Transparently Mixing Undo Logs and Software Reversibility
for State Recovery in Optimistic PDES

Davide Cingolani
Alessandro Pellegrini
Francesco Quaglia

High Performance and Dependable
Computing Systems Group

SAP]ENZA Sapienza, University of Rome

UNIVERSITA DI ROMA PADS 2015

Coordination in PDES

LR P Execution Time
(] » Execution Time
LR » Execution Time

Undo Logs and Software Rever:

Coordination in PDES

LR 5 » Execution Time

¥ Execution Time

LR 7 » Execution Time

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Coordination in PDES

LR 5 » Execution Time

¥ Execution Time

LR 7 17 » Execution Time

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Coordination in PDES

LR 5 10 » Execution Time
20 ¥ Execution Time
LA 7 17 25 » Execution Time

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Coordination in PDES

LR 5 10 » Execution Time
20 ¥ Execution Time
LA 7 17 25 » Execution Time

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Coordination in PDES

LR 5 10 ¥ Execution Time
Rollback Execution:
Recovering state at
/ LVT 10
LR 15 20 P Execution Time
Straggler Message
LA 7 17 25 » Execution Time

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Coordination in PDES

LR 5 10 ¥ Execution Time
Rollback Execution:
Recovering state at
/ LVT 10
20 ¥ Execution Time
Straggler Message
Anti-message
LR 7 17 25 \ P Execution Time
anti-message Rollback Execution:
reception Recovering State at
LvT7

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Coordination in PDES

LR 5

H

P Execution Time

Rollback Execution:
Recovering state at

/ LVT 10
LR 20 P Execution Time

Straggler Message
Anti-message

LR 7 17 25 \ 117 7 P Execution Time
ant\-mes.sage Rollback Execution:
reception Recovering State at
LvT7

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

——
But how to actually rollback?

e State Saving
o a plethora of different approaches to optimize: CSS, SSS, ISS
o independent of rollback length
o can be costly if the state is large or largely accessed

e Reverse Computing

o a forward event e on a simulation state S produces the transition
e(S)—= 5
the reverse event r associated with e produces the inverse transition
r(§Y—S

execution time can be directly proportional to execution time of
simulation events and rollback length
o what if few portions of S are updated?

- Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

——
Combining Philosophies: on-the-fly reversibility

e If rollbacking far in the past, use state saving to get “closer”

e Use reversibility—rather than reverse events—to “fine tune” the
rollback point

o Undoing only the effects of an event in memory

4 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Combining Philosophies: on-the-fly reversibility

e If rollbacking far in the past, use state saving to get “closer”

e Use reversibility—rather than reverse events—to “fine tune” the
rollback point
o Undoing only the effects of an event in memory

e Generate undo code blocks on the fly while running forward events

o Intercept memory updates
o Generate assembly instructions which undo the effects
o Store them so that undoing an event can be done quickly

e Use static binary instrumentation to reduce at most the costs

e Don't pay the instrumentation cost if the undo code block will be
never executed

4 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

event checkpoint
Wall Clock Time

—|—- T Tt {1+ H+H o1 H 1=

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

event checkpoint
Wall Clock Time

—|—- o T+ H+H o1 H 1=

rollback point

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

event checkpoint
Wall Clock Time

—|— o T {1+ H+H o1 H 1=

restore

rollback point

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

event checkpoint
Wall Clock Time

—_—
T reprocess
restore

rollback point

5 of 17 - Transparently Mi Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

event checkpoint
Wall Clock Time

—|—-c T {1 {1 H+H o1 H 1=

rollback point

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

event checkpoint
Wall Clock Time

—|—- o T {1 H+H o1 H 1=

restore

rollback point

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

event checkpoint
Wall Clock Time

-
undo effects
restore

rollback point

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

event checkpoint
Wall Clock Time

-—
undo effects
restore

rollback point

e Then, we must be able to “disable” the generation of undo code
blocks if they are not needed

e This can be done quickly using code multiversioning

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Code Multiversioning

dext_1
.data
) text_1
text .rodata
text_2
.data .bss
.data
.rodata
bss \ 4 text 2 N\ .rodata
N
dat .bss
Original Relocatable -data —
Object File Final Relocatable
rodata Object File
.bss

6 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Static Binary Instrumentation

e We rely on Hijacker [HPDC2012] to instrument the simulation
model’s code

Hijacker
Front-End
/] || ,I XML Parser |\
XML
Config " 7] Back-End
File i Executable Formats
e ™ Interpreters \l Instrumentation Rule Manager |
A7 A T X
mput | _—] 3 |,| [InstructionSets || 1 Internal Executable
e Disassemblers Representation
r
A i
i Executable Formats |4 | Instrumentation Engine |
Output I~ e Generators
T W vV
r N
z | Instruction Sets K
e Assemblers
r

7 of 17 - Transparently Mi do Logs and Software Reversibility for State Recovery in Optimistic PDES

Hijacker Rules

<hijacker:Rules xmlns:hijacker="http://www.dis.uniromal.it/~hpdcs/">
<hijacker:Inject file="mixed-state-saving.c" />
<hijacker:Executable suffix="memtrack"> <!-- First code version -->
<hijacker:Instruction type="I_MEMWR">
<hijacker:AddCall where="before" function="reverse_generator"
arguments="target" />
</hijacker:Instruction>
</hijacker:Executable>
<hijacker:Executable suffix="notrack"> <!-- Second code version -->

</hijacker:Executable>
</hijacker:Rules>

8 of 17 - Transparently Mixin do Logs and Software Reversibility for State Recovery in Optimistic PDES

How rules are applied

push metadata
call monitor
original memory
update ——— [mov S$1, x mov $1, x
Original Executable Final executable

Instrumentation Process

9 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

-
Generating negative instructions

e We read the value of the original write before it's actually executed

e This value is packed within an instruction which writes it back on
the same address

e Some exceptions to this behaviour:

o cmov: the reverse mov is generated only if cmov is executed
O moVS: a reverse movs is... a movs!

e Opcodes are known beforehand: fast table-driven generation

10 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Organizing instructions: Reverse Windows

revwin
size

address

pointer

Heap

revwin

_—
Each reverse window is associated with an event
(and stored in the associated node)

11 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Reverse or not reverse? The Decision Model

e Based on an “old” decision model [ParCo2001]

e This model expresses the trade-off between recoverability tasks:

Ot v00) L g X2 (5,0 X2V 225) 12 (5,4 L)
X X 2 X 2

X : checkpointing interval

v : events for which we generate undo code blocks

12 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How rollback is executed

e Scan the event chain, and identify the point where to rollback

e If the event after the point has a reverse window

o Restore the first state after that point
o Process undo code blocks in reverse order

e Otherwise

o Restore the first state before that point
o Execute the classical coasting forward

13 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Experimental Evaluation: Test-bed Environment

e Hardware configuration:

o HP ProLiant server equipped with 64GB of RAM
o 4 8-cores CPU (32 cores total)

e Software configuration:
o ROOT-Sim Optimistic Simulation Kernel, using 32 symmetric WT
o Debian 6
0 2.6.32-5-amd64 Linux kernel

e ROOT-Sim configuration:
o x set to 10 (changes in the dynamics don't affect the choice of x)
o Portable Communcation System—PCS

o Varied number of LPs: changes the size of state, memory updates,
and event granularity

14 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Execution Time: 64 LPs

20

16 .|]

14 e -

10 .

Execution Time (seconds)

25% 50% 75%
Load

 ISS 3 SS+CF m SS+EU B Model

15 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Execution Time: 1024 LPs

160

140 _l

100 1

80 4

Execution Time (seconds)

40 1

25% 50% 75%
Load

= ISS 3 SS+CF = SS+EU B Model

16 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Thanks for your attention

Questions?

pellegrini@dis.uniromal.it
http://www.dis.uniromal.it/~pellegrini
http://www.github.com/HPDCS/ROOT-Sim

17 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

