

Feedback:
codeanalyst.support@amd.com

© 2007 Advanced Micro Devices Inc Page 1 of 14

Instruction-Based Sampling: A New Performance
Analysis Technique for AMD Family 10h Processors

Paul J. Drongowski

AMD CodeAnalyst Project
Advanced Micro Devices, Inc.

Boston Design Center

16 November 2007

1. Introduction

Software applications must use computational resources efficiently in order to deliver best results
in a timely manner. This is especially true for time-sensitive applications such as transaction
processing, real-time control, multi-media and games. A program profile is a histogram that
reflects dynamic program behavior. For example, a profile shows where a program is spending its
time. Program profiling helps software developers to meet performance goals by identifying
performance bottlenecks and issues. Profiling is most effective when a developer can quickly
identify the location and cause of a performance issue.

Instruction-Based Sampling (IBS) is a new profiling technique that provides rich, precise program
performance information. IBS is introduced by AMD Family10h processors (AMD Opteron Quad-
Core processor “Barcelona.”) IBS overcomes the limitations of conventional performance counter
sampling. Data collected through performance counter sampling is not precise enough to isolate
performance issues to individual instructions. IBS, however, precisely identifies instructions which
are not making the best use of the processor pipeline and memory hierarchy. IBS collects a wide
range of performance information in a single program run, making it easier to conduct
performance testing. The AMD CodeAnalyst performance analysis tool suite supports IBS and
correlates the instruction-level IBS information with processes, program modules, functions and
source code. IBS in combination with CodeAnalyst helps a developer to find, analyze and
ameliorate performance problems.

This technical note is a brief introduction to Instruction-Based Sampling. It shows the kind of
information produced by IBS and how that information can be used for performance analysis.

2. Matrix multiplication: An example

We will demonstrate the advantages of Instruction-Based Sampling by applying IBS to a matrix
multiplication program. Although the example program is small, IBS scales to large applications.

The matrix multiplication program, called "simple_classic," implements the classic, textbook
approach to matrix multiplication. This algorithm has well-known memory access performance
issues and demonstrates IBS in action.

The full source code for simple_classic is given in Appendix A. The heart of simple_classic is the
function multiply_matrices, which multiplies two 1000x1000 matrices together and puts the result
into a third matrix.

Feedback:
codeanalyst.support@amd.com

© 2007 Advanced Micro Devices Inc Page 2 of 14

Here is the source code for multiply_matrices:

void multiply_matrices()
{
 // Multiply the two matrices
 for (int i = 0 ; i < ROWS ; i++) {
 for (int j = 0 ; j < COLUMNS ; j++) {
 float sum = 0.0 ;
 for (int k = 0 ; k < COLUMNS ; k++) {
 sum = sum + matrix_a[i][k] * matrix_b[k][j] ;
 }
 matrix_r[i][j] = sum ;
 }
 }
}

C and C++ lay out two-dimensional arrays in row major order; the elements within a row of an
array are arranged sequentially in memory. Sequential memory access is advantageous for good
performance since data cache locality is improved and hardware-level prefetching can anticipate
data access.

Memory access issues in the classic matrix multiplication algorithm arise from non-sequential
accesses to one of the operand arrays, in this case, matrix_b. The fastest changing array index,
k, touches a different row of matrix_b on each iteration. Since each row of the array is nearly as
large as a 4K byte memory page, the long stride through memory causes both data cache (DC)
misses and data translation lookaside buffer (DTLB) misses.

We will first measure the memory access behavior of simple_classic using conventional
performance counter sampling to show its limitations. Then we will measure the memory behavior
of simple_classic using IBS and compare the results.

3. Performance counter sampling

AMD processors provide performance monitoring counters (PMC) to measure important
hardware events that occur during program execution. The word "program" here refers to any
executing software component including the operating system, device drivers, and libraries as
well as the application itself. Performance counter sampling uses the PMCs to measure the
occurrence of hardware events like retired instructions, DC misses and DTLB misses. Each PMC
is configured to measure a particular event. The number of events that can be measured in a
single performance test is limited by the number of counters. AMD Family 10h Processors have
four PMCs and support performance counter sampling in addition to IBS.

Performance counter sampling is a statistical technique that produces information called an
“event sample” after the occurrence of a pre-configured number of events. The instruction
address associated with the event sample is the value of the instruction pointer (IP) at the time
the sample was taken. This is usually the restart address stored on the stack by the sampling
interrupt and is generally not the address of the instruction that caused the triggering event.

It is difficult to relate a hardware event to the instruction that triggered it because the restart
address is not the location after the trigger instruction. Contemporary superscalar machines such

Feedback:
codeanalyst.support@amd.com

© 2007 Advanced Micro Devices Inc Page 3 of 14

as AMD quad-core processors use out-of-order execution to exploit instruction-level parallelism.
Up to 72 execution operations may be in-flight at any time. Due to operation reordering and in-
order instruction retirement, the sampling interrupt triggered by an execution event may be
significantly delayed. The delay is indeterminate and is not fixed. The reporting delay is called
“skid.” Due to skid, the reported IP value is only in the general neighborhood of the instruction
causing the event and may be up to 72 instructions away.

Inaccuracies due to skid accumulate as the program profile is built up. Events that belong to a
single instruction are attributed to instructions throughout the neighborhood of the culprit
instruction. The ability to isolate a performance issue to any single instruction is lost.

To demonstrate the effects of skid, we used PMC sampling to collect a profile for the example
matrix multiplication program. We compiled the simple_classic program with optimizations turned
off in order to keep the generated machine code simple and relatively short. The generated code
is a fairly literal translation of the three nested loops in multiply_matrices. We will concentrate on
the innermost loop, since this is the hottest code region in the function.

The following table shows the memory access profile of the innermost loop of multiply_matrices.
(The complete PMC memory access profile for multiply_matrices appears in Appendix B.) The
inner loop is implemented by the 16 instructions starting at address 0x401191. The body of the
loop reads the array elements from the operand matrices, multiplies the elements together, and
adds the product to the running sum. The running sum is stored on the runtime stack at the
location specified by [ebp-0Ch].

Address Instruction Ret inst DC accesses DC misses DTLB L1M

L2M
00401191 mov edx,dword ptr [ebp-10h] 1291 1763 7 81
00401194 add edx,1 1330 1551 62 91
00401197 mov dword ptr [ebp-10h],edx 0 0 0 0
0040119A cmp dword ptr [ebp-10h],1000 0 2 0 1
004011A1 jge 004011D1 1693 1353 288 42
004011A3 mov eax,dword ptr [ebp-4] 0 0 0 0
004011A6 imul eax,eax,4000 0 0 0 0
004011AC mov ecx,dword ptr [ebp-10h] 2196 1813 45 42
004011AF imul ecx,ecx,4000 0 0 0 0
004011B5 mov edx,dword ptr [ebp-10h] 1818 1579 10 20
004011B8 mov esi,dword ptr [ebp-8] 0 0 0 0
004011BB fld dword ptr [eax+edx*4+413FE0h] 0 0 0 0
004011C2 fmul dword ptr [ecx+esi*4+7E48E8h] 1165 1107 9 218
004011C9 fadd dword ptr [ebp-0Ch] 33298 22415 409 2093
004011CC fstp dword ptr [ebp-0Ch] 17983 8363 41 256
004011CF jmp 00401191 3365 4146 47 276

From left to right, the events reported are retired instructions, DC accesses, DC misses and
address translations which missed in both the level 1 and level 2 DTLBs. These latter DTLB
misses have a high performance penalty.

The instruction at 0x4011C2 reads an individual element from matrix_b and multiplies it with the
element that was read from matrix_a. Since access to matrix_b is non-sequential, we would
expect this instruction to be the source of DC misses and DTLB misses. However, due to skid
and other inaccuracies, the DC misses and DTLB misses are spread across several other

Feedback:
codeanalyst.support@amd.com

© 2007 Advanced Micro Devices Inc Page 4 of 14

instructions in the code region. Most of the DTLB misses are attributed to the three instructions
after the culprit and to the jump instruction at address 0x4011A1. This kind of inaccuracy makes
precise attribution of events to the actual culprits impossible in code regions with multiple
load/store operations. Lack of precision complicates analysis.

All data reported in this note were collected using AMD CodeAnalyst executing on a quad-core
AMD Family 10h processor. Each core provides four PMCs. Without the performance counter
multiplexing provided by AMD CodeAnalyst, we would be limited to measuring only four hardware
events in a single test run and multiple runs would be required to measure additional events. It is
easier and more cost-effective to collect all performance data in a single test run as some
performance experiments are difficult to conduct due to long run-time, platform constraints or
non-trivial user interaction with the application. Performance counter multiplexing makes it
possible to measure many events in one run, but comes at the cost of reduced statistical
accuracy.

4. Instruction-Based Sampling

Instruction-Based Sampling is a feature introduced in AMD Family 10h processors. Although IBS
is a statistical method, the sampling technique delivers precise event information and eliminates
inaccuracies due to skid.

The processor pipeline has two main phases: instruction fetch and instruction execution. The
fetch phase supplies instruction bytes to the decoder. Decoded AMD64 instructions are executed
during the execution phase as discrete operations called “ops.” Since the two phases are
decoupled, IBS provides two forms of sampling: fetch sampling and op sampling. IBS fetch
sampling provides information about the fetch phase and IBS op sampling provides information
about the execution phase.

IBS fetch sampling and IBS op sampling use a similar sampling technique. The IBS hardware
selects an operation periodically based on a configurable sampling period. The selected
operation is tagged and the operation is monitored as it proceeds through the pipeline. Events
caused by the operation are recorded. When the operation completes, the event information and
the fetch (or instruction) address associated with the operation are reported to the profiler. Thus,
events are precisely attributed to the instruction that caused them. IBS does not impose any
overhead on instruction fetch or execution -- everything runs at full speed.

4.1 IBS fetch sampling

IBS fetch sampling counts completed fetches and periodically selects a fetch to be tagged and
monitored. Several kinds of information are collected:

• The fetch address
• Whether the fetch completed or aborted
• Whether the fetch missed in the instruction cache (IC)
• Whether the fetch missed in the level 1 or level 2 instruction translation lookaside buffer

(ITLB)
• The page size of the address translation
• The fetch latency, i.e., cycles from when the fetch was initiated to when the fetch either

completed or aborted

Feedback:
codeanalyst.support@amd.com

© 2007 Advanced Micro Devices Inc Page 5 of 14

This information is collected with every IBS fetch sample and is not restricted by the number of
available performance counters.

The table below summarizes the IBS fetch samples that were collected for the multiply_matrices
function.

Address All Killed Attempted Completed Aborted IC miss
401180 6 0 6 6 0 0
401191 7 0 7 7 0 0
4011a0 4040 4 4036 4036 0 0
4011c0 3955 2 3953 3953 0 0
4011d1 5 0 5 5 0 0
4011e0 4020 4019 1 1 0 0

Each row of the table shows the number of IBS fetch samples collected for an address (the All
column) and a breakdown of the events reported by the samples. For example, six IBS fetch
samples were taken for the address 0x401180 and all six of those samples were attempted
fetches that completed.

Instruction fetch is a speculative activity that anticipates architectural control flow. Fetch
operations may be abandoned due to control flow redirection. Some fetch operations are
abandoned at a very early stage before address translation. These killed fetches (the third
column in the table above) are not useful for analysis and are filtered out by CodeAnalyst. The
remaining fetches (column four) are regarded as true fetch attempts. An attempted fetch may
either complete and deliver instruction bytes to the decoder (column five), or abort (column six.)
Since the matrix multiplication program is so small, it fits entirely in the instruction cache and no
IC misses were observed.

Feedback:
codeanalyst.support@amd.com

© 2007 Advanced Micro Devices Inc Page 6 of 14

The following table shows the IBS fetch results reported by AMD CodeAnalyst for the inner loop
of multiply_matrices. (The IBS fetch information for the entire function appears in Appendix C.)

Address Instruction All Killed Attempted Completed Aborted
00401191 mov edx,dword ptr [ebp-10h] 7 0 7 7 0
00401194 add edx,1 0 0 0 0 0
00401197 mov dword ptr [ebp-10h],edx 0 0 0 0 0
0040119A cmp dword ptr [ebp-10h],1000 4040 4 4036 4036 0
004011A1 jge 004011D1 0 0 0 0 0
004011A3 mov eax,dword ptr [ebp-4] 0 0 0 0 0
004011A6 imul eax,eax,4000 0 0 0 0 0
004011AC mov ecx,dword ptr [ebp-10h] 0 0 0 0 0
004011AF imul ecx,ecx,4000 0 0 0 0 0
004011B5 mov edx,dword ptr [ebp-10h] 0 0 0 0 0
004011B8 mov esi,dword ptr [ebp-8] 0 0 0 0 0
004011BB fld dword ptr [eax+edx*4+413FE0h] 3955 2 3953 3953 0
004011C2 fmul dword ptr [ecx+esi*4+7E48E8h] 0 0 0 0 0
004011C9 fadd dword ptr [ebp-0Ch] 0 0 0 0 0
004011CC fstp dword ptr [ebp-0Ch] 0 0 0 0 0
004011CF jmp 00401191 0 0 0 0 0
004011D1 mov eax,dword ptr [ebp-4] 5 0 5 5 0
004011D4 imul eax,eax,4000 0 0 0 0 0
004011DA mov ecx,dword ptr [ebp-8] 0 0 0 0 0
004011DD mov edx,dword ptr [ebp-0Ch] 0 0 0 0 0
004011E0 mov dword ptr [eax+ecx*4+0BB51E8h],edx 4020 4019 1 1 0
004011E7 jmp 0040116F 0 0 0 0 0
004011E9 jmp 00401150 0 0 0 0 0
004011EE pop esi 0 0 0 0 0
004011EF mov esp,ebp 0 0 0 0 0
004011F1 pop ebp 0 0 0 0 0
004011F2 ret 0 0 0 0 0

AMD Family 10h processors fetch instruction bytes in 32-byte blocks. The address reported by
IBS fetch sampling is either the start of a 32-byte fetch block, is the target of a control transfer or
is the fall-through of a conditional branch. AMD64 instructions may straddle the start address of a
fetch block. In these cases, CodeAnalyst associates the IBS fetch sample with the instruction that
straddles the fetch block.

The large number of killed fetch samples at address 0x4011E0 is due to early speculative
prefetch activity. The preceding fetch block contains the jump instruction (address 0x4011CF)
that transfers control to the top of the innermost loop. The processor initiates a speculative fetch
before receiving the control flow redirection back to the top of the innermost loop. These early
speculative fetches were killed before instruction translation lookaside buffer access.

Feedback:
codeanalyst.support@amd.com

© 2007 Advanced Micro Devices Inc Page 7 of 14

4.2 IBS op sampling

AMD Family 10h processors execute AMD64 instructions in discrete execution operations (ops.)
IBS op sampling counts processor cycles and periodically selects an op to be tagged and
monitored. An IBS op sample is generated when a tagged op retires; a sample is not generated
for an aborted (flushed) op. The information reported with an IBS op sample includes:

• The AMD64 instruction address for the op
• The tag-to-retire time (cycles from when the op was tagged to when the op retired)
• The completion-to-retire time (cycles from when the op completed to when the op retired)
• Whether the op implements AMD64 branch semantics (a "branch op")

o If the branch op was mispredicted
o If the branch was taken
o If the branch was a return
o If the return was mispredicted

• Whether the op was a resync that caused a pipeline flush
• Whether the op performed a load and/or store operation

o If the operation missed in the data cache
o If the operation missed in the level 1 or level 2 DTLB
o The page size of the level 1 or level 2 address translation
o If the operation caused a misaligned access
o The DC miss latency (in cycles) if the load operation missed in the data cache
o The virtual and physical address of the requested memory location
o If the access was made to local or remote memory

The event information is extensive and would require a large number of performance counters in
order to collect equivalent data in a single test run (without performance counter multiplexing.)

The following table shows a breakdown of the IBS op samples for the inner loop of
multiply_matrices. (A full breakdown for multiply_matrices is given in Appendix D.)

Address Instruction All ops Branch Load/store
00401191 mov edx,dword ptr [ebp-10h] 32229 0 32226
00401194 add edx,1 32175 0 0
00401197 mov dword ptr [ebp-10h],edx 32508 0 32508
0040119A cmp dword ptr [ebp-10h],1000 3491 0 3491
004011A1 jge 004011D1 3381 3379 1
004011A3 mov eax,dword ptr [ebp-4] 3416 0 3416
004011A6 imul eax,eax,4000 1361 0 0
004011AC mov ecx,dword ptr [ebp-10h] 2737 0 2731
004011AF imul ecx,ecx,4000 1223 0 0
004011B5 mov edx,dword ptr [ebp-10h] 1295 0 1290
004011B8 mov esi,dword ptr [ebp-8] 1302 0 1302
004011BB fld dword ptr [eax+edx*4+413FE0h] 4127 0 4127
004011C2 fmul dword ptr [ecx+esi*4+7E48E8h] 4091 0 4090
004011C9 fadd dword ptr [ebp-0Ch] 4216 0 4199
004011CC fstp dword ptr [ebp-0Ch] 12226 0 12207
004011CF jmp 00401191 12342 12327 40

The third column is the number of IBS op samples taken at each address. The fourth and fifth
columns show the number IBS op samples that were branch ops and/or load/store ops. The jump

Feedback:
codeanalyst.support@amd.com

© 2007 Advanced Micro Devices Inc Page 8 of 14

instructions at 0x4011A1 and 0x4011CF are correctly identified as branches, illustrating the
precision offered by IBS.

The conditional jump at address 0x4011a1 is taken when the loop exit condition is true. 3,379 IBS
branch op samples were attributed to this address. Of these samples, only two indicated that the
branch was mispredicted. These statistics indicate that the branch was predicted correctly and
that branch misprediction is not a performance issue. This kind of analysis is not possible with
branch data collected via performance counter sampling since mispredictions or the even the
number of times a branch is executed cannot be attributed to a specific branch instruction due to
accumulated inaccuracies.

The table below shows IBS op data for load and store operations within the inner loop of
multiply_matrices.

Address Instruction Load Store DC miss DTLB L1M

L2M
0x401191 mov edx,dword ptr [ebp-10h] 32225 1 8 0
0x401194 add edx,1 0 0 0 0
0x401197 mov dword ptr [ebp-10h],edx 0 32508 21 0
0x40119a cmp dword ptr [ebp-10h],1000 3491 0 2 0
0x4011a1 jge 004011D1 1 0 1 0
0x4011a3 mov eax,dword ptr [ebp-4] 3416 0 2 0
0x4011a6 imul eax,eax,4000 0 0 0 0
0x4011ac mov ecx,dword ptr [ebp-10h] 2731 0 6 0
0x4011af imul ecx,ecx,4000 0 0 0 0
0x4011b5 mov edx,dword ptr [ebp-10h] 1290 0 1 1
0x4011b8 mov esi,dword ptr [ebp-8] 1302 0 0 0
0x4011bb fld dword ptr [eax+edx*4+413FE0h] 4127 0 51 18
0x4011c2 fmul dword ptr [ecx+esi*4+7E48E8h] 4090 0 892 3141
0x4011c9 fadd dword ptr [ebp-0Ch] 4198 1 20 1
0x4011cc fstp dword ptr [ebp-0Ch] 4 12203 9 1
0x4011cf jmp 00401191 3 37 2 0

Unlike the PMC-based profile, the source of data cache and DTLB misses can be accurately
identified as the instruction at address 0x4011C2. IBS lets a software developer identify
performance culprits with pin-point precision.

The data cache miss latency for the culprit instruction was 92,465 cycles for the collected
samples. This yields an average data cache miss latency of 103.66 processor clock cycles. The
large latency is due to the DTLB misses and relatively long read accesses to memory as a result
of data cache misses.

Feedback:
codeanalyst.support@amd.com

© 2007 Advanced Micro Devices Inc Page 9 of 14

5. New opportunities for analysis

Instruction-Based Sampling provides rich performance data that lets software developers identify
performance culprits precisely. This article describes only the basic features of IBS. Other
features offer new opportunities for analysis and optimization:

• IBS op samples report the address of the memory data item accessed by a load or store
operation. Coupled with information about local/remote memory access, the address can
be used for “data centric” analysis such as analyzing and optimizing data layout on non-
uniform memory access (NUMA) platforms.

• Precise IBS information can be used to drive profile-directed compiler optimizations. For

example, a compiler could use precise branch taken/not taken information for code
straightening.

For more information about Instruction-Based Sampling, please see the Software Optimization
Guide for Family 10h Processors (Quad-Core) available at AMD Developer Central.
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/40546.pdf

AMD CodeAnalyst is available for download, also at AMD Developer Central:
CodeAnalyst for Windows: http://developer.amd.com/cawin.jsp
CodeAnalyst for Linux: http://developer.amd.com/calinux.jsp

6. Postscript

Acknowledgements:
Many people contributed to the success of IBS. On the hardware side, I would like to thank Ben
Sander (architect), Ravi Bhargava and Anasua Bhowmik. I would like to thank the entire AMD
CodeAnalyst team especially Lei Yu (team leader), Frank Swehosky, Barry Kasindorf and Tom
Evans.

Short bio:
Paul Drongowski is an AMD Senior Member of Technical Staff. He is an engineer in the AMD
CodeAnalyst team and has worked on profiling tools and performance analysis for the last ten
years. In addition to industrial experience, he has taught computer architecture, software
development and VLSI design at Case Western Reserve University, Tufts and Princeton
University.

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/40546.pdf
http://developer.amd.com/cawin.jsp
http://developer.amd.com/calinux.jsp

Feedback:
codeanalyst.support@amd.com

© 2007 Advanced Micro Devices Inc Page 10 of 14

Appendix A: Source code for simple_classic.cpp

// simple_classic.cpp : "Textbook" implementation of matrix multiply

// Author: Paul J. Drongowski
// Address: Boston Design Center
// Advanced Micro Devices, Inc.
// Boxborough, MA 01719
// Date: 20 October 2005
// Copyright (c) 2005-2007 Advanced Micro Devices, Inc.

// The purpose of this program is to demonstrate measurement
// and analysis of program performance using AMD CodeAnalyst(tm).
// All engineers are familiar with simple matrix multiplication,
// so this example should be easy to understand.
//
// This implementation of matrix multiplication is a direct
// translation of the "classic" textbook formula for matrix multiply.
// Performance of the classic implementation is affected by an
// inefficient data access pattern, which we should be able to
// identify using CodeAnalyst(TM).

#include <cstdlib>
#include <cstdio>
#include <ctime>

static const int ROWS = 1000 ; // Number of rows in each matrix
static const int COLUMNS = 1000 ; // Number of columns in each matrix

float matrix_a[ROWS][COLUMNS] ; // Left matrix operand
float matrix_b[ROWS][COLUMNS] ; // Right matrix operand
float matrix_r[ROWS][COLUMNS] ; // Matrix result

FILE *result_file ;

void initialize_matrices()
{
 // Define initial contents of the matrices
 for (int i = 0 ; i < ROWS ; i++) {
 for (int j = 0 ; j < COLUMNS ; j++) {
 matrix_a[i][j] = (float) rand() / RAND_MAX ;
 matrix_b[i][j] = (float) rand() / RAND_MAX ;
 matrix_r[i][j] = 0.0 ;
 }
 }
}

void print_result()
{
 // Print the result matrix
 for (int i = 0 ; i < ROWS ; i++) {
 for (int j = 0 ; j < COLUMNS ; j++) {
 fprintf(result_file, "%6.4f ", matrix_r[i][j]) ;
 }
 fprintf(result_file, "\n") ;

Feedback:
codeanalyst.support@amd.com

© 2007 Advanced Micro Devices Inc Page 11 of 14

 }
}

void multiply_matrices()
{
 // Multiply the two matrices
 for (int i = 0 ; i < ROWS ; i++) {
 for (int j = 0 ; j < COLUMNS ; j++) {
 float sum = 0.0 ;
 for (int k = 0 ; k < COLUMNS ; k++) {
 sum = sum + matrix_a[i][k] * matrix_b[k][j] ;
 }
 matrix_r[i][j] = sum ;
 }
 }
}

void print_elapsed_time()
{

double elapsed ;
double resolution ;

// Obtain and display elapsed execution time
elapsed = (double) clock() / CLK_TCK ;
resolution = 1.0 / CLK_TCK ;

fprintf(result_file,

 "Elapsed time: %8.4f sec (%6.4f sec resolution)\n",
 elapsed, resolution) ;
}

int main(int argc, char* argv[])
{

if ((result_file = fopen("simple_classic.txt", "w")) == NULL) {
 fprintf(stderr, "Couldn't open result file\n") ;
 perror(argv[0]) ;
 return(EXIT_FAILURE) ;

}

fprintf(result_file, "Simple matrix multiplication\n") ;

initialize_matrices() ;
multiply_matrices() ;
print_elapsed_time() ;

fclose(result_file) ;

return(0) ;

}

Feedback:
codeanalyst.support@amd.com

© 2007 Advanced Micro Devices Inc Page 12 of 14

Appendix B: PMC memory access profile for multiply_matrices

Address Instruction Ret inst DC accesses DC misses DTLB L1M L2M
00401140 push ebp 0 0 0 0
00401141 mov ebp,esp 0 0 0 0
00401143 sub esp,10h 0 0 0 0
00401146 push esi 0 0 0 0
00401147 mov dword ptr [ebp-4],0 0 0 0 0
0040114E jmp 00401159 0 0 0 0
00401150 mov eax,dword ptr [ebp-4] 0 0 0 0
00401153 add eax,1 0 0 0 0
00401156 mov dword ptr [ebp-4],eax 0 0 0 0
00401159 cmp dword ptr [ebp-4],1000 0 0 0 0
00401160 jge 004011EE 0 0 0 0
00401166 mov dword ptr [ebp-8],0 0 0 0 0
0040116D jmp 00401178 0 0 0 0
0040116F mov ecx,dword ptr [ebp-8] 0 0 0 0
00401172 add ecx,1 0 2 0 0
00401175 mov dword ptr [ebp-8],ecx 0 0 0 0
00401178 cmp dword ptr [ebp-8],1000 0 0 0 0
0040117F jge 004011E9 1 0 0 1
00401181 mov dword ptr [ebp-0Ch],0 0 0 0 0
00401188 mov dword ptr [ebp-10h],0 0 0 0 0
0040118F jmp 0040119A 2 0 0 0
00401191 mov edx,dword ptr [ebp-10h] 1291 1763 7 81
00401194 add edx,1 1330 1551 62 91
00401197 mov dword ptr [ebp-10h],edx 0 0 0 0
0040119A cmp dword ptr [ebp-10h],1000 0 2 0 1
004011A1 jge 004011D1 1693 1353 288 42
004011A3 mov eax,dword ptr [ebp-4] 0 0 0 0
004011A6 imul eax,eax,4000 0 0 0 0
004011AC mov ecx,dword ptr [ebp-10h] 2196 1813 45 42
004011AF imul ecx,ecx,4000 0 0 0 0
004011B5 mov edx,dword ptr [ebp-10h] 1818 1579 10 20
004011B8 mov esi,dword ptr [ebp-8] 0 0 0 0
004011BB fld dword ptr [eax+edx*4+413FE0h] 0 0 0 0
004011C2 fmul dword ptr [ecx+esi*4+7E48E8h] 1165 1107 9 218
004011C9 fadd dword ptr [ebp-0Ch] 33298 22415 409 2093
004011CC fstp dword ptr [ebp-0Ch] 17983 8363 41 256
004011CF jmp 00401191 3365 4146 47 276
004011D1 mov eax,dword ptr [ebp-4] 0 0 0 0
004011D4 imul eax,eax,4000 3 4 0 1
004011DA mov ecx,dword ptr [ebp-8] 2 0 0 0
004011DD mov edx,dword ptr [ebp-0Ch] 0 0 0 0
004011E0 mov dword ptr [eax+ecx*4+0BB51E8h],edx 0 0 0 0
004011E7 jmp 0040116F 67 94 1 0
004011E9 jmp 00401150 0 0 0 0
004011EE pop esi 0 0 0 0
004011EF mov esp,ebp 0 0 0 0
004011F1 pop ebp 0 0 0 0
004011F2 ret 0 0 0 0

Feedback:
codeanalyst.support@amd.com

© 2007 Advanced Micro Devices Inc Page 13 of 14

Appendix C: IBS fetch profile for multiply_matrices

Address Instruction All Killed Attempted Completed Aborted
00401140 push ebp 0 0 0 0 0
00401141 mov ebp,esp 0 0 0 0 0
00401143 sub esp,10h 0 0 0 0 0
00401146 push esi 0 0 0 0 0
00401147 mov dword ptr [ebp-4],0 0 0 0 0 0
0040114E jmp 00401159 0 0 0 0 0
00401150 mov eax,dword ptr [ebp-4] 0 0 0 0 0
00401153 add eax,1 0 0 0 0 0
00401156 mov dword ptr [ebp-4],eax 0 0 0 0 0
00401159 cmp dword ptr [ebp-4],1000 0 0 0 0 0
00401160 jge 004011EE 0 0 0 0 0
00401166 mov dword ptr [ebp-8],0 0 0 0 0 0
0040116D jmp 00401178 0 0 0 0 0
0040116F mov ecx,dword ptr [ebp-8] 0 0 0 0 0
00401172 add ecx,1 0 0 0 0 0
00401175 mov dword ptr [ebp-8],ecx 0 0 0 0 0
00401178 cmp dword ptr [ebp-8],1000 0 0 0 0 0
0040117F jge 004011E9 6 0 6 6 0
00401181 mov dword ptr [ebp-0Ch],0 0 0 0 0 0
00401188 mov dword ptr [ebp-10h],0 0 0 0 0 0
0040118F jmp 0040119A 0 0 0 0 0
00401191 mov edx,dword ptr [ebp-10h] 7 0 7 7 0
00401194 add edx,1 0 0 0 0 0
00401197 mov dword ptr [ebp-10h],edx 0 0 0 0 0
0040119A cmp dword ptr [ebp-10h],1000 4040 4 4036 4036 0
004011A1 jge 004011D1 0 0 0 0 0
004011A3 mov eax,dword ptr [ebp-4] 0 0 0 0 0
004011A6 imul eax,eax,4000 0 0 0 0 0
004011AC mov ecx,dword ptr [ebp-10h] 0 0 0 0 0
004011AF imul ecx,ecx,4000 0 0 0 0 0
004011B5 mov edx,dword ptr [ebp-10h] 0 0 0 0 0
004011B8 mov esi,dword ptr [ebp-8] 0 0 0 0 0
004011BB fld dword ptr [eax+edx*4+413FE0h] 3955 2 3953 3953 0
004011C2 fmul dword ptr [ecx+esi*4+7E48E8h] 0 0 0 0 0
004011C9 fadd dword ptr [ebp-0Ch] 0 0 0 0 0
004011CC fstp dword ptr [ebp-0Ch] 0 0 0 0 0
004011CF jmp 00401191 0 0 0 0 0
004011D1 mov eax,dword ptr [ebp-4] 5 0 5 5 0
004011D4 imul eax,eax,4000 0 0 0 0 0
004011DA mov ecx,dword ptr [ebp-8] 0 0 0 0 0
004011DD mov edx,dword ptr [ebp-0Ch] 0 0 0 0 0
004011E0 mov dword ptr [eax+ecx*4+0BB51E8h],edx 4020 4019 1 1 0
004011E7 jmp 0040116F 0 0 0 0 0
004011E9 jmp 00401150 0 0 0 0 0
004011EE pop esi 0 0 0 0 0
004011EF mov esp,ebp 0 0 0 0 0
004011F1 pop ebp 0 0 0 0 0
004011F2 ret 0 0 0 0 0

Feedback:
codeanalyst.support@amd.com

© 2007 Advanced Micro Devices Inc Page 14 of 14

Appendix D: IBS op profile multiply_matrices

Address Instruction IBS all ops IBS BR IBS load/store
00401140 push ebp 0 0 0
00401141 mov ebp,esp 0 0 0
00401143 sub esp,10h 0 0 0
00401146 push esi 0 0 0
00401147 mov dword ptr [ebp-4],0 0 0 0
0040114E jmp 00401159 0 0 0
00401150 mov eax,dword ptr [ebp-4] 0 0 0
00401153 add eax,1 0 0 0
00401156 mov dword ptr [ebp-4],eax 0 0 0
00401159 cmp dword ptr [ebp-4],1000 0 0 0
00401160 jge 004011EE 0 0 0
00401166 mov dword ptr [ebp-8],0 0 0 0
0040116D jmp 00401178 0 0 0
0040116F mov ecx,dword ptr [ebp-8] 3 0 3
00401172 add ecx,1 4 0 0
00401175 mov dword ptr [ebp-8],ecx 3 0 3
00401178 cmp dword ptr [ebp-8],1000 1 0 1
0040117F jge 004011E9 0 0 0
00401181 mov dword ptr [ebp-0Ch],0 0 0 0
00401188 mov dword ptr [ebp-10h],0 2 0 2
0040118F jmp 0040119A 7 7 0
00401191 mov edx,dword ptr [ebp-10h] 32229 0 32226
00401194 add edx,1 32175 0 0
00401197 mov dword ptr [ebp-10h],edx 32508 0 32508
0040119A cmp dword ptr [ebp-10h],1000 3491 0 3491
004011A1 jge 004011D1 3381 3379 1
004011A3 mov eax,dword ptr [ebp-4] 3416 0 3416
004011A6 imul eax,eax,4000 1361 0 0
004011AC mov ecx,dword ptr [ebp-10h] 2737 0 2731
004011AF imul ecx,ecx,4000 1223 0 0
004011B5 mov edx,dword ptr [ebp-10h] 1295 0 1290
004011B8 mov esi,dword ptr [ebp-8] 1302 0 1302
004011BB fld dword ptr [eax+edx*4+413FE0h] 4127 0 4127
004011C2 fmul dword ptr [ecx+esi*4+7E48E8h] 4091 0 4090
004011C9 fadd dword ptr [ebp-0Ch] 4216 0 4199
004011CC fstp dword ptr [ebp-0Ch] 12226 0 12207
004011CF jmp 00401191 12342 12327 40
004011D1 mov eax,dword ptr [ebp-4] 3 0 3
004011D4 imul eax,eax,4000 0 0 0
004011DA mov ecx,dword ptr [ebp-8] 2 0 2
004011DD mov edx,dword ptr [ebp-0Ch] 4 0 4
004011E0 mov dword ptr [eax+ecx*4+0BB51E8h],edx 0 0 0
004011E7 jmp 0040116F 3 3 0
004011E9 jmp 00401150 0 0 0
004011EE pop esi 0 0 0
004011EF mov esp,ebp 0 0 0
004011F1 pop ebp 0 0 0
004011F2 ret 0 0 0

