
Transparent and Efficient Shared-State Mangement
for Optimistic Simulation on Multi-Core Machines

Alessandro Pellegrini
Roberto Vitali

Sebastiano Peluso
Francesco Quaglia

High Performance and Dependable
Computing Systems Group

DIIAG – Sapienza, University of Rome

MASCOTS 2012

Rationale (1)

Communication Network

Machine

Processor

Kernel

LP
LP

LP

Processor

Kernel

LP
LP

LP

Machine

Processor

Kernel

LP
LP

LP

Processor

Kernel

LP
LP

LP

... ...

...

2 of 18 - Transparent and Efficient Shared-State Mangement

Rationale (2)

∀i , j i 6= j : Si ∩ Sj = ∅ S =
numLP⋃
i=1

Si

3 of 18 - Transparent and Efficient Shared-State Mangement

Rationale (2)

∀i , j i 6= j : Si ∩ Sj = ∅ S =
numLP⋃
i=1

Si

• Disjoint States: Message Passing to represent interactions

3 of 18 - Transparent and Efficient Shared-State Mangement

Rationale (2)

∀i , j i 6= j : Si ∩ Sj = ∅ S =
numLP⋃
i=1

Si

• Disjoint States: Message Passing to represent interactions

3 of 18 - Transparent and Efficient Shared-State Mangement

Rationale (2)

∀i , j i 6= j : Si ∩ Sj = ∅ S =
numLP⋃
i=1

Si

• Disjoint States: Message Passing to represent interactions

• Relaxing this constraint can result in a more flexible paradigm

3 of 18 - Transparent and Efficient Shared-State Mangement

Rationale (2)

∀i , j i 6= j : Si ∩ Sj = ∅ S =
numLP⋃
i=1

Si

• Disjoint States: Message Passing to represent interactions

• Relaxing this constraint can result in a more flexible paradigm

Goal:

• Enable the application programmer to access both the LP’s private
state and the global portion

• Introduce a specifically-targeted Shared State Management
Subsystem(SSMS)

3 of 18 - Transparent and Efficient Shared-State Mangement

Targets and Technical Supports

• Time Warp Synchronization protocol

• Shared-Memory Architectures

• Implement shared state as multi-versioned variables

• Propose an extended rollback scheme

• Rely on non-blocking algorithms for data synchronization

• Use software instrumentation for transparency

4 of 18 - Transparent and Efficient Shared-State Mangement

Read/Write Detection (1)

• Variables’ accesses must be explicitly intercepted

• Actual machine-code instructions are modified at linking time
◦ A specifically-targeted Instrumentation Tool is used
◦ i386/x86-64 instructions are parsed
◦ ELF executables can be handled

• Two main APIs are exposed by SSMS:
◦ write glob var(void *orig addr, time type lvt, ...)
◦ void *read glob var(void *orig addr, time type my lvt)

5 of 18 - Transparent and Efficient Shared-State Mangement

Read/Write Detection (1)

• Variables’ accesses must be explicitly intercepted

• Actual machine-code instructions are modified at linking time
◦ A specifically-targeted Instrumentation Tool is used
◦ i386/x86-64 instructions are parsed
◦ ELF executables can be handled

• Two main APIs are exposed by SSMS:
◦ write glob var(void *orig addr, time type lvt, ...)
◦ void *read glob var(void *orig addr, time type my lvt)

5 of 18 - Transparent and Efficient Shared-State Mangement

Read/Write Detection (2)

Different code blocks can be found during the intrumentation phase:

• Load/Store operations (namely, mov instructions):
◦ The matching SSMS’ API is put in place of the instruction

• Operations with memory operands as destination (e.g., inc m32),
or string instructions (e.g., movs):
◦ The instruction is replaced by a block of operations, mimicking the

same logic

• Memory access via pointers:
◦ A call to a monitor routine is placed before these instructions,
◦ The destination address is fastly computed
◦ A custom linker script is used to place boundaries on global variables
◦ If the pointer falls within this area, SSMS is triggered

6 of 18 - Transparent and Efficient Shared-State Mangement

Read/Write Detection (2)

Different code blocks can be found during the intrumentation phase:

• Load/Store operations (namely, mov instructions):
◦ The matching SSMS’ API is put in place of the instruction

• Operations with memory operands as destination (e.g., inc m32),
or string instructions (e.g., movs):
◦ The instruction is replaced by a block of operations, mimicking the

same logic

• Memory access via pointers:
◦ A call to a monitor routine is placed before these instructions,
◦ The destination address is fastly computed
◦ A custom linker script is used to place boundaries on global variables
◦ If the pointer falls within this area, SSMS is triggered

6 of 18 - Transparent and Efficient Shared-State Mangement

Read/Write Detection (2)

Different code blocks can be found during the intrumentation phase:

• Load/Store operations (namely, mov instructions):
◦ The matching SSMS’ API is put in place of the instruction

• Operations with memory operands as destination (e.g., inc m32),
or string instructions (e.g., movs):
◦ The instruction is replaced by a block of operations, mimicking the

same logic

• Memory access via pointers:
◦ A call to a monitor routine is placed before these instructions,
◦ The destination address is fastly computed
◦ A custom linker script is used to place boundaries on global variables
◦ If the pointer falls within this area, SSMS is triggered

6 of 18 - Transparent and Efficient Shared-State Mangement

Read/Write Detection (3)

• To efficiently support runtime execution, an exact number of
multi-versioned global variables must be installed

• At linking time the .symtab section is explored, to find global
variables in the executable

• A table of 〈name, address, size〉 tuples is built

• At simulation startup, the correct number of multi-versioned
variables is installed

7 of 18 - Transparent and Efficient Shared-State Mangement

Shared Memory-Map Organization

metadata

{
...

variables nodes

{...

read list

{...

typedef struct _globvar_node {

volatile int alloc;

time_type lvt;

unsigned char value[MAX_BUFF];

spinlock_t read_list_spinlock;

long long next;

} globvar_node;

8 of 18 - Transparent and Efficient Shared-State Mangement

Concurrent Allocator

1: procedure Allocate
2: m← generate mark()
3: slot ← first node free

4: while true do
5: alloc ← vers[slot].alloc;
6: if alloc∨¬ CAS(vers[slot].alloc, alloc, m) then
7: slot ← next slot in circular policy
8: else
9: break

10: end if
11: end while
12: atomically update first node free

13: return slot

14: end procedure

9 of 18 - Transparent and Efficient Shared-State Mangement

Version Lists

• Multi-versioned variables are implemented as version lists

• Each node represents one variable’s value at a certain lvt

• Insert/Delete operations are implemented as non-blocking
operations by relying on the CAS primitive

H Tx Tz T

Ty

CAS

H Tx Ty T

10 of 18 - Transparent and Efficient Shared-State Mangement

Read Operation

1: procedure Read(addr , lvt)
2: slot ← hash table’s entry associated with addr
3: if slot ∈ AccessSet then
4: version← AccessSet[slot]
5: else
6: version← Find-Node(slot, lvt)
7: AccessSet[slot]← version
8: end if
9: return vers[version].value;

10: end procedure

11 of 18 - Transparent and Efficient Shared-State Mangement

Write Operation

1: procedure Write(addr , lvt, val)
2: slot ← hash table’s entry associated with addr
3: if slot ∈ AccessSet then
4: version← AccessSet[slot]
5: vers[version].value ← val
6: else
7: version← Insert-Version(slot, lvt, val)
8: AccessSet[slot]← version
9: end if

10: end procedure

12 of 18 - Transparent and Efficient Shared-State Mangement

Synchronization and Rollback (1)

• To strengthen the optimism, we allow interleaved reads and writes
on a version list

• We explicitly avoid a freshly installed version to invalidate any
version related to a greater lvt

LVT = 10v LVT = 6

Read: LVT = 9

Read: LVT = 7

LVT = 8

Write
v
i
o
l
a
t
i
o
n

13 of 18 - Transparent and Efficient Shared-State Mangement

Synchronization and Rollback (1)

• To strengthen the optimism, we allow interleaved reads and writes
on a version list

• We explicitly avoid a freshly installed version to invalidate any
version related to a greater lvt

LVT = 10v LVT = 6

Read: LVT = 9

Read: LVT = 7

LVT = 8

Write
v
i
o
l
a
t
i
o
n

13 of 18 - Transparent and Efficient Shared-State Mangement

Synchronization and Rollback (2)

• Processes which reads a version node must leave a mark, i.e.,
visible reads are enforced.

• Classical rollback’s notion is augmented:
◦ In case of inconsistent read, a special anti-message is sent to the

related LP

• A ReadList is maintained, to keep track of versions reads

• After each Write operation, the ReadList of the previous node is
checked to see if an anti-message must be scheduled to some LPs

• When an antimessage is received because of an inconsistent read,
version nodes related to that particular event must be removed
◦ This is done by connecting every node in the message queue with

version nodes installed during an event execution

14 of 18 - Transparent and Efficient Shared-State Mangement

Synchronization and Rollback (2)

• Processes which reads a version node must leave a mark, i.e.,
visible reads are enforced.

• Classical rollback’s notion is augmented:
◦ In case of inconsistent read, a special anti-message is sent to the

related LP

• A ReadList is maintained, to keep track of versions reads

• After each Write operation, the ReadList of the previous node is
checked to see if an anti-message must be scheduled to some LPs

• When an antimessage is received because of an inconsistent read,
version nodes related to that particular event must be removed
◦ This is done by connecting every node in the message queue with

version nodes installed during an event execution

14 of 18 - Transparent and Efficient Shared-State Mangement

Synchronization and Rollback (2)

• Processes which reads a version node must leave a mark, i.e.,
visible reads are enforced.

• Classical rollback’s notion is augmented:
◦ In case of inconsistent read, a special anti-message is sent to the

related LP

• A ReadList is maintained, to keep track of versions reads

• After each Write operation, the ReadList of the previous node is
checked to see if an anti-message must be scheduled to some LPs

• When an antimessage is received because of an inconsistent read,
version nodes related to that particular event must be removed
◦ This is done by connecting every node in the message queue with

version nodes installed during an event execution

14 of 18 - Transparent and Efficient Shared-State Mangement

Experimental Results (1)

• We have run our model on top of the ROme OpTimistic Simulator
(ROOT-Sim), an open-source, general-purpose simulation platform
developed using C/POSIX technology

http://www.dis.uniroma1.it/∼hpdcs/ROOT-Sim/

• As a test-bed, we have used Personal Communications Service
(PCS), a suite of differently parameterized simulation models of
wireless communication systems adhering to GSM technology

• Global variables handle global statistics, i.e. the total number of
calls, the total number of handoffs, and the global cumulated
power

15 of 18 - Transparent and Efficient Shared-State Mangement

Experimental Results

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Number of Simulation Kernels

Total Time Execution

Message Passing
Shared Memory

No Shared State

16 of 18 - Transparent and Efficient Shared-State Mangement

Experimental Results

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 10 20 30 40 50 60 70 80 90

C
um

ul
at

ed
 C

om
m

itt
ed

 E
ve

nt
s

Wall-Clock Time (seconds)

Throughput

Message Passing
Shared Memory

17 of 18 - Transparent and Efficient Shared-State Mangement

Thanks for your attention

Questions?
http://www.dis.uniroma1.it/∼hpdcs/ROOT-Sim

http://www.dis.uniroma1.it/∼pellegrini
pellegrini@dis.uniroma1.it

18 of 18 - Transparent and Efficient Shared-State Mangement

