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Rationale

• Parallel Discrete Event Simulation internally relies on several data
structures

• Cache misses have a profound impact on performance

• Optimistic simulation platforms usually suffer from a non-local
behaviour
◦ Many operations replace the most in-cache accessed data structures
◦ Non-negligible performance drop

• We target simulation-dedicated systems
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Time Warp’s Fundamentals

In [Jef85] we can identify the following data structures / procedures
as fundamental
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determination

State Management
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CPU scheduling
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data structures

subsystems
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Memory Access Patterns

• In order to enchance cahce hit ratio for operations which tend to
access the same data, we explicitly divide memory allocations into:
◦ Access-intensive data structures
◦ Access-mild data structures

• At kernel level, input message queue is the only access-intensive
data structure

• At application level, a-priori decisions are hard:
◦ Optimistic simulation is general-purpose
◦ Decision might be implementation-dependent
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Memory Access Patterns (2)

• We have decided to mark the whole simulation state as
access-intensive
◦ If LPs’ simulation states coincide with their working sets, we have an

increase in the hit ratio
◦ If not (i.e., a completely non-local behaviour), cache usage will

resemble the one provided by allocation which makes no assumptions
at all

• We therefore propose a Memory Management subsystem which
transparently
◦ Partitions the cache between access-intensive and access-mild buffers
◦ Supports log/restore operations
◦ Increases in-cache resident set
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Cache-Aware Memory Allocator
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Cache-Aware Memory Allocator (2)

memory_block

Access-Intensive Area

memory chunk

memory chunk

Separation Threshold

use_bitmap

metadata

use_bitmap

metadata

Access-Mild Area
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How to identify buffer’s access rate

• malloc/free calls are hooked and wrapped via linking facilities

• This gives the allocator context awareness, distinguishing whether
requests are from kernel or application level

• To mark kernel’s buffers as access-intensive a new API is provided:
intensive buffer(int true)
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Separation Threshold importance

• Dimensions of access-mild and -intensive areas are a significant
factor for performance

• Constraining memory accesses within a reduced cache region might
increase cache-miss frequency
◦ This happens if read/write pattern are such that many different

buffers are accessed
◦ This is true for both access-mild and -intensive buffers

• Separation threshold is tunable at startup time
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Allocation Policy

• The Memory Manager preallocates a cache-aligned portion of the
address space

• Memory requests are served depending on their expected access
rate
◦ Fixed-size chunks
◦ Clustered so that they will be mapped to separate cache regions
◦ To reduce internal fragmentation, chunk size contained into a memory

block is determined at runtime, due to different requirements by
kernel and application-level

• Memory chunks are stripe-aligned as well, to reduce false cache
sharing

• Separation threshold is cache-aligned as well
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Transient Behaviour

• Simulation kernels handle memory requests separately

• At the beginning of the execution, different instances start to
allocate buffers which will be mapped to the same cache regions

• This is not a problem if the application will allocate memory during
the whole simulation

• If the simulation state is allocated all at once at startup
(non-growing states) there are allocation-determinism-driven cache
conflicts:
◦ There is a bias in cache exploitation, since some portions of the cache

might not be used
◦ This might lead to sub-optimizations in cache usage
◦ Different kernel instances must therefore start serving requests from

different memory addresses, according to a circular policy
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Effects on Hardware/Software Architecture
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Test-Bed Platform and Benchmarks

• Our Cache-Aware Memory Allocator has been implemented within
ROOT-Sim

• We have adopted a modified version of phold

• Three different configurations have been run

A. States’ size completely fits the cache, read/write accesses span 75%
of the state

B. States are 3 times the size of the cache, accesses span 25% of the
state

C. States 10 times the size of the cache, accesses span 10% of the state

• 10 M events, 32 LPs

• Both CSS and PSS with autonomic period detection
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Experimental Results
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Experimental Results (2)
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Experimental Results (3)
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ROOT-Sim

http://www.dis.uniroma1.it/∼hpdcs/ROOT-Sim
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Thanks for your attention

Questions?
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