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e Disjoint States: Message Passing to represent interactions
¢ Relaxing this constraint can result in a more flexible paradigm

Goal:

e Enable the application programmer to access both the LP's private
state and the global portion

e Introduce a specifically-targeted Shared State Management
Subsystem(SSMS)
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Targets and Technical Supports

e Time Warp Synchronization protocol

e Shared-Memory Architectures

e Implement shared state as multi-versioned variables
e Propose an extended rollback scheme
e Rely on non-blocking algorithms for data synchronization

e Use software instrumentation for transparency
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Read /Write Detection (1)

e Variables' accesses must be explicitly intercepted
e Actual machine-code instructions are modified at linking time

o A specifically-targeted Instrumentation Tool is used
© i386/x86-64 instructions are parsed
o ELF executables can be handled

5 of 18 - Transparent and Efficient Shared-State Mangement



Read /Write Detection (1)

e Variables' accesses must be explicitly intercepted
e Actual machine-code instructions are modified at linking time

o A specifically-targeted Instrumentation Tool is used
o i386/x86-64 instructions are parsed
o ELF executables can be handled

e Two main APls are exposed by SSMS:

o write_glob_var(void *orig_addr, time_type 1lvt, ...)
o void *read_glob_var(void *orig addr, time_type my_lvt)
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Read /Write Detection (2)

Different code blocks can be found during the intrumentation phase:

e Load/Store operations (namely, mov instructions):
o The matching SSMS' API is put in place of the instruction
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Read /Write Detection (2)

Different code blocks can be found during the intrumentation phase:

e Load/Store operations (namely, mov instructions):
o The matching SSMS' API is put in place of the instruction

e Operations with memory operands as destination (e.g., inc m32),
or string instructions (e.g., movs):

o The instruction is replaced by a block of operations, mimicking the
same logic

e Memory access via pointers:
o A call to a monitor routine is placed before these instructions,
o The destination address is fastly computed

o A custom linker script is used to place boundaries on global variables
o If the pointer falls within this area, SSMS is triggered
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Read /Write Detection (3)

e To efficiently support runtime execution, an exact number of
multi-versioned global variables must be installed

e At linking time the .symtab section is explored, to find global
variables in the executable

* A table of (name, address, size) tuples is built

e At simulation startup, the correct number of multi-versioned
variables is installed
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Shared Memory-Map Organization

[ NN

metadata

variables nodes read list

typedef struct _globvar_node {
volatile int alloc;
time_type 1lvt;
unsigned char value[MAX_BUFF];
spinlock_t read_list_spinlock;
long long next;

} globvar_node;
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Concurrent Allocator

1: procedure ALLOCATE

2 m <— generate_mark()

3 slot + first node_free
4: while true do

5: alloc «+ vers[slot].alloc;
6 if alloc V- CAS(vers[slot].alloc, alloc, m) then
7 slot + next slot in circular policy

8

else
break
10: end if
11: end while
12: atomically update first_node_free
13: return slot

14: end procedure
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Version Lists

e Multi-versioned variables are implemented as version lists
e Each node represents one variable's value at a certain Ivt

e Insert/Delete operations are implemented as non-blocking
operations by relying on the CAS primitive

Insertion:

Deletion:
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Read Operation

1. procedure READ(addr, Ivt)

2 slot < hash table's entry associated with addr
3 if slot € AccessSet then

4: version < AccessSet([slot]

5: else

6 version <— FIND-NODE(slot, Ivt)

7 AccessSet|[slot] < version

8 end if

9: return vers|version|.value;

10: end procedure

11 of 18 - Transparent and Efficient Shared-State Mangement



Write Operation

1. procedure WRITE(addr, Ivt, val)
2 slot < hash table's entry associated with addr
3 if slot € AccessSet then
4 version < AccessSet|[slot]
5: vers|version|.value < val
6 else

7 version <— INSERT-VERSION(slot, Ivt, val)
8: AccessSet[slot] < version

9: end if
10: end procedure
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Synchronization and Rollback (1)

e To strengthen the optimism, we allow interleaved reads and writes
on a version list

e We explicitly avoid a freshly installed version to invalidate any
version related to a greater Ivt
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Synchronization and Rollback (1)

e To strengthen the optimism, we allow interleaved reads and writes

on a version list

e We explicitly avoid a freshly installed version to invalidate any

version related to a greater Ivt
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________________________________________
Synchronization and Rollback (2)

e Processes which reads a version node must leave a mark, i.e.,
visible reads are enforced.
e Classical rollback's notion is augmented:

o In case of inconsistent read, a special anti-message is sent to the
related LP
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e A ReadLlist is maintained, to keep track of versions reads

e After each Write operation, the ReadList of the previous node is
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14 of 18 - Transparent and Efficient Shared-State Mangement



________________________________________
Synchronization and Rollback (2)

e Processes which reads a version node must leave a mark, i.e.,
visible reads are enforced.
e Classical rollback's notion is augmented:

o In case of inconsistent read, a special anti-message is sent to the
related LP

e A ReadList is maintained, to keep track of versions reads

e After each Write operation, the ReadList of the previous node is
checked to see if an anti-message must be scheduled to some LPs

e When an antimessage is received because of an inconsistent read,
version nodes related to that particular event must be removed

o This is done by connecting every node in the message queue with
version nodes installed during an event execution
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N
Experimental Results (1)

e We have run our model on top of the ROme OpTimistic Simulator
(ROOT-Sim), an open-source, general-purpose simulation platform
developed using C/POSIX technology

http://www.dis.uniromal.it/~hpdcs/RO0T-Sim/

e As a test-bed, we have used Personal Communications Service
(PCS), a suite of differently parameterized simulation models of
wireless communication systems adhering to GSM technology

e Global variables handle global statistics, i.e. the total number of
calls, the total number of handoffs, and the global cumulated
power
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Experimental Results
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Experimental Results
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Thanks for your attention

Questions?

http://www.dis.uniromal.it/~hpdcs/RO0T-Sim
http://www.dis.uniromal.it/~pellegrini
pellegrini@dis.uniromal.it
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