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Event and Cross State (ECS) Dependency

• In traditional DES:
◦ interactions happen via timestamped event exchanges among LPs
◦ each LP keeps a portion of the whole simulation state

• Then, this is a legal code in DES:

1 void *my_simulation_state = malloc(SIZE);

2 memcpy(my_simulation_state, my_content, SIZE);

3 void *evt_payload = my_simulation_state;

4 ScheduleEvent(target, timestamp, EVENT_TYPE, evt_payload, SIZE);

• In sequential DES simulation, so far so good.

• What if this model is executed in a Parallel DES environment?
◦ Think of Optimistic Synchronization!
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Step 1: Materializing Cross-State Dependencies

• To transparently detect accesses to other LPs’ states we rely on an
x86 64 kernel-level memory management architecture
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Memory Allocation Policy

• LPs use virtual memory according to stocks

• Memory requests are intercepted via malloc wrappers (DyMeLoR)

• Upon the first request, an interval of page-aligned virtual memory
addresses is reserved via mmap POSIX API (a stock)

• This is a set of empty-zero pages: a null byte is written to make
the kernel actually allocate the chain of page tables

• One stock gives 1GB of available memory to each LP
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Memory Access Management

• 99% handled via a Linux Kernel Module

• A LKM creates a device file accessible via ioctl

• SET VM RANGE command associates stocks with LPs
• A kernel-level map (accessible in constant time) is created:

◦ Each stock is logically related to one entry of a PDP page-table
◦ The id of the LP who the stock belongs to is registered
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simulation object x

simulation object y
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updated via the SET_VM_RANGE

ioctl command

O-th PDPTE
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Memory Access Management

• When LP j accesses LP i ’s state, we could know that by the
memory address

• We target SMP Simulation: memory protection is not an option

• Every worker thread is associated with a sibling PML4 entry:
◦ They point same PDP entries...
◦ ...but with different privileges!

• The SCHEDULE ON PGD command brings the execution in
simulation-object mode:
◦ The only accessible stock is dispatched LP’s one
◦ This operation leads to a change in the CR3 hardware register
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Memory Access Management
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Cross-State Dependency Materialization

• If other LPs’ stocks are accessed, we have a memory fault

• This is the materialization of a Cross-State Dependency

• Yet, this page fault cannot be traditionally handled:
◦ Memory has already be validated via mmap at simulation startup
◦ The Linux kernel would simply reallocate new pages
◦ For the same virtual page we would have multiple page table entries!
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Step 2: Event and Cross-State Synchronization (ECS)

• At startup we change the IDT table to redirect the page-fault
handler pointer to a specific ECS handler

• Upon a real segfault, the original handler is called

• Otherwise, the ECS handler pushes control back to user mode:
◦ Execution goes back into platform mode
◦ CR3 is switched back to the original PML4 table
◦ The simulation kernel can access any memory buffer required for

supporting synchronization
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ECS System

Property

When a Cross-State Dependency is materialized at simulation time T ,
the involved LP observes the state snapshot that would have been
observed in a sequential-run.

• To enforce this we introduce:
◦ temporary LP blocking: the execution of an event can be suspended
◦ rendez-vous events: system-level simulation events not causing state

updates
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ECS System
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ECS System
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ECS System
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ECS System
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Programmability and Performance Study: Distributed
Multi-Robot Exploration and Mapping
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Programmability and Performance Study: Distributed
Multi-Robot Exploration and Mapping

• The map is constructed online

• Robots explore independently, until they accidentally meet:

1. they use their sensors to estimate their mutual physical position
2. they create a rendez-vous point to verify the estimation’s goodness
3. if the hypothesis is verified, they exchange the so-far acquired data
4. they form a cluster

• Clusters allow to explore collaboratively:
◦ jointly define the next targets (reduce mapping time)
◦ make a guess on the position of other robots (enlarge the cluster)
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PDES Implementation Problems

• Discovering the presence of a nearby robots (number of exchanged
messages)

• Estimating the respective position of the agents (many messages
with the same timestamp)

• Exchanging data map information (non-negligible size)

• To solve these problems, the modeler must reason about optimistic
synchronization and LPs’ state separation: no trasparency

14 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models



Using ECS: Initialization of Cells

1 // Allocated state

2 state = malloc(sizeof(agent_state_type));

3

4 <initialize the map>

5

6 // Allocate the presence bitmap

7 state->agents = malloc(BITMAP_SIZE(num_agents));

8 bzero(state->agents, BITMAP_SIZE(num_agents));

9 // Register the state

10 states[me] = state;
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Using ECS: Entering a Cell

1 state->current_cell = event_content->cell;

2

3 // Register the position of the robot in the cell

4 cell = (cell_state_type *)states[state->current_cell];

5 cell->present_agents++;

6 SET_BIT(cell->agents, me - num_cells);
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Using ECS: Explore the Cell

1 // Mark the cell as explored and "discover" the surroundings

2 state->visit_map[state->current_cell].visited = true;

3 memcpy(&state->visit_map[state->current_cell].data, cell->data,

sizeof(unsigned int) * 6);

4

5 // Is there any other robot in the cell?

6 if(cell->present_agents > 1) {

7 <scan the bitmap>

8 }
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Using ECS: Exchange Data with Robots

1 robot = (agent_state_type *)states[robot_index];

2 for(j = 0; j < num_cells; j++) {

3 if(robot->visit_map[j].visited) {

4 memcpy(&state->visit_map[j], &robot->visit_map[j], sizeof(

map_t));

5 } else if (state->visit_map[j].visited) {

6 memcpy(&robot->visit_map[j], &state->visit_map[j], sizeof(

map_t));

7 }

8 }
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Performance Evaluation: Set up

• Hardware configuration:

◦ HP ProLiant server equipped with 64GB of RAM
◦ 4 8-cores CPU (32 cores total)

• Benchmark configuration:

◦ 4096 cells
◦ Variable number of robots: 100, 500, 1000
◦ Serial simulation, vs Parallel Simulation using 8, 16, 32 cores
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Performance Evaluation: Results
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Thanks for your attention
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pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

http://www.dis.uniroma1.it/∼ROOT-Sim
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Rollback

• Rollback of LPx is managed via traditional annihilation scheme

• Rollback of LPy must be explicitly notified
◦ A restart event ervrx is sent to LPx

• All other events are not incorporated in the queue
◦ They do not require special care for rollback operations
◦ They are simply discarded if no rendez-vous ID is found
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Progress: Deadlock
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Progress: Domino Effect
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