
The ROme OpTimistic Simulator: A Tutorial

Alessandro Pellegrini
Francesco Quaglia

High Performance and Dependable
Computing Systems Group

Sapienza, University of Rome

PADABS 2013



Discrete Event Simulation (DES)

• A simulation model is described in terms of:
◦ Simulation state, describing the current state of the system
◦ Events, associated to particular actions/changes in the system
◦ State transitions, which modify the state depending on the executed

events

• Based on event-driven programming
◦ Events are dispatched to the associated event handlers which

implement the model’s logic

• A discrete event occurs at an instant in time, producing a change
in the system

• DES represents the operation of a system as a chronological
sequence of events

• An event cannot be scheduled in the past

2 of 18 - The ROme OpTimistic Simulator: A Tutorial



DES Building Blocks

• Clock
◦ Keep track of the current simulation time (independently of the

measuring unit)
◦ Being discrete, time hops to the next event’s time

• Events List
◦ At least the pending event set must be maintained by the simulation

architecture
◦ Events can arrive at a higher rate than they can be processed

• Random-Number Generators
◦ Simulation often rely on distributions, in order to model real world’s

aspects

• Statistics Collection
• Ending Condition
◦ Real systems can often run forever, so the designer of the model must

decide when the simulation will halt

3 of 18 - The ROme OpTimistic Simulator: A Tutorial



Going parallel : PDES Logical Architecture

Communication Network

Machine

Processor

Kernel

LP
LP

LP

Processor

Kernel

LP
LP

LP

Machine

Processor

Kernel

LP
LP

LP

Processor

Kernel

LP
LP

LP

... ...

...

4 of 18 - The ROme OpTimistic Simulator: A Tutorial



Going parallel : PDES Object Model

• Simulation model is partitioned into simulation objects

• Simulation objects model a portion of the space and/or agents

• Disjoint States: Message Passing to represent interactions

S =
numLP⋃
i=1

Si ∀i , j i 6= j : Si ∩ Sj = ∅

• Logical Processes (LP) implement event handlers, used to dispatch
events to simulation objects

• A simulation kernel schedules the execution of a particular LP for
processing an event at a certain simulation object

5 of 18 - The ROme OpTimistic Simulator: A Tutorial



Going parallel : Optimistic PDES

• Events are executed speculatively: processed events can be
committed or uncommitted

• The commitment horizon is associated with GVT value

• Relatively independent of lookahead

• Resource utilization approaches 100%

• It is faster than the critical path

6 of 18 - The ROme OpTimistic Simulator: A Tutorial



The Synchronization Problem

• The greatest opportunity arises from processing events from
different LPs concurrently on different processors

• Is correctness always ensured?

LPi

LPj

Execution Time

Execution Time

15

5 10

20

20

Events

Timestamps

Straggler Message

12

LPk
Execution Time

7 17 25

10

Message

17

Message

7 of 18 - The ROme OpTimistic Simulator: A Tutorial



The Synchronization Problem

• The greatest opportunity arises from processing events from
different LPs concurrently on different processors

• Is correctness always ensured?

LPi

LPj

Execution Time

Execution Time

15

5 10

20

20

Events

Timestamps

Straggler Message

12

LPk
Execution Time

7 17 25

10

Message

17

Message

7 of 18 - The ROme OpTimistic Simulator: A Tutorial



Optimistic Synchronization: Time Warp

• There are no state variables that are shared between LPs

• Communications are assumed to be reliable

• Messages might not be received in timestamp order

• Local Control Mechanism
◦ Events not yet processed are stored in an input queue
◦ Events already processed are not discarded

• Global Control Mechanism
◦ A-posteriori detection of causality violation
◦ Event processing can be undone (rollback)

• Reverse computation
• Simulation State Checkpoint/Restore

8 of 18 - The ROme OpTimistic Simulator: A Tutorial



Rollback

LPi

LPj

Execut ion Tim e

Execut ion Tim e

15

5 10

20 12

20

Events

Tim estam p

Straggler Message

12

LPk

Execut ion Tim e

7 17 25

10

17

Message

17

Message

17

Ant i-m essage

ant i-m essage

recept ion

Rollback Execut ion:

Recovering state at

LVT 10

Rollback Execut ion:

Recovering State at

LVT 7

9 of 18 - The ROme OpTimistic Simulator: A Tutorial



The ROme OpTimistic Simulator (ROOT-Sim)

ROOT S
IM

• Simulation Platform built according to the Time Warp
Synchronization Protocol

• Supports ANSI-C programming

• Targets both simulation efficiency and model development
transparency

• Comes bundled as a static library

http://www.dis.uniroma1.it/∼hpdcs/ROOT-Sim/

10 of 18 - The ROme OpTimistic Simulator: A Tutorial



ROOT-Sim API: Objects/Model Description

• The ROOT-Sim API is based on a reduced set of call/callback
functions:
◦ ProcessEvent() (callback) – Used to give control to the simulation

model (to a LP). It passes an event to be dispatched to some
simulation object

◦ ScheduleNewEvent() (call) – Allows to inject a new event in the
system

◦ OnGVT() (callback) – Used to perform analysis on a committed state,
and for termination detection

• The simulation model is written in ANSI-C

• The LPs’ simulation state is stored into dynamically-allocated
memory

• The simulation is started via a special INIT event

11 of 18 - The ROme OpTimistic Simulator: A Tutorial



An Example Simulation Model: Data Definition

1 #include <ROOT-Sim.h> // The ROOT-Sim header file

2

3 #define PACKET 1 // Event definition

4 #define DELAY 120

5 #define PACKETS 1000000 // Termination condition

6

7 typedef struct _event_content_t {

8 time_type sent_at;

9 } event_content_t;

10

11 typedef struct _lp_state_t{

12 int packet_count;

13 } lp_state_t;

12 of 18 - The ROme OpTimistic Simulator: A Tutorial



An Example Simulation Model: Event Processing

1 void ProcessEvent(unsigned int me, time_type now, unsigned int

event, event_t *content, unsigned int size, lp_state_t *state){

2

3 event_t new_event;

4 time_type timestamp;

5

6 switch(event) {

7

8 case INIT: // must be ALWAYS implemented

9 state = (lp_state_t *)malloc(sizeof(lp_state_t));

10 state->packet_count = 0;

11 timestamp = (time_type)(20 * Random());

12 ScheduleNewEvent(me, timestamp, PACKET, NULL, 0);

13 break;

14

15

13 of 18 - The ROme OpTimistic Simulator: A Tutorial



An Example Simulation Model: Event Processing (2)

16 case PACKET: {

17 state->packet_count++;

18 new_event_content.sent_at = now;

19 int recv = FindReceiver(TOPOLOGY_MESH);

20 timestamp = now + Expent(DELAY);

21 ScheduleNewEvent(recv, timestamp, PACKET, &new_event,

sizeof(new_event));

22 }

23 }

24 }

14 of 18 - The ROme OpTimistic Simulator: A Tutorial



An Example Simulation Model: Termination Detection

1 bool OnGVT(unsigned int me, lp_state_t *snapshot) {

2 if (snapshot->packet_count < PACKETS)

3 return false;

4 return true;

5 }

15 of 18 - The ROme OpTimistic Simulator: A Tutorial



ROOT-Sim Facilities

Already Released:

• Simulation state can be scattered over dynamically allocated memory

• Supports Full, Incremental and Autonomic Logging

• Consistent and Committed Global State management
◦ Termination detection
◦ Consistent statistics collection

• Transparently-rollbackable statistical library

• Topology library

Currently under development:

• Shared state management (via global variables)

• Consistent output streams management

• Load Balancing

• Load Sharing (via multithreading)

16 of 18 - The ROme OpTimistic Simulator: A Tutorial



ROOT-Sim Facilities

Already Released:

• Simulation state can be scattered over dynamically allocated memory

• Supports Full, Incremental and Autonomic Logging

• Consistent and Committed Global State management
◦ Termination detection
◦ Consistent statistics collection

• Transparently-rollbackable statistical library

• Topology library

Currently under development:

• Shared state management (via global variables)

• Consistent output streams management

• Load Balancing

• Load Sharing (via multithreading)
16 of 18 - The ROme OpTimistic Simulator: A Tutorial



It’s now time...

...for a live demo!

17 of 18 - The ROme OpTimistic Simulator: A Tutorial



Thanks for your attention

Questions?

pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

http://www.dis.uniroma1.it/∼ROOT-Sim

18 of 18 - The ROme OpTimistic Simulator: A Tutorial


