
Transparently Mixing Undo Logs and Software Reversibility
for State Recovery in Optimistic PDES

Davide Cingolani
Alessandro Pellegrini

Francesco Quaglia

High Performance and Dependable
Computing Systems Group

Sapienza, University of Rome

PADS 2015

Coordination in PDES

LPi

LPj

LPk Execution Time

Execution Time

Execution Time

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Coordination in PDES

LPi

LPj 15

5

LPk Execution Time7

10 Execution Time

Execution Time

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Coordination in PDES

LPi

LPj 15

5

LPk Execution Time7 17

10

17

Execution Time

Execution Time

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Coordination in PDES

LPi

LPj 15

5 10

20

LPk Execution Time7 17 25

10

17

Execution Time

Execution Time

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Coordination in PDES

LPi

LPj 15

5 10

20

12

LPk Execution Time7 17 25

10

17

Execution Time

Execution Time

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Coordination in PDES

LPi

LPj 15

5 10

20

Straggler Message

12

LPk Execution Time7 17 25

10

17

Rollback Execution:

Recovering state at

LVT 10

Execution Time

Execution Time

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Coordination in PDES

LPi

LPj 15

5 10

20

Straggler Message

12

LPk Execution Time7 17 25

10

17 17

Anti-message

anti-message

reception

Rollback Execution:

Recovering state at

LVT 10

Rollback Execution:

Recovering State at

LVT 7

Execution Time

Execution Time

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Coordination in PDES

LPi

LPj 15

5 10

20 12

Straggler Message

12

LPk Execution Time7 17 25

10

17

17 17

Anti-message

anti-message

reception

Rollback Execution:

Recovering state at

LVT 10

Rollback Execution:

Recovering State at

LVT 7

Execution Time

Execution Time

2 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

But how to actually rollback?

• State Saving
◦ a plethora of different approaches to optimize: CSS, SSS, ISS
◦ independent of rollback length
◦ can be costly if the state is large or largely accessed

• Reverse Computing
◦ a forward event e on a simulation state S produces the transition

e(S)→ S ′

◦ the reverse event r associated with e produces the inverse transition
r(S ′)→ S

◦ execution time can be directly proportional to execution time of
simulation events and rollback length

◦ what if few portions of S are updated?

3 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Combining Philosophies: on-the-fly reversibility

• If rollbacking far in the past, use state saving to get “closer”

• Use reversibility—rather than reverse events—to “fine tune” the
rollback point
◦ Undoing only the effects of an event in memory

• Generate undo code blocks on the fly while running forward events
◦ Intercept memory updates
◦ Generate assembly instructions which undo the effects
◦ Store them so that undoing an event can be done quickly

• Use static binary instrumentation to reduce at most the costs

• Don’t pay the instrumentation cost if the undo code block will be
never executed

4 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Combining Philosophies: on-the-fly reversibility

• If rollbacking far in the past, use state saving to get “closer”

• Use reversibility—rather than reverse events—to “fine tune” the
rollback point
◦ Undoing only the effects of an event in memory

• Generate undo code blocks on the fly while running forward events
◦ Intercept memory updates
◦ Generate assembly instructions which undo the effects
◦ Store them so that undoing an event can be done quickly

• Use static binary instrumentation to reduce at most the costs

• Don’t pay the instrumentation cost if the undo code block will be
never executed

4 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

Wall Clock Time

event checkpoint

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

Wall Clock Time

event checkpoint

rollback point

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

Wall Clock Time

event checkpoint

rollback point

restore

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

Wall Clock Time

event checkpoint

rollback point

reprocess

restore

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

Wall Clock Time

event checkpoint

rollback point

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

Wall Clock Time

event checkpoint

rollback point

restore

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

Wall Clock Time

event checkpoint

rollback point

undo effects

restore

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How is then better to rollback?

Wall Clock Time

event checkpoint

rollback point

undo effects

restore

• Then, we must be able to “disable” the generation of undo code
blocks if they are not needed

• This can be done quickly using code multiversioning

5 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Code Multiversioning

.text

.data

.rodata

.bss

Original Relocatable

Object File

.text_1

.data

.rodata

.bss

.text_2

.data

.rodata

.bss

.text_2

.data

.rodata

.bss

.text_1

Final Relocatable

Object File

Firs
t R

ul
es

 S
et

S
econd R

ules S
et

6 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Static Binary Instrumentation

• We rely on Hijacker [HPDC2012] to instrument the simulation
model’s code

Hijacker

Front-End

Executable Formats

Interpreters

Instruction Sets

Disassemblers

F
i
l
e

L
o
a
d
e
r

Executable Formats

Generators

Instruction Sets

Assemblers

F
i
l
e

W
r
i
t
e
r

Back-End

Input

Relocatable

Executable

Output

Relocatable

Executable

XML

Con g

File

XML Parser

Internal Executable

Representation

Instrumentation Rule Manager

Instrumentation Engine

7 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Hijacker Rules

<hijacker:Rules xmlns:hijacker="http://www.dis.uniroma1.it/~hpdcs/">

<hijacker:Inject file="mixed-state-saving.c" />

<hijacker:Executable suffix="memtrack"> <!-- First code version -->

<hijacker:Instruction type="I_MEMWR">

<hijacker:AddCall where="before" function="reverse_generator"

arguments="target" />

</hijacker:Instruction>

</hijacker:Executable>

<hijacker:Executable suffix="notrack"> <!-- Second code version -->

</hijacker:Executable>

</hijacker:Rules>

8 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How rules are applied

original m em ory

update

Inst rum entat ion Process

Original Executable Final executable

mov $1, x

push metadata

call monitor

mov $1, x

9 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Generating negative instructions

• We read the value of the original write before it’s actually executed

• This value is packed within an instruction which writes it back on
the same address

• Some exceptions to this behaviour:
◦ cmov: the reverse mov is generated only if cmov is executed
◦ movs: a reverse movs is... a movs!

• Opcodes are known beforehand: fast table-driven generation

10 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Organizing instructions: Reverse Windows

revwin
size

address

pointer

Heap

revwin

Each reverse window is associated with an event
(and stored in the associated node)

11 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Reverse or not reverse? The Decision Model

• Based on an “old” decision model [ParCo2001]

• This model expresses the trade-off between recoverability tasks:

(δs + νδbi)

χ
+ Fr

[
χ− ν

χ

(
δr +

χ− ν − 1

2
δe

)
+

ν

χ

(
δr +

ν

2
δb

)]

χ : checkpointing interval

ν : events for which we generate undo code blocks

12 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

How rollback is executed

• Scan the event chain, and identify the point where to rollback

• If the event after the point has a reverse window
◦ Restore the first state after that point
◦ Process undo code blocks in reverse order

• Otherwise
◦ Restore the first state before that point
◦ Execute the classical coasting forward

13 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Experimental Evaluation: Test-bed Environment

• Hardware configuration:
◦ HP ProLiant server equipped with 64GB of RAM
◦ 4 8-cores CPU (32 cores total)

• Software configuration:
◦ ROOT-Sim Optimistic Simulation Kernel, using 32 symmetric WT
◦ Debian 6
◦ 2.6.32-5-amd64 Linux kernel

• ROOT-Sim configuration:
◦ χ set to 10 (changes in the dynamics don’t affect the choice of χ)
◦ Portable Communcation System—PCS
◦ Varied number of LPs: changes the size of state, memory updates,

and event granularity

14 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Execution Time: 64 LPs

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

25% 50% 75%

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Load

ISS SS+CF SS+EU Model

15 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Execution Time: 1024 LPs

 0

 20

 40

 60

 80

 100

 120

 140

 160

25% 50% 75%

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Load

ISS SS+CF SS+EU Model

16 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

Thanks for your attention

Questions?

pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

http://www.github.com/HPDCS/ROOT-Sim

17 of 17 - Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

