
Cache-Aware Memory Manager
for Optimistic Simulations

Alessandro Pellegrini
Roberto Vitali

Gionata Cerasuolo

High Performance and Dependable
Computing Systems Group

Dipartimento di Ingegneria Informatica,
Automatica e Gestionale

Sapienza, University of Rome

SIMUTools 2012

Rationale

• Parallel Discrete Event Simulation internally relies on several data
structures

• Cache misses have a profound impact on performance

• Optimistic simulation platforms usually suffer from a non-local
behaviour
◦ Many operations replace the most in-cache accessed data structures
◦ Non-negligible performance drop

• We target simulation-dedicated systems

2 of 18 - Cache-Aware Memory Manager

Time Warp’s Fundamentals

In [Jef85] we can identify the following data structures / procedures
as fundamental

Application Level Software ()Unique LPIdentifier

Local Virtual Clock

In Message Queue Out Message Queue State Queue Current State

Messaging

Message/antimessage

sending

Message/antimessage

receiving

GVT

Termination Detection

Commitment horizon

determination

State Management

State log/restore

Coasting Forward
Fossil Collection

Network (Message Passing)

CPU scheduling

Priority determination

and LP dispatching

data structures

subsystems

3 of 18 - Cache-Aware Memory Manager

Time Warp’s Fundamentals

In [Jef85] we can identify the following data structures / procedures
as fundamental

Application Level Software ()Unique LPIdentifier

Local Virtual Clock

In Message Queue Out Message Queue State Queue Current State

Messaging

Message/antimessage

sending

Message/antimessage

receiving

GVT

Termination Detection

Commitment horizon

determination

State Management

State log/restore

Coasting Forward
Fossil Collection

Network (Message Passing)

CPU scheduling

Priority determination

and LP dispatching

data structures

subsystems

3 of 18 - Cache-Aware Memory Manager

Time Warp’s Fundamentals

In [Jef85] we can identify the following data structures / procedures
as fundamental

Application Level Software ()Unique LPIdentifier

Local Virtual Clock

In Message Queue Out Message Queue State Queue Current State

Messaging

Message/antimessage

sending

Message/antimessage

receiving

GVT

Termination Detection

Commitment horizon

determination

State Management

State log/restore

Coasting Forward
Fossil Collection

Network (Message Passing)

CPU scheduling

Priority determination

and LP dispatching

data structures

subsystems

3 of 18 - Cache-Aware Memory Manager

Time Warp’s Fundamentals

In [Jef85] we can identify the following data structures / procedures
as fundamental

Application Level Software ()Unique LPIdentifier

Local Virtual Clock

In Message Queue Out Message Queue State Queue Current State

Messaging

Message/antimessage

sending

Message/antimessage

receiving

GVT

Termination Detection

Commitment horizon

determination

State Management

State log/restore

Coasting Forward
Fossil Collection

Network (Message Passing)

CPU scheduling

Priority determination

and LP dispatching

data structures

subsystems

3 of 18 - Cache-Aware Memory Manager

Time Warp’s Fundamentals

In [Jef85] we can identify the following data structures / procedures
as fundamental

Application Level Software ()Unique LPIdentifier

Local Virtual Clock

In Message Queue Out Message Queue State Queue Current State

Messaging

Message/antimessage

sending

Message/antimessage

receiving

GVT

Termination Detection

Commitment horizon

determination

State Management

State log/restore

Coasting Forward
Fossil Collection

Network (Message Passing)

CPU scheduling

Priority determination

and LP dispatching

data structures

subsystems

3 of 18 - Cache-Aware Memory Manager

Time Warp’s Fundamentals

In [Jef85] we can identify the following data structures / procedures
as fundamental

Application Level Software ()Unique LPIdentifier

Local Virtual Clock

In Message Queue Out Message Queue State Queue Current State

Messaging

Message/antimessage

sending

Message/antimessage

receiving

GVT

Termination Detection

Commitment horizon

determination

State Management

State log/restore

Coasting Forward
Fossil Collection

Network (Message Passing)

CPU scheduling

Priority determination

and LP dispatching

data structures

subsystems

3 of 18 - Cache-Aware Memory Manager

Memory Access Patterns

• In order to enchance cahce hit ratio for operations which tend to
access the same data, we explicitly divide memory allocations into:
◦ Access-intensive data structures
◦ Access-mild data structures

• At kernel level, input message queue is the only access-intensive
data structure

• At application level, a-priori decisions are hard:
◦ Optimistic simulation is general-purpose
◦ Decision might be implementation-dependent

4 of 18 - Cache-Aware Memory Manager

Memory Access Patterns

• In order to enchance cahce hit ratio for operations which tend to
access the same data, we explicitly divide memory allocations into:
◦ Access-intensive data structures
◦ Access-mild data structures

• At kernel level, input message queue is the only access-intensive
data structure

• At application level, a-priori decisions are hard:
◦ Optimistic simulation is general-purpose
◦ Decision might be implementation-dependent

4 of 18 - Cache-Aware Memory Manager

Memory Access Patterns

• In order to enchance cahce hit ratio for operations which tend to
access the same data, we explicitly divide memory allocations into:
◦ Access-intensive data structures
◦ Access-mild data structures

• At kernel level, input message queue is the only access-intensive
data structure

• At application level, a-priori decisions are hard:
◦ Optimistic simulation is general-purpose
◦ Decision might be implementation-dependent

4 of 18 - Cache-Aware Memory Manager

Memory Access Patterns (2)

• We have decided to mark the whole simulation state as
access-intensive
◦ If LPs’ simulation states coincide with their working sets, we have an

increase in the hit ratio
◦ If not (i.e., a completely non-local behaviour), cache usage will

resemble the one provided by allocation which makes no assumptions
at all

• We therefore propose a Memory Management subsystem which
transparently
◦ Partitions the cache between access-intensive and access-mild buffers
◦ Supports log/restore operations
◦ Increases in-cache resident set

5 of 18 - Cache-Aware Memory Manager

Memory Access Patterns (2)

• We have decided to mark the whole simulation state as
access-intensive
◦ If LPs’ simulation states coincide with their working sets, we have an

increase in the hit ratio
◦ If not (i.e., a completely non-local behaviour), cache usage will

resemble the one provided by allocation which makes no assumptions
at all

• We therefore propose a Memory Management subsystem which
transparently
◦ Partitions the cache between access-intensive and access-mild buffers
◦ Supports log/restore operations
◦ Increases in-cache resident set

5 of 18 - Cache-Aware Memory Manager

Cache-Aware Memory Allocator

block_manager[] .

.

.

.

.

.

Separate Chaining for handling full areas

memory_stock: Preallocated Memory Buffer

memory_block

oversized

buffers

oversized

buffers

.

.

.

block_pointer

block_pointer block_pointer block_pointer

block_pointer

6 of 18 - Cache-Aware Memory Manager

Cache-Aware Memory Allocator (2)

memory_block

Access-Intensive Area

memory chunk

memory chunk

Separation Threshold

use_bitmap

metadata

use_bitmap

metadata

Access-Mild Area

7 of 18 - Cache-Aware Memory Manager

How to identify buffer’s access rate

• malloc/free calls are hooked and wrapped via linking facilities

• This gives the allocator context awareness, distinguishing whether
requests are from kernel or application level

• To mark kernel’s buffers as access-intensive a new API is provided:
intensive buffer(int true)

8 of 18 - Cache-Aware Memory Manager

Separation Threshold importance

• Dimensions of access-mild and -intensive areas are a significant
factor for performance

• Constraining memory accesses within a reduced cache region might
increase cache-miss frequency
◦ This happens if read/write pattern are such that many different

buffers are accessed
◦ This is true for both access-mild and -intensive buffers

• Separation threshold is tunable at startup time

9 of 18 - Cache-Aware Memory Manager

Allocation Policy

• The Memory Manager preallocates a cache-aligned portion of the
address space

• Memory requests are served depending on their expected access
rate
◦ Fixed-size chunks
◦ Clustered so that they will be mapped to separate cache regions
◦ To reduce internal fragmentation, chunk size contained into a memory

block is determined at runtime, due to different requirements by
kernel and application-level

• Memory chunks are stripe-aligned as well, to reduce false cache
sharing

• Separation threshold is cache-aligned as well

10 of 18 - Cache-Aware Memory Manager

Transient Behaviour

• Simulation kernels handle memory requests separately

• At the beginning of the execution, different instances start to
allocate buffers which will be mapped to the same cache regions

• This is not a problem if the application will allocate memory during
the whole simulation

• If the simulation state is allocated all at once at startup
(non-growing states) there are allocation-determinism-driven cache
conflicts:
◦ There is a bias in cache exploitation, since some portions of the cache

might not be used
◦ This might lead to sub-optimizations in cache usage
◦ Different kernel instances must therefore start serving requests from

different memory addresses, according to a circular policy

11 of 18 - Cache-Aware Memory Manager

Effects on Hardware/Software Architecture

12 of 18 - Cache-Aware Memory Manager

Test-Bed Platform and Benchmarks

• Our Cache-Aware Memory Allocator has been implemented within
ROOT-Sim

• We have adopted a modified version of phold

• Three different configurations have been run

A. States’ size completely fits the cache, read/write accesses span 75%
of the state

B. States are 3 times the size of the cache, accesses span 25% of the
state

C. States 10 times the size of the cache, accesses span 10% of the state

• 10 M events, 32 LPs

• Both CSS and PSS with autonomic period detection

13 of 18 - Cache-Aware Memory Manager

Experimental Results

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 2 4 6 8 10 12 14 16 18 20

C
u
m

u
la

te
d
 C

o
m

m
it
te

d
 E

v
e
n
ts

Wall-clock-time (seconds)

Throughput CSS

Small W.S. (Cache-Aware)
Small W.S.

Large W.S. (Cache-Aware)
Large W.S.

Sparse W.S. (Cache-Aware)
Sparse W.S.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 5 10 15 20 25 30

C
u
m

u
la

te
d
 C

o
m

m
it
te

d
 E

v
e
n
ts

Wall-clock-time (seconds)

Throughput PSS

Small W.S. (Cache-Aware)
Small W.S.

Large W.S. (Cache-Aware)
Large W.S.

Sparse W.S. (Cache-Aware)
Sparse W.S.

14 of 18 - Cache-Aware Memory Manager

Experimental Results (2)

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 5 10 15 20 25 30 35 40 45

C
u

m
u

la
te

d
 C

o
m

m
it
te

d
 E

v
e

n
ts

Wall-Clock Time (seconds)

Throughput PSS/LARGE

Cache-Aware
Cache-Unaware

15 of 18 - Cache-Aware Memory Manager

Experimental Results (3)

 0

 100000

 200000

 300000

 400000

 500000

 0 5 10 15 20 25

C
u

m
u

la
te

d
 C

o
m

m
it
te

d
 E

v
e

n
ts

Wall-Clock Time (seconds)

Throughput PSS/LARGE

Access-Mild/Intensive Ratio 1:9
Access-Mild/Intensive Ratio 1:4
Access-Mild/Intensive Ratio 3:7
Access-Mild/Intensive Ratio 1:1
Access-Mild/Intensive Ratio 5:1

Cache-Aware Subsystem Disabled

16 of 18 - Cache-Aware Memory Manager

ROOT-Sim

http://www.dis.uniroma1.it/∼hpdcs/ROOT-Sim

17 of 18 - Cache-Aware Memory Manager

Thanks for your attention

Questions?

18 of 18 - Cache-Aware Memory Manager

