Optimizing Memory Management for Optimistic Simulation with Reinforcement Learning

Alessandro Pellegrini

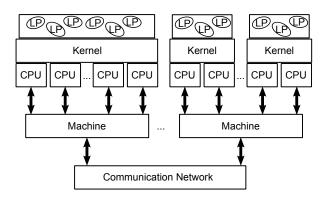
Sapienza, University of Rome

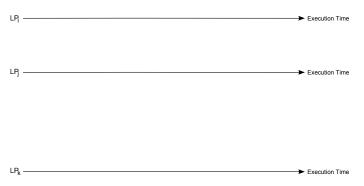
HPCS 2016

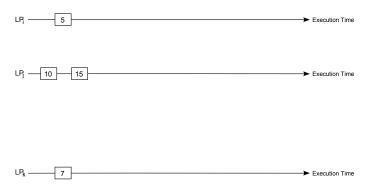
Context

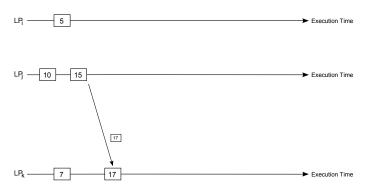
- Simulation is a powerful technique to explore complex scenarios
- Parallel Discrete Event Simulation (PDES) has been applied to a large set of research fields
- Speculative Simulation (Time Warp-based) is proven to be effective to deliver high performance simulations
- Ensuring consistency of speculative simulation requires effort
- Transparency towards the application-model developer is critical

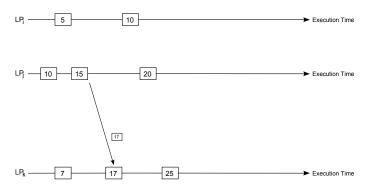
Organization of a Time Warp Kernel

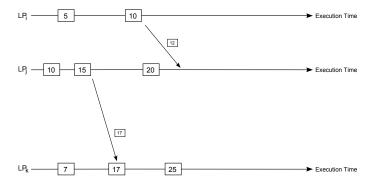


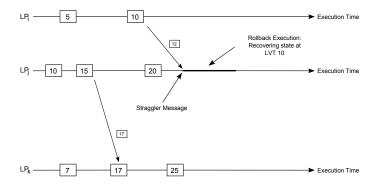


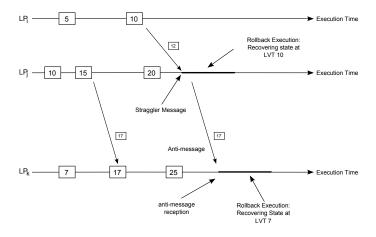


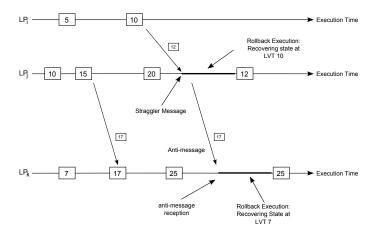












Memory Management and Rollbacks

How can a runtime environment restore a state?

Memory Management and Rollbacks

- How can a runtime environment restore a state?
- It has to know the complete memory map of each LP
- It should take "sometimes" a snapshot of that map
- The snapshot could be either full or incremental
- Memory management is fundamental to Time Warp systems
 - Too many snapshots: memory/latency inefficiency
 - Too few: rollbacks are long!
 - Full vs incremental: how to decide?

Transparency

- Interception of memory-related operations (no platform APIs)
- No application-level procedure for (incremental) log/restore tasks

Optimism-Aware Runtime Supports

 Recoverability of generic memory operations: allocation, deallocation, and updating

Incrementality

- Cope with memory "abuse" of speculative rollback-based synchronization schemes
- Enhance memory locality

Lightweight software instrumentation

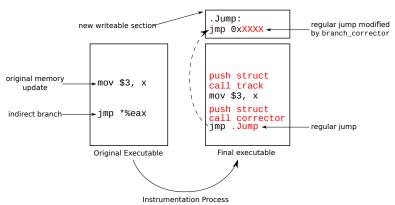
- Optimized memory-write access tracing and logging
- o Arbitrary-granularity memory-write tracing
- Concentration of most of the instrumentation tasks at a pre-running stage:
 - No costly runtime dynamic disassembling

Standard API wrappers

- Code can call standard malloc services
- Memory map transparently managed by the simulation platform

- Memory (for each LP) is pre-allocated
- Requests are served on a chunk basis
- Explicit avoidance of per-chunk metadata
 - o Block status bitmap: tracks used chunks
 - o Dirty bitmap: tracks updated chunks since last log

We use Hijacker to track memory-update instructions



Multi-code packs two different version of the program

Memory management self-optimization

- To optimize the memory manager we have to determine:
 - When to take a snapshot
 - Its mode (incremental vs incremental)
- But to take an incremental log, tracing must be active
- Traditional approaches are based on analytic models
 - Periodic recomputation (e.g., checkpoint interval)
 - Non-responsive if dynamics change fast
 - Might not capture secondary effects

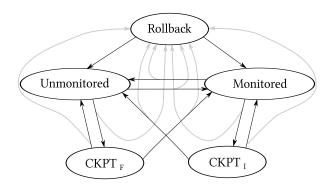
Memory management self-optimization

- To optimize the memory manager we have to determine:
 - When to take a snapshot
 - Its mode (incremental vs incremental)
- But to take an incremental log, tracing must be active
- Traditional approaches are based on analytic models
 - Periodic recomputation (e.g., checkpoint interval)
 - Non-responsive if dynamics change fast
 - Might not capture secondary effects
- We use reinforcement learning

Reinforcement Leraning-based self-optimization

- An agent takes an action in the environment depending on the current state
- An a-posteriori reward tells whether the choice was good
- Previous decisions affect future ones (we learn from history!)
- With some random probability, we ignore history and explore
- We take an action after the execution of each event
- After some knowledge has been acquired, the system can become very responsive

States and actions



Actions: Monitored, Unmonitored, Checkpoint

The reward

- We want to reduce the time spent in non-necessary tasks
- We define the *expected computation loss*:

$$\Gamma = \mathbb{E}\left[\int_0^T X(t)dt\right]$$

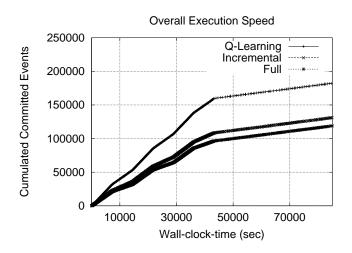
where:

$$X(t) = \left\{ \begin{array}{ll} 0 & \text{if } x = \text{Non-Incremental} \\ \frac{\delta_M}{(\delta_e + \delta_M)} & \text{if } x = \text{Incremental} \\ 1 - \gamma & \text{if } x = \text{CKPT}_I \\ 1 & \text{if } x = \text{CKPT}_F \\ 1 & \text{if } x = \text{Rollback} \end{array} \right.$$

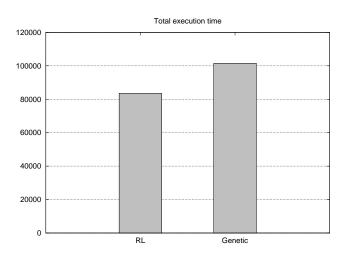
Experimental Setup

- 64-bit NUMA machine, 24 cores, 32GB of RAM
- SuSe Enterprise 11, Linux 2.6.32.13
- GSM coverage simulation model
- High fidelity model (fading, power regulation, meteorological conditions)
- Ring highway coverage
- 1000 channels per cell
- Variable call interarrival (simulation of one week of traffic)

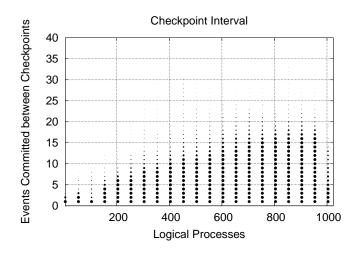
Experimental Results



Experimental Results



Experimental Results



Thanks for your attention

Questions?

pellegrini@dis.uniroma1.it http://www.dis.uniroma1.it/~pellegrini https://github.com/HPDCS/ROOT-Sim