
 

A/A 2015/2016 �1

Energy efficient spin-locking in multi-core
machines

Facoltà di INGEGNERIA DELL'INFORMAZIONE, INFORMATICA E STATISTICA
Corso di laurea in INGEGNERIA INFORMATICA - ENGINEERING IN
COMPUTER SCIENCE - LM
Cattedra di Advanced Operating Systems and Virtualization

Candidato
Salvatore Rivieccio
1405255

Relatore
Francesco Quaglia

Correlatore
Pierangelo Di Sanzo

0 - Abstract

In this thesis I will show an implementation of spin-locks that works in an energy

efficient fashion, exploiting the capability of last generation hardware and new

software components in order to rise or reduce the CPU frequency when

running spinlock operation. In particular this work consists in a linux kernel

module and a user-space program that make possible to run with the lowest

frequency admissible when a thread is spin-locking, waiting to enter a critical

section. These changes are thread-grain, which means that only interested

threads are affected whereas the system keeps running as usual. Standard

libraries’ spinlocks do not provide energy efficiency support, those kind of

optimizations are related to the application behaviors or to kernel-level

solutions, like governors.

�2

Table of Contents  

List of Figures pag

List of Tables pag

0 - Abstract pag 3

1 - Energy-efficient Computing pag 4

1.1 - TDP and Turbo Mode pag 4

1.2 - RAPL pag 6

1.3 - Combined Components

2 - The Linux Architectures pag 7

2.1 - The Kernel

2.3 - System Libraries pag 8

2.3 - System Tools pag 9

3 - Into the Core

3.1 - The Ring Model

3.2 - Devices

4 - Low Frequency Spin-lock

4.1 - Spin-lock vs. Mutex

4.2 - low_freq_module

4.3 - Char Device

4.4 - The schedule problem

4.5 - low_freq_spinlock implementation

4.6 - ioctl

�3

5 - Measurements

5.1 - Intel measures

5.2 - AMD measures

6 - Considerations on improvements

7 - Conclusions

Recommendations

Acknowledgments

References 

�4

1 - Energy-efficient Computing

Given the arising demand for computing capacity great interest was shown in

improving efficiency of energy usage in computing systems. There are a lot of

definitions for energy efficiency but a good operational one is “using less energy

to provide the same service”. Energy is the limiting resource in a huge range of

computing systems, from embedded sensors to mobile phones to data centers.

However, although it is a central topic, there is still a huge margin of

improvement on which to work.

The greatest issue in some systems is probably how to measure energy

efficiency. To address this compelled problem, computing elements of the latest

generation, like CPUs, graphics processing units, memory units, network

interface cards and so on have been designed to operate in several modes with

different energy consumption levels. High-frequency performance monitoring

and mode switching functions have also been exposed by co-designed abstract

programming interfaces.

The actual challenge of energy-efficient computing is to develop hardware and

software control mechanisms that take advantage of the new capabilities.

�5

1.1 - TDP and Turbo Mode

The thermal design power (TDP) represents the amount of power the cooling

system in a computer is required to dissipate. It means that a full-loaded

system has to run under this “limit” if it wants to operate as manufacturer

specific. The TDP and current energy consumption are a good metric to

evaluate the energy efficiency of a system.

 The TDP value as not to be intended as the maximum power that a processor

can consume, in fact it is possible for the component (that can be a processor, a

GPU and so on…) to consume more than the TDP power for a short period of

time without it being thermally significant.

In multi-cores scenarios, the request of full performance on several cores

simultaneously can easily exceed the TDP and in order to avoid this problem

modern processors work with different frequencies, depending on the number of

active cores and the maximum frequency declared by each core. For example,

(this is the case) if some CPUs run at lowest frequency the system can provide

more power on cores that demand full performance.

�6

Figure 1: Example of TDP limit

Avoiding for the moment the problem of how to decide whether a core must turn

at a minimum frequency, this solution is achieved by introduction of turbo mode,

that on Intel architecture is called Intel® Turbo Boost[1].

This technology, born in 2008 on Nehalem microarchitecture, allows processor

cores to run faster than their base frequency, if the operating condition permits.

A Power Control Unit (PCU) firmware decides based on the:

- Number of cores active

- Estimated current consumption

- Estimated power consumption

- Processor temperature

The PCU uses some internal models and counters to predict the actual and

estimated power consumption. 

�7

Figure 2: Frequency escalation

1.2 - RAPL

In order to get better efficiency in energy usage it has been necessary to

increase the efficiency of measurement methods on real systems.

Before Intel Sandy Bridge microarchitecture, decision on how to improve

performance using Turbo-Boost was driven by models, which tends to be

conservative, avoiding specific scenarios where the power consumption can be

higher then TDP for too long and violating TDP specification. Sandy Bridge

provides a new on-board power meter capability that makes it possible to do a

better analysis and takes more accurate decisions. In addition all these new

calculated metrics can be exported through a set of Machine Specific

Registers (MSRs), this interface is called RAPL[2], Running Average Power

Limit.

RAPL provides a way to set power limits on supported hardware and

dynamically monitoring the power consumption of the system makes it possible

to reassign power limits based on actual workloads.

In Linux RAPL is implemented as power cap driver from Kernel 3.13 and there

are some utility softwares that help to get energy information:

- TURBOSTAT -- a linux kernel tool that is capable to display wattage

information thought the usage of the MSRs.

- POWERTOP -- a solution that provides power consumption of CPU, GPU

and DRAM components.

- POWERSTAT -- which measures the power consumption of a pc that has a

battery power source or support for RAPL interface. The output also shows

power consumption statistics. At the end of a run, powerstat will calculate the

average, standard deviation and min/max of the gathered data. 

�8

1.3 - Combined Components

Another important solution from the point of view of energy efficiency which

deserves to be mentioned is the AMD FUSION APU[3][4], Accelerated

Processing Unit. It combines CPU and GPU in a single entity, trying to improve

performance and minimize energy consumption. This has led to an emerging

industry standard, known as the heterogeneous systems architecture (HSA).

The net effect of HSA is to allow the CPU and GPU to operate as peers within

the APU, dramatically reducing the energy overhead.

By keeping components as closely as possible HBM, a new type of memory

chip with low power consumption, was introduced. The HBM graphics memory

is a 3-D vertical stack connected to the GPU over a silicon carrier (2.5D

packaging). The resulting silicon-to-silicon connection consumes more than

three times less power than DDR5 memory and, beyond performance and

power efficiency, HBM is capable to fit the same amount of memory in 94% less

space. 

�9

Figure 3: HBM

2 - The Linux Architecture

Let's now talk about the environment where this work has been done. A brief

summary of the architecture will allow me to be more clear on my own solution.

Linux[5] is a highly popular version of UNIX operating system. It is open source

as its source code is freely available and editable, also it was designed

considering UNIX compatibility. An operating system is actually a stack of

software, each item designed for a specific purpose.

- Kernel -- It is the core of an operating system: it hides the complexity of

device programming to the developer providing an interface for the

programmer to manipulate hardware, manages communication between

devices and software and manages the system resources (like CPU time,

memory, network, ...).

- System Libraries -- They exposed methods for developers to write software

for the operating system. We can, for example, demand for process creation

and manipulation, file handling, network programming and so on, avoiding to

�10

Figure 4: Linux stack

communicate with kernel directly. The library shields off the complexity of

kernel programming for the system programmer and do not requires kernel

module's code access rights.

- System Utility -- They are built using the system libraries and are visible to

the end user, make him able to manipulate the system. They include methods

for manage processes, navigate on the file system, execute other

applications, configure the network and more. 

�11

2.1 - The Kernel

A kernel has generally four basic responsibilities:

- device management

- memory management

- process management

- handling system calls

When we talk about device management we need to consider that a computer

system has connected several devices, not only the CPU and memory, but also

I/O devices, graphic cards, network adapters and so on. Since each device

operates differently from an other, the kernel needs to know what a device can

do and how to interact with it. This information is maintained in the so-called

device driver, without it the system is not capable of controlling any device.

In addition to drivers the kernel also manages the communication between the

devices: there can be many shared components along all drivers and kernel

rules the access in order to maintain system consistency. Most of the times

communications follow strict rules without which there would be no guarantee

on the quality of the communication.

Another very important thing about the kernel is the memory management. The

kernel is responsible for keeping track of the memory areas used and not, to

give memory space to a process who required it and to deny access to an

unauthorized one. To do this, it uses the concept of virtual memory addresses:

It maps memory addresses used by a program, called virtual addresses, into

physical addresses in computer memory.

�12

This technique free the applications from having to manage a shared memory

space, increase security due to memory isolation and makes possible to

conceptually use more memory than might be physically available, using the

technique of paging.

Different from user-space applications the kernel is always resident in main

memory.

To ensure that each process gets enough CPU time, the kernel gives priorities

to processes and gives each of them a certain amount of CPU time before it

stops the process and hands over the CPU to the next in the priority queue.

Process management not only deals with CPU time delegation (called

scheduling), but also with security privileges, process ownership information,

communication between processes and more.

The scheduler, the one who orchestrates the processes CPU time, is an

essential component for the development of the low frequency spin-lock, we will

enter after in the detail.

System calls are those components that allow the programmer to control (in a

certain way) the kernel, to obtain information or to ask the kernel to perform a

particular task. Obviously, a system call must be safe, for example it must not

allow malicious code to run with kernel privilege. 

�13

2.2 - System Libraries

Even with a Kernel full of functionalities we cannot expect to do much without a

way to invoke these features. This kind of triggers are mainly made by user

applications, that must know how to place this system calls to Kernel (it is very

system specific). Additionally, each kernel has a different set of supported

system calls. Because of this, standards were created and each operating

system declares to support these standards by implementing the specifications

in its own way but keeping the exposed interface similar to other systems.

The most well-known system library for UNIX-like systems is the GNU C

Library, namely glibc. It allows access to many important operations to the

programmer, such as mathematical operations, input/output support, memory

management and file operations. This allow us to write code that can be used

on any system that supports such library.

So it is possible, without knowing kernel internals, to develop a software once,

and then rebuild to many platforms.

 

�14

Figure 5: Stack of command calls

2.3 - System Tools

With a kernel and some programming libraries we cannot manipulate our

system yet. We need access to commands, input we give to the system that

gets interpreted and executed. System tools are all those things that allow us to

do:

- file navigation: change directory, create/remove files, obtain file listings, ...

- information manipulation: text searching, compression, listing differences

between files, ...

- process manipulation: launching new processes, getting process listings,

exiting running processes, …

- privilege related tasks: changing ownership of files, changing user ids,

updating file permissions, ...

- and more.

Because of the different implementations from a system to another (and not

only for this) it is difficult to provide a solution that is energy efficient by

remaining at the level of system library. We need to go deeper in the system. 

�15

3 - Into the Core

The solution I provide has been developed for Linux Kernel and takes

advantage of several utility exposed by the system itself. At this level we are no

longer system library programmer, we have to know kernel internals but the

good thing is that we can “add” parts to the kernel in order to get new

functionality.

Linux allows developers to create software modules that can be load and

unload into the kernel upon demand, without the need to reboot the system or

recompile the whole kernel. Working with modules is a common procedure, in

fact we can see all the modules attached to kernel simply by running the

command lsmod, which gets its information by reading the file /proc/modules.

�16

Figure 6: Example of lsmod output

/proc/ is a virtual filesystem, a software component that allows the operating

system to access the file system through standard functions that are

independent of the real file system or from the media used for storing data. It's

sometimes referred to as a process information pseudo-file system, it means

that doesn't contain 'real' files but runtime system information (e.g. system

memory, hardware configuration, devices mounted, modules attached, etc).

Kernel modules need to be compiled a bit differently from regular user-space

apps. Once again the Linux system comes to help, providing the kbuild system,

a build process for external loadable modules that is fully integrated into the

standard kernel build mechanism. It deals automatically with settings in sub-

level Makefiles and at the end we can simply write in our personal makefile as

follow,

and run make command from the shell. 

�17

obj-m += module.o

all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

Once we get our module builded we can load it into the kernel with the

command insmod.

modprobe instead is the clever version of insmod. insmod simply adds a

module where modprobe looks for any dependencies (if that particular module

is dependent on any other module) and loads them.

Differently from user-space programming, there is no main function in the

modules. When a module is loaded the code from the init_module function is

executed and similarly, when the module is unloaded, the code executed will be

that of the cleanup_module function. It is therefore mandatory to integrate these

functions into our own code or use other functions specified with module_init

and module_exit calls respectively. All the code we have write in our module is

now in the kernel, pending to be triggered.

Another difference is that we cannot make the include of the headers that we

are usual to use: The reason is that the headers like stdio.h or stdlib.h are part

of the standard C library and, as all system libraries, it is defined in user-space.

The only external functions we are allowed to use are the ones provided by the

kernel itself, the definition of all declared symbols is resolved upon insmod’ing.

�18

“System libraries (such as glibc, libreadline, libproplist, whatever) that are

typically available to user-space programmers are unavailable to kernel

programmers. When a process is being loaded the loader will automatically load

any dependent libraries into the address space of the process. None of this

mechanism is available to kernel programmers: forget about ISO C libraries, the

only things available is what is already implemented (and exported) in the

kernel and what you can implement yourself.

Note that it is possible to "convert" libraries to work in the kernel; however, they

won't fit well, the process is tedious and error-prone, and there might be

significant problems with stack handling (the kernel is limited to a small amount

of stack space, while user-space programs don't have this limitation) causing

random memory corruption.

Many of the commonly requested functions have already been implemented in

the kernel, sometimes in "lightweight" versions that aren't as featureful as their

userland counterparts. Be sure to grep the headers for any functions you might

be able to use before writing your own version from scratch. Some of the most

commonly used ones are in include/linux/string.h.

Whenever you feel you need a library function, you should consider your

design, and ask yourself if you could move some or all the code into user-space

instead.”[6]  

�19

3.1 - The Ring Model

The kernel is largely focused on accessing and using resources. These

resources are often also contended by the user space programs and the kernel

must keep things tidy, without giving unconditional access when it is demanded.

To ensure these types of access, a CPU can run in different modes. For each

modes there is a degree of freedom which we can operate in the system. The

Intel x86 architecture has 4 of these modes, which are called rings, but Unix-

like systems mostly use only 2:

- Ring 0, that is the highest ring (it also known as “Supervisor mode”)

- Ring 3, that is the lowest ring which is also called “user mode”.

Typically, we use a library function in user mode (ring 3). The library function

calls can invoke one or more system calls, and these system calls execute on

the library function's behalf. Since the system calls are part of the kernel itself

they execute in supervisor mode and, once they have finished their tasks, they

return and execution gets transferred back to user mode. 

�20

Figure 7: Ring model

At this switching between user and kernel mode it is associated a high cost in

performance. Historically it has been proven that a simple call as getid method

has a cost of about 1000-1500 cycles on many types of machines. Of these just

around 100 are used for the actual switch (70 from user to kernel space, and 40

back), the rest is "kernel overhead”.[7][8]

Functions are often moved through the rings in order to gain better

performances. In fact, in Linux, we have an injection of vDSO sections in the

application code where normally would be required a system call, i.e. a ring

transaction. vDSO (virtual dynamically linked shared object) is a Linux kernel

mechanism for exporting a carefully selected set of kernel space routines to

user space applications. These functions use static data provided by the kernel

preventing the need for a ring transition and granting a more lightweight

procedure than a syscall (system call). 

�21

3.2 - Devices

So, keeping in mind the ring model, we must be aware to do not produce messy

code when we are talking about kernel programming. Device drivers introduce

an abstraction that allows the devices to be used without knowing internal

details or vendor specification:

On UNIX, any hardware component is present in /dev folder as a device file,

where it is kept the all the information about communication. The drivers (That

is essentially a class of kernel module) might connect for example the file

/dev/sda to the actual HD mounted on the system. A user-space program like

gparted can read /dev/sda without ever knowing what kind of hard disk is

installed.

Here an example of devices attached on a system:

The pair of numbers in red are called major and minor number respectively. The

major number tells which driver is used to access the hardware component.

Each driver is assigned a unique major number; all device files with the same

major number are controlled by the same driver. In this case all disk partitions

are controlled by the driver associated with the number 8.

In order to distinguish between pieces of hardware minor number is used. For

instance the 3 partitions are identified by the numbers 1,2 and 5.

�22

➜ ls -l /dev/sda[1-5]

brw-rw---- 1 root disk 8, 1 dic 24 20:48 /dev/sda1
brw-rw---- 1 root disk 8, 2 dic 24 20:48 /dev/sda2
brw-rw---- 1 root disk 8, 5 dic 24 20:48 /dev/sda5

The yellow ‘b’ at the start means that we are working with a block device.

There are 2 types of devices: block devices, which are marked with char ‘b’

and character devices, which are marked by ‘c’. The difference is that block

devices have a buffer for requests, so it can be possible to choose the best

order in which to serve all the requests on the device. This is important in the

case of storage devices like mechanical hard disk, where it's faster to read and

write sectors which are close to each other. Another difference is that block

devices can only work with blocks (whose size can differ according to the

device), both as input and output, whereas character devices are allowed to use

any size specified. 

�23

4 - Low Frequency Spin-lock

In this paragraph I will deeply explain the idea and the implementation of my

energy efficient solution of spin-locks. In the end I'll show some measures taken

on my system by using RAPL.

Let’s have now a little recap of what a spin-lock is and where to use.

4.1 - Spin-lock vs. Mutex

When we talk about spin-locks and mutex we are talking about critical section:

We are interested in one or more shared resources, but someone else in the

system will contend those resources. To keep the system consistent we need to

serialize access to resources and to grant that every process will access to a

demanded resource eventually. For this purpose there are two main

approaches that are the aforementioned spin-lock and mutex. The former is a

mechanism in which the process that needs a resource polls the lock on

resource until it gets it. It is also called as busy-waiting or active-waiting.

Process will be busy in a loop till it gets the resource. The latter instead puts the

requesting processes (and which have not have been granted the resources) in

a waiting queue, releasing system resources as for example CPU time.

So the question that we must answer is where to use one or the other.

- Spin-locks are best used when a piece of code cannot go to sleep state like

Interrupt service routines or in general Kernel code.

- Mutexes are best used in user space program where a sleeping process

does not mean a performance degradation, or at least not significantly. 

�24

4.2 - low_freq_module

Tinkering with kernel stuff is not something that can be done in a simple

application and changing processor frequencies is one of these things. My

actual implementation concerns a userspace implementation of the spin-lock

that interacts with a module kernel, called low_freq_module. The kernel module

passes through the usage of some pseudo files that are located in sub-

directories down in the /sys folder. /sys is where is attached the virtual file-

system sysfs that provides a means to export kernel data structures, their

attributes, and the linkages between them to userspace.

Criteria Mutex Spinlock

Mechanism Test for lock.
If available use the resource.
If not goes to wait queue.

Test for lock.
If available use the resource.
If not, loop again and test the
lock until it gets the lock.

When to use Used when putting process to
sleep is not harmful like user
space programs.
Used when there will be
considerable time before
process gets the lock.

Used when process should
not be put in sleep like
interrupt service routines.
Used when lock will be
granted in reasonably short
time.

Drawbacks Incurs process context switch
and scheduling cost.

Processor is busy doing
nothing until lock is granted,
wasting CPU cycles.

�25

UbuntuServer: /sys/devices/system/cpu
➜ la
totale 0
drwxr-xr-x 8 root root 0 dic 27 16:10 cpu0
drwxr-xr-x 8 root root 0 dic 27 16:10 cpu1
drwxr-xr-x 4 root root 0 dic 27 16:10 cpufreq
.
.
.

Table 1: mutex vs. spinlock

As we can se there is one folder for each CPU; my server is equipped with an

Intel Celeron 1007U consisting of two cores so we have cpu0 and cpu1.

Going down in the sub-folders (for example cpu0) we can find several files that

hold useful information about frequencies and not only. Here are listed those of

interest with la command:

cpuinfo-max-freq and cpuinfo-min-freq hold respectively information about

the maximum and the minimum frequency admissible in the system.

In scaling_governor file we can specify the actual governor that runs on the

system; a governor is the kernel component that is responsible for determining

what frequency policy should be followed. The most used governors are:

- OnDemand -- is the default choice on most systems, balanced settings that

offer a good compromise: energy consumption and performance.

- Powersave -- as the name suggests with powersave is set both the

maximum and the minimum frequency to the lowest possible value.

- Userspace -- it allows to manually set frequencies.

- Conservative -- it is like OnDemand, i.e. sets a minimum and maximum

frequency with a time when reaching such limits. The only difference is that

�26

UbuntuServer: /sys/devices/system/cpu/cpu0/cpufreq
➜ la
.
.
.
-r-------- 1 root root 4,0K dic 27 16:37 cpuinfo_cur_freq
-r--r--r-- 1 root root 4,0K dic 27 16:37 cpuinfo_max_freq
-r--r--r-- 1 root root 4,0K dic 27 16:37 cpuinfo_min_freq
-r--r--r-- 1 root root 4,0K dic 27 16:37 scaling_cur_freq
-rw-r--r-- 1 root root 4,0K dic 24 20:49 scaling_governor
-rw-r--r-- 1 root root 4,0K dic 27 16:37 scaling_max_freq
-rw-r--r-- 1 root root 4,0K dic 27 16:37 scaling_min_freq
-rw-r--r-- 1 root root 4,0K dic 27 16:37 scaling_setspeed
.
.
.

conservative reaches the limit in a double time compared to OnDemand

being the type of ramp less leaning. The advantage however affects the

battery life. In fact more leaning is the ramp (i.e. faster, tending upward) more

we will have a battery consumption.

- Performance -- is similar to PowerSave with the difference that sets the

maximum clock frequency for both minimum and maximum CPU working

frequencies.

Writing on the scaling_setspeed file we can specify any frequency, as long as it

is between the minimum and the maximum and that the userspace governor is

set.

scaling_min_freq and scaling_max_freq keep information about the minimum

and maximum frequency respectively and specify the frequency range on which

the governor can operate, lowering down to the minimum and raising up to the

maximum. The difference with the first two files is that this is a current (and non-

absolute) measure of the system. They can be specified regardless of the

running governor.

So in the init_module function of my module I keep references to some of

these files: cpuinfo_min/max_freq and scaling_min/max_freq for each CPU. It is

done with the Virtual File System (VFS) operations, like vfs_write, vfs_read

and so on. This is a kernel way (but not the only) for doing with files on the

system (remember that we have no access to library function calls like fopen/

fwrite…). The purpose of a VFS is to allow a program to access different

types of file systems in a uniform way; it specifies an interface (or a "contract")

between the kernel and a concrete file system.

�27

My approach scales to any number of cores and is configured to work even with

heterogeneous CPUs, (which have different frequency specifications). The

variable n_proc (number of cores) is passed through the module parameters

mechanism that makes possible to modules to take command line arguments.

To allow arguments to be passed to my module, I declare the variables that will

keep the values of the command line arguments as global and then I use the

module_param() macro, which is defined in linux/moduleparam.h. At runtime,

insmod fills the variables with any command line arguments that are given, like

insmod mymodule.ko myvariable=5.

Another parameter that i pass to the module is the maximum number of threads

admissible for a given system; all numbers between 0 and max_thread are also

thread identifiers (TIDs). I store these IDs in an array of int, where the index

corresponds to the identifier itself, so to have constant access to the structure.

When we get the TID we need to distinguish the cases in which we do it in

kernel or user space: in fact from the kernel point of view there are only PIDs

(process identifier) and TGID (thread group id) to which threads of a process

belongs to. User space instead a call for getting the PID of a thread would

simply return the TGID.

�28

Here an example of how it works:

This identifier is used to distinguish the processes that operate with low

frequency spin-locks from the others: In fact, the value in the array will be 1

when it is one of the processes involved and 0 otherwise.

There is also a bit-mask that marks which are the under-clocked cores; in this

way, I do not have to set again the frequency down if two involved processes

enter in the same core subsequently. For that purpose the kernel offers a set of

functions that modify or test single bits atomically. Because the whole operation

happens in a single step, no interrupt (or other processor) can interfere. Atomic

bit operations are very fast, since they perform the operation using a single

machine instruction without disabling interrupts and keeping coherence across

processors.

The last thing that I do in init is to register the driver of char device, this is

useful to interact with the user-space application. 

�29

 USER VIEW
 <-- PID 55 --> <----------------- PID 54 ----------------->
 +---------+
 | process |
 | pid=54 |
 _/ | tgid=54 | _ (new thread) _
 _ (fork) _/ +---------+ \
 / +---------+
+---------+ | process |
| process | | pid=56 |
| pid=55 | | tgid=54 |
| tgid=55 | +---------+
+---------+
 <-- PID 55 --> <--------- PID 54 --------> <--- PID 56 --->
 KERNEL VIEW

4.3 - Char Device

The operations on the char device are defined in the file_operation[9]

structure; it holds pointers to functions defined by the driver that perform various

operations. This structure is something like this:

We can specify all these operations as needed. However, some operations may

not be implemented by a driver. For example, a driver that handles a keyboard

won't need to write in a structure in general. The corresponding entries in the

file_operations structure should be set to NULL.

�30

We can easily make assigning to the structure in the following way:

As discussed in the previous sections, char devices are accessed through

device files, usually located in /dev. The major number specifies which driver is

associated while the minor number is used only by the driver itself to

differentiate which device it's operating on.

Adding a driver to a system means registering it within the kernel. This is done

by assigning it a major number during the init_module call. We can do this by

using the register_chrdev function that takes 3 arguments:

- unsigned int major -- is the major number we want to request, if 0 is passed

it’s handled automatically by the kernel.

- const char *name -- is the name of the device.

- struct file_operations *fops -- is a pointer to the file_operations table for

driver we specify.

The return value of this function is an integer that is the major number assigned,

or a negative value in case of failure.

The call unregister_chrdev handles the effective unregistering of the driver

from the kernel.

�31

In the drivers of my module I have implemented only the open, release and

ioctl functions. open and release are useful to keep information about the

current open channels on the device.

Most physical and non-physical devices are used for output as well as input, but

sometime it is not always enough or it is not what a device should do. Imagine

we had a serial port connected to a modem (even if we have an internal

modem, it is still implemented from the CPU's perspective as a serial port

connected to a modem). What we expect the write function does is to send

commands or data through the phone line, while the read function allows to

receive things from the modem, either responses to commands or the data.

However, this doesn't solve the problem of what to do when we need to

configure the serial port itself, for example to set the rate at which data is sent

and received. Unix-like systems provide a special function called ioctl (short

for Input Output ConTroL). Every device can have its own ioctl commands,

which can be read ioctl's (to send information from a process to the kernel) and/

or write ioctl's (to return information to a process). The ioctl function is called

with 3 parameters:

- The device descriptor file.

- The ioctl number.

- A long integer that we can cast to use it to pass anything.

The ioctl number encodes the major device number, the type of the ioctl, the

command, and the type of the parameter. This ioctl number is usually created

by using a macro call (_IO, _IOR, _IOW or _IOWR --- depending on the type) in a

header file.

�32

In the low_freq_module the ioctl function is used by the user-space application

to communicate to the kernel to set and reset CPU frequency. The 2 main

commands are the LFM_SET_TID and LFM_UNSET_TID where the function

does:

- Retrieves the TID of the requesting process from the third parameter of ioctl

call and populates correctly the TIDs array mentioned before.

- Set/Clear the bit associated to the performing core respectively.

- Set/Reset the core frequency respectively.

�33

4.4 - The schedule problem

Unfortunately, the methodologies presented do not cope with all possible

scenarios. Let's imagine that a process is queued to get into the critical section

and, before start to spin-locking, request to set the frequency of the core on

which it is running to minimum. Eventually, if it does not enter the critical section

in its quantum, it will be de-scheduled leaving the core without resetting the

proper frequency and again, it may happen that the same process will be

scheduled on another core without benefiting of spin-locking at low frequencies.

We need an internal component that traces the processes that are going to get

into the CPU; this component is the Scheduler.

The Completely Fair Scheduler (CFS) is a process scheduler which was

merged into the 2.6.23 release of the Linux kernel in the October 2007 and it is

now the default scheduler. It handles CPU resource allocation for executing

processes, and aims to maximize overall CPU utilization while also maximizing

interactive performance.

In order to get the new features we needed we have to patch the scheduler, and

this was done thanks to the work carried out by Professor Francesco Quaglia

and Alessandro Pellegrini in the schedule-hook module[10]. This is a kernel

module that dynamically patches the Linux kernel scheduler (without restarting

or recompile the whole kernel) so as to allow running a custom function upon

thread reschedule. For instance it retrieves the memory position of the

corresponding machine instructions block from the system-map (typically

available in Linux installations from the /boot directory of the root file system),

and injects into this routine an execution flow variation such that control goes to

a schedule hook() routine offered by the external module right before schedule()

would execute its finalization part (e.g. stack realignment and return).

�34

This module can be used either in cross compilation with the one containing the

custom function or not.

The schedule-hook function is embedded within this module, it checks the value

of a function pointer and in case it is not null the target function is called.

In cross compilation the function pointer is exported as a symbol to be updated

while mounting the module containing the custom functions to be run otherwise,

the function pointer is accessible as a pseudo-file called:

/sys/module/schedule_hook/parameters/the_hook.

In the latter configuration, after mounting the module, we can load any function

pointer we would like (pointing to kernel stuff) by writing it on that pseudo-file.

The function pointer is the one associated with the on_schedule function present

within the low_freq_module. This function takes the ID of the core on which the

scheduler is running and the TID of the next process that will be scheduled by

using the task_struct current. The task_struct is the data structure that

describes a process or task in the system; in particular, there is the pid field (an

integer) that keeps the process identifier. Then the function proceeds with tests

to check in what state is the core and who is the next process to be scheduled.

�35

Figure 8: schedule-hook()

If the process is one of those who use the low frequency spin-lock (it is

registered within the array) and the core has not been lowered, then it is written

to the scaling_max_freq file the minimum frequency; in this way the governor is

able to use only the specified frequency.

If the process isn’t registered and the core is still lowered then it proceeds to

restore the normal system behavior.

If neither of these two cases occurs then it simply returns control to the

schedule-hook() function.

�36

4.5 - low_freq_spinlock implementation

My implementation of spin-locks is based essentially on a structure containing a

volatile integer. This keyword (volatile) prevents an optimizing compiler from

optimizing away subsequent reads or writes and thus incorrectly reusing a stale

value or omitting writes. Practically it forces the flush to the main memory of the

variable, ensuring that the read version is always the most up-to-date.

The struct is renamed low_freq_spinlock_t by using the keyword typedef,

which we can use to give a type, a new name.

The implementation resembles the one of the original spinlocks; in fact, when

we include the linux/spinlock.h header, we can declare and initialize a spinlock

in this way:

 spinlock_t my_lock = SPIN_LOCK_UNLOCKED;

or at runtime with:

 spin_lock_init(spinlock_t *lock);

And similarly we can do with my implementation:

 low_freq_spinlock_t my_lock = LOW_FREQ_UNLOCKED;

Or:

 low_freq_init(low_freq_spinlock_t *lock);

Once the spinlock is initialized, the phases of lock and unlock can be invoked

via the void low_freq_op_lock(low_freq_spinlock_t *) and void

low_freq_op_unlock(low_freq_spinlock_t *) functions, just like normal

spinlocks. 

�37

https://en.wikipedia.org/wiki/Optimizing_compiler

In the lock function there is a check on the volatile integer using the function

__sync_lock_test_and_set(&(lock)->exclusion, 1), that simply puts 1 in the

lock and return the previous value.

This function is translated into less machine instructions than other

synchronization solutions, like for example the compare_and_swap.

There is a small optimization in the inner loop that involves controlling the only

variable of lock without synchronization, making the execution even lighter.

If the previous value of lock was 1 it means that the lock has already been

taken.

The process then, in the set_low_freq() function, asks for its own TID by

calling syscall(__NR_gettid) function, passing it to the low_freq_module via

the ioctl call that we saw before and asking to lower the frequency.

�38

In Linux, there’s a system call that will return a TID of calling thread. The name

of the system call is gettid(). For some reason it is not implemented in glibc.

Probably it is because it is a Linux specific system call. Anyway we have to use

syscall() with the proper number that we can easily retrieve with the macro

__NR_gettid.

The process then starts the phase of spinlock as long as the lock is not

released.

Before entering the critical section the reset command is invoked using the

module's ioctl function (similarly to the lock phase) and finally returns. 

�39

4.6 - ioctl

The actual link between user-space application and the module is made in the

ioctl.c file.

The function that exposes the ioctl feature is ioctl_call. This function takes 2

arguments: An integer that stands for the number of parameters and an array of

3 strings (the parameters). The first string is the name of the function, ‘ioctl’ for

instance, the second one is the TID of the process and the third is the command

that we want to perform.

At the beginning of the function a file descriptor is opened to

/dev/low_freq_module, the char device of my module, and there is a check on

the third string passed as parameter:

- If the string is ‘-s’ it means that the command to be invoked is LFM_SET_TID,

- if the string is ‘-u’ then the performed command will be LFM_UNSET_TID,

- if ‘-is’ is passed the LFM_IS_PRESENT command will return 1 or 0 according

to the fact that the TID is present in the TIDs array or not. Actually this

command is never called.

- If the command is none of these, an error will be reported to the user.

In order to get my implementation work we have to include the

low_freq_spinlock.c and ioctl.c files in the programs that want to use it. 

�40

5 - Measurements

To get more robust results I tried different kernel versions and ran the tests on

both Intel and AMD machines. Thanks to RAPL support in the most recent

kernels, I have managed to have precise measurements of energy

consumption. One aspect that induced me to do different tests is that on some

Intel architectures we can not change the CPU-core frequencies individually: If

we want to turn down or raise the frequency of a core all the socket will be

affected.

5.1 - Intel measures

The following measures were made on my own server that has the following

hardware:

�41

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 2
On-line CPU(s) list: 0,1
Thread(s) per core: 1
Core(s) per socket: 2
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 58
Model name: Intel(R) Celeron(R) CPU 1007U @ 1.50GHz
Stepping: 9
CPU max MHz: 1500,0000
CPU min MHz: 800,0000
BogoMIPS: 2993.26
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 2048K
RAM:
MemTotal: 3945408 kB
MemFree: 472172 kB
MemAvailable: 3006196 kB
KERNEL:
Linux 4.4.0-53-generic x86_64

I initially measured the system with powerstat to see its consumption, both in

normal mode and with lowered frequencies.

�42

Normal Mode:

 Time User Nice Sys Idle IO Run Ctxt/s IRQ/s Watts
17:35:00 1.0 0.0 0.0 99.0 0.0 1 161 72 2.51
17:35:01 0.5 0.0 0.0 99.5 0.0 1 107 63 2.33
17:35:02 0.0 0.0 0.5 99.5 0.0 1 117 68 2.33
17:35:03 0.0 0.0 0.0 100.0 0.0 1 126 76 2.33
17:35:04 0.0 0.0 0.0 100.0 0.0 1 108 65 2.33
17:35:05 0.0 0.0 0.0 100.0 0.0 1 119 71 2.33
17:35:06 0.0 0.0 8.0 92.0 0.0 1 304 205 2.65
17:35:07 0.0 0.0 0.0 100.0 0.0 1 155 96 2.34
17:35:08 0.0 0.0 0.0 100.0 0.0 1 121 67 2.34
17:35:09 0.0 0.0 0.0 100.0 0.0 1 187 97 2.35
17:35:10 1.5 0.0 0.5 98.0 0.0 1 136 90 2.37
17:35:11 0.0 0.0 0.5 99.5 0.0 1 171 93 2.35
-------- ----- ----- ----- ----- ----- ---- ------ ------ ------
 Average 0.1 0.0 0.2 99.7 0.0 1.0 118.7 70.6 2.34
 StdDev 0.3 0.0 1.0 1.1 0.2 0.0 30.4 20.2 0.05
-------- ----- ----- ----- ----- ----- ---- ------ ------ ------
 Minimum 0.0 0.0 0.0 92.0 0.0 1.0 88.0 53.0 2.32
 Maximum 1.5 0.0 8.0 100.0 1.5 1.0 304.0 205.0 2.65
-------- ----- ----- ----- ----- ----- ---- ------ ------ ------
Summary:
CPU: 2.34 Watts on average with standard deviation 0.05

Low Frequency Mode:

 Time User Nice Sys Idle IO Run Ctxt/s IRQ/s Watts
17:52:49 0.0 0.0 0.0 100.0 0.0 1 112 67 2.33
17:52:50 0.0 0.0 0.0 100.0 0.0 1 102 61 2.32
17:52:51 0.5 0.0 0.0 99.5 0.0 1 117 73 2.33
17:52:52 0.0 0.0 0.0 100.0 0.0 1 100 59 2.33
17:52:53 0.0 0.0 0.0 100.0 0.0 1 108 65 2.33
17:52:54 0.5 0.0 0.5 99.0 0.0 1 164 90 2.35
17:52:55 0.0 0.0 0.0 100.0 0.0 1 105 72 2.33
17:52:56 0.0 0.0 0.5 99.5 0.0 1 174 106 2.35
17:52:57 0.0 0.0 8.1 91.9 0.0 2 233 167 2.52
17:52:58 0.0 0.0 0.0 100.0 0.0 1 233 142 2.36
17:52:59 0.0 0.0 0.0 98.5 1.5 1 146 87 2.34
17:53:00 0.5 0.0 0.0 99.5 0.0 1 181 90 2.35
-------- ----- ----- ----- ----- ----- ---- ------ ------ ------
 Average 0.1 0.0 0.2 99.7 0.1 1.0 121.9 74.0 2.33
 StdDev 0.2 0.0 1.0 1.1 0.2 0.1 29.1 21.0 0.03
-------- ----- ----- ----- ----- ----- ---- ------ ------ ------
 Minimum 0.0 0.0 0.0 91.9 0.0 1.0 90.0 50.0 2.32
 Maximum 1.0 0.0 8.1 100.0 1.5 2.0 233.0 167.0 2.52
-------- ----- ----- ----- ----- ----- ---- ------ ------ ------
Summary:
CPU: 2.33 Watts on average with standard deviation 0.03

The fields have the following meaning:

1. Time -- the startup time of each monitoring instance.

2. User -- CPU usage of processes initiated by the current user.

3. Nice -- a special value (Kernel function) that prioritize the CPU time for

applications. Depending on the “importance” of the process, the “nice” value

changes, giving more or less CPU time for the process.

4. Sys -- CPU usage for the system software, such as CPU time used by the

Kernel for instance.

5. Idle -- represent the “waiting percentage” of your CPU.

6. IO -- This refers to IO Wait.

7. Run -- Under this it shows the currently running processes.

8. Ctxt/s -- context switch rate.

9. IRQ/s = IRQ per second -- IRQ is a special signal (I/O technique) that

hardware devices use to communicate with the CPU.

10. Watts -- energy consumption.

As we can see the energy consumption (in watts) of CPU are practically

identical, this means that the system is most of the time in idle.

In this way I am sure that when I run measuring tools, all the difference in

energy consumption will be due to my tests.

In the following 2 tests I used 3 threads, 1 that goes into critical section for

indeterminate time and 2 that continue to spinlock on the two cores. The first

test was done with a classical implementation of the spinlock and the second

with the low_freq_spinlock. 

�43

�44

normal_spinlock:

 Time User Nice Sys Idle IO Run Ctxt/s IRQ/s Watts
18:29:13 100.0 0.0 0.0 0.0 0.0 3 71 529 6.04
18:29:14 100.0 0.0 0.0 0.0 0.0 3 61 521 6.03
18:29:15 89.9 0.0 7.5 2.5 0.0 3 272 577 5.92
18:29:16 100.0 0.0 0.0 0.0 0.0 3 107 531 6.02
18:29:17 100.0 0.0 0.0 0.0 0.0 3 104 532 6.02
18:29:18 100.0 0.0 0.0 0.0 0.0 3 130 533 6.03
18:29:19 100.0 0.0 0.0 0.0 0.0 3 70 527 6.03
18:29:20 100.0 0.0 0.0 0.0 0.0 3 61 518 6.02
18:29:21 100.0 0.0 0.0 0.0 0.0 3 66 525 6.03
18:29:22 100.0 0.0 0.0 0.0 0.0 3 71 522 6.04
18:29:23 100.0 0.0 0.0 0.0 0.0 3 72 527 6.02
18:29:24 100.0 0.0 0.0 0.0 0.0 3 79 524 6.00
18:29:25 100.0 0.0 0.0 0.0 0.0 3 58 523 6.02
18:29:26 100.0 0.0 0.0 0.0 0.0 3 150 525 6.03
18:29:27 100.0 0.0 0.0 0.0 0.0 3 91 538 6.03
18:29:28 100.0 0.0 0.0 0.0 0.0 3 56 515 6.02
-------- ----- ----- ----- ----- ----- ---- ------ ------ ------
 Average 99.8 0.0 0.1 0.0 0.0 3.0 79.6 528.8 6.03
 StdDev 1.3 0.0 1.0 0.3 0.0 0.0 38.3 11.0 0.02
-------- ----- ----- ----- ----- ----- ---- ------ ------ ------
 Minimum 89.9 0.0 0.0 0.0 0.0 3.0 45.0 514.0 5.92
 Maximum 100.0 0.0 7.5 2.5 0.0 3.0 272.0 577.0 6.05
-------- ----- ----- ----- ----- ----- ---- ------ ------ ------
Summary:
CPU: 6.03 Watts on average with standard deviation 0.02

low_frew_spinlock:

 Time User Nice Sys Idle IO Run Ctxt/s IRQ/s Watts
18:22:57 100.0 0.0 0.0 0.0 0.0 3 170 558 4.17
18:22:58 100.0 0.0 0.0 0.0 0.0 3 102 529 4.17
18:22:59 100.0 0.0 0.0 0.0 0.0 3 126 536 4.17
18:23:00 100.0 0.0 0.0 0.0 0.0 3 95 530 4.18
18:23:01 100.0 0.0 0.0 0.0 0.0 3 87 527 4.17
18:23:02 100.0 0.0 0.0 0.0 0.0 3 66 528 4.17
18:23:03 100.0 0.0 0.0 0.0 0.0 3 54 519 4.17
18:23:04 100.0 0.0 0.0 0.0 0.0 3 74 533 4.17
18:23:05 100.0 0.0 0.0 0.0 0.0 4 55 516 4.18
18:23:06 100.0 0.0 0.0 0.0 0.0 3 55 524 4.18
18:23:07 100.0 0.0 0.0 0.0 0.0 3 85 522 4.18
18:23:08 100.0 0.0 0.0 0.0 0.0 3 87 536 4.17
18:23:09 100.0 0.0 0.0 0.0 0.0 3 59 517 4.17
18:23:10 100.0 0.0 0.0 0.0 0.0 3 66 527 4.16
18:23:11 100.0 0.0 0.0 0.0 0.0 3 55 517 4.17
18:23:12 100.0 0.0 0.0 0.0 0.0 3 59 527 4.17
-------- ----- ----- ----- ----- ----- ---- ------ ------ ------
 Average 99.9 0.0 0.1 0.0 0.0 3.0 69.8 524.2 4.17
 StdDev 1.0 0.0 1.0 0.0 0.0 0.2 24.0 8.2 0.01
-------- ----- ----- ----- ----- ----- ---- ------ ------ ------
 Minimum 92.0 0.0 0.0 0.0 0.0 3.0 47.0 513.0 4.16
 Maximum 100.0 0.0 8.0 0.0 0.0 4.0 175.0 558.0 4.19
-------- ----- ----- ----- ----- ----- ---- ------ ------ ------
Summary:
CPU: 4.17 Watts on average with standard deviation 0.01

Cores are all running (idle = 0) in user mode and there are exactly 3 threads: 1

sleeping and 2 spinlocking. On my hardware configuration the execution with

the low frequency spinlock has 1.86 Watts less then the one with the normal

spinlock implementation, with energy savings of about 30%.

Obviously here we are not considering the performance or the length of the

sleep phase, i.e. the critical section. Let's see now more tests more in detail.

The following tests initially create 2 threads, then keep spawning another one

continuously as soon as one finishes in order to get always one in c.s. (critical

section) and one spinlocking. It keeps spawning a number of threads as is

required for a 90-second running execution based on the length of the sleep,

i.e. if we have a sleep time of 10 sec we need 9 threads and so on.

�45

0

15

30

45

60

75

90

105

90000 threads 9000 threads 900 threads 90 threads 9 threads

Low Frequency Normal

Table 2: (Intel) The execution time of the two
implementations

This graph shows the execution time for the low frequency test and the normal

one. With 90000 threads and 1 ms of sleep we have a performance degradation

of 5 sec where all other measures are almost identical. Under one millisecond,

there is high performance degradation (even 3 times slower for low frequency

spinlock with 0.5 ms of sleep) due to the overhead that my implementation has.

Another thing that impacts the performance is the fact that my system has a

maximum transition latency of the CPU frequencies of 0,97 ms, under this

threshold we may even experience system to freeze.

In the table 3 we can see the gain on energy consumption (in Watts). Between

a millisecond and 100 milliseconds there is a large difference in energy

consumed in the green line due to the overhead of set_low_freq in threads.

�46

3,5

3,75

4

4,25

4,5

4,75

5

1 ms 10 ms 100 ms 1 sec 10 sec

Low Frequency Normal

Table 3: (Intel) Energy consumption with 2
threads at a time

In table 4 we can see that there is not much difference between one millisecond

and 10 seconds due to the fact that there is always 100% of workload per core.

There is a small difference at one millisecond because there are more phases

where the CPU rises to frequency, this is because there are more threads and

they acquire the lock faster.

�47

3,5

4

4,5

5

5,5

6

6,5

7

1 ms 10 ms 100 ms 1 sec 10 sec

Low Frequency Normal

Table 4: (Intel) Energy consumption with 3
threads at a time

�48

2,2

2,3

2,4

2,5

2,6

2,7

2,8

1 ms 10 ms 100 ms 1 sec 10 sec

Single Thread

2,2

2,3

2,4

2,5

2,6

5 ms 15 ms 30 ms 60 ms 90 m

SIngle Thread

Table 5: (Intel) Energy consumption single
thread (1)

Table 6: (Intel) Energy consumption single
thread (2)

Table 5 and 6 instead show a single thread that continuously invokes

set_low_freq and reset_low_freq. In the midst there is a sleep phase that

varies in length (1 ms to 10 sec). These tests were made to measure only the

overhead of the two calls. The cost of calls is mitigated if there is a critical

section of at least 100 milliseconds.

I would like to clarify that the values are valid on this system, and it is possible

that the point where the measurement becomes constant can be before or after

the 100 milliseconds on other systems. For the same reason the transition time

to set the frequency may changes from system to system. 

�49

5.2 - AMD measures

The following measurements were made on the server of the “Dipartimento di

Ingegneria Informatica, Automatica e Gestionale - DIAG”:

The version of powerstat is not entirely compatible with RAPL on the system

under consideration, so I have implemented measurements via RAPL interface

myself.

With the increased number of cores of this machine I made tests where

increasing the size of the critical section and the number of threads

independently. In this case the thread that holds the lock increments actively an

integer (no sleep) for a certain amount of cycles in order to simulate the critical

section, while other threads spinlocking. As usual I run normal and lowered

frequency implementation of spinlocks.
�50

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Thread(s) per core: 1
Core(s) per socket: 8
Socket(s): 4
NUMA node(s): 8
Vendor ID: AuthenticAMD
CPU family: 16
Model: 9
Model name: AMD Opteron(tm) Processor 6128
Stepping: 1
CPU max MHz: 2000.0000
CPU min MHz: 800.0000
BogoMIPS: 3990.16
Virtualization: AMD-V
L1d cache: 64K
L1i cache: 64K
L2 cache: 512K
L3 cache: 5118K
RAM:
MemTotal: 66107700 kB
MemFree: 65153708 kB
MemAvailable: 65138320 kB
KERNEL:
Linux 3.16.0-4-amd64 x86_64

This test shows the energy consumption (in Joule) while increasing the number

of threads that spinlock, the critical section remains unchanged at 1000000

cycles. As we expected normal implementation increases the energy

consumption with the increasing of threads, instead my implementations shows

no change in energy consumption due to the fact that all core (except one that

is in c.s.) remain with the minimum frequency.

in the next graph I show the throughput, i.e. the number of critical section

executed per second, of the same test as before. 

�51

0

1250

2500

3750

5000

2 4 8 16 32

Low Frequency Normal

Table 7: (AMD) Power consumption of the
two implementations

There is a performance degradation of about 20% in my implementation due to

the fact that the critical section is too short. In the case that all 32 cores are

running we have a 20% performance degradation but a reduction in energy

consumption of 58%.

I run an additional test in the same manner as the previous one but with a

critical section of one million cycles.

Obviously the consumption follows the first test while this time we have no

performance degradation; in fact we have the same values of critical section per

second (which is less then before because c.s. is longer).
�52

2

0 675 1350 2025 2700

Low Frequency Normal

0

1250

2500

3750

5000

2 4 8 16 32

Low Frequency Normal

2

0 75 150 225 300

Low Frequency Normal

Table 8: (AMD) Performances of the two
implementation

Table 9: (AMD) performances with one
million cycles

In the last graph I show the throughout (in a logarithmic scale) by varying the

length of the critical section from 1000 cycles up to one million.

As expected the degradation of performance for critical sections that are too

short is very high. It attenuates with the increasing of the critical section and

eventually drops to zero. 

�53

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

Low Frequency Normal

6 - Considerations on improvements

In this section I would like to discuss possible improvements that could be made

to this implementation in view of the work of other colleagues I’m interacting

with.

One of the biggest benefits would be to reduce the overhead associated with

lowering and raising frequencies in the kernel module:

In my current implementation, these operations are performed by passing

through pseudo files, which has its own overhead. Actually I have made

pointers to files global so that we do not have to execute the open function

every time, but it remains the fact that there is the overhead due to the

vfs_write.

Still on performance effects, writing on these pseudo files does not make the

changes instantly but this changes have a transition time (which is 0.97 ms on

my system). It would be very interesting to implement the frequency changes

through the use of specific registers of the cores; These registers are also used

by low-level utilities and are machine dependent. My colleague Daniele Zuco is

currently working on this subject on his thesis.

We could do a more thorough study on AMD machines that have the advantage

of enabling the frequency change with the granularity of the single core and, in

this case, acquire statistical data that thanks to machine learning we could use

to elaborate different approaches based on the use of spinlock and the length of

the critical section. In fact, we can think of a system that is aware of the fact that

a critical section is too short and decides not to pay the overhead of the low

frequency spinlock autonomously. Or to a system that manages cases where

minimizing the frequency may not be the best solution in terms of performance

�54

and energy consumption and then, thanks to the data acquired, to sets the most

appropriate frequency.

Another great improvement would be to have the scheduler patch with the

on_schedule() function already present in the kernel without the possibility of

jumping to distant memory zones every time. In fact, since the patch is applied

at runtime, there is no possibility to have compile-level optimizations. 

�55

7 - Conclusions

With my implementation of the spinlock there is an energy savings of 19% up to

31% on my the Intel machine and of about 58% (in the best case) on the server

of DIAG (AMD). As we have seen the added overhead, and the associated

performance degradation, is soon tempered as the critical section becomes

longer. This is especially because we need that the critical section must be at

least as long as the transition time needed to the system to change the

frequencies and that is bound to the use of pseudo-files.

The lower limit of the critical section can be made even smaller as soon as he

system under consideration becomes more powerful, i.e. needs less time to

transition; so that we can also have critical sections very brief where it is still

convenient to use the low frequency spinlock. The expectation on servers with

hundreds of cores is that energy saving can be even greater in terms of

percentage.

The most important feature is probably the fact that the whole architecture is

configurable at runtime without the need to restart or recompile the kernel. The

introduction of my library is, in this way, transparent to the system end also to

end-users because the APIs are practically equal to those used by the Linux

spinlock library, and it is therefore possible to automate through a simple script

the passage from the old spinlock present in the various programs of the

system to the low-frequency ones.

�56

List of Figures

Figure 1: Example of TDP limit pag 5

Figure 2: Frequency Escalation pag 5

Figure 3: HBM

Figure 4: Linux Stack pag

Figure 5: Stack of command calls pag 8

Figure 6: Example of lsmod output pag 9

Figure 7: Ring model

Figure 8: schedule-hook() 

�57

List of Tables

Table 1: mutex vs. spinlock

Table 2: The execution time of the two implementations

Table 3: Energy consumption with 2 threads at a time

Table 4: Energy consumption with 3 threads at a time

Table 5: Energy consumption single thread (1)

Table 6: Energy consumption single thread (2) 

�58

Acknowledgments

I would like to thank my rapporteur Francesco Quaglia, Pierangelo Di Sanzo,

Alessandro Pellegrini, and all the PhD students of high performance computing

who have supported me and helped in the development of the code, to compare

the tests and to make them trustworthy. I also thank the “Dipartimento di

Ingegneria Informatica, Automatica e Gestionale” for making me available the

instrumentation useful to the development of my thesis. 

�59

References

- [1] Intel Turbo Boost: http://files.shareholder.com/downloads/INTC/0x0x348508/

C9259E98-BE06-42C8-A433-E28F64CB8EF2/TurboBoostWhitePaper.pdf

- [2] RAPL: https://01.org/blogs/2014/running-average-power-limit-–-rapl

- [3] APU: http://www.amd.com/en-us/press-releases/Pages/amd-fusion-apu-

era-2011jan04.aspx

- [4] https://www.greentechmedia.com/articles/read/improving-the-energy-efficiency-

of-computing-while-moores-law-slows

- [5] Linux: http://swift.siphos.be/linux_sea/whatislinux.html

- [6] https://kernelnewbies.org/FAQ/LibraryFunctionsInKernel

- [7] http://www.di.ens.fr/~pouzet/cours/systeme/bib/publ_1995_liedtke_ukernel-

construction.pdf

- [8] https://web.stanford.edu/~ouster/cgi-bin/papers/osfaster.pdf

- [9] http://www.tldp.org/LDP/lkmpg/2.6/html/lkmpg.html#AEN567

- [10] https://github.com/HPDCS/schedule-hook

�60

http://files.shareholder.com/downloads/INTC/0x0x348508/C9259E98-BE06-42C8-A433-E28F64CB8EF2/TurboBoostWhitePaper.pdf
http://files.shareholder.com/downloads/INTC/0x0x348508/C9259E98-BE06-42C8-A433-E28F64CB8EF2/TurboBoostWhitePaper.pdf
http://files.shareholder.com/downloads/INTC/0x0x348508/C9259E98-BE06-42C8-A433-E28F64CB8EF2/TurboBoostWhitePaper.pdf
http://swift.siphos.be/linux_sea/whatislinux.html
https://kernelnewbies.org/FAQ/LibraryFunctionsInKernel
https://web.stanford.edu/~ouster/cgi-bin/papers/osfaster.pdf
http://www.tldp.org/LDP/lkmpg/2.6/html/lkmpg.html#AEN567

