A Study on the Parallelization of Terrain-Covering Ant Robots Simulations

Alessandro Pellegrini Francesco Quaglia

High Performance and Dependable Computing Systems Group Sapienza, University of Rome

PADABS 2013

Motivations

- Agent-based models reliably express interactions between different objects/entities in real world phenomena
- In some application domains, simulation timeliness is critical
 - Time-critical decision via what-if analysis (e.g., agent-based models in disaster-rescue contexts)
- Agent-based simulations are useful to study steady state or equilibrium properties of a system
- What if models are used to determine the exact simulated-time when a given global predicate becomes true?

 Traditional sequential simulation is perfect for fine grain inspection of predicates ©

- Traditional sequential simulation is perfect for fine grain inspection of predicates ©
- ... yet it doesn't scale!

- Traditional sequential simulation is perfect for fine grain inspection of predicates ©
- ... yet it doesn't scale!
- ...and models are larger everyday!! ⊗

- Traditional sequential simulation is perfect for fine grain inspection of predicates ©
- ... yet it doesn't scale! 😉
- ...and models are larger everyday!! 😊
- Parallel/Distributed simulation provides great performance ©
- Fine grain inspection is not viable ⊗
 - Process coordination is required
 - This hampers the achievable speedup

- Traditional sequential simulation is perfect for fine grain inspection of predicates ©
- ... yet it doesn't scale! 😉
- ...and models are larger everyday!! ⊗
- Parallel/Distributed simulation provides great performance ©
- Fine grain inspection is not viable ⊗
 - Process coordination is required
 - This hampers the achievable speedup
- Speculative (optimistic) simulation inserts an additional delay
 - Inspection is delayed until a portion of the computation becomes committed

LP _i	
LP _i	
LP _i	

How does this shift affects the results? What is the tradeoff between performance and results' reliability?

Simulation Model: Terrain-Covering Ant Robots

- Original model by Koenig-Liu [KL01], we propose a parallel version
- Interesting model for the assessment of rescue scenarios
- The terrain is modeled as an undirected graph
- Space is divided into hexagonal cells
- An ant robot can move to adjacent cells, accounting for its speed (50 cm/s at most)

Simulation Model: Terrain-Covering Ant Robots

- Original model by Koenig-Liu [KL01], we propose a parallel version
- Interesting model for the assessment of rescue scenarios
- The terrain is modeled as an undirected graph
- Space is divided into hexagonal cells
- An ant robot can move to adjacent cells, accounting for its speed (50 cm/s at most)

Simulation Model: Terrain-Covering Ant Robots (2)

- Ant robots leave pheromones when passing through a cell
- Pheromones notify other robots of their visit to a cell
- A node-counting algorithm allows to select the least-visited node when choosing direction
- Model's events are:
 - REGION_IN: an ant robot enters a given cell, trail counter is increased
 - UPDATE_NEIGHBORS: adjacent LPs are notified of new trail counter value
 - REGION_OUT: an ant robot is leaving a given cell

Simulation Model's Configuration

- Square region, 12 Km²
- 4900 hexagonal cells (each on a LP) on 32 ROOT-Sim kernel instances
- 4 source points (at region corners)
- Variable number of robots [4, 32] per source point
- Variable GVT computation interval [1,5] seconds
- Simulation is run until full region coverage, visit factor of 20
- Comparison with a sequential run relying on a Calendar Queue
- 32-core HP ProLiant server, NUMA architecture
- 64 Gb RAM
- Linux Kernel 2.6.32-5-amd64 Debian 6

Reference Simulation Platform: ROOT-Sim

- Parallel simulation has been run on top of the ROme OpTimistic Simulator (ROOT-Sim)
- An Optimistic (Distributed) Parallel Discrete Simulation Platform
- Supports ANSI-C for simulation models' development
- Transparently supports rollback via log/restore facilities

Experimental Results: Simulation Completion Time

- Results averaged over 20 runs with different initial random seeds
- The simulation completion time allows to assess the shift problem
- Results represent simulated hours!

Configu	ration	Sequential	GVT=1	GVT=2	GVT=3	GVT=4	GVT=5
16 Robots	Mean	211.86	216.31	218.27	218.69	234.99	221.81
	Std. Dev.	1,56	15.11	13.28	11.07	12.46	15.64
128 Robots	Mean	26.56	27.37	28.41	28.29	32.61	29.24
	Std. Dev.	0.16	1,08	1,37	3,25	1.83	1.01

Experimental Results: Simulation Completion Time

- Results averaged over 20 runs with different initial random seeds
- The simulation completion time allows to assess the shift problem
- Results represent simulated hours!

Configu	ration	Sequential	GVT=1	GVT=2	GVT=3	GVT=4	GVT=5
16 Robots	Mean	211.86	216.31	218.27	218.69	234.99	221.81
	Std. Dev.	1,56	15.11	13.28	11.07	12.46	15.64
128 Robots	Mean	26.56	27.37	28.41	28.29	32.61	29.24
	Std. Dev.	0.16	1,08	1,37	3,25	1.83	1.01

• Optimistic Simulation results are just upper bounds!

Experimental Results: Executed Events

Experimental Results: Execution Time

Thanks for your attention

Questions?

```
pellegrini@dis.uniroma1.it
http://www.dis.uniroma1.it/~pellegrini
http://www.dis.uniroma1.it/~ROOT-Sim
http://www.dis.uniroma1.it/~ROOT-Sim/tcar.tbz
```