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Research Context: Explicit Synchronization

• The most fundamental (and simple!) synchronization primitive is
the lock

1 void transfer_money(int *bal1, int *bal2, int amount) {

2 lock(&global lock);

3 if(*bal1 - amount > 0) {

4 *bal1 -= amount;

5 *bal2 += amount;

6 }

7 unlock(&global lock);

8 }
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Research Context: Explicit Synchronization (2)

• Locks can be forced to block until released!

T1
lock() Actual Processing... unlock()

T2
lock() Actual Processing...

• It is very simple

• There is no real concurrency
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Research Context: Fine Grain Locking

• Gives better perfomance

• Poor programmability and
transparency

• Debugging is a nightmare

• Yet it still has problems
◦ Deadlocks
◦ Livelocks
◦ Convoying
◦ Priority Inversion
◦ . . .

1 void transfer_money(int *bal1,

int *bal2, int amount) {

2

3 lock(&lock bal1);

4 if(*bal1 - amount > 0) {

5 *bal1 -= amount;

6 unlock(&lock bal1);

7

8 lock(&lock bal2);

9 *bal2 += amount;

10 unlock(&lock bal2);

11 } else {

12 unlock(&lock bal1);

13 }

14 }
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Research Context: Fine Grain Locking (2)

• Locks do not compose!

1 void deposit(int *bal, int amnt)

{

2 lock(&lock_balance);

3 *bal += amnt;

4 unlock(&lock_balance);

5 }

6

7 void withdraw(int *bal, int amnt)

{

8 lock(&lock_balance);

9 if(*bal - amnt > 0) {

10 *bal -= amnt;

11 }

12 unlock(&lock_balance);

13 }

1 void transfer(int *bal1, int *

bal2, int amnt) {

2 withdraw(bal1, amnt);

3 deposit(bal2, amnt);

4 }

5

6 int sum(int *bal1, int *bal2)

{

7 return *bal1 + *bal2;

8 }
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Research Context: Software Transactional Memories

• Key idea:
◦ Hide away synchronization issues from the programmer
◦ Replace locks with atomic transactions

• Advantages:
◦ Avoid deadlocks, priority inversions, convoying
◦ Simpler to reason about, verify, compose
◦ Provide synchronization transparency in concurrent applications
◦ Synchronization code becomes less error-prone

1 void transfer(int *bal1, int *bal2, int amnt) {

2 atomic {
3 withdraw(bal1, amnt);

4 deposit(bal2, amnt);

5 }
6 }
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Research Context: Software Transactional Memories

• Optimistic execution yields performance gains similar to fine grain
locking at the simplicity of coarse grain locking

STM

Fine-grained 

locking

Coarse-grained 

locking

Threads

Time
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Partial Rollback: Motivations

• In Software Transactional Memories conflicts are handled via
Conflict Detection and Management (CDMAN) algorithms

• Generally when a conflict arises some transaction is aborted
◦ Thread’s execution is rolled back
◦ All the work carried out in the transaction is squashed

• Partial rollback could save a portion of this work
◦ It can reduce the overall amount of work to be performed
◦ Must be supported with minimal housekeeping overhead
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Target CDMAN Algorithm: Commit-Time Locking

• Used in implementations such as TL2 or TinySTM

• Relies on a Global Version Clock (GVC)
◦ A shared global counter
◦ Atomically incremented by means of atomic CAS
◦ Stored as Trastaction-Start Timestamp (TST) when a Tx begins

• Shared data are associated with
◦ A lock bit
◦ A timestamp
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Target CDMAN Algorithm: Commit-Time Locking (2)

• On R/W operations the data’s timestamp is compared to TST

• If it is greater, a conflict arises and the Tx is aborted

• At commit time all write locations’ lock bits are locked and their
timestamps are rechecked

• If no conflicts arise
◦ New values are written back into shared objects
◦ Their timestamps are updated
◦ The GVC is incremented
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Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:
◦ All previous reads are revalidated
◦ The first invalid read is the execution restarting point
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2. Coherency between read/write sets is ensured by determining
causality relations
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Partial Rollback: Algorithm Sketch

3. Thread-private data are transparently logged
◦ This is necessary to reproduce the same execution path within the

transaction

1 int i, j;

2

3 atomic {

4 for(i = 0; i < 10; i++) {

5 j = shared_read(&shared_object);

6 if(i == j) {

7 shared_write(&other_object, j);

8 }

9 }

10 }

12 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

3. Thread-private data are transparently logged
◦ This is necessary to reproduce the same execution path within the

transaction

1 void f(int *j) {

2 int i;

3

4 atomic {

5 for(i = 0; i < 10; i++) {

6 *j = shared_read(&shared_object);

7 if(i == *j) {

8 shared_write(&other_object, *j);

9 }

10 }

11 }

12 }
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Partial Rollback: Algorithm Sketch

3. Thread-private data are transparently logged
◦ The application-level code is instrumented by relying on Hijacker, an

assembly-level code manipulator, targeting x86/x86 64 assembly code

• mov instruction are identified at compile time
• a lightweight assembly module is inserted before them
• it fastly computes the target address of the memory update operation

◦ When a Tx begins, a stack-update interval is defined I = [sp, sp]

◦ The computed destination/size of mov instructions is used to update
the boundaries of I

◦ Before a transactional read, Hijacker inserts code to log the
stack-update interval and CPU state

◦ After the stack-update interval is logged, we again set I = [sp, sp]
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Partial Rollback: Algorithm Sketch

4. Upon a partial rollback, the CPU state and stack state are put
back in place
◦ CPU states are managed via System V getcontext()/setcontext()
◦ A stack restore is performed incrementally
◦ The stack log chain is backward traversed
◦ Already-updated portions are no longer updated

execution

time

stack

status

incremental

log

chain

BEGIN READ1 READ2 READ3 READ4

f()

g()

f()

modified data

logged

not logged

partial rollback
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Advantages of the approach

• We enforce full transparency: no modification to the application
code is required

• Update-stack regions are contiguous: efficient logs via optimized
movs instructions

• Pointer variables are trivially handled

• Compilers can optimize out stack frames without affecting
correctness
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Experimental Results

• Implementation within TinySTM

• Reference benchmark: STAMP STM suite
◦ ssca2
◦ kmeans

• No bias towards conflicting in early phase of Txs

• We vary the amount of data on which they operate

• 32-core HP ProLiant server, NUMA architecture

• 64 Gb RAM

• Linux Kernel 2.6.32-5-amd64 – Debian 6
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Experimental Results

• Medium transactional computation, small data set: high contention
• Execution time reduced by 40%
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Experimental Results

• Small transactional computation, medium data set: low contention
• Limited overhead, ≤ 7%
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Thanks for your attention

Questions?

pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

http://www.dis.uniroma1.it/∼hpdcs
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