and receive timestamps on the “self” message are T and
T + TSInc, respectively, where T is the time of the original event.
When the self message is received, a new message with timestamp
increment of zero is created, and sent to another process.

If a straggler message later arrives in the simulated time inter-
val [T,T 4+ TSInc], it will roll back the “self” message and all of
the subsecluer_lt computations that were spawned, assuming aggres-
sive cancellation is used. Such a straggler is more likely to occur if
the message density is high, so, as seen in figure 2, the degradation
is much more severe at high densities. o )

Average parallelism measurements quantitatively characterize this
behavior (see table 2). The poor lookahead case with message den-
sity of 1 contains only about two-thirds as much parallelism as the
case where lookahead is good, and only Ahalf as much (or less) when
the density is 16. Therefore, one would expect a certain amount of
degradation with any parallel simulation mechanism, gartlcularly in
the high message density case. The observed speedup figures are not
too surprising when comldeﬂnsg the amount of parallelism that is
available, and the use of only 16 processors and small grained events.

The Time Warp degradation 158 more severe when there are fewer
processes per processor, This is also not qu:gnsir‘ﬁl when one consid-
ers the amount of parallelism that is available. The one process per
processor case already contains insufficient parallelism to keep all of
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Figure 4: Effect of varying spatial locality. The left end point of each
curve represents a toroidal interconnect, and the right end point a
fully connected network. (2) efficiency (b) speedup.

processors busy, even if lookahead is good. Therefore, loosing half of
this limited parallelism translates almost directly into loosing half of
the available speedup. On the other hand, configurations containing
a larger number of Srocesses contain some “excess” parallelism that is
not gemg exploited, due to the limited number of processors. Thus,

it is not surprising that they encounter a less severe performance
degradation.

4.7 Mixed Parameter Settings

The experiments that have been performed so far were constructed
by .modifymﬁ a single control variable while other parameters re.
mained at “default” values. We relax this constraint in our final
set of experiments, and vary many parameters to examine the addi.
tive effect of combining many unfavorable characteristics into a sin-
gle workload. Specifically, we consider the case of a fully connected
network with no lookahead (i.e., ILAR is 0). An exponential times-
tamp distribution is used (poor temporal locality), and no delay is
inserted to artificially inflate the computation grain. Because this
workload combines (1) a topology with high connectivity, (2) mini-
mum timestamp increment of zero, (3) no lookahead, and (4) modest
computation grain, it represents a particularly challenging test case
for conservative simulation mechanmsms.

These experiments were performed on a Butterfly 1 multiproces-
sor housed wl the Umvers!t* of Maryland in order to gain access 1o
a larger number of nodes. This machine is an earlier version of the
Butterfly that is based on the 68000 microprocessor (rather than the
68020), and contains no floating point coprocessor. The latter fact
tends to increase the process granularity because floating point oper-
ations must be performed in software.

. The efficiency and speedup curves for 64 and 256 process simula-
tions are shown in figures 7a and Tb respectively, as the number of
processors is varied from 8 Lo 64. Experiments were performed using
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message densities of 1 and 16. The 64 process simulation yields max-
imum speedups of 10.4 (message density of 1) and 12.5 (density of
16) at 64 processors (one process per processor). As seen in table 2,
these two simulations contain average parallelisms of 12.9 and 19.6,
respectively, accounting for the modest observed speedup. For the
256 process simulations, speedups of 25.4 (density 1) and 31.8 (den-
sity 16) were obtained, in spite of the adverse conditions under which
the simulation operates.

For comparison, we also performed experiments with good looka-
head (ILAR of 1.0) and good spatial locality (toroidal interconnect),
Other parameters remained at their previous, unfavorable values. Re-
sults of these experiments are also shown in figures 7a and b. This
modification (particularly the addition of good lookahead) signmifi-
cantly improves performance. Speedups as high as 54.3 (using 64
processors) were obtained.

5 Conclusions

The two principal contributions of this paper are to extend the
hold model to allow it to be used for evaluating parallel simulation
algorithms, and the use of this model to empirically evaluate the
?erformance of the Time Warp mechanism. The principal extension

o the hold model was the addition of consideration for spatial aspects
of the workload.

Exeﬂ:imn%the Time Warp mechanism on benchmurks constructed
from the PHOLD model indicate that Time Warp performance is very
robust across many different workloads. The eﬁﬁcicnc of the mech-
anism i relatively insensitive to the size of the CPU grain and ita
variance, as well as the degree of spatial locality. Absolute perfor-
mance (as measured in speedup) does show some variance to these
parameters, due to multiprocessor overhead and additional interpro-
cessor communications respectively. Such factors affect all parallel
programs, so they are not unexpected.
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The timestamp increment function was noted to have a significant
impact on performance. This is attributed to differences in temporal
locality which affect the amount of parallelism that is available in the
simulation. Similarly, lockahead can have a significant impact on per-
formance, particularly when there is none. This is alg_am attributed
to a reduced level of %ara.llellsgn}l' lookahead is poor. Finally, we con-
structed a worklead by combining the parameter settings for which

ime Warp had the most trouble. Under such adverse conditions as
a fully connected network with no lookahead, Time Warp was able
to extract much of the availabie parallelism, even when there was
much less parallelisrn than the number of processors, and produce a
significant speedup. | Lo )

Overall, our experiments to date have indicated that Time Warp
performance is largely determined by the amount of parallelism in
the application, and of secondary impaortance, the computation grain
and locality of communications. These properties apply to allparallel
program; therefore our results are positive in the sense that they
indicate that synchronization overhead (excluding state saving; see
[2]) does not overly burden the computation. It is in this sense that we

report that Time Warp performance appears to be relatively robust.

Ideally, one would like to have a generalnfurposq simulation_vehi-
cle that 18 adept at extracting whatever parallelism is available in the
application program, and produce a corresponding speedup sub ject
only to the amount of com puting resources that are employed to solve
the problem. Proponents of optimism have argued that among ex.
isting approaches, Time Warp offers the best potential for providin
such 2 vehicle. Qur experiments to date using synthetic workloads
and clueuemg network simulations tend to support this claim. Addi-
tional work using other synthetic and actual workloads is planned to
further evaluate this claim.
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Sataluri), and translated to C by David Brower. JPL provided tools
for measuring average parallelism,
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