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——
But how to actually rollback?

e State Saving
o a plethora of different approaches to optimize: CSS, SSS, ISS
o independent of rollback length
o can be costly if the state is large or largely accessed

e Reverse Computing

o a forward event e on a simulation state S produces the transition
e(S)—= 5
the reverse event r associated with e produces the inverse transition
r(§Y—S

execution time can be directly proportional to execution time of
simulation events and rollback length
o what if few portions of S are updated?
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——
Combining Philosophies: on-the-fly reversibility

e If rollbacking far in the past, use state saving to get “closer”

e Use reversibility—rather than reverse events—to “fine tune” the
rollback point

o Undoing only the effects of an event in memory
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Combining Philosophies: on-the-fly reversibility

e If rollbacking far in the past, use state saving to get “closer”

e Use reversibility—rather than reverse events—to “fine tune” the
rollback point
o Undoing only the effects of an event in memory

e Generate undo code blocks on the fly while running forward events

o Intercept memory updates
o Generate assembly instructions which undo the effects
o Store them so that undoing an event can be done quickly

e Use static binary instrumentation to reduce at most the costs

e Don't pay the instrumentation cost if the undo code block will be
never executed
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How is then better to rollback?

event checkpoint
Wall Clock Time

—|—- T Tt {1+ H+H o1 H 1=
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How is then better to rollback?

event checkpoint
Wall Clock Time
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restore

rollback point
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How is then better to rollback?

event checkpoint
Wall Clock Time
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How is then better to rollback?

event checkpoint
Wall Clock Time

-
undo effects
restore

rollback point
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How is then better to rollback?

event checkpoint
Wall Clock Time

-—
undo effects
restore

rollback point

e Then, we must be able to “disable” the generation of undo code
blocks if they are not needed

e This can be done quickly using code multiversioning
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Code Multiversioning
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Static Binary Instrumentation

e We rely on Hijacker [HPDC2012] to instrument the simulation
model’s code
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Hijacker Rules

<hijacker:Rules xmlns:hijacker="http://www.dis.uniromal.it/~hpdcs/">
<hijacker:Inject file="mixed-state-saving.c" />
<hijacker:Executable suffix="memtrack"> <!-- First code version -->
<hijacker:Instruction type="I_MEMWR">
<hijacker:AddCall where="before" function="reverse_generator"
arguments="target" />
</hijacker:Instruction>
</hijacker:Executable>
<hijacker:Executable suffix="notrack"> <!-- Second code version -->

</hijacker:Executable>
</hijacker:Rules>
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How rules are applied

push metadata
call monitor
original memory
update ——— [ mov S$1, x mov $1, x
Original Executable Final executable

Instrumentation Process
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-
Generating negative instructions

e We read the value of the original write before it's actually executed

e This value is packed within an instruction which writes it back on
the same address

e Some exceptions to this behaviour:

o cmov: the reverse mov is generated only if cmov is executed
O moVS: a reverse movs is... a movs!

e Opcodes are known beforehand: fast table-driven generation
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Organizing instructions: Reverse Windows

revwin
size

address

pointer

Heap

revwin

_—
Each reverse window is associated with an event
(and stored in the associated node)
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Reverse or not reverse? The Decision Model

e Based on an “old” decision model [ParCo2001]

e This model expresses the trade-off between recoverability tasks:

Ot v00) L g X2 (5,0 X2V 225) 12 (5,4 L)
X X 2 X 2

X : checkpointing interval

v : events for which we generate undo code blocks
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How rollback is executed

e Scan the event chain, and identify the point where to rollback

e If the event after the point has a reverse window

o Restore the first state after that point
o Process undo code blocks in reverse order

e Otherwise

o Restore the first state before that point
o Execute the classical coasting forward
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Experimental Evaluation: Test-bed Environment

e Hardware configuration:

o HP ProLiant server equipped with 64GB of RAM
o 4 8-cores CPU (32 cores total)

e Software configuration:
o ROOT-Sim Optimistic Simulation Kernel, using 32 symmetric WT
o Debian 6
0 2.6.32-5-amd64 Linux kernel

e ROOT-Sim configuration:
o x set to 10 (changes in the dynamics don't affect the choice of x)
o Portable Communcation System—PCS

o Varied number of LPs: changes the size of state, memory updates,
and event granularity
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Execution Time: 64 LPs
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Execution Time: 1024 LPs

160

140 _l

100 1

80 4

Execution Time (seconds)

40 1

25% 50% 75%
Load

= ISS 3 SS+CF = SS+EU B Model

16 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES




Thanks for your attention

Questions?

pellegrini@dis.uniromal.it
http://www.dis.uniromal.it/~pellegrini
http://www.github.com/HPDCS/ROOT-Sim
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