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Time Warp Fundamentals
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Rationale

• Processors speeds are no longer
following Moore’s Law

• Multi-core machines are the
industry’s answer to the
increasing need in computational
power

Yet, parallelizing an optimistic
simulation kernel entails a hard
synchronization effort
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Goals

• Propose a Paradigm Shift towards Symmetric Multi-threaded
Optimistic Simulation Kernels
◦ Reshuffle of their internal organization
◦ Rely on the worker-thread paradigm to concurrently run any LP

hosted by a given kernel instance

• Exploit this new organization to support load sharing
◦ Orthogonal to load balancing
◦ Computational power is reassigned to kernel instances
◦ Any kernel instance can activate/deactivate a certain number of

worker threads
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Kernel-Level Synchronization

• Avoid lock-everything effects in kernel mode
◦ Reduced set of operations/data structures
◦ Inherent strict coupling among the LPs

• Frequent updates involve input/output queues
◦ Core of the cross-LP dependencies
◦ Updates by the worker thread currently running the owener LP
◦ Additionally, by worker threads running other LPs

• Critical sections’ duration is dependent on actual time-complexity
of the queue-update operation.
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Top/Bottom Halves (1)

• Operations involving data-structures updates are logically
considered as interrupts

• Upon the receival of an interrupt, the task is not immediately
finalized

• A light (constant time) top-half module is executed, for registering
the operation to be performed

• Three situations can explicitly produce an interrupt:

1. A worker thread is running a locally hosted LPj in forward mode,
which produces a new event to be scheduled for the locally hosted LPi

2. A worker thread is currently running a locally hosted LPj in rollback
mode, giving rise to the production of an antimessage destined to LPi

3. The message passing layer notifies the worker thread about a new
message/antimessage incoming from some remote kernel instance.
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Top/Bottom Halves (2)

symmetric multi-threaded kernel interrupt handling layer

LP_LOCKS

Bottom-Halves Queues

LP forward mode 

running

LP rollback mode 
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message antimessage

top-half:
1) lock the recipient LP
2) enqueue bottom half
3) flag the recipient LP
4) unlock the recipient LP
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from a remote kernel

LP_FLAGS
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Computational Power Reallocation Policy

• The symmetric multi-threaded kernel allows scaling up/down the
amount of per-kernel worker threads.

• This feature allows for dynamically reallocating the computational
power wrt the workload variations

Ctot available CPU cores
Ktot (≤ Ctot) active symmetric kernel instances

Goal: determine Ci (1 ≤ Ci < Ktot) ∀Ki for a given wall-clock-time
window, so to improve resource exploitation.
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Computational Power Reallocation Policy (2)

Idea: Dynamically assign an amount of CPU-cores to kernel Ki which
is proportional to the actual computation requirements of Ki for the
achievement of its relative event rate, compared to the one by the
other kernels.

wevri = evri︸︷︷︸
current event rate

· ∆i︸︷︷︸
average CPU time for processing events

The Power Reallocation follows the following steps:

αi =
wevri∑Ktot
j=1 wevrj

(1)

Ci = bαi · Ctotc (2)
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Computational Power Reallocation Policy (3)

∀Ki s.t. Ci ≥ numLPi , Ci = numLPi (3)

At this point, some CPU-cores might be unassigned yet, which we do
on the basis of the request for allocation remainder:

ri = [(αi · Ctot)− Ci ] (4)

• We order the kernels for which the finalization of Ci values still
needs to be performed according to decreasing values of the
product ri · wctai

• We assign the remaining CPU-cores according to a round-robin
rule following the priority defined by such an ordering
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Binding LPs to Worker Threads

• A given set of LPs hosted by Ki is temporarily bind to a specific
worker thread

• Once the new value for Ci is computed, the policy to determine
which LPs are bind to a specific worker thread is:

◦ For LPj hosted by Ki we compute cpuji , i.e. the total amount of
CPU-time needed for committing its events during the last
observation period

◦ maxi,j{cpuji } is considered as a reference knapsack
◦ A modified greedy-approximation algorithm by George Dantzig for

knapsack solution is executed
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Implementation within ROOT-Sim

• ROOT-Sim is an open-source general-purpose C-based optimistic
simulation platform

• The end-user can transparently rely on the ANSI-C set of
programming facilities

http://www.dis.uniroma1.it/∼hpdcs/ROOT-Sim/

• Worker threads are implemented using pthread tehcnology
• Per-LP data structures are reshuffled:
◦ per-thread private data (avoid synchronization efforts)
◦ cache-aligned data structures, via posix memalign and proper

padding (avoid false cache-sharing)

• Accesses to MPI layer are synchronized via wrappers
• GVT reduction is carried out by one single thread
• Fossil collection is performed by all worker threads in parallel
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Experimental Results

Hardware Setting

• 64-bit NUMA machine

• 32 2-GHz cores

• 64 GB of RAM

Personal Communication Service

• It implements a simulation model of GSM communication systems

• Channels are modeled in a high fidelity fashion

Traffic

• It simulates a complex highway system (at a single car granularity)

• The topology is a generic graph
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Experimental Results (2)
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Experimental Results (3)
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Thanks for your attention

Questions?
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