Machine Learning-based Elastic Cloud Resource Provisioning in the Solvency II Framework

Andrea La Rizza^{1,2} Giuseppe Casarano² Gilberto Castellani^{1,2} Bruno Ciciani¹ Luca Passalacqua¹ Alessandro Pellegrini¹

Sapienza, University of Rome Alef S.r.I

DCPerf 2016

Rationale

- In 2009, the European Union introduced the Solvency II Directive
- All EU insurance companies have to periodically assess their risk
- This is an extremely complex and resource-intensive task
 - o technical provisions must be evaluated in a market-consistent way
 - value at risk measured with 99.5% confidence over 1 year unwinding
 - o risk depends on all the sources the company could be exposed
- Companies have been required to equip with adequate (costly) IT infrastructures
- The Directive became effective on January 2016

The Goals

- 1. Move Solvency II-related computation to the cloud
- 2. Make this migration as transparent as possible to the user
- Reduce the overall cost faced by companies to enforce Solvency II requirements
- 4. Fine tune the amount of computing resources taken from the cloud to meet Solvency II time requirements (QoS)
- 5. Ensure complete data privacy

DISAR—Dynamic Investment Strategy with Accounting Rules

- DISAR targets the evaluation and control of minimum-guaranteed profit-sharing life policies in Italy
 - It is based on market-consistent evaluation criteria under uncertainty in a general asset-liability management framework
 - It relies on a stochastic model considering several sources of financial uncertainty and actuarial risks
- Example: single premium pure endowment insurance contract, focusing on financial risks
- The value at time *T* of the benefits promised by the insurance are:

$$Y_t = C_o \Phi_T \mathbb{1}_{\{E(T)\}}$$

DISAR—Dynamic Investment Strategy with Accounting Rules

Φ_T is a readjustment factor:

$$\Phi_T = \prod_{t=1}^T (1 + \rho_t) = (1 + i)^{-T} \prod_{t=1}^T \left(1 + \max\{\beta I_t, i\} \right)$$

• ρ_t is the readjustment rate:

$$\rho_t = \frac{\max\{\beta I_t, i\} - i}{1 + i}$$

- Valuation of risk requires to compute the distribution of the value Y_t at time t of the random variable Y_T
- ullet The distribution of Y_t is determined using nested Monte Carlo
 - For each real-world scenario, a second-stage Monte Carlo set of scenarios is generated

Parallelizing DISAR

- DISAR relies on elementary elaboration blocks (EEBs):
 - they share common characteristics
 - they are identical from the point of view of risk
 - their computation is based on Monte Carlo simulation
- Monte Carlo simulation can be distributed on multiple nodes
- Locally-computed results are then combined together
- Data scatter/gather can be supported using Message Passing primitives
- EEBs are anonymized data

Deploying DISAR on the cloud

- MPI-based nature of EEB computation makes it easy to orchestrate computation on the cloud
 - Starcluster is a valuable tool to technically make it possible
- Determining the best amount of resources is not a trivial task
- We rely on Machine Learning to predict the best-suited amount of VM instances to:
 - meet time requirements related to Solvency II directive
 - keep companies outlay low
- 6 different predictors evaluated: Multi-Layer Perceptron, Random Trees, Random Forests, IBk, KStar, Decision Tables

Deploying DISAR on the cloud

- We populate an execution time database every time a computation is completed
 - This is independent of the actual company
- We define a family of prediction models P, where each $p_x: M \times \mathbb{N} \times F \to \mathbb{R}^+$
 - *M* is the domain of available virtualized architectures
 - \circ $n \in \mathbb{N}$ is the number of instantiated VMs
 - \circ F is the set of parameters of interest of the model
 - x defines the ML algorithm used
- We evaluate each p_x on the whole domain (n is thresholded by the user) and compute the average value on x

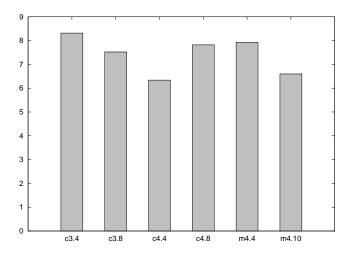
Deploying DISAR on the cloud

- A T_{max} threshold specifies the maximum time constraint for the computation
 - Any $\bar{p_x}(m, n, f) > T_{max}$ is discarded
- Each VM instance $m \in M$ is associated with a per-hour cost, which is mapped to the global computation cost c
- Among all the tuples $\langle m, n, c \rangle$, we select the one with lowest cost c
- To account for *exploration*, we enforce ε -greedy policy
- We anyhow ensure the T_{max} constraint

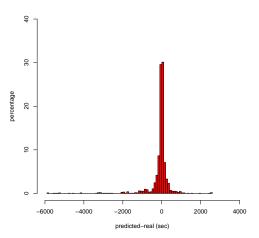
Experimental Assessment

- We have used 3 real-world (Italian) portfolios
- We have picked 6 different virtualized infrastructures from Amazon:
 - o Different allocated computing power
 - Different cost per hour
- We focus on prediction error and performance speedup
- Immediate results: the total experimentation is made of:
 - 1500 different runs
 - Total cost is 128\$ (way less than any high-end computing grid!)
- "Forced" executions give rise to:
 - Cost decrease up to 54%
 - Time reduction up to 48%

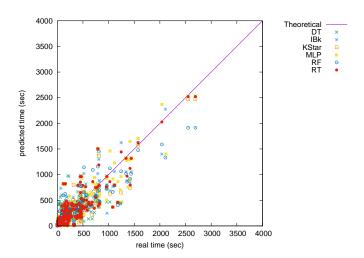
Execution speedup



Prediction Accuracy



Prediction Accuracy



Thanks for your attention

どもありがとうございます

Questions?

pellegrini@dis.uniroma1.it http://www.dis.uniroma1.it/~pellegrini

