A Symmetric Multi-threaded Architecture for Load-sharing

in Multi-core Optimistic Simulations

Roberto Vitali
Alessandro Pellegrini
Francesco Quaglia

High Performance and Dependable
Computing Systems Group
Dipartimento di Ingegneria Informatica,

Automatica e Gestionale
AP]ENZA Sapienza, University of Rome

UNIVERSITA DI ROMA

InfQ - 2012

PDES Logical Architecture

! P !

Kernel

Kernel Kernel Kernel
Processor .. | Processor Processor .. | Processor

I }

Machine

}

Machine

!

Communication Network

2 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Rollback

LP 10 20

[+

Execution Time

Rollback Execution:
Recovering state at

Message (2] / VT 10
LR 15 20 [15}———>

f Execution Time

Events Straggler Message
Timestamp

Message Anti-message

17

71 (23] 7]
/ \ Execution Time

LP¢

anti-messaggio Rollback Execution:
reception Recovering State at
VT 7

3 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Time Warp Fundamentals

Application Level Software (UniavePidenifier

A /
data structures
i]
| i
| i
i 1In Message Queue Out Message Queue || State Queue Current State
i i
i i
L i
subsystems /
Messaging GVT State Management
CPU scheduling
Message/antimessage Commitment horizon State log/restore
Priority determination sending determination >
and LP dispatehing Message/antimessage Fossil Collection Coasting Forward
receiving Termination Detection

\
Network (Message Passing)

mmetric Multi-threaded Architecture for Load-sharin

Rationale

10,000,000

e Processors speeds are no longer = -y
following Moore's Law (soutces: nte

100,000

CPU

‘Wikipes

Trends
dia, K. Olukotun)

Dual-Core Itanium 2

o Multi-core machines are the

10,000

industry’s answer to the

increasing need in computational
power o

0

1970 1975 1980 1985 1990 1995 2000

5 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

2005

2010

Rationale

10,000,000

e Processors speeds are no longer =
following Moore's Law

e Multi-core machines are the
industry’s answer to the
increasing need in computational

10,000

power

e Yet, parallelizing an optimistic
simulation kernel entails a hard :
synchronization effort

0

Dual-Core Itanium 2 .
. .
Intel CPU Trends {
(sources: Intel, Wikipedia, K. Olukotun) 7
| Pentium 4 giPZ
|
asa
D .5
: | i
Gk
am 2 L] A
o
‘,./f . nv | —_
- / Py ‘
2 -
L e @Gk e)
LX) .. Power (W)
‘@ Perf/Clock (LP)
I I
1970 1975 1980 1985 1990 1995 2000 2005 2010

5 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Goals

e Propose a Paradigm Shift towards Symmetric Multi-threaded
Optimistic Simulation Kernels

o Reshuffle of their internal organization
o Rely on the worker-thread paradigm to concurrently run any LP
hosted by a given kernel instance

6 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Goals

¢ Propose a Paradigm Shift towards Symmetric Multi-threaded
Optimistic Simulation Kernels
o Reshuffle of their internal organization

o Rely on the worker-thread paradigm to concurrently run any LP
hosted by a given kernel instance

e Exploit this new organization to support load sharing
o Orthogonal to load balancing
o Computational power is reassigned to kernel instances

o Any kernel instance can activate/deactivate a certain number of
worker threads

6 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Kernel-Level Synchronization

e Avoid lock-everything effects in kernel mode

o Reduced set of operations/data structures
o Inherent strict coupling among the LPs

7 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Kernel-Level Synchronization

e Avoid lock-everything effects in kernel mode

o Reduced set of operations/data structures
o Inherent strict coupling among the LPs

e Frequent updates involve input/output queues

o Core of the cross-LP dependencies

o Updates by the worker thread currently running the owener LP
Additionally, by worker threads running other LPs

[¢]

- A Symmetric Multi-threaded Architecture for Load-sharing

Kernel-Level Synchronization

e Avoid lock-everything effects in kernel mode

o Reduced set of operations/data structures
o Inherent strict coupling among the LPs

e Frequent updates involve input/output queues
o Core of the cross-LP dependencies
o Updates by the worker thread currently running the owener LP
o Additionally, by worker threads running other LPs

e Critical sections’ duration is dependent on actual time-complexity
of the queue-update operation.

7 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Top/Bottom Halves (1)

e Operations involving data-structures updates are logically
considered as interrupts

e Upon the receival of an interrupt, the task is not immediately
finalized

e A light (constant time) top-half module is executed, for registering
the operation to be performed

8 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Top/Bottom Halves (1)

e Operations involving data-structures updates are logically
considered as interrupts

e Upon the receival of an interrupt, the task is not immediately
finalized

e A light (constant time) top-half module is executed, for registering
the operation to be performed

e Three situations can explicitly produce an interrupt:

1. A worker thread is running a locally hosted LP; in forward mode,
which produces a new event to be scheduled for the locally hosted LP;

8 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Top/Bottom Halves (1)

e Operations involving data-structures updates are logically
considered as interrupts

e Upon the receival of an interrupt, the task is not immediately
finalized

e A light (constant time) top-half module is executed, for registering
the operation to be performed

e Three situations can explicitly produce an interrupt:

1. A worker thread is running a locally hosted LP; in forward mode,
which produces a new event to be scheduled for the locally hosted LP;

2. A worker thread is currently running a locally hosted LP; in rollback
mode, giving rise to the production of an antimessage destined to LP;

8 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Top/Bottom Halves (1)

e Operations involving data-structures updates are logically
considered as interrupts

e Upon the receival of an interrupt, the task is not immediately
finalized

e A light (constant time) top-half module is executed, for registering
the operation to be performed

e Three situations can explicitly produce an interrupt:

1. A worker thread is running a locally hosted LP; in forward mode,
which produces a new event to be scheduled for the locally hosted LP;

2. A worker thread is currently running a locally hosted LP; in rollback
mode, giving rise to the production of an antimessage destined to LP;

3. The message passing layer notifies the worker thread about a new
message/antimessage incoming from some remote kernel instance.

8 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Top/Bottom Halves (2)

LP forward mode LP rollback mode
running running
¢ ¢message #ntimessage

Isymmetric multi-threaded kernel interrupt handling layer I

message/antimessage
from a remote kernel

top-half:

1) lock the recipient LP | LP_LOCKS |
2) enqueue bottom half ___

3)flag the recipient LP ™~ | Bottom-Halves Queues |
4) unlock the recipient LP

[LP_FLAGS

9 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Computational Power Reallocation Policy

e The symmetric multi-threaded kernel allows scaling up/down the
amount of per-kernel worker threads.

e This feature allows for dynamically reallocating the computational
power wrt the workload variations

Cior available CPU cores
Kiot (< Ciot) active symmetric kernel instances

Goal: determine C; (1 < G < Kior) VK; for a given wall-clock-time
window, so to improve resource exploitation.

10 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Computational Power Reallocation Policy (2)

Idea: Dynamically assign an amount of CPU-cores to kernel K; which
is proportional to the actual computation requirements of K; for the
achievement of its relative event rate, compared to the one by the
other kernels.

wevr; = evr; . JAY,
~—~

current event rate average CPU time for processing events

The Power Reallocation follows the following steps:

Wevr;

o= —f—— 1
S5 wevr; W

G = La,- : CtotJ (2)

11 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Computational Power Reallocation Policy (3)

VK; s.t. GG > numLP;, C; = numLP; (3)

At this point, some CPU-cores might be unassigned yet, which we do
on the basis of the request for allocation remainder:

ri = [(cj - Ceot) — Cil (4)

e We order the kernels for which the finalization of C; values still
needs to be performed according to decreasing values of the
product r; - wcta;

e \We assign the remaining CPU-cores according to a round-robin
rule following the priority defined by such an ordering

12 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Binding LPs to Worker Threads

e A given set of LPs hosted by K; is temporarily bind to a specific
worker thread

e Once the new value for C; is computed, the policy to determine
which LPs are bind to a specific worker thread is:

o For LP; hosted by K; we compute cpu, i.e. the total amount of
CPU-time needed for committing its events during the last
observation period

o max; j{cpu!} is considered as a reference knapsack

o A modified greedy-approximation algorithm by George Dantzig for
knapsack solution is executed

13 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Implementation within ROOT-Sim

e ROOT-Sim is an open-source general-purpose C-based optimistic
simulation platform
e The end-user can transparently rely on the ANSI-C set of

programming facilities

http://www.dis.uniromal.it/~hpdcs/RO0T-Sim/

14 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Implementation within ROOT-Sim

e ROOT-Sim is an open-source general-purpose C-based optimistic
simulation platform

e The end-user can transparently rely on the ANSI-C set of
programming facilities

http://www.dis.uniromal.it/~hpdcs/RO0T-Sim/

e Worker threads are implemented using pthread tehcnology
e Per-LP data structures are reshuffled:
o per-thread private data (avoid synchronization efforts)
o cache-aligned data structures, via posix_memalign and proper
padding (avoid false cache-sharing)
e Accesses to MPI layer are synchronized via wrappers
e GVT reduction is carried out by one single thread

e Fossil collection is performed by all worker threads in paraIIeI
14 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing 4

Experimental Results

Hardware Setting

e 64-bit NUMA machine

e 32 2-GHz cores

e 64 GB of RAM

Personal Communication Service

e |t implements a simulation model of GSM communication systems
e Channels are modeled in a high fidelity fashion

Traffic

e It simulates a complex highway system (at a single car granularity)
e The topology is a generic graph

15 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Experimental Results (2)

PCS Application Benchmark

900000 T T
Multithread (4k) —+—
Multithread (8k)
800000 Multithread (16k) -------
Multithread (32k) &
Single Thread --=—
. 700000 ingle Thread —~%
<
Q
o 600000
e
£
£ 500000
£
o
O 400000
B L
k] 3000 | Serial
S 300000 2500 .
8 2000 o
200000 1500 o .
1000 .
500 [-*
100000 ,Qi o .
W 0 10 20 30 40 50 60 70
0 i i
0 10 20 30 40 50 60

Wall-Clock Time (seconds)

16 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Experimental Results (3)

Traffic Application Benchmark

450000 . . .
Multithread (4k) ——
Multithread (8k) ---x---
400000 -~ Multithread (16k) - . B
Multithread (32k)
Load Balancer -
%) 350000 - Single Thread —-2
5 *
Q
& 300000
o
g
£ 250000
£
Q
© 200000
3 1600 ———— —
s 1400 | Serial Executor - -ge®]
S 150000 1200 o §
£ 1000 "
© 800)
100000 00 e |
400 S
-
50000 200 |--ye i
0 10 20 30 40 50 60 70
i i i

30 40 50 60 70 80
Wall-Clock Time (seconds)

17 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

Thanks for your attention

Questions?

18 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing

