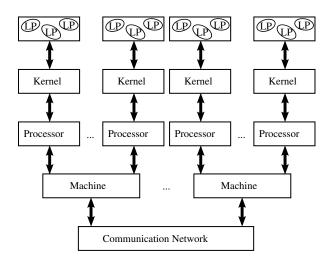
Programming Agent-Based Demographic Models with Cross-State and Message-Exchange Dependencies: A Study with Speculative PDES and Automatic Load-Sharing

Alessandro Pellegrini Cristina Montañola-Sales Francesco Quaglia Josep Casanovas-García

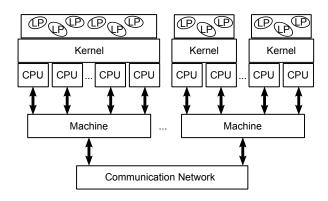
Sapienza, University of Rome Barcelona Supercomputing Center

WSC 2016

Context


- We study the interactions of ABM run on top of PDES Systems
- We concentrate on shared-memory multicore systems
- The average degree of interaction in ABM can be significantly higher than in other scenarios
- We want to be able to detect these interactions
- We want to exploit them to increase the overall performance
- Interactions can be explicit or implicit (thanks to ECS)

- Event-Cross State Synchronization (ECS) allows multiple LPs to exchange information via in-place memory accesses
- LPs do not need to be disjoint entities anymore
- Exchange of large amount of data is faster
- Allows for a simpler programming model
- Syncrhonization with ECS can be costly
- This is even more the case when LPs cross-synchronize a lot
- Load-Sharing can significantly reduce the cost

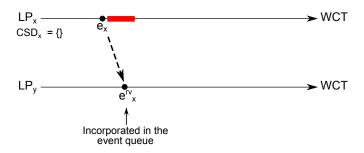

Contributions

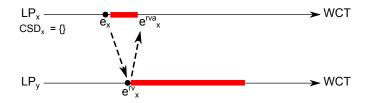
- We clearly specify agent-based programming guidelines for demographic simulations to be run on top of PDES
 - o This is done by proposing a general skeleton model
- 2. We tackle the complex interaction pattern often exhibited by ABM, to enforce load sharing
 - Performance can be increased
 - All types of interactions should be captured

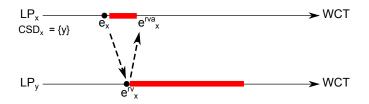
Reference Target Architecture

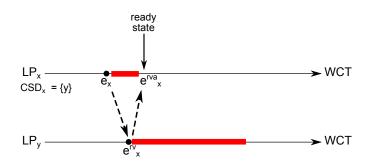
Reference Target Architecture

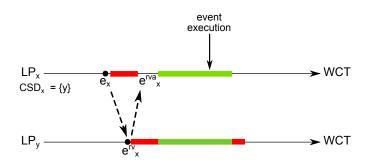
$$\begin{array}{ccc} \mathsf{LP}_{\mathsf{x}} & & & & \\ \mathsf{CSD}_{\mathsf{x}} = \{\} & & & \mathsf{e}_{\mathsf{x}} \end{array}$$

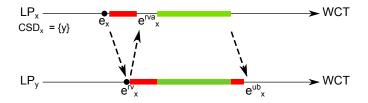

LP_y → WCT

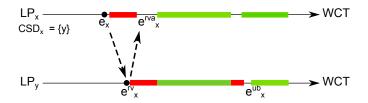

LP_y → WCT

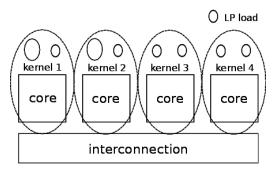


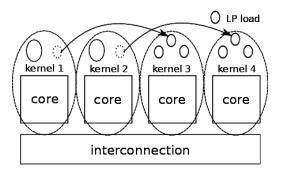

LP_y → WCT

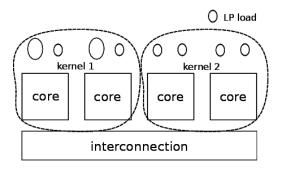


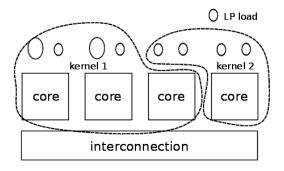


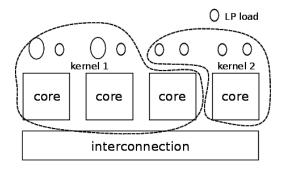








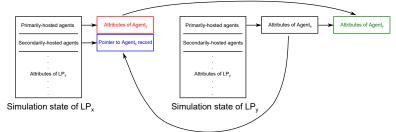




How to decide upon the binding?

Programming guidelines for Demography on PDES

- The core element is the life course of *individuals*
- Behaviour and decisions depend on the environment
- Individuals (agents) are mapped to structs
- Portions of the environment (regions) are mapped to LPs
- Event handlers at LPs implement the logic to manipulate individuals
 - An agent is described in terms of individual-specific explanatory variables
 - State transitions define agent *histories*
- Message passing is used to migrate agents (as the payload)



ABM programming guidelines on PDES

Agent Migration: When Agent, migrates from LP_x to LP_y, its record is unchained from the primarily-hosted chain.

An event keeping the agent is sent to LP_y, which installs a copy of the record in its primary chain.

The old record at LP_is released.

Agent Sharing: LP_y sends a pointer to the record of Agent, which is kept in LP_x's primary chain. LP_x stores the pointer in its secondary chain. Access can be performed concurrently by both LPs. The correctness of this scenario is ensured by ECS.

- Easy local interaction
- Easy remote interaction, via direct memory access

Load-Sharing Policy

- The goal is to cluster together LPs that interact most
- For each LP_i we rely on counters:
 - The number of implicit interactions I_i with LP_i
 - The number of explicit interactions E_j with LP_j
- Each LP is thus associated with a tuple:

$$\langle I_0, I_1, \dots, I_{maxLP-1}, E_0, E_1, \dots, E_{maxLP-1} \rangle$$

• For the case i = j we set the value to the number of executed events

Load-Sharing Policy

- Each tuple is a point in the *n*-dimensional space of LPs interactions
- The strategy is to identify *clusters of LPs* which show a high inter-dependence
- We rely on the *k-medoids* algorithm to find evenly-sized Voronoi regions in an Euclidean space
- The LPs are partitioned into K clusters, K being the number of available cores
- The distance between the coordinates **i** and **j** of LP_i and LP_j is their Manhattan distance:

$$d(\mathbf{i},\mathbf{j}) = \|\mathbf{i} - \mathbf{j}\| = \sum_{i=1}^{n} |i_i - j_i|$$

Load-Sharing Policy

• This is used in the algorithm's objective function:

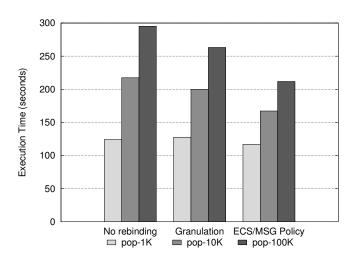
$$D = \sum_{k=1}^{K} \sum_{i \in C_k} \sum_{j \in C_k} d_{i,j}$$

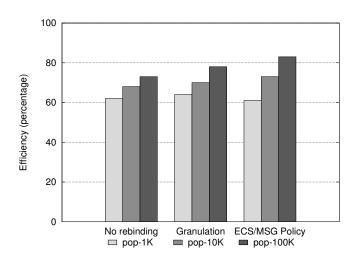
- C_k is the set of all LPs in cluster k
- The recomputation can be periodical or triggered by a certain event of the system
- An initial LP is selected having the shortest distance to any other LP in the n-dimensional space, which is approximately in the center
- Other k − 1 LPs are selected so that they decrease the value of D
 as much as possible

Experimental Evaluation: Test-bed Platform

- Hardware configuration:
 - HP ProLiant server equipped with 64GB of RAM
 - 4 8-cores CPU (32 total cores)
- Software configuration:
 - ROOT-Sim Optimistic Simulation Kernel, using 32 symmetric worker threads
 - Debian 6
 - o 2.6.32-5-amd64 Linux kernel

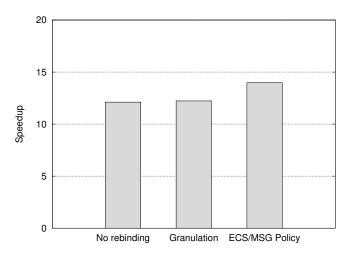
Synthetic Demographic Model


- Built according to our general guidelines
- Explanatory variables are described using a bitmap (concise description)
- Each agent carries as well a non-concise payload
- Additional operative events:
 - State-machine update: with probability p_{smu} , a bit in the bitmask is negated (state transition)
 - *Memory update*: with p_{mu} , a portion of the payload of the agent's structure is written with random data;
 - Remote agent interaction: with probability p_{rai} :
 - a random LP is selected to send random data
 - Upon receipt, a random hosted agent is picked
 - The payload of the event is copied into the agent's buffer
 - This latter event mimics kinship interactions


Baseline

- No Rebinding
- LP Granulation [PADS 2016]
 - ECS-based interactions are still captured
 - They are used to form groups of LPs
 - A group is a *sequential entity*
 - A group is thus bound on a single worker thread
 - o Groups are ephemeral

Synthetic Demographic Model: Results


Synthetic Demographic Model: Results

Yades

- Parallel demographic agent-based simulation tool
- Life course of individuals is modeled via agents
 - fertility
 - mortality
 - economic status
 - o family composition
 - o family migration
- Gambian immigration in Spain during 10 years
- 40,000 families

Yades: Results

Thanks for your attention

 $\label{eq:pellegrini} $$ pellegrini@dis.uniroma1.it $$ $$ http://www.dis.uniroma1.it/\sim pellegrini $$ $$ http://github.com/HPDCS/ROOT-Sim $$ $$ $$ $$ $$ $$$