
Consistent and Efficient Output-Streams Management in
Optimistic Simulation Platforms

Francesco Antonacci
Alessandro Pellegrini

Francesco Quaglia

High Performance and Dependable
Computing Systems Group

Sapienza, University of Rome

PADS 2013

Motivations

• (Distributed) Parallel Discrete Event Simulation and Optimistic
Synchronization are great for supporting highly efficient simulations

• Nevertheless, rollbacks pose some limitations

• Interactions with the outside world can be tricky: is it aware of
rollbacks?

• Yet, (timely) output generation could be vital in simulation:
◦ Interaction with the user
◦ Evaluation of global parameters
◦ Real-time visualization of the simulation

2 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Motivations

• (Distributed) Parallel Discrete Event Simulation and Optimistic
Synchronization are great for supporting highly efficient simulations

• Nevertheless, rollbacks pose some limitations

• Interactions with the outside world can be tricky: is it aware of
rollbacks?

• Yet, (timely) output generation could be vital in simulation:
◦ Interaction with the user
◦ Evaluation of global parameters
◦ Real-time visualization of the simulation

2 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Motivations (2)

Outside World

Simulation Framework

LP1

LP2

e1

output via printf()

m2 T2

e2: T2 < T1

rollback operation
not possible

T1

3 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Motivations (3)

• Several viable solutions have been proposed:

1. Ad-hoc output-generation APIs provided by simulation frameworks
2. Temporary suspension of processing activities until output generation

is safe (delay until commit)
3. Storing output messages in events, and materializing during fossil

collection

• These solutions have drawbacks:

1. Programming model is not transparent to the user
2. Overall simulation performance might be degraded (especially when

there is a dense output flow)
3. Output is not system-wide ordered

4 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Motivations (3)

• Several viable solutions have been proposed:

1. Ad-hoc output-generation APIs provided by simulation frameworks
2. Temporary suspension of processing activities until output generation

is safe (delay until commit)
3. Storing output messages in events, and materializing during fossil

collection

• These solutions have drawbacks:

1. Programming model is not transparent to the user
2. Overall simulation performance might be degraded (especially when

there is a dense output flow)
3. Output is not system-wide ordered

4 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Goals

• We propose a general approach to output generation in
(distributed) PDES

• Simulation execution is never stopped

• The model writer can rely on standard output generation libraries

• Output is system-wide ordered

• Inconsistent output is never shown to the user

• Overall, provides the illusion of a sequential programming model

• We have targeted:
◦ Output generation via printf() family functions
◦ ANSI-C programming language

• We have implemented our proposal within the ROme OpTimistic
Simulator (ROOT-Sim)

5 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Goals

• We propose a general approach to output generation in
(distributed) PDES

• Simulation execution is never stopped

• The model writer can rely on standard output generation libraries

• Output is system-wide ordered

• Inconsistent output is never shown to the user

• Overall, provides the illusion of a sequential programming model

• We have targeted:
◦ Output generation via printf() family functions
◦ ANSI-C programming language

• We have implemented our proposal within the ROme OpTimistic
Simulator (ROOT-Sim)

5 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

General Overview

• We target simulation-dedicated distributed environments relying on
multicore CPUs

• We base our solution on an output daemon
◦ a user-space process separated from the actual simulation framework
◦ It is not given a dedicated processing unit

• Communication with kernel instances is achieved via a logical
device
◦ A (per-kernel) non-blocking shared memory buffer, accessed circularly
◦ If it gets filled, a new (double-sized) buffer gets chained
◦ Once empty, the older buffer gets destroyed

6 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

General Overview (2)

7 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

General Overview (3)

DyMeLoR

CCGS ManagerGVT Manager

Input/Output Queues Manager

Remote Messaging Manager

Scheduler
Intermediate Buffers

Call/Callback Interfaces

ProcessEvent

ScheduleNewEvent

OnGVT

Application Level Software

function calls

to libraries

MPI, Standard Libraries and Third Party Libraries

hook
malloc/free

Output Manager

O
u
tp

u
t
L
o
g
ic

a
l
D

e
v
ic

e
s
 (

S
h

a
re

d
 M

e
m

o
ry

)

ROOT-Sim Output Daemon

Global Output

Order Manager

Output Collector

and Manager

Output Writer

Third Party Library Wrappers

8 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Output Generation

• We rely on linking-time redirection of primitives:
◦ Linker-script directives to redirect calls to output manager facilities
◦ Produced output buffers are not immediately materialized, rather are

written on the logical device

• This solution is suitable for most machines and most of the
available compilers

• Performing an output activity is logically considered as the
generation of an output message

• Logical device messages are marked with a header specifying the
nature of the content (an output message is marked as OUTPUT)

9 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Non-blocking logical device

• A logical-device is a per-kernel channel

• The device is written by one kernel, and is read by one output
daemon: we can implement a non-blocking access algorithm

struct logical_device_t {

size_t size;

unsigned int written;

unsigned int read;

unsigned char buffer[];

}

10 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Non-blocking logical device

• A logical-device is a per-kernel channel

• The device is written by one kernel, and is read by one output
daemon: we can implement a non-blocking access algorithm

struct logical_device_t {

size_t size;

unsigned int written;

unsigned int read;

unsigned char buffer[];

}

10 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Non-blocking logical device

• A logical-device is a per-kernel channel

• The device is written by one kernel, and is read by one output
daemon: we can implement a non-blocking access algorithm

struct logical_device_t {

size_t size;

unsigned int written;

unsigned int read;

unsigned char buffer[];

}

r

w

updated by

daemon

updated by

kernel

10 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Non-blocking logical device

• A logical-device is a per-kernel channel

• The device is written by one kernel, and is read by one output
daemon: we can implement a non-blocking access algorithm

struct logical_device_t {

size_t size;

unsigned int written;

unsigned int read;

unsigned char buffer[];

}

r

w

updated by

daemon

updated by

kernel

10 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Output Message Ordering

• An output message read from a device is stored into a Calendar
Queue
◦ This gives fast O(1) access for output message insertion and

materialization

• Messages inserted in the calendar queue are timestamp-ordered

• Depending on the actual configuration:
◦ If the simulation runs on a single machine, this is enough to get

system-wide ordering
◦ If the simulation is distributed, the daemon forwards the

locally-ordered messages to other remote daemon instances

11 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

It’s the early worm that is caught by the bird!

• We’re running distributed: sending messages to other instances
and then rollbacking would be too much costly

• We thus don’t want to forward messages to other daemons before
they are committed

• Rollbacks must be processed locally!

• Upon computation of the GVT, the output subsystem is notified
about the newly computed value

• This information is placed on the logical device, in a special
message marked as COMMIT

• The Calendar Queue is then queried to retrieve messages falling
before that value

12 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

It’s the early worm that is caught by the bird!

• We’re running distributed: sending messages to other instances
and then rollbacking would be too much costly

• We thus don’t want to forward messages to other daemons before
they are committed

• Rollbacks must be processed locally!

• Upon computation of the GVT, the output subsystem is notified
about the newly computed value

• This information is placed on the logical device, in a special
message marked as COMMIT

• The Calendar Queue is then queried to retrieve messages falling
before that value

12 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Output Message Rollback

• Uncommitted output messages are stored in the local machine only

• When executing a rollback, a ROLLBACK message is written to the
logical device, piggybacking:
◦ a [from, to] interval
◦ the involved LP
◦ an era, a monotonic counter updated by every simulation kernel upon

the execution of a rollback operation on a per-LP basis

• Calendar Queue’s buckets are augmented with a Bloom filter,
storing eras of messages contained

• from and to are mapped to buckets

• A linear search is performed in between the two buckets, checking
only the ones which are expected to contain an element by the
Bloom filter

13 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Output Daemon Wakeup

• All this might require much computing time
◦ We want a timely materialization!
◦ Yet we want an efficient simulation!

• Processing time of each type of message: to , tc , tr
• Mean events’ number written to device in a GVT phase: c̄o , c̄c , c̄r
• Expected execution time to empty the logical device:

E(T) =
∑

x∈(o,c,r)

t̄x · c̄x

• If larger than a compile-time threshold (smaller than GVT
interval), it is forced to that value

• Final value is divided into several time slices and a sleep time is
computed, so to create an activation/deactivation pattern

14 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Output Daemon Wakeup

• All this might require much computing time
◦ We want a timely materialization!
◦ Yet we want an efficient simulation!

• Processing time of each type of message: to , tc , tr
• Mean events’ number written to device in a GVT phase: c̄o , c̄c , c̄r
• Expected execution time to empty the logical device:

E(T) =
∑

x∈(o,c,r)

t̄x · c̄x

• If larger than a compile-time threshold (smaller than GVT
interval), it is forced to that value

• Final value is divided into several time slices and a sleep time is
computed, so to create an activation/deactivation pattern

14 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Final Glance at Output Subsystem APIs

commit time(GVT) : the simulation kernel notifies the newly
computed GVT value

set LVT(LP, timestamp): the simulation kernel’s scheduler notifies
the identity of the dispatched LP, and the timestamp of
the dispatched event

rollback(from, to, LP): the simulation kernel’s scheduler notifies
the reception of a straggler message or an anti-message

out msg(LP, stamp, msg, stream): used by the kernel to transfer
an output message to the output subsystem

autocommit(flag): If flag is true, every output message received is
considered as non-rollbackable, in order to support the
integration with conservative simulation engines.

15 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Test-Bed Scenario and Settings

• Personal Communication System (PCS) benchmark
◦ 1024 wireless cells, each one having 1000 channels
◦ simulation statistics printed periodically, with frequency f ∈ [1%, 35%]

of total events
◦ that’s one output message produced [200, 7000] times per second

• Run on an HP Proliant server:
◦ 64-bits NUMA machines
◦ four 2GHz AMD Opteron 6128 processors and 32GB of RAM
◦ Each processor has 8 CPU-cores (for a total of 32 CPU-cores)

16 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Simulation Throughput

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 10 20 30 40 50 60 70 80 90

C
u
m

u
la

te
d
 C

o
m

m
it
te

d
 E

v
e
n
ts

Wall-clock-time (seconds)

Throughput 1%

With Daemon
Without Running Daemon

Without Subsystem
No printf

Output in Event Queue

17 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Simulation Throughput (2)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 20 40 60 80 100 120 140

C
u
m

u
la

te
d
 C

o
m

m
it
te

d
 E

v
e
n
ts

Wall-clock-time (seconds)

Throughput 35%

With Daemon
Without Running Daemon

Without Subsystem
No printf

Output in Event Queue

18 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Output Materialization Delay

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80

W
a
ll-

c
lo

c
k
-t

im
e
 (

s
e
c
o
n
d
s
)

-
o
u
tp

u
t

Wall-clock-time (seconds) - generation

Output delay - 1%

instantaneous print (theoretical)
1 print every 70 handoff events

19 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Output Materialization Delay (2)

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90

W
a
ll-

c
lo

c
k
-t

im
e
 (

s
e
c
o
n
d
s
)

-
o
u
tp

u
t

Wall-clock-time (seconds) - generation

Output delay - 35%

instantaneous print (theoretical)
1 print every 2 handoff events

20 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

Thanks for your attention

Questions?

pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

http://www.dis.uniroma1.it/∼ROOT-Sim

21 of 21 - Consistent and Efficient Output-Streams Management in Optimistic Simulation Platforms

