
Transparent Support for Partial Rollback in Software
Transactional Memories

Alice Porfirio
Alessandro Pellegrini
Pierangelo Di Sanzo
Francesco Quaglia

High Performance and Dependable
Computing Systems Group

Sapienza, University of Rome

Euro-Par 2013



Research Context: Explicit Synchronization

• The most fundamental (and simple!) synchronization primitive is
the lock

1 void transfer_money(int *bal1, int *bal2, int amount) {

2 lock(&global lock);

3 if(*bal1 - amount > 0) {

4 *bal1 -= amount;

5 *bal2 += amount;

6 }

7 unlock(&global lock);

8 }

2 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Research Context: Explicit Synchronization (2)

• Locks can be forced to block until released!

T1
lock() Actual Processing... unlock()

T2
lock() Actual Processing...

• It is very simple

• There is no real concurrency

3 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Research Context: Explicit Synchronization (2)

• Locks can be forced to block until released!

T1
lock() Actual Processing... unlock()

T2
lock() Actual Processing...

• It is very simple

• There is no real concurrency

3 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Research Context: Fine Grain Locking

• Gives better perfomance

• Poor programmability and
transparency

• Debugging is a nightmare

• Yet it still has problems
◦ Deadlocks
◦ Livelocks
◦ Convoying
◦ Priority Inversion
◦ . . .

1 void transfer_money(int *bal1,

int *bal2, int amount) {

2

3 lock(&lock bal1);

4 if(*bal1 - amount > 0) {

5 *bal1 -= amount;

6 unlock(&lock bal1);

7

8 lock(&lock bal2);

9 *bal2 += amount;

10 unlock(&lock bal2);

11 } else {

12 unlock(&lock bal1);

13 }

14 }

4 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Research Context: Fine Grain Locking (2)

• Locks do not compose!

1 void deposit(int *bal, int amnt)

{

2 lock(&lock_balance);

3 *bal += amnt;

4 unlock(&lock_balance);

5 }

6

7 void withdraw(int *bal, int amnt)

{

8 lock(&lock_balance);

9 if(*bal - amnt > 0) {

10 *bal -= amnt;

11 }

12 unlock(&lock_balance);

13 }

1 void transfer(int *bal1, int *

bal2, int amnt) {

2 withdraw(bal1, amnt);

3 deposit(bal2, amnt);

4 }

5

6 int sum(int *bal1, int *bal2)

{

7 return *bal1 + *bal2;

8 }

5 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Research Context: Software Transactional Memories

• Key idea:
◦ Hide away synchronization issues from the programmer
◦ Replace locks with atomic transactions

• Advantages:
◦ Avoid deadlocks, priority inversions, convoying
◦ Simpler to reason about, verify, compose
◦ Provide synchronization transparency in concurrent applications
◦ Synchronization code becomes less error-prone

1 void transfer(int *bal1, int *bal2, int amnt) {

2 atomic {
3 withdraw(bal1, amnt);

4 deposit(bal2, amnt);

5 }
6 }

6 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Research Context: Software Transactional Memories

• Optimistic execution yields performance gains similar to fine grain
locking at the simplicity of coarse grain locking

STM

Fine-grained 

locking

Coarse-grained 

locking

Threads

Time

7 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Motivations

• In Software Transactional Memories conflicts are handled via
Conflict Detection and Management (CDMAN) algorithms

• Generally when a conflict arises some transaction is aborted
◦ Thread’s execution is rolled back
◦ All the work carried out in the transaction is squashed

• Partial rollback could save a portion of this work
◦ It can reduce the overall amount of work to be performed
◦ Must be supported with minimal housekeeping overhead

8 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Motivations

• In Software Transactional Memories conflicts are handled via
Conflict Detection and Management (CDMAN) algorithms

• Generally when a conflict arises some transaction is aborted
◦ Thread’s execution is rolled back
◦ All the work carried out in the transaction is squashed

• Partial rollback could save a portion of this work
◦ It can reduce the overall amount of work to be performed
◦ Must be supported with minimal housekeeping overhead

8 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Target CDMAN Algorithm: Commit-Time Locking

• Used in implementations such as TL2 or TinySTM

• Relies on a Global Version Clock (GVC)
◦ A shared global counter
◦ Atomically incremented by means of atomic CAS
◦ Stored as Trastaction-Start Timestamp (TST) when a Tx begins

• Shared data are associated with
◦ A lock bit
◦ A timestamp

9 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Target CDMAN Algorithm: Commit-Time Locking (2)

• On R/W operations the data’s timestamp is compared to TST

• If it is greater, a conflict arises and the Tx is aborted

• At commit time all write locations’ lock bits are locked and their
timestamps are rechecked

• If no conflicts arise
◦ New values are written back into shared objects
◦ Their timestamps are updated
◦ The GVC is incremented

10 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:
◦ All previous reads are revalidated
◦ The first invalid read is the execution restarting point

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:
◦ All previous reads are revalidated
◦ The first invalid read is the execution restarting point

execution

time

BEGIN

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:
◦ All previous reads are revalidated
◦ The first invalid read is the execution restarting point

execution

time

BEGIN READ1

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:
◦ All previous reads are revalidated
◦ The first invalid read is the execution restarting point

execution

time

BEGIN READ1 READ2

f()

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:
◦ All previous reads are revalidated
◦ The first invalid read is the execution restarting point

execution

time

BEGIN READ1 READ2 READ3

f()

g()

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:
◦ All previous reads are revalidated
◦ The first invalid read is the execution restarting point

execution

time

BEGIN READ1 READ2 READ3 READ4

f()

g()

f()

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:
◦ All previous reads are revalidated
◦ The first invalid read is the execution restarting point

execution

time

BEGIN READ1 READ2 READ3 READ4

f()

g()

f()

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:
◦ All previous reads are revalidated
◦ The first invalid read is the execution restarting point

execution

time

BEGIN READ1 READ2 READ3 READ4

f()

g()

f()

snapshot

extension

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:
◦ All previous reads are revalidated
◦ The first invalid read is the execution restarting point

execution

time

BEGIN READ1 READ2 READ3 READ4

f()

g()

f()

snapshot

extension

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:
◦ All previous reads are revalidated
◦ The first invalid read is the execution restarting point

execution

time

BEGIN READ1 READ2 READ3 READ4

f()

g()

f()

snapshot

extension

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:
◦ All previous reads are revalidated
◦ The first invalid read is the execution restarting point

execution

time

BEGIN READ1 READ2 READ3 READ4

f()

g()

f()

snapshot

extension

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:
◦ All previous reads are revalidated
◦ The first invalid read is the execution restarting point

execution

time

BEGIN READ1 READ2 READ3 READ4

f()

g()

f()

snapshot

extension

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

1. When a read conflict arises, we sequentially extend the snapshot:
◦ All previous reads are revalidated
◦ The first invalid read is the execution restarting point

execution

time

BEGIN READ1 READ2 READ3 READ4

f()

g()

f()

snapshot

extension

2. Coherency between read/write sets is ensured by determining
causality relations

11 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

3. Thread-private data are transparently logged
◦ This is necessary to reproduce the same execution path within the

transaction

1 int i, j;

2

3 atomic {

4 for(i = 0; i < 10; i++) {

5 j = shared_read(&shared_object);

6 if(i == j) {

7 shared_write(&other_object, j);

8 }

9 }

10 }

12 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

3. Thread-private data are transparently logged
◦ This is necessary to reproduce the same execution path within the

transaction

1 void f(int *j) {

2 int i;

3

4 atomic {

5 for(i = 0; i < 10; i++) {

6 *j = shared_read(&shared_object);

7 if(i == *j) {

8 shared_write(&other_object, *j);

9 }

10 }

11 }

12 }

13 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

3. Thread-private data are transparently logged
◦ The application-level code is instrumented by relying on Hijacker, an

assembly-level code manipulator, targeting x86/x86 64 assembly code

• mov instruction are identified at compile time
• a lightweight assembly module is inserted before them
• it fastly computes the target address of the memory update operation

◦ When a Tx begins, a stack-update interval is defined I = [sp, sp]

◦ The computed destination/size of mov instructions is used to update
the boundaries of I

◦ Before a transactional read, Hijacker inserts code to log the
stack-update interval and CPU state

◦ After the stack-update interval is logged, we again set I = [sp, sp]

14 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

3. Thread-private data are transparently logged
◦ The application-level code is instrumented by relying on Hijacker, an

assembly-level code manipulator, targeting x86/x86 64 assembly code

• mov instruction are identified at compile time
• a lightweight assembly module is inserted before them
• it fastly computes the target address of the memory update operation

◦ When a Tx begins, a stack-update interval is defined I = [sp, sp]

◦ The computed destination/size of mov instructions is used to update
the boundaries of I

◦ Before a transactional read, Hijacker inserts code to log the
stack-update interval and CPU state

◦ After the stack-update interval is logged, we again set I = [sp, sp]

14 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Partial Rollback: Algorithm Sketch

4. Upon a partial rollback, the CPU state and stack state are put
back in place
◦ CPU states are managed via System V getcontext()/setcontext()
◦ A stack restore is performed incrementally
◦ The stack log chain is backward traversed
◦ Already-updated portions are no longer updated

execution

time

stack

status

incremental

log

chain

BEGIN READ1 READ2 READ3 READ4

f()

g()

f()

modified data

logged

not logged

partial rollback

15 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Advantages of the approach

• We enforce full transparency: no modification to the application
code is required

• Update-stack regions are contiguous: efficient logs via optimized
movs instructions

• Pointer variables are trivially handled

• Compilers can optimize out stack frames without affecting
correctness

16 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Experimental Results

• Implementation within TinySTM

• Reference benchmark: STAMP STM suite
◦ ssca2
◦ kmeans

• No bias towards conflicting in early phase of Txs

• We vary the amount of data on which they operate

• 32-core HP ProLiant server, NUMA architecture

• 64 Gb RAM

• Linux Kernel 2.6.32-5-amd64 – Debian 6

17 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Experimental Results

• Medium transactional computation, small data set: high contention
• Execution time reduced by 40%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
pp

lic
at

io
n 

ex
ec

ut
io

n 
tim

e

Threads

kmeans-low+

tinySTM with partial rollback
tinySTM

18 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Experimental Results

• Small transactional computation, medium data set: low contention
• Limited overhead, ≤ 7%

 0

 0.05

 0.1

 0.15

 0.2

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
pp

lic
at

io
n 

ex
ec

ut
io

n 
tim

e

Threads

ssca2+

tinySTM with partial rollback
tinySTM

19 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories



Thanks for your attention

Questions?

pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

http://www.dis.uniroma1.it/∼hpdcs

20 of 20 - Transparent Support for Partial Rollback in Software Transactional Memories


