Transparent and Efficient Shared-State Mangement

for Optimistic Simulation on Multi-Core Machines

Alessandro Pellegrini
Roberto Vitali
Sebastiano Peluso
Francesco Quaglia

High Performance and Dependable

Computing Systems Group
SAP]ENZA DIIAG - Sapienza, University of Rome
UNIVERSITA DI ROMA
MASCOTS 2012

Rationale (1)

R S e

!

| Kernel | | Kernel || Kernel | | Kernel |
Processor .. | Processor Processor ... | Processor

R R W

| Communication Network |

2 of 18 - Transparent and Efficient Shared-State Mangement

Rationale (2)

numLP
Viji#j: Sins=0 S={J S
i=1

3 of 18 - Transparent and Efficient Shared-State Mangement

Rationale (2)

numLP
Viji#j: Sins=0 S={J S
i=1

e Disjoint States: Message Passing to represent interactions

3 of 18 - Transparent and Efficient Shared-State Mangement

Rationale (2)

numLP
.7 .. - / e S — U Si
i=1

e Disjoint States: Message Passing to represent interactions

3 of 18 - Transparent and Efficient Shared-State Mangement

Rationale (2)

numLP
.7 .. - / e S — U Si
i=1

e Disjoint States: Message Passing to represent interactions

e Relaxing this constraint can result in a more flexible paradigm

3 of 18 - Transparent and Efficient Shared-State Mangement

Rationale (2)

numLP

e .S, = S — U S:
i=1

e Disjoint States: Message Passing to represent interactions
¢ Relaxing this constraint can result in a more flexible paradigm

Goal:

e Enable the application programmer to access both the LP's private
state and the global portion

e Introduce a specifically-targeted Shared State Management
Subsystem(SSMS)

3 of 18 - Transparent and Efficient Shared-State Mangement

Targets and Technical Supports

e Time Warp Synchronization protocol

e Shared-Memory Architectures

e Implement shared state as multi-versioned variables
e Propose an extended rollback scheme
e Rely on non-blocking algorithms for data synchronization

e Use software instrumentation for transparency

4 of 18 - Transparent and Efficient Shared-State Mangement

Read /Write Detection (1)

e Variables' accesses must be explicitly intercepted
e Actual machine-code instructions are modified at linking time

o A specifically-targeted Instrumentation Tool is used
© i386/x86-64 instructions are parsed
o ELF executables can be handled

5 of 18 - Transparent and Efficient Shared-State Mangement

Read /Write Detection (1)

e Variables' accesses must be explicitly intercepted
e Actual machine-code instructions are modified at linking time

o A specifically-targeted Instrumentation Tool is used
o i386/x86-64 instructions are parsed
o ELF executables can be handled

e Two main APls are exposed by SSMS:

o write_glob_var(void *orig_addr, time_type 1lvt, ...)
o void *read_glob_var(void *orig addr, time_type my_lvt)

5 of 18 - Transparent and Efficient Shared-State Mangement

Read /Write Detection (2)

Different code blocks can be found during the intrumentation phase:

e Load/Store operations (namely, mov instructions):
o The matching SSMS' API is put in place of the instruction

6 of 18 - Transparent and Efficient Shared-State Mangement

Read /Write Detection (2)

Different code blocks can be found during the intrumentation phase:

e Load/Store operations (namely, mov instructions):
o The matching SSMS' API is put in place of the instruction

e Operations with memory operands as destination (e.g., inc m32),
or string instructions (e.g., movs):

o The instruction is replaced by a block of operations, mimicking the
same logic

6 of 18 - Transparent and Efficient Shared-State Mangement

Read /Write Detection (2)

Different code blocks can be found during the intrumentation phase:

e Load/Store operations (namely, mov instructions):
o The matching SSMS' API is put in place of the instruction

e Operations with memory operands as destination (e.g., inc m32),
or string instructions (e.g., movs):

o The instruction is replaced by a block of operations, mimicking the
same logic

e Memory access via pointers:
o A call to a monitor routine is placed before these instructions,
o The destination address is fastly computed

o A custom linker script is used to place boundaries on global variables
o If the pointer falls within this area, SSMS is triggered

6 of 18 - Transparent and Efficient Shared-State Mangement Z

Read /Write Detection (3)

e To efficiently support runtime execution, an exact number of
multi-versioned global variables must be installed

e At linking time the .symtab section is explored, to find global
variables in the executable

* A table of (name, address, size) tuples is built

e At simulation startup, the correct number of multi-versioned
variables is installed

7 of 18 - Transparent and Efficient Shared-State Mangement

Shared Memory-Map Organization

[NN

metadata

variables nodes read list

typedef struct _globvar_node {
volatile int alloc;
time_type 1lvt;
unsigned char value[MAX_BUFF];
spinlock_t read_list_spinlock;
long long next;

} globvar_node;

8 of 18 - Transparent and Efficient Shared-State Mangement

Concurrent Allocator

1: procedure ALLOCATE

2 m <— generate_mark()

3 slot + first node_free
4: while true do

5: alloc «+ vers[slot].alloc;
6 if alloc V- CAS(vers[slot].alloc, alloc, m) then
7 slot + next slot in circular policy

8

else
break
10: end if
11: end while
12: atomically update first_node_free
13: return slot

14: end procedure

9 of 18 - Transparent and Efficient Shared-State Mangement

Version Lists

e Multi-versioned variables are implemented as version lists
e Each node represents one variable's value at a certain Ivt

e Insert/Delete operations are implemented as non-blocking
operations by relying on the CAS primitive

Insertion:

Deletion:

10 of 18 - Transparent and Efficient Shared-State Mangement

Read Operation

1. procedure READ(addr, Ivt)

2 slot < hash table's entry associated with addr
3 if slot € AccessSet then

4: version < AccessSet([slot]

5: else

6 version <— FIND-NODE(slot, Ivt)

7 AccessSet|[slot] < version

8 end if

9: return vers|version|.value;

10: end procedure

11 of 18 - Transparent and Efficient Shared-State Mangement

Write Operation

1. procedure WRITE(addr, Ivt, val)
2 slot < hash table's entry associated with addr
3 if slot € AccessSet then
4 version < AccessSet|[slot]
5: vers|version|.value < val
6 else

7 version <— INSERT-VERSION(slot, Ivt, val)
8: AccessSet[slot] < version

9: end if
10: end procedure

12 of 18 - Transparent and Efficient Shared-State Mangement

Synchronization and Rollback (1)

e To strengthen the optimism, we allow interleaved reads and writes
on a version list

e We explicitly avoid a freshly installed version to invalidate any
version related to a greater Ivt

13 of 18 - Transparent and Efficient Shared-State Mangement

Synchronization and Rollback (1)

e To strengthen the optimism, we allow interleaved reads and writes

on a version list

e We explicitly avoid a freshly installed version to invalidate any

version related to a greater Ivt

LVT =8

V —| LvT=10

13 of 18 - Transparent and Efficient Shared-State Mangement

+Write
-— >

T~

LVT =6

' Read: LVT = 7

Read: LVT =9

\

50— ®—O <

__
Synchronization and Rollback (2)

e Processes which reads a version node must leave a mark, i.e.,
visible reads are enforced.
e Classical rollback's notion is augmented:

o In case of inconsistent read, a special anti-message is sent to the
related LP

14 of 18 - Transparent and Efficient Shared-State Mangement

__
Synchronization and Rollback (2)

e Processes which reads a version node must leave a mark, i.e.,
visible reads are enforced.
e Classical rollback's notion is augmented:

o In case of inconsistent read, a special anti-message is sent to the
related LP

e A ReadLlist is maintained, to keep track of versions reads

e After each Write operation, the ReadList of the previous node is
checked to see if an anti-message must be scheduled to some LPs

14 of 18 - Transparent and Efficient Shared-State Mangement

__
Synchronization and Rollback (2)

e Processes which reads a version node must leave a mark, i.e.,
visible reads are enforced.
e Classical rollback's notion is augmented:

o In case of inconsistent read, a special anti-message is sent to the
related LP

e A ReadList is maintained, to keep track of versions reads

e After each Write operation, the ReadList of the previous node is
checked to see if an anti-message must be scheduled to some LPs

e When an antimessage is received because of an inconsistent read,
version nodes related to that particular event must be removed

o This is done by connecting every node in the message queue with
version nodes installed during an event execution

14 of 18 - Transparent and Efficient Shared-State Mangement

N
Experimental Results (1)

e We have run our model on top of the ROme OpTimistic Simulator
(ROOT-Sim), an open-source, general-purpose simulation platform
developed using C/POSIX technology

http://www.dis.uniromal.it/~hpdcs/RO0T-Sim/

e As a test-bed, we have used Personal Communications Service
(PCS), a suite of differently parameterized simulation models of
wireless communication systems adhering to GSM technology

e Global variables handle global statistics, i.e. the total number of
calls, the total number of handoffs, and the global cumulated
power

15 of 18 - Transparent and Efficient Shared-State Mangement

Experimental Results

600

500

400

300

200

Execution Time (seconds)

100

Total Time Execution

Messagé Passing T
Shared Memory ---»---
No Shared State ----*--

5 10 15 20 25 30
Number of Simulation Kernels

16 of 18 - Transparent and Efficient Shared-State Mangement

35

Experimental Results

7e+06

6e+06

5e+06

4e+06

3e+06

2e+06

Cumulated Committed Events

1e+06

Throughput
Message bassing ——
Shared Memory ---»---
X
-~
F
X/
A
i
/X//
X
J
,” /—K/
f
10 20 30 40 50 60 70 80 90

Wall-Clock Time (seconds)

17 of 18 - Transparent and Efficient Shared-State Mangement

Thanks for your attention

Questions?

http://www.dis.uniromal.it/~hpdcs/RO0T-Sim
http://www.dis.uniromal.it/~pellegrini
pellegrini@dis.uniromal.it

18 of 18 - Transparent and Efficient Shared-State Mangement

