Transparent Sqlpport for Partial Rollback in Software
ransactional Memories

Alice Porfirio
Alessandro Pellegrini
Pierangelo Di Sanzo

Francesco Quaglia

High Performance and Dependable

Computing Systems Group
SAP]ENZA Sapienza, University of Rome
UNIVERSITA DI ROMA
Euro-Par 2013

Research Context: Explicit Synchronization

e The most fundamental (and simple!) synchronization primitive is
the lock

1 void transfer_money(int *ball, int *bal2, int amount) {

2 lock(&global_lock) ;

3 if (¥*ball - amount > 0) {
4 *ball -= amount;

5 *bal2 += amount;

6 }

7 unlock(&global_lock) ;

8 }

2 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Research Context: Explicit Synchronization (2)

e |Locks can be forced to block until released! ®

T1—| lock () H Actual Processing... Hunlock()I >

3 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 3

Research Context: Explicit Synchronization (2)

e |Locks can be forced to block until released! ®

T1—| lock () H Actual Processing... Hunlock()I

Y

e |t is very simple

e There is no real concurrency

3 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 3

Research Context: Fine Grain Locking

e Poor programmability and

Gives better perfomance

transparency

O

[¢]
[¢]
o
[¢]

Debugging is a nightmare

Yet it still has problems

Deadlocks
Livelocks
Convoying
Priority Inversion

1 void transfer_money(int *ball,

13

14 }

int *bal2, int amount) {

lock(&lock_ball);

if (¥*ball - amount > 0) {
*ball -= amount;

unlock(&lock_ball) ;

lock(&lock bal2);
*bal2 += amount;
unlock(&lock _bal2) ;
} else {
unlock(&lock ball);

4 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Research Context: Fine Grain Locking (2)

e Locks do not compose!

1 void deposit(int *bal, int amnt)

{

lock(&lock_bal ;
’ ock(&lock_balance) 1 void transfer(int *ball, int *
3 *bal += amnt; .
4 unlock(&lock_balance) ; bal2, int amnt) {
.} - ’ 2 withdraw(ball, amnt);
) 3 deposit(bal2, amnt);
7 void withdraw(int *bal, int amnt) : ¥

{
int int *ball, int *bal2

8 lock(&lock_balance) ; o in s\'.{um(ln a n al2)

i £ (* - >
° if (xbal amnt 0 A 7 return *ball + *bal2;
10 *bal -= amnt;

s ¥

11 }
12 unlock(&lock_balance);
13 }

5 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Research Context: Software Transactional Memories

e Key idea:
o Hide away synchronization issues from the programmer
o Replace locks with atomic transactions

e Advantages:
o Avoid deadlocks, priority inversions, convoying
o Simpler to reason about, verify, compose
o Provide synchronization transparency in concurrent applications
o Synchronization code becomes less error-prone

1 void transfer(int #*ball, int *bal2, int amnt) {

2 atomic {

3 withdraw(ball, amnt);
4 deposit(bal2, amnt);
5 }

6 }

6 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Research Context: Software Transactional Memories

e Optimistic execution yields performance gains similar to fine grain
locking at the simplicity of coarse grain locking

Time Coarse-grained

A / locking

STM

/

Fine-grained
locking

>
Threads

7 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Motivations

e In Software Transactional Memories conflicts are handled via
Conflict Detection and Management (CDMAN) algorithms
e Generally when a conflict arises some transaction is aborted

o Thread'’s execution is rolled back
o All the work carried out in the transaction is squashed

8 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Motivations

e In Software Transactional Memories conflicts are handled via
Conflict Detection and Management (CDMAN) algorithms
e Generally when a conflict arises some transaction is aborted

o Thread'’s execution is rolled back
o All the work carried out in the transaction is squashed

e Partial rollback could save a portion of this work

o It can reduce the overall amount of work to be performed
o Must be supported with minimal housekeeping overhead

8 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Target CDMAN Algorithm: Commit-Time Locking

e Used in implementations such as TL2 or TinySTM

e Relies on a Global Version Clock (GVC)
o A shared global counter
o Atomically incremented by means of atomic CAS
o Stored as Trastaction-Start Timestamp (TST) when a Tx begins

e Shared data are associated with
o A lock bit
o A timestamp

9 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Target CDMAN Algorithm: Commit-Time Locking (2)

On R/W operations the data's timestamp is compared to TST

If it is greater, a conflict arises and the Tx is aborted

At commit time all write locations’ lock bits are locked and their
timestamps are rechecked

e |f no conflicts arise

o New values are written back into shared objects
o Their timestamps are updated
o The GVC is incremented

10 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:

o All previous reads are revalidated
o The first invalid read is the execution restarting point

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 3

Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:

o All previous reads are revalidated
o The first invalid read is the execution restarting point

execution
time] >
BEGIN

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:

o All previous reads are revalidated
o The first invalid read is the execution restarting point

execution >
time

BEGIN READ,

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:

o All previous reads are revalidated
o The first invalid read is the execution restarting point

f()
execution
time >

BEGIN READ, READ,

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:

o All previous reads are revalid

ated

o The first invalid read is the execution restarting point

f0

i

execution

90

N

time

BEGIN READ, READ, READ,

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:

o All previous reads are revalidated
o The first invalid read is the execution restarting point

90

0 0|
.

execution >
time

BEGIN READ, READ, READ, READ,

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:

o All previous reads are revalidated
o The first invalid read is the execution restarting point

90

f0 f0) e
,_

execution >
time

BEGIN READ, READ, READ, READ,

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:

o All previous reads are revalidated
o The first invalid read is the execution restarting point

90

f0 f() e
,_

execution
time >
BEGIN READ, READ, READ; READ,
snapshot 3
extension

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:

o All previous reads are revalidated
o The first invalid read is the execution restarting point

90

f0 f() e
,_

execution >
time

BEGIN READ, READ, READ, READ,

shapshot
extension

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:

o All previous reads are revalidated
o The first invalid read is the execution restarting point

90

f0 f() e
,_

execution
time >
BEGIN READ, READ, READ; READ,
shapshot / / >
extension N N T

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:

o All previous reads are revalidated
o The first invalid read is the execution restarting point

90

f0 f() e
,_

execution >
time

BEGIN READ, READ, READ, READ,

shapshot / /
extension N N4

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:

o All previous reads are revalidated
o The first invalid read is the execution restarting point

90

f0 f() L
,_

execution >
time

BEGIN READ, READ, READ, READ,

shapshot / /
extension N N4

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:

o All previous reads are revalidated
o The first invalid read is the execution restarting point

90

f0 f() L
,_

BEGIN READ, READ, READ, READ,

shapshot / /
extension N4 N

2. Coherency between read/write sets is ensured by determining
causality relations

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

execution
time

Y

Partial Rollback: Algorithm Sketch

3. Thread-private data are transparently logged

o This is necessary to reproduce the same execution path within the
transaction

1 int i, j;

2

3 atomic {

4 for(i = 0; i < 10; i++) {

5 j = shared_read(&shared_object);

6 if(i == j) {

7 shared_write(&other_object, j);
8 }

9 }

10 }

12 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 3

Partial Rollback: Algorithm Sketch

3. Thread-private data are transparently logged
o This is necessary to reproduce the same execution path within the
transaction

1 void f(int *j) {

2 int i;

3

4 atomic {

5 for(i = 0; i < 10; i++) {

6 *j = shared_read(&shared_object);
7 if (i == *j) {

8 shared_write(&other_object, *j);
9 }

10 }

1}

12 }

13 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 3

Partial Rollback: Algorithm Sketch

3. Thread-private data are transparently logged
o The application-level code is instrumented by relying on Hijacker, an
assembly-level code manipulator, targeting x86/x86_64 assembly code
e mov instruction are identified at compile time
e a lightweight assembly module is inserted before them
o it fastly computes the target address of the memory update operation

14 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Algorithm Sketch

3. Thread-private data are transparently logged

o The application-level code is instrumented by relying on Hijacker, an
assembly-level code manipulator, targeting x86/x86_64 assembly code

e mov instruction are identified at compile time
e a lightweight assembly module is inserted before them
o it fastly computes the target address of the memory update operation

o When a Tx begins, a stack-update interval is defined | = [sp, sp]

o The computed destination/size of mov instructions is used to update
the boundaries of /

o Before a transactional read, Hijacker inserts code to log the
stack-update interval and CPU state

o After the stack-update interval is logged, we again set | = [sp, sp]

14 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Partial Rollback: Algorithm Sketch

4. Upon a partial rollback, the CPU state and stack state are put
back in place

o CPU states are managed via System V getcontext () /setcontext ()
o A stack restore is performed incrementally

o The stack log chain is backward traversed

o Already-updated portions are no longer updated

partial rollback
90

1) 0

execution
time I I

BEGIN READ, READ, READ, READ,

stack
incremental I logged
chain
15 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Advantages of the approach

e We enforce full transparency: no modification to the application
code is required

e Update-stack regions are contiguous: efficient logs via optimized
movs instructions

e Pointer variables are trivially handled

e Compilers can optimize out stack frames without affecting
correctness

16 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Experimental Results

e Implementation within TinySTM
e Reference benchmark: STAMP STM suite

o ssca2
o kmeans

¢ No bias towards conflicting in early phase of Txs

e We vary the amount of data on which they operate

e 32-core HP ProLiant server, NUMA architecture
e 64 Gb RAM
e Linux Kernel 2.6.32-5-amd64 — Debian 6

17 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 7

Experimental Results

e Medium transactional computation, small data set: high contention
e Execution time reduced by 40%

kmeans-low+
0.5

tinySTM with partial rollback
tinySTM ——e--

04 | q
0.3

0.2

Application execution time

jcs
0.1 *ovso0
©0-0000. 50

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Threads

18 of Transparent Support for Partial Rollback in Software Transactional Memories 3

0

Experimental Results

e Small transactional computation, medium data set: low contention
e Limited overhead, < 7%

ssca2+
finyS“I'M With ‘part‘ial ((‘Jllba‘ck ‘
om

02| tinySTM]
[}
£
§ 01543 b
3 5000000000000 00T e0" R
3
.5 0.1 q
T
2
g
< 0.05 q

0 P -

L L L
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Threads

19 of nsparent Support for Partial Rollback in Software Transactional Memories 3

Thanks for your attention

Questions?
pellegrini@dis.uniromal.it

http://www.dis.uniromal.it/~pellegrini
http://www.dis.uniromal.it/~hpdcs

20 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories 2

