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Context

e Simulation is a powerful technique to explore complex scenarios

e Parallel Discrete Event Simulation (PDES) has been applied to a
large set of research fields

e Speculative Simulation (Time Warp-based) is proven to be
effective to deliver high performance simulations

e Ensuring consistency of speculative simulation requires effort

e Transparency towards the application-model developer is critical
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Organization of a Time Warp Kernel
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The Synchronization Problem
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The Synchronization Problem
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The Synchronization Problem
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Memory Management and Rollbacks

e How can a runtime environment restore a state?
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Memory Management and Rollbacks

e How can a runtime environment restore a state?

e |t has to know the complete memory map of each LP
e |t should take “sometimes” a snapshot of that map

e The snapshot could be either full or incremental

e Memory management is fundamental to Time Warp systems

o Too many snapshots: memory/latency inefficiency
o Too few: rollbacks are long!

o Full vs incremental: how to decide?
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Our memory management organization

e Transparency

o Interception of memory-related operations (no platform APIs)
o No application-level procedure for (incremental) log/restore tasks

e Optimism-Aware Runtime Supports

o Recoverability of generic memory operations: allocation, deallocation,
and updating

¢ Incrementality
o Cope with memory “abuse” of speculative rollback-based
synchronization schemes
o Enhance memory locality
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Our memory management organization

¢ Lightweight software instrumentation

o Optimized memory-write access tracing and logging
o Arbitrary-granularity memory-write tracing

o Concentration of most of the instrumentation tasks at a pre-running
stage:

e No costly runtime dynamic disassembling
e Standard API wrappers

o Code can call standard malloc services

o Memory map transparently managed by the simulation platform

7 of 18 - Optimizing Memory Management for Optimistic Simulation with Reinforcement Learning




Our memory management organization

malloc_area
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e Memory (for each LP) is pre-allocated
e Requests are served on a chunk basis

e Explicit avoidance of per-chunk metadata
o Block status bitmap: tracks used chunks
o Dirty bitmap: tracks updated chunks since last log
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Our memory management organization

e We use Hijacker to track memory-update instructions
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Instrumentation Process

e Multi-code packs two different version of the program
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Memory management self-optimization

e To optimize the memory manager we have to determine:
o When to take a snapshot
o Its mode (incremental vs incremental)

e But to take an incremental log, tracing must be active

e Traditional approaches are based on analytic models
o Periodic recomputation (e.g., checkpoint interval)
o Non-responsive if dynamics change fast
o Might not capture secondary effects
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Memory management self-optimization

To optimize the memory manager we have to determine:
o When to take a snapshot
o Its mode (incremental vs incremental)

But to take an incremental log, tracing must be active

Traditional approaches are based on analytic models

o Periodic recomputation (e.g., checkpoint interval)
o Non-responsive if dynamics change fast
o Might not capture secondary effects

e We use reinforcement learning
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Reinforcement Leraning-based self-optimization

e An agent takes an action in the environment depending on the
current state

e An a-posteriori reward tells whether the choice was good
e Previous decisions affect future ones (we learn from history!)

e With some random probability, we ignore history and explore

e We take an action after the execution of each event

e After some knowledge has been acquired, the system can become
very responsive
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States and actions

Rollback

Actions: Monitored, Unmonitored, Checkpoint
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-
The reward

e \We want to reduce the time spent in non-necessary tasks

e We define the expected computation loss:

r=E [/OTX(t)dt}

e where:
0 if x = Non-Incremental
% if x = Incremental
X(t)=4 1-~ ifx=CKPT,

1 if x = CKPTE
1 if x = Rollback
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Experimental Setup

e 64-bit NUMA machine, 24 cores, 32GB of RAM
e SuSe Enterprise 11, Linux 2.6.32.13

e GSM coverage simulation model

e High fidelity model (fading, power regulation, meteorological
conditions)

e Ring highway coverage
e 1000 channels per cell

e Variable call interarrival (simulation of one week of traffic)
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Experimental Results
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Experimental Results
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Experimental Results
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Thanks for your attention

Questions?

pellegrini@dis.uniromal.it
http://www.dis.uniromal.it/~pellegrini
https://github.com/HPDCS/ROOT-Sim
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