
Transparent Multi-Core Speculative Parallelization of DES
Models with Event and Cross-State Dependencies

Alessandro Pellegrini
Francesco Quaglia

High Performance and Dependable
Computing Systems Group

Sapienza, University of Rome

PADS 2014



The Problem

• In traditional DES:
◦ interactions happen via timestamped event exchanges among LPs
◦ Each LPs keeps a portion of the whole simulation state

• Then, this is a legal code in DES:

1 void *my_simulation_state = malloc(SIZE);

2 memcpy(my_simulation_state, my_content, SIZE);

3 void *evt_payload = my_simulation_state;

4 ScheduleEvent(target, timestamp, EVENT_TYPE, evt_payload, SIZE);

• In sequential DES simulation, so far so good.

• What if this model is executed in a Parallel DES environment?

2 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



The Problem

• In traditional DES:
◦ interactions happen via timestamped event exchanges among LPs
◦ Each LPs keeps a portion of the whole simulation state

• Then, this is a legal code in DES:

1 void *my_simulation_state = malloc(SIZE);

2 memcpy(my_simulation_state, my_content, SIZE);

3 void *evt_payload = my_simulation_state;

4 ScheduleEvent(target, timestamp, EVENT_TYPE, evt_payload, SIZE);

• In sequential DES simulation, so far so good.

• What if this model is executed in a Parallel DES environment?

2 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



The Problem

• In traditional DES:
◦ interactions happen via timestamped event exchanges among LPs
◦ Each LPs keeps a portion of the whole simulation state

• Then, this is a legal code in DES:

1 void *my_simulation_state = malloc(SIZE);

2 memcpy(my_simulation_state, my_content, SIZE);

3 void *evt_payload = my_simulation_state;

4 ScheduleEvent(target, timestamp, EVENT_TYPE, evt_payload, SIZE);

• In sequential DES simulation, so far so good.

• What if this model is executed in a Parallel DES environment?

2 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Goals

• Cross-State dependency: when a LP tries to access
(reading/writing) the state of any other LP

• This requires synchronization among the involved LPs!
◦ What about transparency?
◦ The user should have no clue about the parallel nature of the

simulation!

• We frame this research in:
◦ Optimistic Synchronization
◦ Multicore Architectures
◦ SMP Simulation Kernels
◦ Linux Systems
◦ x86 64 Architectures

• We allow simulation state on dynamic memory via DyMeLoR

3 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Goals

• Cross-State dependency: when a LP tries to access
(reading/writing) the state of any other LP

• This requires synchronization among the involved LPs!
◦ What about transparency?
◦ The user should have no clue about the parallel nature of the

simulation!

• We frame this research in:
◦ Optimistic Synchronization
◦ Multicore Architectures
◦ SMP Simulation Kernels
◦ Linux Systems
◦ x86 64 Architectures

• We allow simulation state on dynamic memory via DyMeLoR

3 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Step 1: Materializing Cross-State Dependencies

• To transparently detect accesses to other LPs’ states we rely on an
x86 64 kernel-level memory management architecture

DirectoryPML4 Directory Ptr Table O set

0111220212930383947

CR3

PML4E

PDPTE

40

40

Linear Address

Page-Directory-

Pointer Table

PDE with PS=0 PTE Physical Addr.

Page Directory Page Table 4-KB Page

9 9

40

40 40

9 9 12

4 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Step 1: Materializing Cross-State Dependencies

• To transparently detect accesses to other LPs’ states we rely on an
x86 64 kernel-level memory management architecture

DirectoryPML4 Directory Ptr Table O set

0111220212930383947

CR3

PML4E

PDPTE

40

40

Linear Address

Page-Directory-

Pointer Table

PDE with PS=0 PTE Physical Addr.

Page Directory Page Table 4-KB Page

9 9

40

40 40

9 9 12

4 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Memory Allocation Policy

• LPs use virtual memory according to stocks

• Memory requests are intercepted via malloc wrappers (DyMeLoR)

• Upon the first request, an interval of page-aligned virtual memory
addresses is reserved via mmap POSIX API (a stock).

• This is a set of empty-zero pages: a null byte is written to make
the kernel actually allocate the chain of page tables

• One stock gives 1GB of available memory to each LP

5 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Memory Access Management

• A LKM creates a device file accessible via ioctl

• SET VM RANGE command associates stocks with LPs

• A kernel-level map (accessible in constant time) is created:
◦ Each stock is logically related to one entry of a PDP page-table
◦ The id of the LP who the stock belongs to is registered

PML4

PDP
simulation object x

simulation object y

constant time access map

updated via the SET_VM_RANGE

ioctl command

O-th PDPTE

1-st PDPTE

6 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Memory Access Management

• When LP j accesses LP i ’s state, we could know that by the
memory address

• We target SMP Simulation: memory protection is not an option

• Every worker thread is associated with a sibling PML4 entry:
◦ They point same PDP entries...
◦ ...but with different privileges!

• The SCHEDULE ON PGD command brings the execution in
simulation-object mode:
◦ The only accessible stock is dispatched LP’s one
◦ This operation leads to a change in the CR3 hardware register

7 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Memory Access Management

• When LP j accesses LP i ’s state, we could know that by the
memory address

• We target SMP Simulation: memory protection is not an option

• Every worker thread is associated with a sibling PML4 entry:
◦ They point same PDP entries...
◦ ...but with different privileges!

• The SCHEDULE ON PGD command brings the execution in
simulation-object mode:
◦ The only accessible stock is dispatched LP’s one
◦ This operation leads to a change in the CR3 hardware register

7 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Memory Access Management

PML4

PDP
simulation object x

O-th PDPTE

Sibling PML4

Sibling PDP

NULLCR3 register

access to 

simulation object x

opened upon

issuing the command

SCHEDULE_ON_PGD

8 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Cross-State Dependency Materialization

• If other LPs’ stocks are accessed, we have a memory fault

• This is the materialization of a Cross-State Dependency

• Yet, this page fault cannot be traditionally handled:
◦ The memory has already be validated via mmap at simulation startup
◦ The Linux kernel would simply reallocate new pages
◦ For the same virtual page we would have multiple page table entries!

9 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Step 2: Event and Cross-State Synchronization (ECS)

• At startup we change the IDT table to redirect the page-fault
handler pointer to a specific ECS handler

• Upon a real segfault, the original handler is called

• Otherwise, the ECS handler pushes control back to user mode to
let the PDES platform handle synchronization:
◦ Execution goes back into platform mode
◦ CR3 is switched back to the original PML4 table
◦ The simulation kernel can access any memory buffer required for

supporting synchronization

10 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Step 2: Event and Cross-State Synchronization (ECS)

• At the end of the event the simulation platform invokes the
UNSCHEDULE ON PGD command

• This explicitly brings back the execution to platform mode

p
platform mode

(CR3 points to the 

original PML4)

simulation-object

mode (CR3 points to 

the sibling PML4)

SCHEDULE_ON_PGD

UNSCHEDULE_ON_PGD

faulting access to 

a remote stock

• Upon a CR3 switch, the penalty incurred is a flush of the TLB

11 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



ECS System

Property

When a Cross-State Dependency is materialized at simulation time T ,
the involved LP observes the state snapshot that would have been
observed in a sequential-run.

• To support this we introduce:
◦ temporary LP blocking: the execution of an event can be suspended
◦ rendez-vous events: system-level simulation events not causing state

updates

• Events are “transactified”: read/write operations across different
stocks serialized according to the logical time of their occurrence.

12 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



ECS System

• Each LP x is associated with a Cross-State Dependency set CSDx

◦ it keeps the ids of LPs involved in a cross-state dependency with x

• Upon a memory-fault occurrence:

1. Execution of current event ex is temporarily suspended
2. A unique identifier rvid(ex) is generated for event ex
3. A rendez-vous event ervy is transparently scheduled for object y ,

marked with timestamp of ex , and with rvid(ex)

• Rendez-vous events are incorporated into the event list of the
destination LP but are not passed to the simulation code

13 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



ECS System

• Receiving a rendez-vous event could cause one LP to rollback

• When LP y gets to rendez-vous event ervy :

1. LP y is put into block state
2. An acknowledgment event ervax is scheduled for LP x , marked with the

identifier of ervy
• When the acknowledgement ervax is delivered to LP x :

1. It inserts the identifier of the sender LP y into CSDx .
2. It puts the LP x back in the ready state

• The SCHEDULE ON PGD command looks at CSDx to open all the
involved stocks

14 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



ECS System

• After processing event ex at LP x :

1. An unblock-event eubk is sent towards any LP k in CSDx , marked with
the identifier of ex

2. Upon the delivery of eubk , the recipient LP is put back as ready for
being dispatched

15 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Correctness

• If an event ex generated a rendez-vous and it is rolled back, an
anti-event for ervy is sent
◦ Since ervy was in the event queue, a classical annihilation operation is

performed

• If LP y rolls back to T < Tervy , a restart event ervrx is sent to x

◦ This annihilates the processing of the original instance (which is not
removed from the queue)

◦ In turn, this leads to ultimately undoing ervy via an anti-event
◦ When processed after the rollback, ex will give rise to a rendez-vous

marked with a different identifier: no mismatch will occur in any
annihilation phase

• All other events are not incorporated in the queue

16 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Progress: Deadlock

object x

object y

object z

t1

t2

t3

issued rendez-vous with 

source objects blocked

waiting for acks

deadlock generator

rendez-vous

17 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Progress: Domino Effect

object x

object y

ex

straggler

log

1) rollback (requires coasting-forward up to ts(ex) 

log

2) Snapshot reconstruction for rendez-vous

requires coasting-forward up to ts(ex) 

3) Snapshot reconstruction

for rendez-vous requires 

coasting-forward from an 

older log 

ey

18 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Experimental Evaluation: Test-bed Platform

• Hardware configuration:
◦ HP ProLiant server equipped with 64GB of RAM
◦ 4 8-cores CPU (32 cores total)

• Software configuration:
◦ ROOT-Sim Optimistic Simulation Kernel, using 32 symmetric worker

threads
◦ Debian 6
◦ 2.6.32-5-amd64 Linux kernel

19 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Experimental Evaluation: Overhead Assessment

• Personal Communication System Benchmark
• 1024 wireless cells, 1000 wireless channels each
• 25%, 50%, and 75% channel utilization factor

 0

 10

 20

 30

 40

 50

0.25 0.5 0.75

S
pe

ed
up

Channel Utilization Factor

No Ad-Hoc Memory Management Ad-Hoc Memory Management

20 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Experimental Evaluation: Effectiveness Assessment

• NoSQL data-grid simulation

• 2-Phase-Commit (2PC) protocol to ensure transactions atomicity

• Two different implementations:
◦ Not using ECS: the write set is sent via an event
◦ ECS-based: a pointer to the write set is sent

• 64 nodes (degree of replication 2 of each 〈key , value〉 pair)

• Closed-system configuration: 64 active concurrent clients
continuously issuing transactions

• Amount of keys touched in write mode by transactions varied
between 10 and 100

21 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Experimental Evaluation: Effectiveness Assessment

 0

 20

 40

 60

 80

 100

 120

 140

 160

10 100

O
ve

ra
ll 

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Average Transaction Write Set Size

ECS
Traditional Parallel

Serial

22 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies



Thanks for your attention

Questions?

pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

http://www.dis.uniroma1.it/∼ROOT-Sim

23 of 23 - Transparent Multi-Core Speculative Parallelization of DES Models with Event and Cross-State Dependencies


