
Programmability and Performance of Parallel ECS-based
Simulation of Multi-Agent Exploration Models

Alessandro Pellegrini
Francesco Quaglia

High Performance and Dependable
Computing Systems Group

Sapienza, University of Rome

PADABS 2014

Event and Cross State (ECS) Dependency

• In traditional DES:
◦ interactions happen via timestamped event exchanges among LPs
◦ each LP keeps a portion of the whole simulation state

• Then, this is a legal code in DES:

1 void *my_simulation_state = malloc(SIZE);

2 memcpy(my_simulation_state, my_content, SIZE);

3 void *evt_payload = my_simulation_state;

4 ScheduleEvent(target, timestamp, EVENT_TYPE, evt_payload, SIZE);

• In sequential DES simulation, so far so good.

• What if this model is executed in a Parallel DES environment?
◦ Think of Optimistic Synchronization!

2 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Event and Cross State (ECS) Dependency

• In traditional DES:
◦ interactions happen via timestamped event exchanges among LPs
◦ each LP keeps a portion of the whole simulation state

• Then, this is a legal code in DES:

1 void *my_simulation_state = malloc(SIZE);

2 memcpy(my_simulation_state, my_content, SIZE);

3 void *evt_payload = my_simulation_state;

4 ScheduleEvent(target, timestamp, EVENT_TYPE, evt_payload, SIZE);

• In sequential DES simulation, so far so good.

• What if this model is executed in a Parallel DES environment?
◦ Think of Optimistic Synchronization!

2 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Event and Cross State (ECS) Dependency

• In traditional DES:
◦ interactions happen via timestamped event exchanges among LPs
◦ each LP keeps a portion of the whole simulation state

• Then, this is a legal code in DES:

1 void *my_simulation_state = malloc(SIZE);

2 memcpy(my_simulation_state, my_content, SIZE);

3 void *evt_payload = my_simulation_state;

4 ScheduleEvent(target, timestamp, EVENT_TYPE, evt_payload, SIZE);

• In sequential DES simulation, so far so good.

• What if this model is executed in a Parallel DES environment?
◦ Think of Optimistic Synchronization!

2 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Step 1: Materializing Cross-State Dependencies

• To transparently detect accesses to other LPs’ states we rely on an
x86 64 kernel-level memory management architecture

DirectoryPML4 Directory Ptr Table O set

0111220212930383947

CR3

PML4E

PDPTE

40

40

Linear Address

Page-Directory-

Pointer Table

PDE with PS=0 PTE Physical Addr.

Page Directory Page Table 4-KB Page

9 9

40

40 40

9 9 12

3 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Step 1: Materializing Cross-State Dependencies

• To transparently detect accesses to other LPs’ states we rely on an
x86 64 kernel-level memory management architecture

DirectoryPML4 Directory Ptr Table O set

0111220212930383947

CR3

PML4E

PDPTE

40

40

Linear Address

Page-Directory-

Pointer Table

PDE with PS=0 PTE Physical Addr.

Page Directory Page Table 4-KB Page

9 9

40

40 40

9 9 12

3 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Memory Allocation Policy

• LPs use virtual memory according to stocks

• Memory requests are intercepted via malloc wrappers (DyMeLoR)

• Upon the first request, an interval of page-aligned virtual memory
addresses is reserved via mmap POSIX API (a stock)

• This is a set of empty-zero pages: a null byte is written to make
the kernel actually allocate the chain of page tables

• One stock gives 1GB of available memory to each LP

4 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Memory Access Management

• 99% handled via a Linux Kernel Module

• A LKM creates a device file accessible via ioctl

• SET VM RANGE command associates stocks with LPs
• A kernel-level map (accessible in constant time) is created:

◦ Each stock is logically related to one entry of a PDP page-table
◦ The id of the LP who the stock belongs to is registered

PML4

PDP
simulation object x

simulation object y

constant time access map

updated via the SET_VM_RANGE

ioctl command

O-th PDPTE

1-st PDPTE

5 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Memory Access Management

• When LP j accesses LP i ’s state, we could know that by the
memory address

• We target SMP Simulation: memory protection is not an option

• Every worker thread is associated with a sibling PML4 entry:
◦ They point same PDP entries...
◦ ...but with different privileges!

• The SCHEDULE ON PGD command brings the execution in
simulation-object mode:
◦ The only accessible stock is dispatched LP’s one
◦ This operation leads to a change in the CR3 hardware register

6 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Memory Access Management

• When LP j accesses LP i ’s state, we could know that by the
memory address

• We target SMP Simulation: memory protection is not an option

• Every worker thread is associated with a sibling PML4 entry:
◦ They point same PDP entries...
◦ ...but with different privileges!

• The SCHEDULE ON PGD command brings the execution in
simulation-object mode:
◦ The only accessible stock is dispatched LP’s one
◦ This operation leads to a change in the CR3 hardware register

6 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Memory Access Management

PML4

PDP
simulation object x

O-th PDPTE

Sibling PML4

Sibling PDP

NULLCR3 register

access to

simulation object x

opened upon

issuing the command

SCHEDULE_ON_PGD

7 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Cross-State Dependency Materialization

• If other LPs’ stocks are accessed, we have a memory fault

• This is the materialization of a Cross-State Dependency

• Yet, this page fault cannot be traditionally handled:
◦ Memory has already be validated via mmap at simulation startup
◦ The Linux kernel would simply reallocate new pages
◦ For the same virtual page we would have multiple page table entries!

8 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Step 2: Event and Cross-State Synchronization (ECS)

• At startup we change the IDT table to redirect the page-fault
handler pointer to a specific ECS handler

• Upon a real segfault, the original handler is called

• Otherwise, the ECS handler pushes control back to user mode:
◦ Execution goes back into platform mode
◦ CR3 is switched back to the original PML4 table
◦ The simulation kernel can access any memory buffer required for

supporting synchronization

9 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

ECS System

Property

When a Cross-State Dependency is materialized at simulation time T ,
the involved LP observes the state snapshot that would have been
observed in a sequential-run.

• To enforce this we introduce:
◦ temporary LP blocking: the execution of an event can be suspended
◦ rendez-vous events: system-level simulation events not causing state

updates

10 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

ECS System

LPx WCT

LPy WCT

CSDx = {}

Cross-State
Dependency Set

11 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

ECS System

LPx WCT

LPy WCT

CSDx = {}
ex

11 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

ECS System

LPx WCT

LPy WCT

CSDx = {}

memory

fault

ex

11 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

ECS System

LPx WCT

LPy WCT

CSDx = {}

Generation of
a unique ID

ex

11 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

ECS System

LPx WCT

LPy WCT

CSDx = {}
ex

block
state

11 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

ECS System

LPx WCT

LPy WCT

CSDx = {}
ex

erv
x

Incorporated in the
event queue

11 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

ECS System

LPx WCT

LPy WCT

CSDx = {}
ex

erv
x

11 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

ECS System

LPx WCT

LPy WCT

CSDx = {}
ex

erv
x

erva
x

11 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

ECS System

LPx WCT

LPy WCT

CSDx = {y}
ex

erv
x

erva
x

11 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

ECS System

LPx WCT

LPy WCT

CSDx = {y}
ex

erv
x

erva
x

ready
state

11 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

ECS System

LPx WCT

LPy WCT

CSDx = {y}
ex

erv
x

erva
x

event
execution

11 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

ECS System

LPx WCT

LPy WCT

CSDx = {y}
ex

erv
x

erva
x

eub
x

11 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

ECS System

LPx WCT

LPy WCT

CSDx = {y}
ex

erv
x

erva
x

eub
x

11 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Programmability and Performance Study: Distributed
Multi-Robot Exploration and Mapping

12 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Programmability and Performance Study: Distributed
Multi-Robot Exploration and Mapping

12 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Programmability and Performance Study: Distributed
Multi-Robot Exploration and Mapping

• The map is constructed online

• Robots explore independently, until they accidentally meet:

1. they use their sensors to estimate their mutual physical position
2. they create a rendez-vous point to verify the estimation’s goodness
3. if the hypothesis is verified, they exchange the so-far acquired data
4. they form a cluster

• Clusters allow to explore collaboratively:
◦ jointly define the next targets (reduce mapping time)
◦ make a guess on the position of other robots (enlarge the cluster)

13 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

PDES Implementation Problems

• Discovering the presence of a nearby robots (number of exchanged
messages)

• Estimating the respective position of the agents (many messages
with the same timestamp)

• Exchanging data map information (non-negligible size)

• To solve these problems, the modeler must reason about optimistic
synchronization and LPs’ state separation: no trasparency

14 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Using ECS: Initialization of Cells

1 // Allocated state

2 state = malloc(sizeof(agent_state_type));

3

4 <initialize the map>

5

6 // Allocate the presence bitmap

7 state->agents = malloc(BITMAP_SIZE(num_agents));

8 bzero(state->agents, BITMAP_SIZE(num_agents));

9 // Register the state

10 states[me] = state;

15 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Using ECS: Entering a Cell

1 state->current_cell = event_content->cell;

2

3 // Register the position of the robot in the cell

4 cell = (cell_state_type *)states[state->current_cell];

5 cell->present_agents++;

6 SET_BIT(cell->agents, me - num_cells);

16 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Using ECS: Explore the Cell

1 // Mark the cell as explored and "discover" the surroundings

2 state->visit_map[state->current_cell].visited = true;

3 memcpy(&state->visit_map[state->current_cell].data, cell->data,

sizeof(unsigned int) * 6);

4

5 // Is there any other robot in the cell?

6 if(cell->present_agents > 1) {

7 <scan the bitmap>

8 }

17 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Using ECS: Exchange Data with Robots

1 robot = (agent_state_type *)states[robot_index];

2 for(j = 0; j < num_cells; j++) {

3 if(robot->visit_map[j].visited) {

4 memcpy(&state->visit_map[j], &robot->visit_map[j], sizeof(

map_t));

5 } else if (state->visit_map[j].visited) {

6 memcpy(&robot->visit_map[j], &state->visit_map[j], sizeof(

map_t));

7 }

8 }

18 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Performance Evaluation: Set up

• Hardware configuration:

◦ HP ProLiant server equipped with 64GB of RAM
◦ 4 8-cores CPU (32 cores total)

• Benchmark configuration:

◦ 4096 cells
◦ Variable number of robots: 100, 500, 1000
◦ Serial simulation, vs Parallel Simulation using 8, 16, 32 cores

19 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Performance Evaluation: Results

 1

 10

 100

 1000

 10000

100 Robots 500 Robots 1000 Robots

O
ve

ra
ll

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Number of Robots

Serial 8 WT 16 WT 32 WT

20 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Thanks for your attention

Ques
tio

ns?

Ques
tio

ns?

pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

http://www.dis.uniroma1.it/∼ROOT-Sim

21 of 21 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Rollback

• Rollback of LPx is managed via traditional annihilation scheme

• Rollback of LPy must be explicitly notified
◦ A restart event ervrx is sent to LPx

• All other events are not incorporated in the queue
◦ They do not require special care for rollback operations
◦ They are simply discarded if no rendez-vous ID is found

1 of 3 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Progress: Deadlock

object x

object y

object z

t1

t2

t3

issued rendez-vous with

source objects blocked

waiting for acks

deadlock generator

rendez-vous

2 of 3 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

Progress: Domino Effect

object x

object y

ex

straggler

log

1) rollback (requires coasting-forward up to ts(ex)

log

2) Snapshot reconstruction for rendez-vous

requires coasting-forward up to ts(ex)

3) Snapshot reconstruction

for rendez-vous requires

coasting-forward from an

older log

ey

3 of 3 - Programmability and Performance of Parallel ECS-based Simulation of Multi-Agent Exploration Models

	Appendix

