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Context

• Simulation is a powerful technique to explore complex scenarios

• Parallel Discrete Event Simulation (PDES) has been applied to a
large set of research fields

• Speculative Simulation (Time Warp-based) is proven to be
effective to deliver high performance simulations

• Ensuring consistency of speculative simulation requires effort

• Transparency towards the application-model developer is critical
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Organization of a Time Warp Kernel
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The Synchronization Problem
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Memory Management and Rollbacks

• How can a runtime environment restore a state?

• It has to know the complete memory map of each LP

• It should take “sometimes” a snapshot of that map

• The snapshot could be either full or incremental

• Memory management is fundamental to Time Warp systems
◦ Too many snapshots: memory/latency inefficiency
◦ Too few: rollbacks are long!
◦ Full vs incremental: how to decide?
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Our memory management organization

• Transparency
◦ Interception of memory-related operations (no platform APIs)
◦ No application-level procedure for (incremental) log/restore tasks

• Optimism-Aware Runtime Supports
◦ Recoverability of generic memory operations: allocation, deallocation,

and updating

• Incrementality
◦ Cope with memory “abuse” of speculative rollback-based

synchronization schemes
◦ Enhance memory locality
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Our memory management organization

• Lightweight software instrumentation
◦ Optimized memory-write access tracing and logging
◦ Arbitrary-granularity memory-write tracing
◦ Concentration of most of the instrumentation tasks at a pre-running

stage:

• No costly runtime dynamic disassembling

• Standard API wrappers
◦ Code can call standard malloc services
◦ Memory map transparently managed by the simulation platform
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Our memory management organization
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• Memory (for each LP) is pre-allocated

• Requests are served on a chunk basis

• Explicit avoidance of per-chunk metadata
◦ Block status bitmap: tracks used chunks
◦ Dirty bitmap: tracks updated chunks since last log
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Our memory management organization

• We use Hijacker to track memory-update instructions

mov $3, x
original memory

update

jmp *%eaxindirect branch

mov $3, x

jmp .Jump

call track

jmp 0xXXXX
.Jump:

push struct

new writeable section regular jump modi ed

by branch_corrector

call corrector

Instrumentation Process

Original Executable Final executable

push struct

regular jump

• Multi-code packs two different version of the program
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Memory management self-optimization

• To optimize the memory manager we have to determine:
◦ When to take a snapshot
◦ Its mode (incremental vs incremental)

• But to take an incremental log, tracing must be active

• Traditional approaches are based on analytic models
◦ Periodic recomputation (e.g., checkpoint interval)
◦ Non-responsive if dynamics change fast
◦ Might not capture secondary effects

• We use reinforcement learning
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Reinforcement Leraning-based self-optimization

• An agent takes an action in the environment depending on the
current state

• An a-posteriori reward tells whether the choice was good

• Previous decisions affect future ones (we learn from history!)

• With some random probability, we ignore history and explore

• We take an action after the execution of each event

• After some knowledge has been acquired, the system can become
very responsive
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States and actions

Actions: Monitored, Unmonitored, Checkpoint
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The reward

• We want to reduce the time spent in non-necessary tasks

• We define the expected computation loss:

Γ = E
[∫ T

0
X (t)dt

]
• where:

X (t) =


0 if x = Non-Incremental
δM

(δe+δM) if x = Incremental

1 − γ if x = CKPTI

1 if x = CKPTF

1 if x = Rollback
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Experimental Setup

• 64-bit NUMA machine, 24 cores, 32GB of RAM

• SuSe Enterprise 11, Linux 2.6.32.13

• GSM coverage simulation model

• High fidelity model (fading, power regulation, meteorological
conditions)

• Ring highway coverage

• 1000 channels per cell

• Variable call interarrival (simulation of one week of traffic)
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Experimental Results
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Thanks for your attention

Questions?

pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

https://github.com/HPDCS/ROOT-Sim
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