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But how to actually rollback?

• State Saving
◦ a plethora of different approaches to optimize: CSS, SSS, ISS
◦ independent of rollback length
◦ can be costly if the state is large or largely accessed

• Reverse Computing
◦ a forward event e on a simulation state S produces the transition

e(S)→ S ′

◦ the reverse event r associated with e produces the inverse transition
r(S ′)→ S

◦ execution time can be directly proportional to execution time of
simulation events and rollback length

◦ what if few portions of S are updated?
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Combining Philosophies: on-the-fly reversibility

• If rollbacking far in the past, use state saving to get “closer”

• Use reversibility—rather than reverse events—to “fine tune” the
rollback point
◦ Undoing only the effects of an event in memory

• Generate undo code blocks on the fly while running forward events
◦ Intercept memory updates
◦ Generate assembly instructions which undo the effects
◦ Store them so that undoing an event can be done quickly

• Use static binary instrumentation to reduce at most the costs

• Don’t pay the instrumentation cost if the undo code block will be
never executed
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How is then better to rollback?

Wall Clock Time

event checkpoint
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How is then better to rollback?

Wall Clock Time

event checkpoint

rollback point

undo effects

restore

• Then, we must be able to “disable” the generation of undo code
blocks if they are not needed

• This can be done quickly using code multiversioning
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Code Multiversioning
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Static Binary Instrumentation

• We rely on Hijacker [HPDC2012] to instrument the simulation
model’s code
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Hijacker Rules

<hijacker:Rules xmlns:hijacker="http://www.dis.uniroma1.it/~hpdcs/">

<hijacker:Inject file="mixed-state-saving.c" />

<hijacker:Executable suffix="memtrack"> <!-- First code version -->

<hijacker:Instruction type="I_MEMWR">

<hijacker:AddCall where="before" function="reverse_generator"

arguments="target" />

</hijacker:Instruction>

</hijacker:Executable>

<hijacker:Executable suffix="notrack"> <!-- Second code version -->

</hijacker:Executable>

</hijacker:Rules>
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How rules are applied

original m em ory

update

Inst rum entat ion Process

Original Executable Final executable

mov $1, x

push metadata

call monitor

mov $1, x
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Generating negative instructions

• We read the value of the original write before it’s actually executed

• This value is packed within an instruction which writes it back on
the same address

• Some exceptions to this behaviour:
◦ cmov: the reverse mov is generated only if cmov is executed
◦ movs: a reverse movs is... a movs!

• Opcodes are known beforehand: fast table-driven generation

10 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES



Organizing instructions: Reverse Windows

revwin
size

address

pointer

Heap

revwin

Each reverse window is associated with an event
(and stored in the associated node)
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Reverse or not reverse? The Decision Model

• Based on an “old” decision model [ParCo2001]

• This model expresses the trade-off between recoverability tasks:
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χ : checkpointing interval

ν : events for which we generate undo code blocks
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How rollback is executed

• Scan the event chain, and identify the point where to rollback

• If the event after the point has a reverse window
◦ Restore the first state after that point
◦ Process undo code blocks in reverse order

• Otherwise
◦ Restore the first state before that point
◦ Execute the classical coasting forward
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Experimental Evaluation: Test-bed Environment

• Hardware configuration:
◦ HP ProLiant server equipped with 64GB of RAM
◦ 4 8-cores CPU (32 cores total)

• Software configuration:
◦ ROOT-Sim Optimistic Simulation Kernel, using 32 symmetric WT
◦ Debian 6
◦ 2.6.32-5-amd64 Linux kernel

• ROOT-Sim configuration:
◦ χ set to 10 (changes in the dynamics don’t affect the choice of χ)
◦ Portable Communcation System—PCS
◦ Varied number of LPs: changes the size of state, memory updates,

and event granularity
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Execution Time: 64 LPs
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Execution Time: 1024 LPs
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Thanks for your attention

Questions?

pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

http://www.github.com/HPDCS/ROOT-Sim
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