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The NUMA Architecture
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e Memory divided into
different banks

e The same core sees some
banks closer, other
farther

e This has an effect on
access latency
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Reference Time Warp Architectural Context

e Optimistic PDES systems based on the multi-thread paradigm
o highly suited for shared memory platforms
o data exchange can be optimized
o computing power can be well balanced

e Temporarily binding of simulation objects to worker threads

© no concurrent access on recoverability data, and input/output queues
of a simulation object

e Permanent binding of worker-threads to CPU cores
e Dual-mode execution scheme: application versus platform modes

e Worker threads schedule only one simulation object at a time (the
current simulation object)

3 of 18 - NUMA Time Warp 7



Goal: Optimizing Latency on NUMA Architectures

e NUMA-oriented memory manager

o per-simulation-object management of memory segments made up by
disjoint sets of pages

o both static and dynamic binding of memory pages to specific NUMA
nodes

e Page migration

o to cope with worker-thread binding of simulation objects
o based on Linux services

® Manage at the same time:

o simulation states’ memory pages
o recoverability data
o event buffers

e Fully transparent to the application-level code
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The execution scenario

anonymous

malloc S — X
allocation

application mode J

wrapper layer
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get_new_buffer

platform mode

non-anonymous
allocation

e malloc library calls are intercepted

e The simulation platform transforms anonymous allocations into
non-anonymous allocations
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——
Non-Anonymous Memory Allocator

e Mid-level memory manager: DyMeLoR (any other can do the job)
o traditional version to serve model requests
o we have a new version with no recoverability data for platform usage

e Low-level NUMA memory manager:

o memory is pre-reserved for the mid-level memory manager
o pre-reserving done using mmap

o for each simulation object, the following meta-data are kept:
void *base;

size_t size;
int active;
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Managing the Memory Map

mem_map

one instance for each
base simulation object
active

actual contiguous virtual
memory pages for the segment

<address,numpages> [ ¢——»

segment table




Allocations from Application- and Platform-level
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By using set_mempolicy we force the Linux kernel to materialize the
pages on the NUMA node closest to the worker thread
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Data Exchange Management

e Not all data accesses are “private”: what about event exchange?
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Data Exchange Management

e Not all data accesses are “private”: what about event exchange?

e NUMA-oriented implementation of the bottom half-based
message-exchange scheme, using additional meta-data:

mem_map

live_bh expired_bh one instance for each
/ \ simulation object

pointers switched \
/' uponanew era

pages for bottom
half queues
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Data Exchange Management

e Not all data accesses are “private”: what about event exchange?

e The worker thread managing the destination simulation object
accesses it more frequently = keep pages close to it

e Yet the pages are not guaranteed to be located on the node closest
to the CPU running this worker thread!

o remember set_mempolicy?
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________________________________________
Page Migration: the pagemigd daemon

flag triggering the move

of all the valid segments map_move

by the daemon
N

one instance for each
simulation object

spinlock
target_node
~- -+ need_move

\\
<address,numpages> | «—» \ ~
. addresses[] taget_nodes[]

- - \ //
\
[] 7N

move_pages
segment table

l Linux kernel
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Migrating Bottom Halves

stable pointers
mem_map

bh_addresses[]

one instance for each
—

simulation object
live_bh expired_bh

J/ uponanewera

pages for bottom
half queues
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Experimental Evaluation: Test-bed Platform

e Hardware configuration:

o HP ProLiant server equipped with 64GB of RAM
o 4 8-cores CPU (32 cores total)

o 8 NUMA nodes, close to 4 cores, distant to all the others

e Software configuration:

o ROOT-Sim Optimistic Simulation Kernel, using 32 symmetric worker
threads
o Debian 6

o 2.6.32-5-amd64 Linux kernel
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Benchmark Application: Traffic

e Balanced Scenario:
o 137 simulation objects
o Accident probability close to zero
o Even workload (no rebinding)
o When active, pagemigd daemons
are very aggressive

e Unbalanced Scenario:
o 1024 simulation objects

o Number of active daemons in [4,32]
o Activation interval in [2,10]

13 of 18 - NUMA Time Warp 3



Balanced Configuration: Execution Time
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Thanks for your attention

Questions?

pellegrini@dis.uniromal.it
http://www.dis.uniromal.it/~pellegrini
http://www.github.com/HPDCS/ROOT-Sim
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