NUMA Time Warp

SAPIENZA

UNIVERSITA DI ROMA

Alessandro Pellegrini
Francesco Quaglia

High Performance and Dependable
Computing Systems Group
Sapienza, University of Rome

PADS 2015

The NUMA Architecture

MEMORY

‘ MEMORY

R I

MEMORY ‘

Processor

Processor

Processor

Processor

[[I [

]
I I
|
I

‘ MEMORY MEMORY ‘ ‘ MEMORY

meMoRY |

AMD Opteron 6128

UMA Time Warp

e Memory divided into
different banks

e The same core sees some
banks closer, other
farther

e This has an effect on
access latency

The NUMA Architecture

e Memory divided into
different banks

[meworr | R [memorr] [wemorr]

o 5]
:

[J []
1 T T T
L[[] [][e e e L]
]
re]lc

Processor Processor

[farther

Processor

Processor
[cor ore|[Core| - [core| [core] [core] [core]
e o o e e) e o s e o m ° Th h ﬂ:
D jlee]le] [elle]le|e 2l |[e]le] [elle|le|e t
\““H““i; H‘H“‘H“‘ IS has an €frect on
[E

e The same core sees some

\
‘ T T s T T ‘
banks closer, other

; S
} } : access latency
[memorr] [memorr | [memory | [mevorr |

[[

B]
|
;
I

e Time-Warp systems are

AMD Opteron 6128 highly demanding for
memory

Reference Time Warp Architectural Context

e Optimistic PDES systems based on the multi-thread paradigm
o highly suited for shared memory platforms
o data exchange can be optimized
o computing power can be well balanced

e Temporarily binding of simulation objects to worker threads

© no concurrent access on recoverability data, and input/output queues
of a simulation object

e Permanent binding of worker-threads to CPU cores
e Dual-mode execution scheme: application versus platform modes

e Worker threads schedule only one simulation object at a time (the
current simulation object)

3 of 18 - NUMA Time Warp 7

Goal: Optimizing Latency on NUMA Architectures

e NUMA-oriented memory manager

o per-simulation-object management of memory segments made up by
disjoint sets of pages

o both static and dynamic binding of memory pages to specific NUMA
nodes

e Page migration

o to cope with worker-thread binding of simulation objects
o based on Linux services

® Manage at the same time:

o simulation states’ memory pages
o recoverability data
o event buffers

e Fully transparent to the application-level code

4 of 18 - NUMA Time Warp 7

The execution scenario

anonymous

malloc S — X
allocation

application mode J

wrapper layer

N

get_new_buffer

platform mode

non-anonymous
allocation

e malloc library calls are intercepted

e The simulation platform transforms anonymous allocations into
non-anonymous allocations

5 of 18 - NUMA Time Warp 3

——
Non-Anonymous Memory Allocator

e Mid-level memory manager: DyMeLoR (any other can do the job)
o traditional version to serve model requests
o we have a new version with no recoverability data for platform usage

e Low-level NUMA memory manager:

o memory is pre-reserved for the mid-level memory manager
o pre-reserving done using mmap

o for each simulation object, the following meta-data are kept:
void *base;

size_t size;
int active;

6 of 18 - NUMA Time Warp 7

Managing the Memory Map

mem_map

one instance for each
base simulation object
active

actual contiguous virtual
memory pages for the segment

<address,numpages> [¢——»

segment table

Allocations from Application- and Platform-level

application mode

malloc

platform mode

get_new_buffer <

DyMelLoR

variant

(no recoverability _
data)

installed

on this

segment

allocation for internal usage

«—

(event-buffers or log-buffers)

<address,numpages>

—» | <address,numpages>

segment table

get_new_buffer

installed
on this
segment

- v
original

By using set_mempolicy we force the Linux kernel to materialize the
pages on the NUMA node closest to the worker thread

8 of 1. MA Time Warp 2

Data Exchange Management

e Not all data accesses are “private”: what about event exchange?

9 of 18 - NUMA Time Warp 3

Data Exchange Management

e Not all data accesses are “private”: what about event exchange?

e NUMA-oriented implementation of the bottom half-based
message-exchange scheme, using additional meta-data:

mem_map

live_bh expired_bh one instance for each
/ \ simulation object

pointers switched \
/' uponanew era

pages for bottom
half queues

9 of 18 - NUMA Time Warp 2

Data Exchange Management

e Not all data accesses are “private”: what about event exchange?

e The worker thread managing the destination simulation object
accesses it more frequently = keep pages close to it

e Yet the pages are not guaranteed to be located on the node closest
to the CPU running this worker thread!

o remember set_mempolicy?

9 of 18 - NUMA Time Warp 7

__
Page Migration: the pagemigd daemon

flag triggering the move

of all the valid segments map_move

by the daemon
N

one instance for each
simulation object

spinlock
target_node
~- -+ need_move

\\
<address,numpages> | «—» \ ~
. addresses[] taget_nodes[]

- - \ //
\
[] 7N

move_pages
segment table

l Linux kernel

10 of 18 MA Time Warp 2

Migrating Bottom Halves

stable pointers
mem_map

bh_addresses[]

one instance for each
—

simulation object
live_bh expired_bh

J/ uponanewera

pages for bottom
half queues

11 of MA Time Warp

Experimental Evaluation: Test-bed Platform

e Hardware configuration:

o HP ProLiant server equipped with 64GB of RAM
o 4 8-cores CPU (32 cores total)

o 8 NUMA nodes, close to 4 cores, distant to all the others

e Software configuration:

o ROOT-Sim Optimistic Simulation Kernel, using 32 symmetric worker
threads
o Debian 6

o 2.6.32-5-amd64 Linux kernel

12 of 18 - NUMA Time Warp 7

Benchmark Application: Traffic

e Balanced Scenario:
o 137 simulation objects
o Accident probability close to zero
o Even workload (no rebinding)
o When active, pagemigd daemons
are very aggressive

e Unbalanced Scenario:
o 1024 simulation objects

o Number of active daemons in [4,32]
o Activation interval in [2,10]

13 of 18 - NUMA Time Warp 3

Balanced Configuration: Execution Time

500 —
450
400
€ 350
c
S —
(53
@ 300
Q
E 250
=
c
S 200
=1
(53
£ 150
n}
100 B
50 —.]
0
% % %
Car Interarrival Time (simulated seconds)
3 Sequential = NUMA no daemons
= glibc-based m NUMA with daemons

14 of MA Time Warp 2

vs sequential

on

Unbalanced Configurat

I
]

. T

T

! HHHIH
o T
e e
N i
RS A
AN e
R T
RS ettt
At eieie
R HH
s assee

i 7
e i
it)
i i
i

N
SRR
T

oo RN
ARSI NN
RIS T R

RIS
R sl
R i
R 7
B
™

UMA Time Warp

'
©
—
“

o
0
—

© VS
glibc

ion

N\
N
N
N
N
N
N
NN
\\\\\
W

7
777
7

N
N
A
N

NN
X
\

R
3N
N
\\\\\\
N
=
X

X

N

T
N
N

N
XN
N

N
N

R

S

N
o

R

R
X

o
%{.—a
N S5
s

s

N
AR
S
AN X
N
,,,,,,Muu_......“.”........
e
e i
i o
ut i
i E§
i iy
__.___.____ i
e i i 7
-_--_- \\\::-:
S i
e
i
. 25

N
R
N
o
u
!
fue:

s
AN
D

\
N
A
n!
ot
T
%

g
"
0

i

\

s

EEEs =

= S X

//’”N‘““l‘l‘“,/ R

= =7 %@%%,
S N @o&«oo

= %&o&@%«

.. N

N
S R
o R

S

R

s W\

A NS
3

o
i

.
7

(R
N N W
S R
A s !
.
i

Unb

al
anced Confi
IgUrat

=
o
2
[
£
=
<
=
>
=4
2
S
o
=

ithout daemons

W
A
it

ith or w

w

on

X

AN
W
W
AN

ST
sttt
i s
i
T
e

;

,,
r/
N
Wi
W
”4—

N

R

N

:
e
e

i

Zins
PO
SoNeStys!
SRR
R R R
R R
SRR

W)

St

iy

e

!
i
it
u.,.—..._...__.._

N

11

i

S

dnpaads

Unbalanced Configurat

UMA Time Warp

17 of 18 -

Thanks for your attention

Questions?

pellegrini@dis.uniromal.it
http://www.dis.uniromal.it/~pellegrini
http://www.github.com/HPDCS/ROOT-Sim

18 of 18 - NUMA Time Warp 2

