
A Framework for High Performance Simulation of
Transactional Data Grid Platforms

Pierangelo Di Sanzo, Francesco
Antonacci, Bruno Ciciani, Roberto
Palmieri, Alessandro Pellegrini,

Sebastiano Peluso, Francesco Quaglia,
Diego Rughetti, Roberto Vitali

High Performance and Dependable
Computing Systems Group

Sapienza, University of Rome

SIMUTools 2013

Target: In-Memory Data Platforms

• In the last few years a new generation of in-memory transactional
data platforms (NoSQL data grids) has proliferated
◦ VMware vFabric GemFire
◦ Oracle Coherence
◦ Red Hat’s Infinispan
◦ Apache Cassandra

• They well meet elasticity requirements imposed by the pay-per-use
cost model of cloud computing:
◦ Rely on a simplified key-value data model
◦ Employ efficient in-memory replication mechanisms to achieve data

durability
◦ Natively offer facilities for dynamically resizing the amount of hosts

within the platform

2 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

All that glitters isn’t gold!

Deploying a distributed transaction key-value store platform poses a
number of performance/reliability/availability issues:

• How many nodes in the platform?

• Which concurrency control algorithm?

• How many replicas of data?

• Which data placement scheme?

and on top of that:

• Given a platform setting, does it also well fit in different scenarios
(e.g. when the workload changes)?

Experience suggests that, e.g., an oversized platform (too many
nodes) causes a performance drop (and is more expensive) §§§

3 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

All that glitters isn’t gold!

Deploying a distributed transaction key-value store platform poses a
number of performance/reliability/availability issues:

• How many nodes in the platform?

• Which concurrency control algorithm?

• How many replicas of data?

• Which data placement scheme?

and on top of that:

• Given a platform setting, does it also well fit in different scenarios
(e.g. when the workload changes)?

Experience suggests that, e.g., an oversized platform (too many
nodes) causes a performance drop (and is more expensive) §§§

3 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

And what about dynamic reconfiguration?

Traditional solutions to dimensioning entail:

• Analytical models

• Machine learning

• Petri nets

The performance can exhibit a strong non-linear behavior when the
number of nodes grows

Timely what-if analysis could enable for runtime reconfiguration

4 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

And what about dynamic reconfiguration?

Traditional solutions to dimensioning entail:

• Analytical models

• Machine learning

• Petri nets

The performance can exhibit a strong non-linear behavior when the
number of nodes grows

Timely what-if analysis could enable for runtime reconfiguration

4 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

And what about dynamic reconfiguration?

Traditional solutions to dimensioning entail:

• Analytical models

• Machine learning

• Petri nets

The performance can exhibit a strong non-linear behavior when the
number of nodes grows

Timely what-if analysis could enable for runtime reconfiguration

4 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

Goals

• We propose a solution based on high-performance simulation

• A discrete-event simulation library allows easy development of data
grid models to support what-if analysis when varying:
◦ Number of cache servers
◦ Degree of replication of data objects
◦ Placement of data-copies across the platform

• The library natively supports:
◦ 2PC
◦ Repeatable read semantics (based on lazy locking)
◦ Primary data ownership
◦ Multi-master schemes

• Implementing new strategies is an easy task for the modeler

• The library is run on top of ROOT-Sim

5 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

CloudTM

This project has been
developed in the context of

CloudTM FP-7 Project

http://www.cloudtm.eu

Goal: Self-tuning of In-Memory Data Grids

6 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

Simulation Framework

	

Cache	
 Server	

Transac-on	
 Manager	
 (TM)	

CPU	
 Concurrency	

Control	
 (CC)	

	

	
 	
 Client	

begin	

put	

commit	

get	

begin_return	

get_return	

put_return	

commit_return	

abort	

next_tx	

(for	
 open	
 systems	
 only)	

from	
 other	
 cache	
 servers	

remote_get	

commit	

abort	

to
	
 	
 o
th
er
	
 c
ac
he

	
 se
rv
er
s	

remote_prepare	

tx
_w

ai
t	

pr
ep

ar
e_
re
pl
y	

re
ad
_d

on
e	

co
m
m
it_

do
ne

	

Func-on	
 call	

Event	

Distribu-on	

Manager	

(DM)	

CPU_complete	

-meout	

7 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

CPU

	

Cache	
 Server	

Transac-on	
 Manager	
 (TM)	

CPU	
 Concurrency	

Control	
 (CC)	

	

	
 	
 Client	

begin	

put	

commit	

get	

begin_return	

get_return	

put_return	

commit_return	

abort	

next_tx	

(for	
 open	
 systems	
 only)	

from	
 other	
 cache	
 servers	

remote_get	

commit	

abort	

to
	
 	
 o
th
er
	
 c
ac
he

	
 se
rv
er
s	

remote_prepare	

tx
_w

ai
t	

pr
ep

ar
e_
re
pl
y	

re
ad
_d

on
e	

co
m
m
it_

do
ne

	

Func-on	
 call	

Event	

Distribu-on	

Manager	

(DM)	

CPU_complete	

-meout	

• Modeled as a G/M/K queue

• Allows capturing scenarios with
multiple cores

• Expected to be adequate wrt more
complex models, because core
dynamics are associated with logical
contention

• Different cpu models can be easily
integrated

8 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

Distribution Manager

	

Cache	
 Server	

Transac-on	
 Manager	
 (TM)	

CPU	
 Concurrency	

Control	
 (CC)	

	

	
 	
 Client	

begin	

put	

commit	

get	

begin_return	

get_return	

put_return	

commit_return	

abort	

next_tx	

(for	
 open	
 systems	
 only)	

from	
 other	
 cache	
 servers	

remote_get	

commit	

abort	

to
	
 	
 o
th
er
	
 c
ac
he

	
 se
rv
er
s	

remote_prepare	

tx
_w

ai
t	

pr
ep

ar
e_
re
pl
y	

re
ad
_d

on
e	

co
m
m
it_

do
ne

	

Func-on	
 call	

Event	

Distribu-on	

Manager	

(DM)	

CPU_complete	

-meout	

• Keeps track of the of data placement
on the nodes of system

• Tells TM where to direct requests for
reading/writing

• Notifies TM which is the primary
owner of a copy of the data object to
be accessed

9 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

Transaction Manager

	

Cache	
 Server	

Transac-on	
 Manager	
 (TM)	

CPU	
 Concurrency	

Control	
 (CC)	

	

	
 	
 Client	

begin	

put	

commit	

get	

begin_return	

get_return	

put_return	

commit_return	

abort	

next_tx	

(for	
 open	
 systems	
 only)	

from	
 other	
 cache	
 servers	

remote_get	

commit	

abort	

to
	
 	
 o
th
er
	
 c
ac
he

	
 se
rv
er
s	

remote_prepare	

tx
_w

ai
t	

pr
ep

ar
e_
re
pl
y	

re
ad
_d

on
e	

co
m
m
it_

do
ne

	

Func-on	
 call	

Event	

Distribu-on	

Manager	

(DM)	

CPU_complete	

-meout	

• Acts as a frontend for event processing

• Interacts with the CPU module to
compute completion time and update
CPU load

• Several events are sent to TM, and
trigger specific actions.

10 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

Transaction Manager (2)

Transaction Manager processes these events from clients:

• begin: Used to nofity that a new transactional interaction has
been issued by some client

• get: Used to nofity that a read operation on some data object has
been issued by the client within a transaction

• put: Used to notify that a write operation on some data object
has been issued by the client within a transaction

• commit: Used to indicate that the client ended issuing
transactional operations

11 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

Concurrency Control

	

Cache	
 Server	

Transac-on	
 Manager	
 (TM)	

CPU	
 Concurrency	

Control	
 (CC)	

	

	
 	
 Client	

begin	

put	

commit	

get	

begin_return	

get_return	

put_return	

commit_return	

abort	

next_tx	

(for	
 open	
 systems	
 only)	

from	
 other	
 cache	
 servers	

remote_get	

commit	

abort	

to
	
 	
 o
th
er
	
 c
ac
he

	
 se
rv
er
s	

remote_prepare	

tx
_w

ai
t	

pr
ep

ar
e_
re
pl
y	

re
ad
_d

on
e	

co
m
m
it_

do
ne

	

Func-on	
 call	

Event	

Distribu-on	

Manager	

(DM)	

CPU_complete	

-meout	

• Invoked by the TM front end

• Depending on the rules of the
concurrency algorithm, CC can reply:
◦ continue: the transaction’s execution

can proceed
◦ abort: the transaction must be aborted
◦ wait: the transaction is temporarily

blocked

• The simulation modeler can easily
implement other concurrency control
algorithms

12 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

Concurrency Control: An Example

1 record TxInfo {

2 TxId

3 } //end record

4

5 CC-logic(input: task T, pointer CC-Table) {

6 if (CC-table == NULL)

7 allocate and initialize [wait-for,active-tx] table;

8 // keys are data object identifiers or TxId values

9 // entries are lists of TxInfo records or TxId values

10 set CC-table point to the allocated table

11 case T.type

12 prepare:

13 link T.TxInfo.TxId to CC-Table.active-tx

14 AllPrepareKeys = T.TxWriteSet

15 link T.TxInfo to CC-Table.wait-for[AllPrepareKeys]

13 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

Concurrency Control: An Example (2)

16 if T.TxInfo not top standing for some key

17 generate event TX_WAIT[T.TxInfo]

18 generate event TIMEOUT[T.TxInfo]

19 else generate event PREPARE_DONE[T.TxInfo]

20 timeout or commit:

21 unlink T.TxInfo.TxId from CC-Table.active-tx

22 unlink T.TxInfo from CC-Table[AllOccurrences]

23 if (T.type == commit) generate COMMIT_DONE[T.TxInfo]

24 else generate PREPARE_FAIL[T.TxInfo]

25 for all TxInfo top standing in CC-Table[AnyPresenceRow]

26 generate event PREPARE_DONE[TxInfo]

27

28 return CC-Table

29 } //end CC

14 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

Client

	

Cache	
 Server	

Transac-on	
 Manager	
 (TM)	

CPU	
 Concurrency	

Control	
 (CC)	

	

	
 	
 Client	

begin	

put	

commit	

get	

begin_return	

get_return	

put_return	

commit_return	

abort	

next_tx	

(for	
 open	
 systems	
 only)	

from	
 other	
 cache	
 servers	

remote_get	

commit	

abort	

to
	
 	
 o
th
er
	
 c
ac
he

	
 se
rv
er
s	

remote_prepare	

tx
_w

ai
t	

pr
ep

ar
e_
re
pl
y	

re
ad
_d

on
e	

co
m
m
it_

do
ne

	

Func-on	
 call	

Event	

Distribu-on	

Manager	

(DM)	

CPU_complete	

-meout	

The modeler can specify various settings:

• The system model (open vs closed)

• Number of concurrent clients, and
threads per client

• Transaction generation rate/trace

• A number of different transaction
profiles, and for each one:
◦ Number of transactions to be executed
◦ type (put vs. get) and operations per

transaction
◦ data access distribution
◦ inter-operation think time

• transaction back-off time (when
aborted)

15 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

Validation

TPC-C on RedHat Infinispan, deployed on Amazon EC2.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

8 16 24 32 40 48 56 64

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

Clients

Throughput - 4 Servers

Simulator
Real System

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12
%

Wall-Clock-Time (sec)

Confidence Interval (95%) for the Estimated Throughput - 4 Servers

16 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

Enabling for timely what-if analysis

• 12 seconds to predict the behaviour of a system is too much

• The framework has been deployed on top of ROOT-Sim

• Up to 1024 simulation objects, 1/8 being cache servers.

• Iso-scaling in terms of both model complexity and underlying
computing power

• Run on a couple of HP Proliant servers:
◦ 64-bits NUMA machines
◦ four 2GHz AMD Opteron 6128 processors and 64GB of RAM
◦ Each processor has 8 CPU-cores (for a total of 32 CPU-cores)

17 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

Enabling for timely what-if analysis (2)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 5 10 15 20 25 30 35 40 45

C
um

ul
at

ed
 C

om
m

itt
ed

 E
ve

nt
s

Wall-clock-time (seconds)

Throughput (Block Deploy)

1024 Simulation Objects / 64 K
256 Simulation Objects / 16 K

64 Simulation Objects / 4 K
16 Simulation Objects / 1 K

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70
S

pe
ed

up
Kernel Instances

Speedup with respect the Serial Execution

18 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

Thanks for your attention

Questions?

Presenter:

pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

Research Group:

http://www.dis.uniroma1.it/∼hpdcs

Framework:

https://github.com/cloudtm/cloudtm-autonomic-

manager/tree/master/src/dags

ROOT-Sim:

http://www.dis.uniroma1.it/∼ROOT-Sim

19 of 19 - A Framework for High Performance Simulation of Transactional Data Grid Platforms

