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• Disjoint States: Message Passing to represent interactions

• Relaxing this constraint can result in a more flexible paradigm

Goal:

• Enable the application programmer to access both the LP’s private
state and the global portion

• Introduce a specifically-targeted Shared State Management
Subsystem(SSMS)
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Targets and Technical Supports

• Time Warp Synchronization protocol

• Shared-Memory Architectures

• Implement shared state as multi-versioned variables

• Propose an extended rollback scheme

• Rely on non-blocking algorithms for data synchronization

• Use software instrumentation for transparency
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Read/Write Detection (1)

• Variables’ accesses must be explicitly intercepted

• Actual machine-code instructions are modified at linking time
◦ A specifically-targeted Instrumentation Tool is used
◦ i386/x86-64 instructions are parsed
◦ ELF executables can be handled

• Two main APIs are exposed by SSMS:
◦ write glob var(void *orig addr, time type lvt, ...)
◦ void *read glob var(void *orig addr, time type my lvt)
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Read/Write Detection (2)

Different code blocks can be found during the intrumentation phase:

• Load/Store operations (namely, mov instructions):
◦ The matching SSMS’ API is put in place of the instruction

• Operations with memory operands as destination (e.g., inc m32),
or string instructions (e.g., movs):
◦ The instruction is replaced by a block of operations, mimicking the

same logic

• Memory access via pointers:
◦ A call to a monitor routine is placed before these instructions,
◦ The destination address is fastly computed
◦ A custom linker script is used to place boundaries on global variables
◦ If the pointer falls within this area, SSMS is triggered
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Read/Write Detection (3)

• To efficiently support runtime execution, an exact number of
multi-versioned global variables must be installed

• At linking time the .symtab section is explored, to find global
variables in the executable

• A table of 〈name, address, size〉 tuples is built

• At simulation startup, the correct number of multi-versioned
variables is installed
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Shared Memory-Map Organization

metadata

{
...

variables nodes

{...

read list

{...

typedef struct _globvar_node {

volatile int alloc;

time_type lvt;

unsigned char value[MAX_BUFF];

spinlock_t read_list_spinlock;

long long next;

} globvar_node;
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Concurrent Allocator

1: procedure Allocate
2: m← generate mark()
3: slot ← first node free

4: while true do
5: alloc ← vers[slot].alloc;
6: if alloc∨¬ CAS(vers[slot].alloc, alloc, m) then
7: slot ← next slot in circular policy
8: else
9: break

10: end if
11: end while
12: atomically update first node free

13: return slot

14: end procedure
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Version Lists

• Multi-versioned variables are implemented as version lists

• Each node represents one variable’s value at a certain lvt

• Insert/Delete operations are implemented as non-blocking
operations by relying on the CAS primitive

H Tx Tz T

Ty

CAS

H Tx Ty T
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Read Operation

1: procedure Read(addr , lvt)
2: slot ← hash table’s entry associated with addr
3: if slot ∈ AccessSet then
4: version← AccessSet[slot]
5: else
6: version← Find-Node(slot, lvt)
7: AccessSet[slot]← version
8: end if
9: return vers[version].value;

10: end procedure
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Write Operation

1: procedure Write(addr , lvt, val)
2: slot ← hash table’s entry associated with addr
3: if slot ∈ AccessSet then
4: version← AccessSet[slot]
5: vers[version].value ← val
6: else
7: version← Insert-Version(slot, lvt, val)
8: AccessSet[slot]← version
9: end if

10: end procedure
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Synchronization and Rollback (1)

• To strengthen the optimism, we allow interleaved reads and writes
on a version list

• We explicitly avoid a freshly installed version to invalidate any
version related to a greater lvt
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Synchronization and Rollback (2)

• Processes which reads a version node must leave a mark, i.e.,
visible reads are enforced.

• Classical rollback’s notion is augmented:
◦ In case of inconsistent read, a special anti-message is sent to the

related LP

• A ReadList is maintained, to keep track of versions reads

• After each Write operation, the ReadList of the previous node is
checked to see if an anti-message must be scheduled to some LPs

• When an antimessage is received because of an inconsistent read,
version nodes related to that particular event must be removed
◦ This is done by connecting every node in the message queue with

version nodes installed during an event execution
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Experimental Results (1)

• We have run our model on top of the ROme OpTimistic Simulator
(ROOT-Sim), an open-source, general-purpose simulation platform
developed using C/POSIX technology

http://www.dis.uniroma1.it/∼hpdcs/ROOT-Sim/

• As a test-bed, we have used Personal Communications Service
(PCS), a suite of differently parameterized simulation models of
wireless communication systems adhering to GSM technology

• Global variables handle global statistics, i.e. the total number of
calls, the total number of handoffs, and the global cumulated
power
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Thanks for your attention

Questions?
http://www.dis.uniroma1.it/∼hpdcs/ROOT-Sim

http://www.dis.uniroma1.it/∼pellegrini
pellegrini@dis.uniroma1.it
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