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Target: In-Memory Data Platforms

• In the last few years a new generation of in-memory transactional
data platforms (NoSQL data grids) has proliferated
◦ VMware vFabric GemFire
◦ Oracle Coherence
◦ Red Hat’s Infinispan
◦ Apache Cassandra

• They well meet elasticity requirements imposed by the pay-per-use
cost model of cloud computing:
◦ Rely on a simplified key-value data model
◦ Employ efficient in-memory replication mechanisms to achieve data

durability
◦ Natively offer facilities for dynamically resizing the amount of hosts

within the platform
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All that glitters isn’t gold!

Deploying a distributed transaction key-value store platform poses a
number of performance/reliability/availability issues:

• How many nodes in the platform?

• Which concurrency control algorithm?

• How many replicas of data?

• Which data placement scheme?

and on top of that:

• Given a platform setting, does it also well fit in different scenarios
(e.g. when the workload changes)?

Experience suggests that, e.g., an oversized platform (too many
nodes) causes a performance drop (and is more expensive) §§§
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And what about dynamic reconfiguration?

Traditional solutions to dimensioning entail:

• Analytical models

• Machine learning

• Petri nets

The performance can exhibit a strong non-linear behavior when the
number of nodes grows

Timely what-if analysis could enable for runtime reconfiguration

4 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms



And what about dynamic reconfiguration?

Traditional solutions to dimensioning entail:

• Analytical models

• Machine learning

• Petri nets

The performance can exhibit a strong non-linear behavior when the
number of nodes grows

Timely what-if analysis could enable for runtime reconfiguration

4 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms



And what about dynamic reconfiguration?

Traditional solutions to dimensioning entail:

• Analytical models

• Machine learning

• Petri nets

The performance can exhibit a strong non-linear behavior when the
number of nodes grows

Timely what-if analysis could enable for runtime reconfiguration

4 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms



Goals

• We propose a solution based on high-performance simulation

• A discrete-event simulation library allows easy development of data
grid models to support what-if analysis when varying:
◦ Number of cache servers
◦ Degree of replication of data objects
◦ Placement of data-copies across the platform

• The library natively supports:
◦ 2PC
◦ Repeatable read semantics (based on lazy locking)
◦ Primary data ownership
◦ Multi-master schemes

• Implementing new strategies is an easy task for the modeler

• The library is run on top of ROOT-Sim
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CloudTM

This project has been
developed in the context of

CloudTM FP-7 Project

http://www.cloudtm.eu

Goal: Self-tuning of In-Memory Data Grids
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Simulation Framework
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CPU
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• Modeled as a G/M/K queue

• Allows capturing scenarios with
multiple cores

• Expected to be adequate wrt more
complex models, because core
dynamics are associated with logical
contention

• Different cpu models can be easily
integrated
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Distribution Manager
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• Keeps track of the of data placement
on the nodes of system

• Tells TM where to direct requests for
reading/writing

• Notifies TM which is the primary
owner of a copy of the data object to
be accessed
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Transaction Manager
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• Acts as a frontend for event processing

• Interacts with the CPU module to
compute completion time and update
CPU load

• Several events are sent to TM, and
trigger specific actions.
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Transaction Manager (2)

Transaction Manager processes these events from clients:

• begin: Used to nofity that a new transactional interaction has
been issued by some client

• get: Used to nofity that a read operation on some data object has
been issued by the client within a transaction

• put: Used to notify that a write operation on some data object
has been issued by the client within a transaction

• commit: Used to indicate that the client ended issuing
transactional operations
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Concurrency Control
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• Invoked by the TM front end

• Depending on the rules of the
concurrency algorithm, CC can reply:
◦ continue: the transaction’s execution

can proceed
◦ abort: the transaction must be aborted
◦ wait: the transaction is temporarily

blocked

• The simulation modeler can easily
implement other concurrency control
algorithms
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Concurrency Control: An Example

1 record TxInfo {

2 TxId

3 } //end record

4

5 CC-logic(input: task T, pointer CC-Table) {

6 if (CC-table == NULL)

7 allocate and initialize [wait-for,active-tx] table;

8 // keys are data object identifiers or TxId values

9 // entries are lists of TxInfo records or TxId values

10 set CC-table point to the allocated table

11 case T.type

12 prepare:

13 link T.TxInfo.TxId to CC-Table.active-tx

14 AllPrepareKeys = T.TxWriteSet

15 link T.TxInfo to CC-Table.wait-for[AllPrepareKeys]
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Concurrency Control: An Example (2)

16 if T.TxInfo not top standing for some key

17 generate event TX_WAIT[T.TxInfo]

18 generate event TIMEOUT[T.TxInfo]

19 else generate event PREPARE_DONE[T.TxInfo]

20 timeout or commit:

21 unlink T.TxInfo.TxId from CC-Table.active-tx

22 unlink T.TxInfo from CC-Table[AllOccurrences]

23 if (T.type == commit) generate COMMIT_DONE[T.TxInfo]

24 else generate PREPARE_FAIL[T.TxInfo]

25 for all TxInfo top standing in CC-Table[AnyPresenceRow]

26 generate event PREPARE_DONE[TxInfo]

27

28 return CC-Table

29 } //end CC
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The modeler can specify various settings:

• The system model (open vs closed)

• Number of concurrent clients, and
threads per client

• Transaction generation rate/trace

• A number of different transaction
profiles, and for each one:
◦ Number of transactions to be executed
◦ type (put vs. get) and operations per

transaction
◦ data access distribution
◦ inter-operation think time

• transaction back-off time (when
aborted)
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Validation

TPC-C on RedHat Infinispan, deployed on Amazon EC2.
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Enabling for timely what-if analysis

• 12 seconds to predict the behaviour of a system is too much

• The framework has been deployed on top of ROOT-Sim

• Up to 1024 simulation objects, 1/8 being cache servers.

• Iso-scaling in terms of both model complexity and underlying
computing power

• Run on a couple of HP Proliant servers:
◦ 64-bits NUMA machines
◦ four 2GHz AMD Opteron 6128 processors and 64GB of RAM
◦ Each processor has 8 CPU-cores (for a total of 32 CPU-cores)
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Enabling for timely what-if analysis (2)
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Thanks for your attention

Questions?

Presenter:

pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

Research Group:

http://www.dis.uniroma1.it/∼hpdcs

Framework:

https://github.com/cloudtm/cloudtm-autonomic-

manager/tree/master/src/dags

ROOT-Sim:

http://www.dis.uniroma1.it/∼ROOT-Sim
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