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Goals

e Propose a Paradigm Shift towards Symmetric Multi-threaded
Optimistic Simulation Kernels

o Reshuffle of their internal organization
o Rely on the worker-thread paradigm to concurrently run any LP
hosted by a given kernel instance
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Goals

¢ Propose a Paradigm Shift towards Symmetric Multi-threaded
Optimistic Simulation Kernels
o Reshuffle of their internal organization

o Rely on the worker-thread paradigm to concurrently run any LP
hosted by a given kernel instance

e Exploit this new organization to support load sharing
o Orthogonal to load balancing
o Computational power is reassigned to kernel instances

o Any kernel instance can activate/deactivate a certain number of
worker threads
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Kernel-Level Synchronization

e Avoid lock-everything effects in kernel mode

o Reduced set of operations/data structures
o Inherent strict coupling among the LPs

7 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing



Kernel-Level Synchronization

e Avoid lock-everything effects in kernel mode
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o Inherent strict coupling among the LPs

e Frequent updates involve input/output queues

o Core of the cross-LP dependencies

o Updates by the worker thread currently running the owener LP
Additionally, by worker threads running other LPs

[¢]

- A Symmetric Multi-threaded Architecture for Load-sharing




Kernel-Level Synchronization

e Avoid lock-everything effects in kernel mode

o Reduced set of operations/data structures
o Inherent strict coupling among the LPs

e Frequent updates involve input/output queues
o Core of the cross-LP dependencies
o Updates by the worker thread currently running the owener LP
o Additionally, by worker threads running other LPs

e Critical sections’ duration is dependent on actual time-complexity
of the queue-update operation.
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Top/Bottom Halves (1)

e Operations involving data-structures updates are logically
considered as interrupts

e Upon the receival of an interrupt, the task is not immediately
finalized

e A light (constant time) top-half module is executed, for registering
the operation to be performed

8 of 18 - A Symmetric Multi-threaded Architecture for Load-sharing



Top/Bottom Halves (1)

e Operations involving data-structures updates are logically
considered as interrupts
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e Three situations can explicitly produce an interrupt:
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which produces a new event to be scheduled for the locally hosted LP;
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Top/Bottom Halves (1)

e Operations involving data-structures updates are logically
considered as interrupts

e Upon the receival of an interrupt, the task is not immediately
finalized

e A light (constant time) top-half module is executed, for registering
the operation to be performed

e Three situations can explicitly produce an interrupt:

1. A worker thread is running a locally hosted LP; in forward mode,
which produces a new event to be scheduled for the locally hosted LP;

2. A worker thread is currently running a locally hosted LP; in rollback
mode, giving rise to the production of an antimessage destined to LP;

3. The message passing layer notifies the worker thread about a new
message/antimessage incoming from some remote kernel instance.
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Top/Bottom Halves (2)

LP forward mode LP rollback mode
running running
¢ ¢message #ntimessage

Isymmetric multi-threaded kernel interrupt handling layer I

message/antimessage
from a remote kernel

top-half:

1) lock the recipient LP | LP_LOCKS |
2) enqueue bottom half ___

3)flag the recipient LP ™~ | Bottom-Halves Queues |
4) unlock the recipient LP

[ LP_FLAGS
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Computational Power Reallocation Policy

e The symmetric multi-threaded kernel allows scaling up/down the
amount of per-kernel worker threads.

e This feature allows for dynamically reallocating the computational
power wrt the workload variations

Cior available CPU cores
Kiot (< Ciot) active symmetric kernel instances

Goal: determine C; (1 < G < Kior) VK; for a given wall-clock-time
window, so to improve resource exploitation.
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Computational Power Reallocation Policy (2)

Idea: Dynamically assign an amount of CPU-cores to kernel K; which
is proportional to the actual computation requirements of K; for the
achievement of its relative event rate, compared to the one by the
other kernels.

wevr; = evr; . JAY,
~—~

current event rate average CPU time for processing events

The Power Reallocation follows the following steps:

Wevr;

o= —f—— 1
S5 wevr; W

G = La,- : CtotJ (2)
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Computational Power Reallocation Policy (3)

VK; s.t. GG > numLP;, C; = numLP; (3)

At this point, some CPU-cores might be unassigned yet, which we do
on the basis of the request for allocation remainder:

ri = [(cj - Ceot) — Cil (4)

e We order the kernels for which the finalization of C; values still
needs to be performed according to decreasing values of the
product r; - wcta;

e \We assign the remaining CPU-cores according to a round-robin
rule following the priority defined by such an ordering
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Binding LPs to Worker Threads

e A given set of LPs hosted by K; is temporarily bind to a specific
worker thread

e Once the new value for C; is computed, the policy to determine
which LPs are bind to a specific worker thread is:

o For LP; hosted by K; we compute cpu, i.e. the total amount of
CPU-time needed for committing its events during the last
observation period

o max; j{cpu!} is considered as a reference knapsack

o A modified greedy-approximation algorithm by George Dantzig for
knapsack solution is executed
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Implementation within ROOT-Sim

e ROOT-Sim is an open-source general-purpose C-based optimistic
simulation platform
e The end-user can transparently rely on the ANSI-C set of

programming facilities

http://www.dis.uniromal.it/~hpdcs/RO0T-Sim/
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Implementation within ROOT-Sim

e ROOT-Sim is an open-source general-purpose C-based optimistic
simulation platform

e The end-user can transparently rely on the ANSI-C set of
programming facilities

http://www.dis.uniromal.it/~hpdcs/RO0T-Sim/

e Worker threads are implemented using pthread tehcnology
e Per-LP data structures are reshuffled:
o per-thread private data (avoid synchronization efforts)
o cache-aligned data structures, via posix_memalign and proper
padding (avoid false cache-sharing)
e Accesses to MPI layer are synchronized via wrappers
e GVT reduction is carried out by one single thread

e Fossil collection is performed by all worker threads in paraIIeI
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Experimental Results

Hardware Setting

e 64-bit NUMA machine

e 32 2-GHz cores

e 64 GB of RAM

Personal Communication Service

e |t implements a simulation model of GSM communication systems
e Channels are modeled in a high fidelity fashion

Traffic

e It simulates a complex highway system (at a single car granularity)
e The topology is a generic graph
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Experimental Results (2)

PCS Application Benchmark
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Experimental Results (3)

Traffic Application Benchmark
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Thanks for your attention

Questions?
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