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The Advent of NUMA Architectures

• Modern computing architectures have a large amount of RAM and
a high count of cores

• Uniform Memory Access shows a latency which is no longer
affordable

• Non-Uniform Memory Access (NUMA) is the de-facto reference
organization of med/high end systems

• It has anyhow an effect on the efficiency of applications
◦ Accessing memory areas has different costs
◦ Concepts of zones and distance
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How to optimize efficiency on NUMA?

1. Move threads around
◦ It’s a cheap operation
◦ A thread can be moved close to its data

2. Move pages around
◦ It’s more costly
◦ What if a thread has pages in all zones?

3. Move both pages and threads
◦ Multiple threads can need the same pages
◦ They can all be moved to the same zone

You have to know what to move!
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Runtime Determination of Access Patterns

• We want to know what the current working set is
◦ at least a good estimation!

• We do not want to pay a high overhead for this

1. User-level approaches
◦ Based on instrumentation and code injection
◦ Ad-hoc code to monitor memory accesses
◦ This can be intrusive, and cannot be fully disabled

2. System-level approaches
◦ Based on memory protection
◦ Segfaults are the materialization of memory accesses
◦ This approach does not work at all with non-partitioned vitual page

accesses within the same address space

4 of 21



Multi-thread Applications and Page Protection

• All threads live in a same process, so all threads have the same
page table!

wall-clock-time
T2T1

page-table

T3

T1's access: traced

T2's access: not traceddeny access

• Increasing the frequency of denial is not an option
◦ The same thread might fault multiple times on the same page
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MVAS: MultiView Address Space

• Each thread has its memory view on the page table
◦ We call it a sibling page table

• Minor faults can be used to detect accesses to pages
◦ An ad-hoc fault handler is used
◦ We don’t have to use the (costly) chain of supports for a SIGSEGV

• Everything is based on a Linux Kernel Module
◦ A device file is used to interact with the module
◦ ioctl calls can be used to activate/deactivate tracing on a PID
◦ A shell program is provided to manage the interaction
◦ ...the scheduler “must know” what we are doing
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Patching the Linux schedule()

  Original kernel image                            External module

Copy (Step 1)

schedule()

address in the

System-map

Copy (Step 2)

Redirection code (based on jumps) injected in 
the original schedule() function 
to pass control to schedule_hook()

schedule_hook()

function

actual jump

Ad-hoc memory 

view management

for registered 

threads

7 of 21



Scheduling Operations

schedule_hook
current thread 

is registered ?

no

return

yes

yes

1 – deregister current thread

2 – update CR3 to point to current->mm->pgd

3 – tear down sibling page-table 

current->tgid

is registered ?

no

1 – register current thread

2 – setup sibling page-table

3 – update CR3 to point to 

sibling page-table

update CR3 (if needed)

to point to 

current->mm->pgd

current->tgid

is registered ?

yes no

update CR3 

(if needed) to point 

to sibling page-table
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Recall on x86-64 Paging Scheme

DirectoryPML4 Directory Ptr Table O set

0111220212930383947

CR3

PML4E

PDPTE

40

40

Linear Address

Page-Directory-

Pointer Table

PDE with PS=0 PTE Physical Addr.

Page Directory Page Table 4-KB Page

9 9

40

40 40

9 9 12
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Setting up a Sibling Page Table

• A Sibling Page Table is
setup by partially
copying PML4 entries

• NULL’ed entries generate
a page fault upon access

• Our IDT is modified: the
fault call’s an ad-hoc
handler

Original PML4

Sibling PML4

Pointed by 

current->mm->pgd

Entries mapping 

kernel addresses
copy

Entries mapping 

user addresses

NULL
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How to Manage a Fault

. ..001 …
. ..10 …

..111..
..110..

Current->mm->pgd

. ..011 …
. ..000 …

..110..
..110..

Sibling PML4

accessed

frame

Only the control bits copied from the original chain

since memory positions of the sibling tables depends

on allocation operations

Exact 

copy
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How to Manage a Fault (2)

• In case we had a real fault (minor or not) the traversal fails

• In this case, we call the original fault handler
◦ The original handler takes the table from current->mm->pgd

• If it had been minor, control returns to the original code
◦ The thread runs on the parallel view
◦ It has no information on how the fault was solved

• A new fault is generated, but it can now be resolved by our handler

• At most 2 faults are required to open the access
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Logging the Faulting Accesses

• We use a scalable hash table in kernel memory
• An additional system call is offered by the module to dump the

tracked access info to userspace
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Keeping parallel view consistent

• The original page table can change at runtime:
◦ Pages can be invalidated
◦ Access privileges might change
◦ Physical mapping might change

• Linux is synchronized to ensure consistency
◦ System calls perform changes synchronously
◦ IPI message invalidate TLBs on other cores

• We have wrapped all the system calls that change the memory map
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NUMA migration rule: affinity estimation

• For each page, we generate an access-count tuple:

pi = 〈n0, n1, . . . , nT−1〉

• We extract the highest access count Mi = maxj{nj} to compute
the relative access-frequency tuple:

ϕi =

〈
n0
Mi
,
n1
Mi
, . . . ,

nT−1

Mi

〉
• We build a per-page access-frequency matrix :

Φi
l ,m = Φi

m,l =


(ϕi ,l + ϕi ,m)/2 if greater than α

0 if ϕi ,l ∨ ϕi ,m = 0
0 otherwise

∀l 6= m
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NUMA migration rule: affinity estimation (2)

• We then build the symmetric access matrix :

Al ,m = Am,l =
P−1∑
i=0

Φi
l ,m

• This matrix tells whether two threads share a certain amount of
pages in their working set

• From this matrix we extract elements to build a vector v of tuples
〈tl , tm, al ,m〉

• Vector v is ordered descending by the elements al ,m
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NUMA migration rule: grouping

• At this point, we want to map threads and pages to NUMA zones

• We pick threads t0l and t0m from v, and we add them to the first
zone

• We then iterate over the vector
◦ If one of the two threads in the next element already belongs to a

zone, we add the other thread to the zone if there is space
◦ Otherwise we add it to the next zone

• Leftover threads are not bound to a zone
◦ We let the OS decide what to do with them

• Pages are moved to the zone with the thread with the highest
access count
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Experimental Environment

• 32-cores NUMA Machine
◦ 8 NUMA zones
◦ Two different distances (10 and 20) for each core

• The ROme OpTimistic Simulator (ROOT-Sim)
◦ HPC application
◦ Speculative execution: large usage of memory (around 30 GB)
◦ CPU-bound threads: performance is affected by memory policies
◦ Load-Sharing Policy: threads actually share a lot of data
◦ It has an internal NUMA policy targeting the resident set

• A mobile phone simulation model has been run on top of
ROOT-Sim
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Experimental Results: Overhead Evaluation
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Experimental Results: Performance Evaluation
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Thanks for your attention

Questions?
pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

https://github.com/HPDCS/MVAS
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