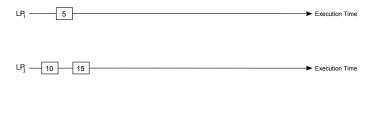
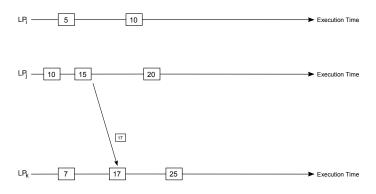
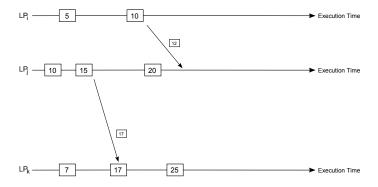
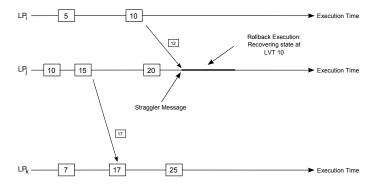

Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

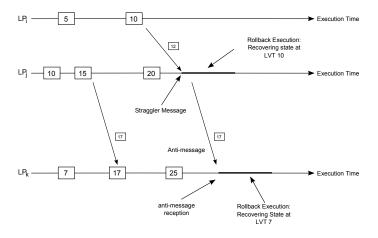


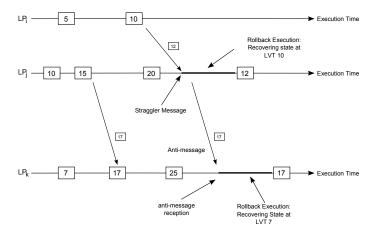
Davide Cingolani
Alessandro Pellegrini
Francesco Quaglia


High Performance and Dependable Computing Systems Group Sapienza, University of Rome


PADS 2015







But how to actually rollback?

State Saving

- o a plethora of different approaches to optimize: CSS, SSS, ISS
- o independent of rollback length
- o can be costly if the state is large or largely accessed

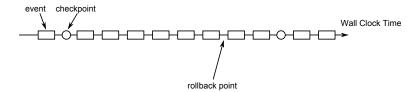
Reverse Computing

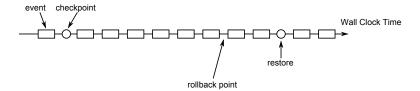
- o a forward event e on a simulation state S produces the transition $e(S) \rightarrow S'$
- the reverse event r associated with e produces the inverse transition $r(S') \to S$
- execution time can be directly proportional to execution time of simulation events and rollback length
- what if few portions of S are updated?

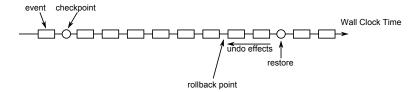

Combining Philosophies: on-the-fly reversibility

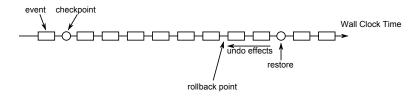
- If rollbacking far in the past, use state saving to get "closer"
- Use reversibility—rather than reverse events—to "fine tune" the rollback point
 - Undoing only the effects of an event in memory

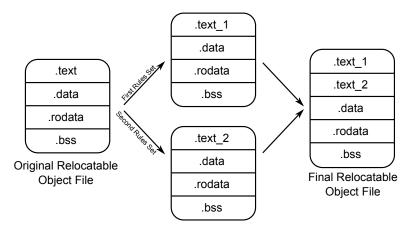
Combining Philosophies: on-the-fly reversibility

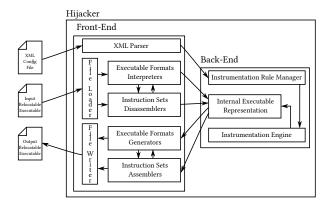

- If rollbacking far in the past, use state saving to get "closer"
- Use reversibility—rather than reverse events—to "fine tune" the rollback point
 - Undoing only the effects of an event in memory
- Generate undo code blocks on the fly while running forward events
 - Intercept memory updates
 - Generate assembly instructions which undo the effects
 - Store them so that undoing an event can be done quickly
- Use static binary instrumentation to reduce at most the costs
- Don't pay the instrumentation cost if the undo code block will be never executed





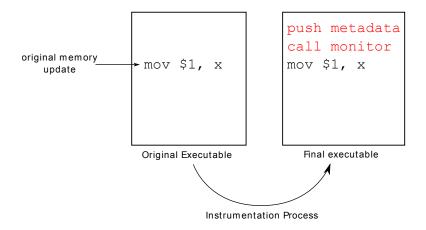





- Then, we must be able to "disable" the generation of undo code blocks if they are not needed
- This can be done quickly using code multiversioning

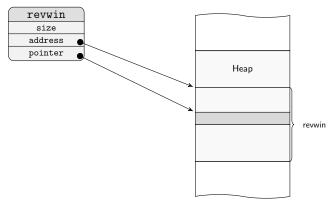
Code Multiversioning

Static Binary Instrumentation


 We rely on Hijacker [HPDC2012] to instrument the simulation model's code

Hijacker Rules

```
<hijacker:Rules xmlns:hijacker="http://www.dis.uniroma1.it/~hpdcs/">
 <hijacker:Inject file="mixed-state-saving.c" />
  <hijacker:Executable suffix="memtrack"> <!-- First code version -->
    <hijacker:Instruction type="I_MEMWR">
      <hijacker:AddCall where="before" function="reverse_generator"</pre>
                                       arguments="target" />
    </hijacker:Instruction>
 </hijacker:Executable>
  <hijacker:Executable suffix="notrack"> <!-- Second code version -->
  </hijacker:Executable>
</hijacker:Rules>
```


How rules are applied

Generating negative instructions

- We read the value of the original write before it's actually executed
- This value is packed within an instruction which writes it back on the same address
- Some exceptions to this behaviour:
 - o cmov: the reverse mov is generated only if cmov is executed
 - movs: a reverse movs is... a movs!
- Opcodes are known beforehand: fast table-driven generation

Organizing instructions: Reverse Windows

Each reverse window is associated with an event (and stored in the associated node)

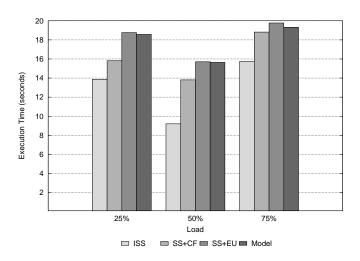
Reverse or not reverse? The Decision Model

- Based on an "old" decision model [ParCo2001]
- This model expresses the trade-off between recoverability tasks:

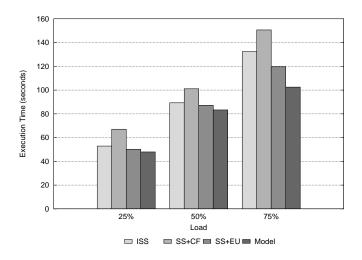
$$\frac{\left(\delta_{s}+\nu\delta_{bi}\right)}{\chi}+F_{r}\left[\frac{\chi-\nu}{\chi}\left(\delta_{r}+\frac{\chi-\nu-1}{2}\delta_{e}\right)+\frac{\nu}{\chi}\left(\delta_{r}+\frac{\nu}{2}\delta_{b}\right)\right]$$

 χ : checkpointing interval

u : events for which we generate undo code blocks


How rollback is executed

- Scan the event chain, and identify the point where to rollback
- If the event after the point has a reverse window
 - Restore the first state after that point
 - Process undo code blocks in reverse order
- Otherwise
 - Restore the first state before that point
 - Execute the classical coasting forward


Experimental Evaluation: Test-bed Environment

- Hardware configuration:
 - HP ProLiant server equipped with 64GB of RAM
 - o 4 8-cores CPU (32 cores total)
- Software configuration:
 - ROOT-Sim Optimistic Simulation Kernel, using 32 symmetric WT
 - Debian 6
 - o 2.6.32-5-amd64 Linux kernel
- ROOT-Sim configuration:
 - $\circ \chi$ set to 10 (changes in the dynamics don't affect the choice of χ)
 - Portable Communication System—PCS
 - Varied number of LPs: changes the size of state, memory updates, and event granularity

Execution Time: 64 LPs

Execution Time: 1024 LPs

Thanks for your attention

Questions?

pellegrini@dis.uniroma1.it http://www.dis.uniroma1.it/~pellegrini http://www.github.com/HPDCS/ROOT-Sim