
OS-based NUMA Optimization: Tackling the Case of
Truly Multi-Thread Applications with Non-Partitioned

Virtual Page Accesses

Ilaria Di Gennaro
Alessandro Pellegrini

Francesco Quaglia

High Performance and Dependable
Computing Systems Group

Sapienza, University of Rome

CCGrid 2016

The Advent of NUMA Architectures

• Modern computing architectures have a large amount of RAM and
a high count of cores

• Uniform Memory Access shows a latency which is no longer
affordable

• Non-Uniform Memory Access (NUMA) is the de-facto reference
organization of med/high end systems

• It has anyhow an effect on the efficiency of applications
◦ Accessing memory areas has different costs
◦ Concepts of zones and distance

2 of 21

How to optimize efficiency on NUMA?

1. Move threads around
◦ It’s a cheap operation
◦ A thread can be moved close to its data

2. Move pages around
◦ It’s more costly
◦ What if a thread has pages in all zones?

3. Move both pages and threads
◦ Multiple threads can need the same pages
◦ They can all be moved to the same zone

You have to know what to move!

3 of 21

How to optimize efficiency on NUMA?

1. Move threads around
◦ It’s a cheap operation
◦ A thread can be moved close to its data

2. Move pages around
◦ It’s more costly
◦ What if a thread has pages in all zones?

3. Move both pages and threads
◦ Multiple threads can need the same pages
◦ They can all be moved to the same zone

You have to know what to move!

3 of 21

Runtime Determination of Access Patterns

• We want to know what the current working set is
◦ at least a good estimation!

• We do not want to pay a high overhead for this

1. User-level approaches
◦ Based on instrumentation and code injection
◦ Ad-hoc code to monitor memory accesses
◦ This can be intrusive, and cannot be fully disabled

2. System-level approaches
◦ Based on memory protection
◦ Segfaults are the materialization of memory accesses
◦ This approach does not work at all with non-partitioned vitual page

accesses within the same address space

4 of 21

Multi-thread Applications and Page Protection

• All threads live in a same process, so all threads have the same
page table!

wall-clock-time
T2T1

page-table

T3

T1's access: traced

T2's access: not traceddeny access

• Increasing the frequency of denial is not an option
◦ The same thread might fault multiple times on the same page

5 of 21

MVAS: MultiView Address Space

• Each thread has its memory view on the page table
◦ We call it a sibling page table

• Minor faults can be used to detect accesses to pages
◦ An ad-hoc fault handler is used
◦ We don’t have to use the (costly) chain of supports for a SIGSEGV

• Everything is based on a Linux Kernel Module
◦ A device file is used to interact with the module
◦ ioctl calls can be used to activate/deactivate tracing on a PID
◦ A shell program is provided to manage the interaction
◦ ...the scheduler “must know” what we are doing

6 of 21

Patching the Linux schedule()

 Original kernel image External module

Copy (Step 1)

schedule()

address in the

System-map

Copy (Step 2)

Redirection code (based on jumps) injected in
the original schedule() function
to pass control to schedule_hook()

schedule_hook()

function

actual jump

Ad-hoc memory

view management

for registered

threads

7 of 21

Scheduling Operations

schedule_hook
current thread

is registered ?

no

return

yes

yes

1 – deregister current thread

2 – update CR3 to point to current->mm->pgd

3 – tear down sibling page-table

current->tgid

is registered ?

no

1 – register current thread

2 – setup sibling page-table

3 – update CR3 to point to

sibling page-table

update CR3 (if needed)

to point to

current->mm->pgd

current->tgid

is registered ?

yes no

update CR3

(if needed) to point

to sibling page-table

8 of 21

Recall on x86-64 Paging Scheme

DirectoryPML4 Directory Ptr Table O set

0111220212930383947

CR3

PML4E

PDPTE

40

40

Linear Address

Page-Directory-

Pointer Table

PDE with PS=0 PTE Physical Addr.

Page Directory Page Table 4-KB Page

9 9

40

40 40

9 9 12

9 of 21

Setting up a Sibling Page Table

• A Sibling Page Table is
setup by partially
copying PML4 entries

• NULL’ed entries generate
a page fault upon access

• Our IDT is modified: the
fault call’s an ad-hoc
handler

Original PML4

Sibling PML4

Pointed by

current->mm->pgd

Entries mapping

kernel addresses
copy

Entries mapping

user addresses

NULL

10 of 21

How to Manage a Fault

. ..001 …
. ..10 …

..111..
..110..

Current->mm->pgd

. ..011 …
. ..000 …

..110..
..110..

Sibling PML4

accessed

frame

Only the control bits copied from the original chain

since memory positions of the sibling tables depends

on allocation operations

Exact

copy

11 of 21

How to Manage a Fault (2)

• In case we had a real fault (minor or not) the traversal fails

• In this case, we call the original fault handler
◦ The original handler takes the table from current->mm->pgd

• If it had been minor, control returns to the original code
◦ The thread runs on the parallel view
◦ It has no information on how the fault was solved

• A new fault is generated, but it can now be resolved by our handler

• At most 2 faults are required to open the access

12 of 21

Logging the Faulting Accesses

• We use a scalable hash table in kernel memory
• An additional system call is offered by the module to dump the

tracked access info to userspace

13 of 21

Keeping parallel view consistent

• The original page table can change at runtime:
◦ Pages can be invalidated
◦ Access privileges might change
◦ Physical mapping might change

• Linux is synchronized to ensure consistency
◦ System calls perform changes synchronously
◦ IPI message invalidate TLBs on other cores

• We have wrapped all the system calls that change the memory map

14 of 21

NUMA migration rule: affinity estimation

• For each page, we generate an access-count tuple:

pi = 〈n0, n1, . . . , nT−1〉

• We extract the highest access count Mi = maxj{nj} to compute
the relative access-frequency tuple:

ϕi =

〈
n0
Mi
,
n1
Mi
, . . . ,

nT−1

Mi

〉
• We build a per-page access-frequency matrix :

Φi
l ,m = Φi

m,l =


(ϕi ,l + ϕi ,m)/2 if greater than α

0 if ϕi ,l ∨ ϕi ,m = 0
0 otherwise

∀l 6= m

15 of 21

NUMA migration rule: affinity estimation (2)

• We then build the symmetric access matrix :

Al ,m = Am,l =
P−1∑
i=0

Φi
l ,m

• This matrix tells whether two threads share a certain amount of
pages in their working set

• From this matrix we extract elements to build a vector v of tuples
〈tl , tm, al ,m〉

• Vector v is ordered descending by the elements al ,m

16 of 21

NUMA migration rule: grouping

• At this point, we want to map threads and pages to NUMA zones

• We pick threads t0l and t0m from v, and we add them to the first
zone

• We then iterate over the vector
◦ If one of the two threads in the next element already belongs to a

zone, we add the other thread to the zone if there is space
◦ Otherwise we add it to the next zone

• Leftover threads are not bound to a zone
◦ We let the OS decide what to do with them

• Pages are moved to the zone with the thread with the highest
access count

17 of 21

Experimental Environment

• 32-cores NUMA Machine
◦ 8 NUMA zones
◦ Two different distances (10 and 20) for each core

• The ROme OpTimistic Simulator (ROOT-Sim)
◦ HPC application
◦ Speculative execution: large usage of memory (around 30 GB)
◦ CPU-bound threads: performance is affected by memory policies
◦ Load-Sharing Policy: threads actually share a lot of data
◦ It has an internal NUMA policy targeting the resident set

• A mobile phone simulation model has been run on top of
ROOT-Sim

18 of 21

Experimental Results: Overhead Evaluation

 0

 5

 10

 15

 20

 25

TP 1 - AP 5 - LOG

TP 1 - AP 5 - NO LOG

TP 1 - AP 10 - LOG

TP 1 - AP 10 - NO LOG

TP 1 - AP 20 - LOG

TP 1 - AP 20 - NO LOG

TP 3 - AP 5 - LOG

TP 3 - AP 5 - NO LOG

TP 3 - AP 10 - LOG

TP 3 - AP 10 - NO LOG

TP 3 - AP 20 - LOG

TP 3 - AP 20 - NO LOG

pe
rc

en
ta

ge
 in

cr
em

en
t o

f t
he

 e
xe

cu
tio

n
tim

e

19 of 21

Experimental Results: Performance Evaluation

 0

 200

 400

 600

 800

 1000

 1200

α=0.9 α=0.5 α=0.1

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

multi-view - AP 10
multi-view - AP 20

single-view - AP 10

single view - AP 20
baseline

RS migration

20 of 21

Thanks for your attention

Questions?
pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

https://github.com/HPDCS/MVAS

21 of 21

