
Faculty of Computer Engineering

Computer Science and Statistics

Master of Science in Engineering

in Computer Science

Master Thesis

Dynamic clustering of simulation objects in

speculative parallel simulation systems

Academic Advisor Candidate

Prof. Francesco Quaglia Nazzareno Marziale

Dr. Alessandro Pellegrini

Academic Year 2014/2015

“Truth is ever to be found in simplicity,

and not in the multiplicity and confusion of things.”

—Isaac Newton

Contents

1 Introduction 1

2 Background on Optimistic Simulation 5

2.1 Conservative vs Optimistic Simulation 8

2.2 Global Virtual Time . 11

2.3 Rollback Approaches . 12

2.3.1 State Saving . 13

2.3.1.1 Copy State Saving 13

2.3.1.2 Sparse State Saving 14

2.3.1.3 Incremental State Saving 16

2.3.2 Reverse Computing . 17

2.4 Grouping Simulation Objects 19

3 ROOT-Sim: The ROme OpTimistic Simulation Kernel 25

3.1 The Reference System Architecture 25

3.2 Simulation Engine . 31

3.3 Code Example . 34

4 Group of Logical Process 37

5

4.1 Creation of Group of Logical Processes 40

4.1.1 Group Data Structure 40

4.1.2 How and When Groups are Created 44

4.2 Schedule of Group of Logical Processes 52

4.3 Destruction of Group of Logical Processes 56

4.4 Rollback of Group of Logical Processes 57

5 Experimental Evaluation 61

6 Conclusion 69

List of Figures

2.1 Parallel Discrete Event Simulation 7
2.2 Rollback Example . 12
2.3 Copy State Saving . 13
2.4 Sparse State Saving . 15

3.1 Top/bottom halves architecture. 27
3.2 GVT Computation phase example 28
3.3 The dual-mode execution model. 29
3.4 mem_map data structures. 30

4.1 Group of Logical Processes . 41
4.2 State machine for groups . 44
4.3 State machine for simulation 45
4.4 Undirected multigraph to represent LPs interconnection . . . 46
4.5 Regroup execution with 8 LPs. 50
4.6 Incoherent memory access without START_GROUP control mes-

sage. Case 1. 51
4.7 Incoherent memory access without START_GROUP control mes-

sage. Case 2. 52
4.8 Group Rollback . 57
4.9 Inconsistent execution of traditional rollback/coasting forward

phase with active groups. 58
4.10 Group checkpoint control message. 60

5.1 Total Execution Time . 66

7

Chapter 1

Introduction

In the field of simulation, the Discrete Event Simulation (DES) is the process

of analysing the behaviour of complex system, created by an analyses of real

word, and realizes a sequence of ordered events that describes it. In this

system, events describe how the simulation has to change its state in a specific

point in time. The simulation is defined discrete because proceeds forward

in time from an event at the time of the next event

Since the amount of data to be analysed and the complexity of Sim-

ulations increases more and more, it appeals to a solution in parallel and

distributed system, because many problems usually have a good part paral-

lelizable. This solution takes the name of Parallel Discrete Event Simulation

(PDES). The execution of the simulation consists of processing the discrete

events, as described above, by the Logical Processes.

A Logical Process is the representation of physical actor inside the simula-

1

2 1. INTRODUCTION

tion, that has a state and it changes its status processing the events.

To ensure proper output of the simulation, we need to define some rules of

synchronization between all simulation’s components. The main constrain is

the local causality, according to this role the events of a Logical Process must

be processed in timestamp order. If this constraint is satisfied, the parallel

simulation will have the same results than sequential. The synchronization

algorithm in which attention will be focused in the following thesis is opti-

mistic, under which the bond of causality may be violated, but as soon as

it is detected is made rollback to return in a consistent execution state. In

order to minimize the number of rollback and try to execute the simulation

in a sequential way, each worker thread schedule the Logical Process with the

minimum timestamp over all the Logical Processes available for this worker

thread.

Given the increasing diffusion of shared memories, and therefore the pos-

sibility to access the status of the different Logical Processes, at the level

simulation has been necessary to make access to different states transparent

to the programmer level. This specific part is discussed in the thesis of my

colleague Francesco Nobilia, he makes the system able to track accesses to

memory areas that not belonging to the specific Logical Process.

Under this assumption, in this thesis we deal with the problem of creating a

Group of Logical Process. A Group is a set of Logical Processes running in a

serial manner and each of them can accesses in a safe way to the memory of

others. This is assured since each group, so each Logical Process within the

group, is scheduled exactly from one Worker Thread. The Worker threads

1. INTRODUCTION 3

when it decides to schedule the group performs two operations:

1. Access to the message queue of each Logical Process and extracts the

minimum.

2. Of all the minimum extracted from various queues it is taken the least.

This policy ensures that the execution of Group of Logical Processes is both

serial and does not violate any causal connection.

Therefore we deals with the problem of creating a Group of Logical Pro-

cesses, then such Local Processes must belong to that particular group. In

order to understand the interconnection between different Logical Processes,

we exploit the cross-state dependencies to build an access statistics, through

which the simulation engine will determine the conformation of groups.

As well as previously introduced, each memory access of other Logical Pro-

cesses units within the group is not considered as a Event Cross State, this

involves a significant increase in performance since the Logical Processes do

not have to synchronize with each other. Since the system we consider is

optimistic, in this thesis, we analyse also the problem of frequent rollback.

With the our solution, we can found a relationship between LPs, creating a

symbiotic execution, avoiding rollback. This leads to create a new kind of

rollback, in fact, when a process that is located within a group must perform

a rollback, this means that every other processes that belong to the group

perform rollback at the appointed time.

At the end of a period (group era), groups are destroyed and the system con-

tinues to collect statistics of the interactions between the Logical Processes

4 1. INTRODUCTION

and than we can create a new configuration of the groups, in order to adapt

the system to the simulation’s evolution.

This solution has been implemented inside the ROme OpTimistic Simu-

lator (ROOT-Sim).

The rest of this thesis is organized as follow: Chapter 2 presents all works

related to the one discussed in the thesis and the different implementations

developed to solve this problem. Chapter 3, we explain more in detail the

simulator on which the solution is implemented. The work conducted in this

thesis is explained thoroughly in Chapter 4 and Chapter 5 we expose the

results of tests and the improvements observed. Finally, in Chapter 6 we

explain the conclusions that have been reached.

Chapter 2

Background on Optimistic

Simulation

In recent years, parallel computing has been a topic of great interest in re-

search. Resource sharing hardware can perform with greater computational

power, allowing an increased performance, in a way which is completely trans-

parent to the user. Indeed, in the multicore devices is big theme during the

2004, because if the Moore’s Law predicts an exponential grow in speed up

of CPU, this does not continue forever owing to the hardware physical re-

striction.

In this situation, to improve the performance we have to add more cores, in

this way we can execute different operations simultaneously. The multicore

approaches leads concurrency problems. In detail, a multi-thread program

has to taking into account the coherency of the data structure and the syn-

5

6 2. BACKGROUND ON OPTIMISTIC SIMULATION

chronization phase. However, if exist in our program different control flow

that could be executed in parallel, the speed-up of execution is significant.

The rapid progress of construction at the base of these virtual systems arises

from the need to run simulations on a large scale and in the most diverse

fields: engineering, economics, military research, biology and science in gen-

eral (see, e.g. , [1], [2] and [3]). Indeed, we can study and/or interact with the

behaviour of complex systems during their evolution (symbiotic simulation)

or before their actual realization (what-if analysis). Simulations of this type

require, for their processing, massive computing resources that can only be

obtained in parallel and distributed environments, where the various nodes

cooperate to achieve a common result, subject to stringent requirements for

consistency and synchronization, reliable communication latency.

The survey in the field of parallel and distributed simulation begins in

1979 with the article by Chandy and Misra in [4].

The concept of PDES (Parallel Discrete Event Simulation), described for the

first time in [5], is an evolution of the previous DES (Discrete Event Simula-

tion). It consists in a distributed paradigm for the execution of discrete-event

simulation models.By discrete-event simulation we mean an arithmetic-logic

model capable of representing physical systems in the real word, schematized

through algorithms and / or mathematical formulas. Each simulation model

is associated with a state that represents the totality of information managed

by the application, and a set of discrete events generated during the evolution

of the model, which lead to changes in the system state.

A simulation is called discrete when the operations associated with the events

2. BACKGROUND ON OPTIMISTIC SIMULATION 7

Communication Network

Machine

CPU

Kernel

LP
LP

LP LP
LP

LP LP
LP

LP LP
LP

LP

...

...

CPU CPU CPU

Machine

CPU

Kernel

...CPU CPU CPU

Kernel

Fig. 2.1: Parallel Discrete Event Simulation

take place instantly and have a impulsive duration. The idea behind PDES,

whose architecture is shown in Figure 2.1, is to running a simulation pro-

gram on parallel (remote or local) computers and based on the processing of

discrete events. Each event can produce changes, more or less complex, on

portions of the simulation state. The events are correlated in time by logical

discrete time called timestamp, when an LP executes an event, it updates its

current runtime (Local Virtual Time, LVT).

This dependency makes it possible a form of synchronization and coordina-

tion between all processes participating in the simulation, so as to achieve a

common and correct result.

PDES can be viewed as a set of N objects, called Logical Process (LP),

indicated with LP0, LP1, . . . , LPN−1, each of which is associated with a state,

Si ⊆ S, containing a subset of variables that are strictly necessary to the evo-

lution of single instance of the simulation. The set S is the global simulation

state and then keeps all information relevant to the simulation. During a

simulation, the LP performs two main operations:

8 2. BACKGROUND ON OPTIMISTIC SIMULATION

1. Event processing: this leads to the advancement of the logical sim-

ulation time, changing at the same time the LP state and thus the

simulation state. Events may have been generated by the LP itself or

by other LPs.

2. Event generation: during the processing of an event, the LP may

decide to send an event, either to himself or to another LP.

Through these basic operations an LP can interact with other LPS in

order to carry out the simulation, to achieve the desired result. PDES, being

a parallel simulation, does not ensure that the execution of messages is se-

quential. Indeed in a concurrent simulator, one of the major problems is to

always ensure the state consistency, so the global state of the system must

be always consistent with the model specification.

In this way, we are sure that there are no erroneous transitions that may

affect the final simulation result.

In order to ensure state consistency, we are presented two different synchro-

nization paradigms.

2.1 Conservative vs Optimistic Simulation

There are several strategies to implement PDES consistency, wiich are widely

discussed in the literature ([6] [7]). The three main ones are: conservative,

optimistic and hybrid. The first to be introduced was the conservative ([8]

and [9]). This strategy avoids the occurrence of causality errors at runtime,

2. BACKGROUND ON OPTIMISTIC SIMULATION 9

since the execution of an event takes place only if it is guaranteed to give a

correct effect on the LP state, meaning that the event to be processed is safe.

In detail, conservative simulation requires that an event e1, with timestamp

T1, is processed only if there is no other event e2 with timestamp less than

T1 or if the system is able to determine that it is impossible to get another

event e2 with timestamp T2 < T1 . With these assumptions, we are sure that

execution proceeds without any violation of causality and that the state of

the LP will be always consistent.

To determine if an LP can process an event in the future in a safe manner

we can resort to the lookhead : if an LP can assert during the execution of

event e1 that up to time T1 + ∆ all events processed will be safe, we say that

the process has a lookhead equal to ∆.

In detail, ∆ is the smallest increment of time according to which new events

are generated, so it is a quantity associated to the specific model. In some

cases ∆ can also be zero.

This solution, however, does not fully exploited the parallelism offered by the

underlying hardware, since even if two events e1 and e2, which are located

on two different LP, are not logically dependent, the system might force a

sequential execution even if it is not necessary.

The approach that we will examine in this thesis is the optimistic one.

Differently from the conservative solution, optimistic synchronization selects

looking only at the local LP, without taking into account the causal depen-

dency with others LPs.

The most significant example of optimistic synchronization is the Time Warp

10 2. BACKGROUND ON OPTIMISTIC SIMULATION

protocol in [10]. In this approach events are processed as soon as they are

available,and if later a causality error is detected, the system is returned to

a consistent state, from which it can process the new event that caused the

error. This operation is called rollback, which we analyse in detail in section

2.3. With this solution the available parallelism is fully exploited because it

does not carry out audits of other LPs to see if an event is safe.

One of the main studies on the Time Warp, and how this is applied to

the DES platform, is led by Jefferson in [11]. Indeed this article explains how

the Time Warp Operating System (TWOS) has been realized and discusses

its performance.

TWOS is a system that exploits several processors to increase the parallelism

of simulation. Moreover, the main innovation that has been presented in [10]

is the possibility to rollback and then it can exploit the whole concept of

running the simulation optimistically.

Another important study in this area was conducted and presented in the

work [12], including a proposal for global scheduling mechanism, that we

analyse in Section 2.2. It also introduces the presence of a distributed queue

of events to improve the performance and load sharing for Logical Processes,

where each one of these is taken over by a core.

2. BACKGROUND ON OPTIMISTIC SIMULATION 11

2.2 Global Virtual Time

Another important concept associated with the rollback is the Global Virtual

Time (GVT), described in [10]. In PDES it is important to determine a cer-

tain instant of time at which all virtual LPs arrived, so that we can consider

all the events that occurred before this instant as committed. Indeed, if all

the Logical Processes have processed correctly the events with at a times-

tamp bigger than x, where x is the minimum time between all the latest

processed events,no LP may send an event to another LP with a timestamp

less than x. In this way we can ensure that no LP will perform a rollback to

a Local Virtual Time less than x.

So we can define the Global Virtual Time as the smallest LVT value t among

all the LPs at a given Wall Clock Time instant, and as the minimum virtual

time of all messages that are not received in the system at real time t.

There are different implementations and definitions of GVT, such as [13],

[14], [15], [16], [17]. However, the computation of GVT in PDES system is

critical because it allows to establish a time frame before which all events

can be considered committed. This allows us also to delete all the informa-

tion necessary for rollback before this time, in order to optimize the use of

memory and avoid keeping unnecessary information for the system. This

operation is called fossil collection.

12 2. BACKGROUND ON OPTIMISTIC SIMULATION

Fig. 2.2: Rollback Example

2.3 Rollback Approaches

In optimistic simulations, as described above, one of the major challenges is

how to perform a rollback. Indeed, it can happen that a LP, which is at a

time x, receives a message from another LP at time y where x > y (straggler

message). In order to process this new event, the LP has to go back to a

time less than or equal to y, and then it has to realign its state at the time

of execution. This is because being a optimistic simulation, LPs run events

in a speculative way in order to try to optimize the simulation performance.

Since the rollback operations can affect the simulation’s performance signifi-

cantly, different solutions have been developed in order to reduce its overhead.

Now, we start analysing how we can compute the rollback in order to ensure

2. BACKGROUND ON OPTIMISTIC SIMULATION 13

Fig. 2.3: Copy State Saving

the correctness of the execution, and since it has an high cost, we will try to

optimize its performance.

2.3.1 State Saving

In this approach, to ensure that it is possible to rollback an LP’s state, the

system stores the old value and when a causality violation is detected, the

correct state is restored by coping back the saved value. We show some

technique to realized rollback with State Saving approach, in order to reduce

the cost of this operation.

2.3.1.1 Copy State Saving

The problem of bringing LPs back to a consistent state is introduced into the

work of Jefferson [10], which proposes a very simple solution. Whenever an

14 2. BACKGROUND ON OPTIMISTIC SIMULATION

LP processes an event, exactly before the simulation engine takes a snapshot

of LP’s state and stores in a queue of states (Figure 2.3).

As soon as an LP receives a straggler message, the simulator restores the state

immediately before the time of the straggler message and sends antimessages

for all messages with timestamp bigger than the restore point.

An antimessage is a negative copy of a message that tells the system that

the positive copy must no longer be processed, the negative copy annihilates

the positive one.

This solution leads to excessive memory usage to save the state after that

every single event is processed.

The only solution in this implementation to reduce the space used is to run

frequently the GVT reduction, but this leads, as previously described, to

performance reduction.

2.3.1.2 Sparse State Saving

To optimize state saving so as to reduce the impact of CSS, different ap-

proaches have been developed, which all fall under the name of Sparse State

Saving (SSS) [18] [19] [20].

With SSS, a checkpoint is not taken before the execution of each event, but

sparsely. SSS is divided into two main categories: Periodic State Saving

(PSS) and Adaptive State Saving (ASS). In the first, the checkpointing in-

terval is determined in a static manner, while in the second the period varies

depending on the simulation model’s dynamics.

With this methodology, consequently, the rollback mode changes as well. The

2. BACKGROUND ON OPTIMISTIC SIMULATION 15

Fig. 2.4: Sparse State Saving

following two cases may occur:

1. The case similar to the approach above, in which we have a state with a

Local Virtual Time equal to the time at with we have to roll back. This

is the most simple situation, indeed, we restore the LP’s state with the

copy and we send antimessages of all subsequent messages.

LV Tsnapshot = LV Trollback.

2. The state that was saved has a Local Virtual Time smaller than the

point at which the LP has to go back, because the Local Virtual Time

of the straggler message is different from LVT of the state (Figure 2.4).

LV Tsnapshot < LV Trollback.

In the second case, to restore a consistent state, we should rerun all events

that are present between the point at which the system has taken the snap-

shot, and the point at which it is necessary to rollbak. These events can not

16 2. BACKGROUND ON OPTIMISTIC SIMULATION

be executed normally because otherwise it could be introduce into the simu-

lation a sequence of duplicate events, which would hamper the correctness.

The technique used in this case is called Coasting Forward [20]. The

events are replayed up to the rollback point, without sending messages to

other LPs. This execution is called Silent Execution and is required to bring

the LP exactly at the right LVT to run the Straggler Event with a correct

state, starting from the first available simulation snapshot.

In this way we optimize the use of storage, if the checkpointing interval is

chosen appropriately. Indeed, if it is too short, we don’t get any benefit

in memory usage. In the other case, if it is very large, the simulator has

re-run many events silently. The optimal checkpointing interval [21] can be

computed as:

χopt =

⌈√
2δs
δc

+

(
N

kr
+ γ − 1

)⌉
(2.1)

where:

δs is the average time to take a state snapshot;

δc is the average time to execute the coasting forward operation;

N is the total number of committed events;

kr is the number of rollbacks executed;

γ is the average rollback length;

2.3.1.3 Incremental State Saving

The previous solution does not take into account the size of the checkpoint

and the time required to pack it. In fact, if the LP’s state is very large, the

2. BACKGROUND ON OPTIMISTIC SIMULATION 17

saving operation can be costly. In [22] and [23] a first version of Incremental

Save State are presented.

These solutions limit the amount of memory usage and the time spent to

pack the checkpoint. The problem with these implementations is that they

are not transparent to the user, indeed the latter must be aware of the rollback

operation and state saving, so he has to manage state changing in such a way

that after the system can perform the rollback.

Subsequently, in [24], thanks to the instrumentation of software, it is

possible to make this operation transparent to the programmer. Indeed, the

assembly code of the model is parsed and all transitions that update the

state are replaced by a particular function call, that before updating the

value, saves a copy.

In conclusion, the works in [25] and [26] provide an approach completely

transparent to the user, using again the instrumentation of the code, but by

inserting an intermediate level that helps to determine which areas of memory

have been modified, without saving information that has not been changed.

This is implemented using a bitmap and setting to 1 the bits associated with

memory areas modified during the execution of events.

2.3.2 Reverse Computing

Reverse computing is a different technique to realize the rollback operation,

indeed in this case the system does not store the state information, but

18 2. BACKGROUND ON OPTIMISTIC SIMULATION

exploits revers events which are able to undo the effects of events processed

in forward mode.

In [27] and [28] two solutions are presented, both exploiting the instru-

mentation of the code.Indeed in the first solution, the model code is manip-

ulated by a compiler that produces two different outputs. The first one is

the model code with some additional instructions for the execution of reverse

computing. While the second output is reversing code, necessary when an

LP receives a straggler message and it has to perform a rollback.

The second solution uses the LLVM framework [29] to store the informa-

tion about messages that alter the state. Indeed, LORAIN makes the key

assumption that only instructions that affect memory have the capacity to

alter state. This framework allows to the system to manage the destructive

instruction.

Some example of destructive instruction is variable assignment or division,

because after the execution of this operations, we can not compute the orig-

inal value through the inverse.

LORAIN analyses the model code looking for store instructions and aug-

ments the message structure with the LLVM metadata. In this way, when

it is necessary to roll back, the system can use antimessage and restore the

correct state computing the reverse of message, also if it contains destructive

instructions.

Since in any case the rollback has a huge cost in terms of computing

power as well as it hampers performances, our solution proposes to decrease

substantially the number of rollback that must be executed. In fact, by

2. BACKGROUND ON OPTIMISTIC SIMULATION 19

tracing interactions between the LPs, we can determine if there are some

logical connections between LPs and then, with the new concept that we

introduce of Groups of Logical Processes, we can decrease the amount of

rollbacks, as we execute sequentially all the events belonging to LPs of the

same group.

Furthermore, our solution is completely transparent to the user, since both

the statistics of interaction and the creation of groups are executed entirely

by the underling platform without requiring the programmer to modify the

model code.

2.4 Grouping Simulation Objects

As regards the problem of accessing the state of another Logical Process,

Fujimoto in [5] proposes a first solution. It is based on the exchange of mes-

sages between processes to access shared memory areas which are mapped

to one (or more) LP’s state, but the process which contains the information

required could easily become a bottleneck. Also the state of process to be

access must be synchronized with the LVT associated with the access opera-

tion, otherwise we’re going to read either an information not yet updated or a

future information, because the Logical Process has already processed other

events. However, in both situations the information is inconsistent with the

current simulation time instant.

An efficient approach, that was proposed, it is to duplicate the shared infor-

mation on the processes that ask to access the state of other Logical Processes

20 2. BACKGROUND ON OPTIMISTIC SIMULATION

but, in this case, the protocol has to deal with to maintain consistent all the

informations copied in various processes. However, this solution is not trans-

parent to the user and greatly complicates the programming model.

A solution based on the studies of Jefferson [11] is Georgia Tech Time

Warp (GTW) [30]. This version is optimized to run events of small size,

these types of simulation are used in the field of telecommunications, such

as the simulations of wireless networks. Even in this solution, they use Log-

ical Processes, which represent the components of simulation, and these can

perform only three operations:

1. process start message

2. process a message received from another LP and send a new event

3. call a procedure to end the simulation process.

For what concerns shared memory between processes, GTW manages the

problem during the creation of processes and messages. Indeed, each pro-

cessor has a memory area which is accessed by all processes, both when

the system needs to send messages and when it needs to read the messages

addressed to a particular LP. This allows us to have shared memory, but

requires that whenever an LP wants perform an access to send or read a

message, it must take a lock. One possible solution presented is to create dif-

ferent pools for sending messages, but this involves different pools depending

on the number of processors to which the underling platform should could

messages.

2. BACKGROUND ON OPTIMISTIC SIMULATION 21

In [31] the problem is dealt in a manner independent of the underlying

system and the type of allocation chosen for the Logical Processes. It is

proposed a solution based on the scheme State Query Time Warp (SQTW),

which is an enrichment of Time Warp with the use of the State Query com-

munication protocol (SQ). Through the SQ communication protocol every

Logical Process can access the states of other LPs under the condition that

data is valid, and then updated them at the same simulation time instant.

To manage this type of interaction, three new messages are introduced:

1. activate: to activate the synchronization phase at the process P .

2. query: P sends the request to any other process involved in retrieving

data.

3. reply: all other processes, once they have process the message, send it

reply to the process P .

Since the simulation is optimistic, this solution is also provided with man-

agement of rollback in case where there is a causality violation. However, a

solution for grouping Logical Processes is not provided, and then each time

that a process must access memory of another one, it has to apply the syn-

chronization rules even if this operation is carried out frequently.

In [32] the concept of shared state over different Logical Processes is intro-

duced, based on the Multi-Agent System (MAS) [33] environment. Indeed,

according to the configuration of this simulation environment we can not

know in advance how many times and which memory areas the LPs will

22 2. BACKGROUND ON OPTIMISTIC SIMULATION

want to access during their execution.

The solution proposed consists in the creation of a shared memory area,

maintained by a set of additional LPs, called Communication Logical Process

(CLP). All other LPs interact with this area of shared memory by sending

special events to CLPs to get, update or add informations. This solution of

course has the problem that the shared memory area can become a bottle-

neck. This proposal does not present in any way a methodology for exclusive

allocation of a specific memory portion to a selected set of Logical Processes.

In [12] and also examine the solution that is exposed for the problem

that we address in this thesis. Indeed, also [12] faces the problem with

the aim to decrease the amount of rollback and to decrease the amount

of sent data, looking however to maintain a certain degree of parallelism.

Within the article it describes a standard evolution of the state, in which

there are N different Logical Processes that are running independently, and

the authors introduce a new concept of Logical Process, called Extendend

Logical Processes (Ex-LPs).

A Ex-LP is a set of Logical Processes, which has the ability to access in a safe

way memory areas of other processes belonging to the set. Since accesses to

memory areas among LPs within an Ex-LP can not be traced, the solution

that has been made is to keep a list of events which occurred within the

Ex-LP. On the contrary, for the accesses from external LP of the Ex-LP set,

there is a split of the types of memory contained within a Ex-LP. Indeed,

there are two types of memory, a Private that can be accessed only by the

internal elements of Ex-LP, while another Public that can be accessed by

2. BACKGROUND ON OPTIMISTIC SIMULATION 23

all. A possible implementation presented to share memory is to use software

transactional memory (STM), already presented in other articles such as [34],

[35], [36] and [37].

In conclusion, this work proposes a solution that does not completely fit

our problem, indeed it does not address the possibility of modifying the

structure of Ex-LP over time and therefore it does not allow to tune the

system depending on the simulation progress.

The last work that we take into account is the work of Mehl and Hammes

[38]. In this work they expose different algorithms to manage the sharing of

memory over the Logical Processes in a optimistic simulator. Furthermore

they assume that the rollback is performed as exposed by Jefferson in [10].

The first algorithm introduced, that exploits the rollback facility, maintains

a multi-version list for each variable of single Logical Process, in this way if

the LP has to roll back, it can restore a previous version of shared variable

and knows which processes read and accessed to this variable. Indeed, all

the Logical Processes that read a shared variable, that is after rolled back,

have to rollback themselves as well.

When an LP performs a read of shared variable, the hitted object checks

in multi-version list of this variable which value is coherent with the event

timestamp, update the multi-version list adding this read and finally return

the correct value.

On the other hand, if the LP performs an update, sends the request and

if there are some reads later than this update, all the LPs that accessed

this variable have to rollback at the update message timestamp. This is

24 2. BACKGROUND ON OPTIMISTIC SIMULATION

mandatory because the other LPs could have read a wrong value and this

update could change their behaviour.

The second algorithm uses the same concept of multi-version list, but when

an LP performs a read request specify if this is read-only. When an update is

performed over this variable, the owner of variable communicates, to all the

LPs that accessed the information, the new value of this variable and each

LP decides on its own if the rollback should be performed or not.

In the last algorithm, if an LP asks to read a shared variable, it copies the

entire multi-version list locally. In this case, when the LP performs a read,

it accesses the local copy, while when someone performs an update, all the

local copies must be updated, and so the update message is propagated in

multicast way.

In conclusion, these works propose a good solution for sharing data, but

do not consider the case when this access is frequently. Consequentially we

can consider to join these processes to improve the execution performance.

In this way, as stated above, we decrease number of rollbacks and create a

temporary relationship between several Logical Processes.

Chapter 3

ROOT-Sim: The ROme

OpTimistic Simulation Kernel

In this chapter we explain the system architecture that we use and how the

simulation engine works.

3.1 The Reference System Architecture

The system architecture which we use is the Symmetric Multi-Threaded op-

timistic simulation kernel, depicted in Figure 2.1 where we can that It is

organized in different layer. On the top we can find the Logical Processes

(LPs), each LP is identified by a unique number, starting from zero up to

numLP − 1, where numLP is the total number of active LPs. The second

level is a simulation kernel instance and it handles different LPs.

25

26 3. ROOT-SIM: THE ROME OPTIMISTIC SIMULATION KERNEL

According to the multi-threaded programming paradigm, the simulation ker-

nel instance is divided over the available CPU cores. This is done by placing

each core exactly a worker thread, thus avoiding the operating system moves

the worker threads on other cores, in order to increase the simulation perfor-

mance. We can also use different machines, in this case each machine has a

multi-thread simulation kernel instance and all the informations are spread

by exploiting a message passing-based communication network, for example

MPI library [39].

The main problem multi-threaded optimistic simulation kernels is to avoid

as much as possible synchronization between different LPs that are hosted

on top of the same kernel instance. The data structures that during the sim-

ulation require much access are both input and output queue. Indeed, these

data structures are the principal point of cross-LP dependencies because they

are not only updated by the work thread that executes the LP, but also by

the other worker thread to insert event in the LP’s queue.

Since, we can not implement the access to these data structure using a

locking mechanism because this causes scalability problems, we exploits a

top/bottom-half mechanism. As shown in Figure 3.1, each LP uses an

LP_lock to access the bottom-half queue associated in order to insert the

new messages in its queue.

In order to take advantage of data locality, each worker thread can not

perform all the LPs, but handles a predetermined subset of these. We can

apply two different implementation of the rebinding phase: static and dy-

namic.

3. ROOT-SIM: THE ROME OPTIMISTIC SIMULATION KERNEL 27

simulation kernel interrupt handling layer

messaging layer

LP_locks Bottom-Halves Queues

interrupt

Interrupt
(message/antimessage
from a remote kernel)

LP forward mode

running

LP rollback mode

running

message antimessagetop-half
(get lock and schedule

bottom -half)

Fig. 3.1: Top/bottom halves architecture.

In the static solution, at the start up of the simulation, we divide all the avail-

able LPs simply assigning at each worker thread numLP/numCore (where

numCore are the total number of cores in the machine), this assignment is

fixed for the entire simulation.

The dynamic solution takes also into account the workload of each LP, in or-

der to avoid that a worker thread has processes with little workload and thus

either wastage computing power or proceed too far with the simulation spec-

ulatively, bringing a portion of simulation too forward in logical time. This

latter case may cause a large number of rollback. To avoid these problems,

the system periodically performs a rebinding in order to try to align the load

among all the worker threads. Firstly, we calculate the workload for each LP

(Li) from the current LP’s local virtual time (LTVstart) until next rebinding

(LV Tend), taking into consideration: the number of events currently in the

queue to be processed in this interval (qi) and the average time required by

28 3. ROOT-SIM: THE ROME OPTIMISTIC SIMULATION KERNEL

the CPU to perform an event (δ).

Li =
qi × δ

LTVend − LTVstart

As soon as we have calculated all the loads of LPs, we apply an knapsack

algorithm so as to determine the ideal distribution among all worker threads.

In order to avoid wasting too much time in the calculation of rebinding, the

latter is performed after a fixed number of GVT.

wall-clock-time

t1 t2

GVT_flag is

set to TRUE

phase-A phase-send

t3

phase-B
WT1

WT2

WT3

m

ts

Fig. 3.2: GVT Computation phase example

As said previously, the GVT value is equal to the global minimum (across

all the worker-threads) of the timestamps of messages/anti-messages that are

into the event-queue.

Hence, building a GVT algorithm actually means determining some right mo-

ment for the worker thread to look at its data structures and to compute its

local minimum, which will be then used for the calculation of the global min-

imum. We create a non-blocking algorithm to compute the GVT, in which

each worker thread has to pass through different phase before to decide the

final value of GVT, as shown in Figure 3.2. During the algorithm, each work

thread (WTi) computes two times the GVT, so it has two value: minA
i and

3. ROOT-SIM: THE ROME OPTIMISTIC SIMULATION KERNEL 29

application mode

platform mode

malloc

wrapper layer

current

get_new_buffer

anonymous

allocation

non-anonymous

allocation

Fig. 3.3: The dual-mode execution model.

minB
i . At the end of all the phases the WTi proposes the min(minA

i ,min
B
i)

and the system determines the GVT by calculating the minimum of all the

worker threads proposals.

We assume that the PDES system runs according to a dual-mode scheme

where we distinguish between application vs platform modes. As soon as an

simulation object is dispatched for execution from worker thread, then the

system switches to application mode. A the end the control return to the

worker thread that decides another LP to dispatch. To manage coherently

the different kind of memory allocation, we consider a software architecture

where memory allocation/deallocation services by the application code are

not directly issued towards the standard malloc library. Instead, they are

transparently intercepted by the underlying PDES environment and redi-

rected to proper allocators(Figure 3.3).

30 3. ROOT-SIM: THE ROME OPTIMISTIC SIMULATION KERNEL

mem_map

one instance for each

simulation object

size

active
base

<address,numpages>

actual contiguous virtual

memory pages for the segment

segment table

Fig. 3.4: mem_map data structures.

According to the above premise, whenever the application code calls a

malloc, the underlying environment perform non-anonymous memory allo-

cation/deallocation operations, thanks to that it can detect which is the LP

that invokes the memory request.

Consequently, the function get_new_buffer(int sobj_id, size_t size)

return different memory area depending on which simulation object performs

the request. All of this operations are executed by the platform layer in a

transparent way to the application. On the other hand, when the system

calls memory allocation API, this is executed anonymously, in order to dis-

tinguish between application memory and platform memory.

There are different implementation of this service, we use the open-source

DyMeLoR allocator [40], it allocates a large memory segment, using the clas-

sical call to malloc, and after it divides logically this memory in smaller chunk.

As soon as the application needs memory, it calls the malloc, that is wrapped

and return a number of chunks depending on the amount of memory request.

3. ROOT-SIM: THE ROME OPTIMISTIC SIMULATION KERNEL 31

3.2 Simulation Engine

The core API of the ROOT-Sim is very simple and it consists of one call func-

tion, ScheduleNewEvent(), and two callback functions, ProcessEvent()

and OnGVT(). The callbacks must be necessarily implemented in the sim-

ulation model to be compliant with the library. Then, the rest of the code

can be implemented like a classical ANSI-C application, without any par-

ticular restriction on the use of data structures. These functions have the

following signature/purpose.

void ProcessEvent(int me, time_type now, int event_type, void

*event_content, void *state) is the callback that supports the actual

processing of simulation events, and it is used by the kernel to give control to

the application layer. The parameters required by this callback are: the first

is me that represents ID of the LP being scheduled, now is the local virtual

time of the scheduled LP, event_type is code, expressed with a number,

associated whit the selected event, event_content pointers to event data

structure, and finally state that is the state of current scheduled LP.

Inside of ProcessEvent() the execution is fully speculative, according to the

optimistic simulation the events could be undo, but this operations are com-

pletely transparent to the programmer, indeed he has only to implements the

different management of event case in order to implement the state transi-

tions. In case of a detected inconsistency, ROOT-Sim will transparently undo

the system at a coherent state, on the other hand, if no causality violation

appears the simulation engine commits correct speculative events (whenever

32 3. ROOT-SIM: THE ROME OPTIMISTIC SIMULATION KERNEL

a new GVT value is computed and the commitment horizon is moved for-

ward).

The precessing of non-rollbackable actions are the only problem of Proces-

sEvent(). Indeed, if the programmer, use a printf() this could be not

coherent because after the simulation could rollback at a previously virtual

time and undo the printf(), but the output generated will not be reverted.

This is a non-trivial problem associated with speculative execution, even

more if transparency is enforced and the programmer is given the freedom

to implement its model by relying on standard ANSI-C. ROOT-Sim offers

a facility which tries to address this issue (at the cost of some delay in the

materialization of the actual output).

void ScheduleNewEvent(int receiver, time_type timestamp,

int event_type, void *event_content, int event_size) is a function

that allows to schedule a new simulation event within the system, to be

destined to whichever simulation object. receiver denotes the ID of the

destination LP, timestamp is the logical virtual time at with the event has

to be executed, event_type, event_content, and event_size are respec-

tively the code of the event, the pointer to event’s data structure and the

size of data structure. For efficiency reasons, the invocation of this function

does not immediately involve the actual deliver of the associated event to the

destination LP.

Instead, events are buffered and asynchronously delivered when the execution

of the current one is completed. This allows to pack together more events

if the destination LP is the same, and prevents delays in the current event’s

3. ROOT-SIM: THE ROME OPTIMISTIC SIMULATION KERNEL 33

execution. We note that this asynchronous deliver does not affect the cor-

rectness of the execution, as ROOT-Sim will order events in the input queue

before scheduling the next event to the destination LP. In case the delay cre-

ated by this internal buffering generates an out-of-order execution at some

LP, then the rollback procedure will restore consistency.

bool OnGVT(void *snapshot, int gid) is a callback that gives control

to the application layer by also providing a committed snapshot of the simu-

lation object. The execution of OnGVT() is therefore not speculative, i.e. any

action taken within this function will never be undone. This means that, e.g.,

any I/O operation within this function is perfectly safe, and therefore it can

be used to gather statistics on the ongoing simulation, if the user is aware of

the synchronization strategy and does not want to rely on the facilities de-

scribed in [41]. We note that, since the timestamp associated with snapshot

refers to the committed portion of the computation, it is forbidden to call

ScheduleNewEvent() within OnGVT(), because this might induce a rollback

operation of already committed events. In case the user calls ScheduleNew-

Event() in this callback, a runtime error will be generated.

OnGVT() additionally implements a distributed termination control: since

snapshot is a portion Si of the Committed and Consistent Global State

(CCGS) S, according to [17] a global predicate can be locally evaluated on

Si. If the model determines that the simulation is completed for that par-

ticular LP, OnGVT() can return the true value. ROOT-Sim will collect all

return values, and in case all the LPs agree, the simulation will stop.

34 3. ROOT-SIM: THE ROME OPTIMISTIC SIMULATION KERNEL

3.3 Code Example

We present here some code snippets implementing a ROOT-Sim application

which models a set of N nodes connected as a mesh, sending packets ran-

domly to each other. The first important thing is to define the possible events

handled by the model, the content of an event message, and the structure of

the state:

1 #include <ROOT−Sim.h>

2 #define PACKET 1 // Event definition

3 #define DELAY 120

4 #define PACKETS 1000000 // Termination condition

5

6 typedef struct \ event\ content\ t {

7 time\ type sent\ at;

8 } event\ content\ t;

9 typedef struct \ lp\ state\ t{

10 int packet\ count;

11 } lp\ state\ t;

In this model we allow just one application-defined event, PACKET, which

identifies the transit of a packet in the mesh. Then, we must specify the

actual events’ logic. ProcessEvent() is the only entry point for speculative

event processing, so we rely on a switch construct to demultiplex them:

18 void ProcessEvent(unsigned int me, time\ type now, unsigned int event, event\ t ∗content,

unsigned int size, lp\ state\ t ∗ptr) {

19 event\ t new\ event;

20 time\ type timestamp;

21

22 switch(event) {

23

24 case INIT: // must be ALWAYS implemented

3. ROOT-SIM: THE ROME OPTIMISTIC SIMULATION KERNEL 35

25 state = (lp\ state\ t ∗)malloc(sizeof(lp\ state\ t));

26 state−>packet\ count = 0;

27 timestamp = (time\ type)(20 ∗ Random());

28 ScheduleNewEvent(me, timestamp, PACKET, NULL, 0);

29 break;

30

31 case PACKET: {

32 pointer−>packet\ count++;

33 new\ event\ content.sent\ at = now;

34 int recv = FindReceiver(MESH);

35 timestamp = now + Expent(DELAY);

36 ScheduleNewEvent(recv, timestamp, PACKET, \&new\ event, sizeof(new\ event));

37 }

38 }

39 }

The code logic is fairly simple: upon INIT event, the LP’s state is malloc’d

and initialized, and an initial packet is sent to the LP itself. Whenever

a PACKET event is received, a local counter is increased, and a packet is

sent back to a random LP in the simulation environment. Timestamps are

computed according to an exponential distribution, exploiting the internal

Expent() function.

OnGVT() is the second callback to be implemented, which performs a local

check on the LP’s state. If the number of packets passed through the LP is

smaller than PACKETS, then the simulation cannot be halted yet:

50 bool OnGVT(lp\ state\ t ∗snapshot, int gid) {

51 if (snapshot−>packet\ count < PACKETS)

52 return false;

53 return true;

54 }

Chapter 4

Group of Logical Process

Within a parallel discrete event simulation (PDES), the main element that

we take into account is the Logical Process (LP). LP is the basic element of

a simulation, it is composed by the state and an event queue, it processes the

events, consequently advancing the simulation time (LVT) and changes its

state coherently. In detail, each LP is associated with a private clock, which

expresses the simulation time up to which it has progressed. The value of this

private clock will be referred to as Local Virtual Time (LVT), emphasizing

the fact that LPi and LPj have reached the different (local) simulation time

values LV Ti 6= LV Tj . At the end of event processing, it can send events to

other LPs so as to continue the simulation.

With the increasing spread of shared memories, the simulation platform

has to allow the programmers to access, in a completely transparent way, to

the states of other LPs, in order to create more complex simulations and to

37

38 4. GROUP OF LOGICAL PROCESS

represent better the reality. This issue is discussed thoroughly [tesi Francesco

Nobilia], but through Event Cross Manager we can access the memory in a

way transparent for the programmer, implementing automatically at plat-

form level and synchronization between LPs. The Event Cross-State Syn-

chronization scheme uses different control messages to synchronize the LPs

in order to allow a coherent vision of state. The control messages are a par-

ticular messages in the system that allow the different LPs to synchronize

each other, forcing the LP that receives the rendezvous-start to restore a

state, consequently the LV T , coherent with the request.

Furthermore, we have also to consider that interactions among processes

could happen frequently, and the synchronization cost could reduce perfor-

mance. In details, we need to synchronize the different LPs otherwise we can

access an incoherent state and so we compromise the correctness of entire

simulation.

Since we run our simulation in parallel, the resources of a LP could be ac-

cessed simultaneously by different LPs on other threads, leading the system

to synchronize them and so it does not exploit the parallelism. This be-

haviour could lead the simulation engine to execute long series of rollback,

because, for example, if LPx wants to read some information inside the LPy

state, but LPx has simulation time far ahead (LV Ty < LV Tx), this triggers

a rollback of LPx. So LPx is forced back to the time required by LPy and

discards all his later speculative work.

If the two LPs are on different threads this degrades the performance of

4. GROUP OF LOGICAL PROCESS 39

the entire simulation, because we have a thread, that handles LPy, waiting

for the other, where is LPx, to synchronize and breakouts. Once you unlocked

the thread where is LPx, the latter waits for LPy log into your status and

enable him to continue the simulation.

This is very likely to occur frequently between different LPs, this means that

the performance of the simulator are considerably degraded and simulation

advances very slowly.

As already introduced previously the main objective of this work is to

create a new concept of LP: Groups of Logical Processes (GLP). This solution

is completely transparent to the programmer, indeed thanks to simulation

dynamics we can understand that there exists a relationship between different

LPs, and so they need to continue the simulation in a joint fashion in order

to increase performance and reduce the likelihood of rollback.

This solution has been implemented and tested in the ROme OpTimistic

Simulator (ROOT-Sim)[42].

In this chapter we will make a thorough discussion of what Group of

Logical Processes is and the different facets of the group management:

• How we create a group: we examine the conditions that result to group

creation, in fact if it is created with the wrong LPs or it is created too

early, this could lead to disadvantages in the simulation.

• How we schedule a group: the simulation engine has to determine which

LP, inside the group, has to execute first and which event is executed

first.

40 4. GROUP OF LOGICAL PROCESS

• How to destroy a group: we expose an adaptive solution, that take into

account the structure of model, in order to determine the right time

at which to destroy a group. In this way we can go back to examining

the different interactions between LPs and then determine a new more

efficient configuration of the groups.

• How we manage the rollback: of course in the case of groups, even if

it is less frequently thanks to this new facility, we must still consider

the situation where a set of processes must go back to an earlier time,

and then how the simulation engine has to perform the rollback in this

situation.

4.1 Creation of Group of Logical Processes

The purpose of group creation is to bring together several LPs into a single

group object in order to allow the progress of the simulation of this object in

a synchronized manner.

4.1.1 Group Data Structure

The basic object in our simulation is the Logical Process. This is composed

of its state and of a queue that contains set of events, which are ordered by

timestamp.

The object that we are going to create, called Group of Logical Process

4. GROUP OF LOGICAL PROCESS 41

(GLP), is a set of LPs and, according to what said before, a set of states and

set of different queues, as shown in Figure 4.1.

The peculiarity of this new object is to allow each LP which belongs to

State

Event Queue

State

Event Queue
LP 1

State

Event Queue
LP 2

LP 3

GLPS

1

2

3

4

GLP 1

GLP 3Tot LP

Fig. 4.1: Group of Logical Processes

the group to access independently each state of the other LPs that belong

to its group, without incurring in Event Cross State and therefore without

forcing synchronization phase with the other. Considering what has been

said previously, at simulation startup every Group is composed by only one

LP, in particular the one with the same id, then initially we have a number of

groups equal to the number of LPs. Going forward, during simulation, some

LPs will change group in order to decrease the synchronization cost, we will

see this concept in section 4.1.2. If there are not interactions between LPs,

42 4. GROUP OF LOGICAL PROCESS

we have a group for each Logical Process, without loss of generality.

To manage groups within our simulator ROOT-Sim [42], we introduce

a new global data structure called GLPS, that has a dimension equal to

numLP , where numLP is the total number of active LPs. Each entry of this

data structure is GLP_state, which allows us to trace the shape of groups.

The GLP_state structure is composed by:

• id: Identifier of current group.

• tot_LP: This field allows us to know the number of LPs contained

within a group. At the start-up is set to one, because each group

contains exactly one LP.

• local_LPS: This field contains a pointer to an array of LP_state man-

aged by this group.

• initial_group_time: At group start up, this field contains the pointer

to the next event with maximum timestamp, if present, otherwise the

bound, between all LPs that compose current group. This is useful to

understand when the group is ready, and in the rollback phase if we

have to consider the classical rollback operation or the group augmented

rollback operation.

• state: We use this variable to maintain coherently the simulation state

of the group according to the simulation states of LPs that it contains.

Furthermore, it is useful to block all the other LPs if one of those is in

a blocking state.

4. GROUP OF LOGICAL PROCESS 43

• bound: This is the last correct event executed by the Group, and so

the last correct event executed by one of LP inside the Group.

• from_last_ckpt: Counter to see how many messages are executed

since the last state snapshot

• ckpt_period: Every how many messages we have to take a state snap-

shot

• counter_rollback: This field is used during the augmented rollback

phase to understand how many LPs already finished the rollback oper-

ation and so when the Group can start the silent execution.

• counter_silent_ex: Counter to understand when the silent execution

phase is done and the group can continue in a READY state

• counter_synch: At group start up, we have to synch all the LPs at

initial group time, so as soon as an LP processes the START_GROUP

control message, it decrements this counter. When this variable is 0

the group is ready to start.

• counter_log: This field is used to create a snapshot of the entire group

at the same time. In this way when the group has to roll back, all the

LPs have a simultaneous state snapshot.

We have introduced in the data structure GLP_state also the field state,

in order to have a state of the group in line with that of its LPs. We also

introduced a new state within the simulation called Wait for Group. The

whole state machine for groups is shown in Figure 4.2.

44 4. GROUP OF LOGICAL PROCESS

Ready

Wait for

Group

Wait for

Synch

Ready for

Synch

Wait for

Unblock

Rollback

Silent

Execution

target event reached

causality violation

ECS

G
ro

u
p
 c

re
a
te

d

G
ro

u
p
 r

e
v
e
a
le

d
S

T
A

R
T

 e
x
e
c
u
te

d U
N

B
L
O

C
K

ECS

ACK

Fig. 4.2: State machine for groups

4.1.2 How and When Groups are Created

In our solution, we consider that the system can transit only from a non-

clustered (namely where LPs run independently executing Event Cross State

synchronizations) to a state in which the system exploits groups. It is not

possible that the simulation transits from one group configuration to another

(Figure 4.3). This allows us to ensure consistent execution and avoids the

creation of synchronization barriers to make the vision of the group state

coherent to every thread.

4. GROUP OF LOGICAL PROCESS 45

GROUPED
EXECUTION

NORMAL
EXECUTION

TIME >Initial group time
TIME < GVT + delta

TIME > GVT + delta

Fig. 4.3: State machine for simulation

As mentioned before, we create a GLP analysing the interaction between

different LPs. To keep track of these interactions, we exploit a matrix called

LpDependencies, with dimension equal to numLP × numLP , where each

field represent the number of interactions between two LPs. Indeed, as soon

as LPi performs an access to LPj’s state, the simulation engine detects a

cross-state dependency and updates the counter inside LpDependencies(i, j)

and LpDependencies(j, i). In this way, every element (i, j) tells how many

interactions have taken place between the two LPs.

Therefore, whenever the simulation engine executes an update, it checks

if the time at which the current event-cross dependency is performed is far

from the last update.

In fact, in addition to storing the number of interactions that have occurred

between the LPs, we also store the last timestamp of the event that caused

the update. In this way, the system checks whether the timestamp stored

within LpDependencies plus a threshold is greater than the timestamp of

46 4. GROUP OF LOGICAL PROCESS

the current event. If this is true it executes the update, otherwise it resets

the counter and performs the update. In other words, if

TcurrentECS − TLpDependencies < tfreshness

then the simulation engine performs the update. This is done in order to take

into account only recent interactions, and discarding the sporadic one, indeed

if two LPs interact many time but far away in time, this is an interaction

that we have not to taking into account.

1

2 4 5

35

3

32
4

Fig. 4.4: Undirected multigraph to represent LPs interconnection

We can see this matrix as an incidence matrix of an undirected multigraph

G = (V,E) where the set of vertices V represents all the LPs inside the

simulation and the set of edges E represents, according to what said above,

the interconnections between LPs (Figure 4.4).

Upon the GVT computation, one of the worker threads in the system uses

the information in the matrix to compute the new groups, depending on the

most significant interactions. In detail, for each LPi the thread determines

what is LPj with which LPi has performed more interactions.

4. GROUP OF LOGICAL PROCESS 47

We compute the new structure of the group only at the GVT because if

someone performs a rollback, it can not go back before the GVT. This avoids

the situation where two different instances of group overlap. We will explain

this in detail in section 4.4.

At the end, the thread computes the index of highest dependency value for

each LP as:

MaxDepk = max
i∈[0,numLPs−1],i 6=k

{LpDependencies[k, i]}.

With this information, we can create a new vector, named LpGroup vec-

tor, with a size equal to numLP and composed by a tuple with the form

〈MaxDepk, group〉, but the field group, at the start time, is set to ∅.

This configuration tells that LPk, associated with the k-th row of the

LpGroup vector, has its highest dependency counter set to MaxDepk and

belongs to the special group ∅, meaning that LPk still belongs to no group.

This construction transforms the multigraph G into another multigraph

Ḡ such that the set V̄ ≡ V , but if {i, j} ∈ V̄ , then {i, k} 6∈ V̄ ∀k 6= j. This

means that every node i ∈ V̄ has at most one edge connecting it to another

edge j ∈ V̄ , i 6= j, and by construction j = MaxDepi.

We therefore apply a graph visiting algorithm on Ḡ to determine the

groups. We iterate over all indices k ∈ [0, numLPs − 1], and for each value

k we execute the recursive function Regroup(LpGroup, k, ∅) shown in

Algorithm 1. The goal of this recursive function is to determine whether the

selected LP already belongs to a group. In the negative case, if the passed

48 4. GROUP OF LOGICAL PROCESS

value for the group is not ∅, then the target LP is aggregated into the passed

group (line 6), otherwise a new group is created, associated with the ID of

the passed LP (line 8). In the positive case, no action is taken for the current

LP, and the group the LP belongs to is returned (line 3). Both cases (namely,

lines 6 and 8), are actually tentative groups, which could be later confirmed or

discarded. In case the LP was associated with a tentative group, a recursive

call is issued to Regroup() (line 11), selecting as the target LP the MaxDep

one of the current LP, and passing as the GLP the ID of the group which

the current LP belongs to. The GLP of the current LP is then updated with

the return value of this call, which is done so as to backwards propagate the

creation of new groups or the agglomeration to existing ones (line 13). Line

11 can either confirm a tentative group for a given LP, or supersede it with

a different one.

Algorithm 1 Group Construction
1: procedure Regroup(LpGroup GLP, int LPid, int group)
2: if GLP[LPid].group 6= ∅ then
3: return GLP[LPid].group
4: end if
5: if group 6= ∅ then
6: GLP[LPid].group ← group
7: else
8: GLP[LPid].group ← LPid
9: end if

10: if GLP[LPid].MaxDep 6= ∅ then
11: GLP[LPid].group = Regroup(GLP, GLP[LPid].MaxDep, GLP[LPid].group)
12: end if
13: return GLP[LPid].group

14: end procedure

We show in Figure 4.5 an example execution of Algorithm 1 in the case

of 8 LPs. In the example, LP0 exhibits a large number of cross-dependencies

towards LP3, LP1 shows no cross-state dependencies, LP2 is dependent on

LP6, LP3 has no dependencies, LP4 depends on LP1, LP5 depends on LP6,

4. GROUP OF LOGICAL PROCESS 49

LP6 depends on LP4. Algorithm 1 is first invoked on LP0, which belongs to

no group (i.e., the group field of row 0 of LpGroup is set to ∅), and therefore

a new group with ID 0 is created (line 8). Then, since MaxDep0 = 3, line

11 is executed as Regroup(LpGroup, 3, 0). Therefore, for LP3, the group

is set to 0 (line 5), and the value 0 is returned again at line 13, confirming

the tentative group. Thus, LP0 and LP3 now both belong to group 0. The

execution then selects LP1 which does not belong to any group: the new

group 1 is created. Then, LP2 is selected, which is the most interesting

execution case of this example. First, this LP is set to tentative group 2 (line

8), and then the graph visiting selects LP6. Since LP6 belongs to no group,

the new tentative group 6 is created, and the visiting goes to LP4. LP4,

similarly to LP6, creates the new tentative group 4. When the visit reaches

LP1, line 3 is executed, as LP1 already belongs to group 1. Therefore, all

tentative groups for LPs 4, 6, and 2 are backwards superseded by group 1

(as per lines 11 and 13). The actual execution for LPs 3 to 7 can be trivially

deduced from the already analysed executions. It is interesting to note that

LP7 belongs to a group composed of a single LP, and it is therefore similar

in spirit to the traditional LP-based organization.

Once that new configuration of group is ready, we reset the counter inside

the LpDependencies and install this new GLP organization, but when the

simulation restart the group is not yet revealed.

Indeed, since we execute a speculative simulation, some LPs could be at a

virtual time far away, and this could generate consistency errors. For example

(Figure 4.6), if the LP0 accesses the state of LP1, it sees an incorrect state

50 4. GROUP OF LOGICAL PROCESS

edge in the dependency multigraph

0 3

7

2 6

41

50

1

1

1 1

return path and value of REGROUP calls

Fig. 4.5: Regroup execution with 8 LPs.

because LP1 has LVT bigger than LP0. According to this new organization,

no synchronization message has been sent by LP0 and then LP1 does not

execute a rollback.

Another problem that could arise is the case in Figure 4.7. In this case

LP1 could start a synchronization phase with another LP, for example LP2,

that does not belong to the group. There is no limit in the amount of wall-

clock time to wait for LP2 to send a rendezvous-ack control message. In

the meanwhile, LP0 can be selected from by the thread for execution and

it can continue the simulation. In this way, LP0 can access the state of

LP1 without sending the rendevous-start and consequently it performs an

incorrect execution. In fact, LP1 has not yet completed the event, because it

is waiting for the ack control message from LP2, and therefore LP1 accesses

an inconsistent state.

To solve this problem, we introduce a new control message, named START_GROUP,

sent to all the components of new group configuration. The timestamp of

4. GROUP OF LOGICAL PROCESS 51

Fig. 4.6: Incoherent memory access without START_GROUP control message.
Case 1.

START_GROUP is computed analysing all the timestamps of next events of

all the LPs that belong to the group. If the next event is not present, the

timestamp of the bound is consider.

Tstart group = max{ek} ∀k ∈ G

where ek = next event(LPk) if exist or ek = bound(LPk)

Therefore, one of these control messages, that the thread that computes

the new group structure sent to all the group component is put into the

GLP_state field initial_group_time, the counter_synch is set to tot_LP

and the state of GLP is set to GLP_STATE_WAIT_FOR_GROUP.

As soon as an LP processes a START_GROUP message, it decrements the

counter_synch and sets its state to LP_STATE_WAIT_FOR_GROUP. This is a

52 4. GROUP OF LOGICAL PROCESS

ST

ST

LP0

LP1

Group Bound Group Revelation Bound

LP bound

Speculatively executed event

Event in the future

LP bound

G

G

G Group Activation control message

Cross-State EventC

C

Towards LP2

untracked

dependency

Fig. 4.7: Incoherent memory access without START_GROUP control message.
Case 2.

blocking state, in this way all the LPs have to wait for the other components.

As soon as all have executed START_GROUP message, the counter is zero and

the group is set to GLP_STATE_READY, in this way the new group execution

can start.

4.2 Schedule of Group of Logical Processes

From the moment that the idea behind the execution of an LP changes, we

have also to change the scheduling logic of Group of Logical Processes.

The main change that we introduce is how we organize the LPs over the

different threads available. In particular, we have to assign all the LPs of

a Group to a single thread. This restriction is because otherwise it could

happen that an LP over a different thread executes a lot of events, modifies

4. GROUP OF LOGICAL PROCESS 53

its state, and increases its LVT. If one LP, bound to another thread but with

the same group, accesses the state, it is not consistent.

Since the next event scheduled by the thread is the smallest timestamp among

all the event queues available, we can ensure that the Group executes all the

events in timestamp order, and consequently all the events see the correct

state of the other LPs.

By adding only the rule on how the LPs are distributed on the various

threads, we have not to change the logic of events processing, because as

mentioned above, this guarantee us a successful execution.

Since the idea behind selection of the next LP does not change, we have to

align the group state with the LP state. Indeed, if all the LPs have processed

the START_GROUP control message, each time that one LP inside the group

updates its bound, it updates as well the group bound, in this way it is the

last correct event processed by one of the LPs in the group. Therefore if one

of those LPs executes a rendezvous-start control message, the group has to

set the state to GLP_STATE_WAIT_FOR_SYNCH in order to avoid that other LPs

continue the execution. Indeed, also if the LP is in a blocked state, the other

LPs could continue the simulation. This case is also for the rendezvous-ack

control message, and in order to keep the state consistent we set the group

state to GLP_STATE_WAIT_FOR_UNBLOCK.

The overall algorithm to compute and install groups is reported in Algo-

rithm 2. For the sake of performance, it is devised mostly as a non-blocking

algorithm [43], except for a final synchronization point where all the worker

threads hit a barrier. The idea behind this wait-free algorithm is that while

54 4. GROUP OF LOGICAL PROCESS

one thread (which we refer to as the master thread of the system, as the

check at line 6) computes the new groups, it is pointless for the other worker

threads to wait for this task to complete. In fact, this would waste a sig-

nificant amount of CPU time which could be used to execute simulation

events. To let other worker threads continue processing, we rely on counters

which described the group determination era, namely a global shared counter

(group era) and a set of thread-private counters (my group era). When the

master thread starts computing the new GLPs, the new group control blocks

(which keep as well pointers to LP-related information) are computed on a

global data structure. When the GLPs are all determined, via repeated calls

to Regroup(), the global group era counter is incremented (line 10). At

every main simulation loop cycle, all the other worker threads compare the

value of group era with their private value of my group era (line 16), and

only if it is incremented they start installing the groups (line 20, for other

worker threads). In this way, even though the GLP determination procedure

takes a bit of time, the speculative execution can continue at other worker

threads. Installing groups requires all the worker threads to make a private

copy of the shared group control blocks in thread-private storage, and re-

binding the LPs belonging to their groups on them. This wait-free algorithm

requires an additional modification, related to the determination of ê. In

fact, this should be done by each worker only after that the GLPs have been

bound to them (lines 14 and 22). The thread barrier at the end of the algo-

rithm is required so as to ensure that when the new GLPs are determined,

no worker thread restarts executing events before all the worker threads have

a coherent view on what LPs they are in charge of scheduling.

4. GROUP OF LOGICAL PROCESS 55

Algorithm 2 Group Determination and Installation
1: new LP groups[]
2: LP groups[] (thread-private)
3: group era
4: my group era (thread-private)
5: procedure GroupCompute()
6: if MasterThread() then
7: for i ∈ [0, numLPs− 1] do
8: Regroup(LpGroup, i, ⊥)
9: end for
10: group era← group era+ 1
11: SanitizeGroups()
12: InstallGroup()
13: ThreadBarrier()
14: Compute Group Revelation Bounds for all bound groups
15: else
16: if my group era == group era then
17: return
18: end if
19: my group era← group era
20: InstallGroup()
21: ThreadBarrier()
22: Compute Group Revelation Bounds for all bound groups
23: end if

24: end procedure

An additional operation is required, related to the symmetric multi-

threaded organization. In particular, it could be the case that due to the

detected cross-state dependencies the number of determined groups is smaller

that the total number of available cores. Since the architectural organization

requires to have a worker thread per available core, in this situation some

worker thread might not have any LP to schedule. This has a twofold nega-

tive effect: i) the CPU time of these unloaded worker threads is wasted; ii)

since all the worker threads cooperate to reduce the GVT value, it would not

advance, thus preventing fossil collection and termination detection. This

negative effect cannot be neglected, so the master threads executes the San-

itizeGroups() routine (line 11), which takes care of this. In particular, in

case the number of GLPs |G| is smaller than the available number of cores C,

additional C − |G| groups are instantiated. To determine which LPs should

56 4. GROUP OF LOGICAL PROCESS

fall into these new groups, the LpDependencies matrix is scanned, so as to

determine what are the LPs with the smallest number of interactions, and

they are taken out of their determined groups according to a greedy approach.

4.3 Destruction of Group of Logical Processes

This configuration is valid until that we compute a new GV Tnew with a LVT

bigger than GTVold + ∆. We compute this barrier exploiting the statistics

information about the model during the execution, in this way the ∆ value

is adapts to the execution speed of the model.

At the start up of group, in addition to the START_GROUP control mes-

sage, the worker thread also sends a close message to the group, called

CLOSE_GROUP. The timestamp associated with this message is exactlyGV Told+

∆. In this way, as in the case of initialization of the group, we ensure that

all LPs brought out of the group at the same time. Moreover, in the mo-

ment in which the LPs process this message, take a snapshot of their current

status. This ensures that if one of the LP will perform a rollback and if the

timestamp of straggler message will be beyond the end of the group, then we

should not bring all LPs to a situation in which the group was revealed only

because one of them may not have a status snapshot.

4. GROUP OF LOGICAL PROCESS 57

ST

ST

LP0

LP1

Group Bound

Target Event

Executed event Straggler message Causality violating event

Target Event

Fig. 4.8: Group Rollback

4.4 Rollback of Group of Logical Processes

Concerning the reception of straggler message, the execution of rollback op-

eration must take into account GLPs, rather than single LPs. In fact, a

straggler must rollback the entire GLP, as show in Figure 4.8.

If we do not consider a new management of the rollback, the situation that

can occur is when an LP0 rolls back due to a straggle message, it performs

phase costing forward and finally executes the straggler message.

If the LP0 message needs to access the status of the other, but their bound

has a timestamp greater than the straggler, LP0 could access not consistent

information.

To solve this problem you need to bring all the LPs of the group at a time less

than or equal to the straggler timestamp to provide a uniform state vision.

To perform this operation we select inside each LPi ∈ G a message ei with

timestamp lesser or equal to the Tstraggler. This message represents the last

58 4. GROUP OF LOGICAL PROCESS

message that the LPi has to perform in costing forward.

The goal of the rollback operation is thus to realign the LP bound of every

LPi, i ∈ [0, |G − 1|] to ēi. In case the simulation engine bases its rollback

operation upon checkpoint/restore primitives, it would appear sufficient to

select at each LPi the simulation state checkpoint St
i such that t < Tstr, and

then execute the coasting forward phase. Unfortunately, this simple solution

could be easily proven wrong in a twofold way. Consider, in fact, the example

shown in Figure 4.9, where GLP G is already revealed. In this example there

ST

ST

LP0

LP1

Group Bound

Antimessages

1 2

Restored checkpoint

4 5 6

Executed event Event silently reprocessedStraggler message Causality violating event

Restored checkpoint

3

dependencydependency

Fig. 4.9: Inconsistent execution of traditional rollback/coasting forward
phase with active groups.

are some execution errors. First of all, the LP0 restore a state before the LP1

state, and then executes a message (e1) in costing forward that accesses to

the LP1 state, but the latter is ahead in time. Another error is that if we

perform costing forward execution according to the traditional [10], the LP0

performs costing forward by running all its events in a single moment, and

reporting their status to the event immediately before the straggler estraggler.

When LP1 executes its costing forward he could access the status of LP0,

and then runs an event-cross dependences without being traced.

To solve these problems we need to modify the execution of costing for-

4. GROUP OF LOGICAL PROCESS 59

ward, so as to be consistent with the execution group, and we have to intro-

duce new control message.

We have redesigned the costing forward in order to ensure that also in this

case the execution is consistent. In fact, first of all the involved LPs restore

its status, decrement the counter_rollback. As soon as the counter is equal

to zero, it means that all the LPs are ready to execute the coasting forward

phase and then we change the group state in GLP_STATE_SILENT_EXECUTION.

Now, all the events involved in the rollback are scheduled exactly as they were

performed initially, referring to the example can expect executed in order e1

e2 e4 e5 e6 e3, so as to provide all involved LPs always a consistent state.

The control message which we have added, called LOG_GROUP, guarantees

that every LPi ∈ G always has a state snapshot at the same time of the

other, in order to avoid cascading rollback and solve the first problem shown.

In fact, as soon as an LP of the group decides to take a snapshot, sends

a LOG_GROUP message with the same timestamp of its snapshot to all GLP

(Figure 4.10). In this way, as soon as the group must perform a rollback,

there is at least a snapshot common to all LPs. Consequentially, all the data

structure inside the LP_status to take periodically checkpoint are not more

consider, but in group scheduling we take into account the same statistic for

group (from_last_ckpt & ckpt_period).

In case a rollback operation falls before a GLP is revealed, which is

detected by checking if the timestamp of a straggler message falls before

the group revelation bound, then the group state is brought back to the

60 4. GROUP OF LOGICAL PROCESS

WAIT_FOR_GROUP state, consequently the cross-state dependencies are again

detected by the ECS manager.

ST

ST

LP0

LP1

Speculatively executed event

Event in the future

S

S Checkpoint control message

State log

Fig. 4.10: Group checkpoint control message.

Chapter 5

Experimental Evaluation

In this section we provide experimental data achieved by testing our proposal

running the implementation of a multi-robot exploration and mapping sim-

ulation model, as developed in [44] according to the results in [45].

In this model, a group of robots is set out into an unknown space, with the

goal of fully exploring it, while acquiring data from sensors (e.g., cameras,

lasers, . . .) which are used to map the environment.

The robots are equipped with enough processing power to elaborate the sen-

sors data online (thus, the map is constructed during the exploration), so as

to allow them to rely on the acquired knowledge to drive the exploration in

a more efficient way. Specifically, whenever a robot has to make a decision

about which direction should be taken to carry on the exploration, it is done

by relying on the notion of exploration frontier. By keeping a representation

of the explored world, the robot is able to detect which is the closest un-

61

62 5. EXPERIMENTAL EVALUATION

explored area which it can reach, computes the fastest way to reach it and

continues the exploration.

The robots explore independently of each other until one coincidentally

detects another robot. Whenever two robots enter a proximity region, they

perform three different actions: i) they use their sensors to estimate their

mutual physical position—recall that they are just in proximity ; ii) they ver-

ify the goodness of their position hypothesis by creating a rendezvous point

(not to be confused with rendezvous control messages in the underlying Time

Warp platform supporting granulation) in the explored part of the region, and

trying to meet again there; iii) if the hypothesis is verified, they exchange the

data acquired during the exploration, thus reducing the exploration time and

allowing for a more accurate decision of the actions to be taken. Addition-

ally, in case step ii) succeeds (i.e., the robots actually meet in the rendez-vous

point), it means that the estimation of their respective position is correct.

Therefore, they can form a cluster, i.e. they can start exploring the environ-

ment in a collaborative way. This collaborative exploration can take place in

two different ways. On the one hand, they jointly define (by relying on cost

and utility functions, as defined in [45]) their next exploration targets, so that

they can minimize the time required for a complete environment exploration.

On the other hand, they might decide to make a guess about the position

of other robots (the total number of which is known) which are not part of

the cluster yet. In the latter case, one of the robots (the one for which the

utility/cost ratio is convenient) targets the hypothesized position. If a robot

is found there, the aforementioned steps are carried out, so as to increase the

5. EXPERIMENTAL EVALUATION 63

knowledge of the environment.

Discovering the presence of a nearby robot is a crucial step while coding

this simulation model. In fact, in case of reliance on classical PDES pro-

gramming schemes not based on cross-state access, either the robots must

communicate to each other their current position (thus exponentially increas-

ing the number of exchanged messages, say cross-scheduled events, which in

turn can limit the performance of the simulation), or they have to notify it

to specific simulation objects (i.e., the regions), again increasing the number

of messages exchanged.

Additionally, estimating the respective position of the agents, many simula-

tion events could be required. In this specific case, these events should be

marked with the same timestamp, thus requiring efficient (but non-negligible

in cost) tie-breaking approaches, like the one in [46]. Third, exchanging map

information could entail a data transfer non-negligible in size, posing a huge

burden on the communication subsystem.

This model is therefore a good test-case for exploiting the innovative pro-

gramming paradigm based on cross-state access, and to test the advantages

from granulating LPs according to the new mechanisms we have presented

(just supporting this programming model). In our implementation (as said

aligned with the one in [44]), we rely on two different types of LPs, namely

active ones (implementing the robots) and passive ones (implementing re-

gions of the exploration environment).

More specifically, the environment is represented as a square region, divided

into hexagonal cells. This choice allows us to define a meaningful mobility

64 5. EXPERIMENTAL EVALUATION

model for the agents, and at the same time allows us to define proximity

regions which are used by the agents to detect the presence of other robots

in the nearby. Also, in our model, periodic events occurring into any cell

are envisaged as the basis for modelling the evolution (inside the cell) of any

phenomenon characterizing the dynamic change in the state of the explored

region.

At simulation startup, each passive simulation object creates random ob-

stacles (which prevent the agents from reaching any neighbour cell), mimick-

ing a rescue scenario, where an open space is modified by an accident and

the robots are used to explore it for rescue activities. At the same time,

each passive LP instantiates in its private simulation state (by relying on a

traditional malloc call) a presence vector. Each entry of the vector is associ-

ated with a specific robot. Whenever a robot enters a given cell, it explicitly

informs the LP taking care of the cell’s state by exchanging an event, piggy-

backing a pointer to a buffer in the robot’s fsimulation state which keeps the

representation of the explored map.

When the cell processes this event, it stores the pointer in the presence vector,

which is then scanned to synchronize the information in the map. In particu-

lar, all the robots’ states are in-place accessed, so as to copy the information

from one state to the other. This operation clearly triggers cross-state syn-

chronization and may lead to granulate LPs temporarily residing in a given

area, together with the LP modelling the specific portion of the environment

where they reside.

To test the GLP proposal we have compared the execution time for this

5. EXPERIMENTAL EVALUATION 65

simulation model when run with the granulation support active, and with-

out granulation thus running with the baseline cross-state synchronization

protocol (labelled as CS). We have also run the same identical model on top

of a serial engine based on a classical calendar-queue scheduler. Finally, for

completeness of the analysis, we have run a version of the same model coded

by only relying on the traditional paradigm where cross-state access is not

employed/supported, thus basing the interactions among the different part-

s/entities in the model exclusively on the cross-scheduling of events across

the different LPs. For all the tests we run a model with 1000 LPs, the 10%

of which represent robots, and the remaining 90% represent sub-regions of

the overall bi-dimensional region to be explored.

The hardware architecture used for running the experiments is a 64-bit

NUMA machine, namely an HP ProLiant server, equipped with four 2GHz

AMD Opteron 6128 processors and 64 GB of RAM. Each processor has 8

cores (for a total of 32 cores) that share a 12MB L3 cache (6 MB per each

4-cores set), and each core has a 512KB private L2 cache. For the parallel

runs we configured the simulation platform to use 32 worker threads.

The total execution time for the simulations are reported in Figure 5.1

for the different settings of the underlying simulation engine (where each re-

ported sample is averaged over 10 runs). For GLP-based runs, we have also

considered the variation of the threshold parameter tdep, which we recall can

be used to filter out cross-state dependencies that are less valuable (say, their

volume is lover than others) while building the GLPs. Also, in GLP-based

runs, the granulation process is actuated after the first GVT computation

66 5. EXPERIMENTAL EVALUATION

 0

 100

 200

 300

 400

 500

 600

Sequential

Traditional PDES

Baseline CS Sync

GLP τdep =5

GLP τdep =10

GLP τdep =15

GLP τdep =20

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Configuration

Fig. 5.1: Total Execution Time

round that is subsequent to the fading (due to lifetime expiration) of previ-

ously formed groups1.

By the results we observe that all the platform configurations offering

support for in-place cross-state access outperform the traditional PDES sce-

nario, not admitting cross-state accesses. Nevertheless, the baseline CS syn-

chronization scheme offers a limited gain, while the integration of the new

granulation support leads to noticeable performance improvements. These

improvements are better for larger values of the parameter tdep, indicating

that a more accurate selection of actually valuable cross-state dependencies

can drive significantly better granulation decisions, leading to more efficient

1In all the parallel runs the GVT period has been set to 1 second.

5. EXPERIMENTAL EVALUATION 67

synchronization dynamics, which lead the execution time to be almost 3

times lower compared to both the traditional PDES case and the baseline

CS synchronization scheme. An additional observation concerns the step re-

duction of the execution time with GLPs when increasing tdep from 10 to 15.

From the collected statistics we noted that this phenomenon is due to the

fact that up to the value tdep = 10, scenarios were generated where granu-

lation involved multiple LPs representing distinct subregions, which dos not

favor concurrency since the model let each robot LP to move around, with

the constraint of residing at any time in a single region. Hence, at any time

instant, some event can only lead to cross-state access involving a region and

its hosted robots. Different subregions, and their currently hosted robots,

should be therefore allowed to execute concurrently to favor parallelism, by

placing them in different GLPs.

Chapter 6

Conclusion

In this thesis we have introduced the concept of Group of Logical Processes,

and the design of a run-time PDES platform enabling the granulation process.

Indeed we augmented the event cross-state protocol in order to understand

the synergic interconnection between different LPs.

As soon as we determinate a Group of Logical Process, each objects accesses

to the state of the other without any synchronization protocol and under

the assumption that any causality violation may rise between the LPs of the

group. Indeed, this is obtained binding the entire group, consequently each

LP, over only one worker thread. Furthermore, we exposed a programming

model where it is not necessary exchange the information using messages, but

we can send a pointer inside the message and, according to event cross-state

protocol, access to the variable inside the state of another LP. This facilities

are completely transparent to the programmer, that coding in a sequential

69

70 6. CONCLUSION

style.

Such cross-state accesses are what drive the formation of group objects,

which are aimed at clustering the baseline objects that along specific exe-

cution phases shown larger volumes of cross-state dependencies. Also, this

mechanism leads to run-time configurations where the level of parallelism

is dynamically determined on the basis of the level of coupling of objects,

as determined by cross-state dependencies materialization. We tested our

proposal against traditional Time Warp and a variant with cross-state sup-

port but without grouping the LPs, for the case of a multi-robot exploration

simulation model run on a 32-core machine. By the study we report a 3x

improvement in the model execution speed thanks to our proposal.

Bibliography

[1] Frederick Wieland, Lawrence Hawley, A Feinberg, M DiLorento,

L Blume, P Reiher, B Beckman, P Hontalas, S Bellenot, and DR Jeffer-

son. Distributed combat simulation and time warp: The model and its

performance. In Proceedings of the SCS Multiconference on Distributed

Simulation, volume 21, pages 14–20. PO Box, 1989.

[2] Divyakant Agrawal and Jonathan R. Agre. Replicated objects in time

warp simulations. In Proceedings of the 24th Conference on Winter

Simulation, WSC ’92, pages 657–664, New York, NY, USA, 1992. ACM.

[3] Philip Hontalas, Brian Beckman, M DiLorento, Leo Blume, Peter Rei-

her, Kathy Sturdevant, LV Warren, John Wedel, Fred Wieland, and

David Jefferson. Performance of the colliding pucks simulation on the

time warp operating system. Distributed Simulation, 21(2):3–7, 1989.

[4] K Mani Chandy and Jayadev Misra. Distributed simulation: A case

study in design and verification of distributed programs. Software En-

gineering, IEEE Transactions on, (5):440–452, 1979.

71

72 BIBLIOGRAPHY

[5] Richard M. Fujimoto. Parallel discrete event simulation. Commun.

ACM, 33(10):30–53, October 1990.

[6] R. M. Fujimoto. The virtual time machine. In Proceedings of the

First Annual ACM Symposium on Parallel Algorithms and Architec-

tures, SPAA ’89, pages 199–208, New York, NY, USA, 1989. ACM.

[7] Paul F Reynolds Jr. A spectrum of options for parallel simulation. In

Proceedings of the 20th conference on Winter simulation, pages 325–332.

ACM, 1988.

[8] David M Nicol. Principles of conservative parallel simulation. In Pro-

ceedings of the 28th conference on Winter simulation, pages 128–135.

IEEE Computer Society, 1996.

[9] Richard Fujimoto and David Nicol. State of the art in parallel simula-

tion. In Proceedings of the 24th conference on Winter simulation, pages

246–254. ACM, 1992.

[10] David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst.,

7(3):404–425, July 1985.

[11] David Jefferson, Brian Beckman, Frederick Wieland, Leo Blume, and

Mike DiLoreto. Time warp operating system, volume 21. ACM, 1987.

[12] Li-li Chen, Ya-shuai Lu, Yi-ping Yao, Shao-liang Peng, and Ling-da

Wu. A well-balanced time warp system on multi-core environments. In

Proceedings of the 2011 IEEE Workshop on Principles of Advanced and

BIBLIOGRAPHY 73

Distributed Simulation, PADS ’11, pages 1–9, Washington, DC, USA,

2011. IEEE Computer Society.

[13] Elizabeth Whitaker Lynch and George F Riley. Hardware supported

time synchronization in multi-core architectures. In Principles of Ad-

vanced and Distributed Simulation, 2009. PADS’09. ACM/IEEE/SCS

23rd Workshop on, pages 88–94. IEEE, 2009.

[14] Elizabeth Whitaker Lynch and George F Riley. A sensitivity analysis

of a new hardware-supported global synchronization unit. In Model-

ing, Analysis & Simulation of Computer and Telecommunication Sys-

tems, 2009. MASCOTS’09. IEEE International Symposium on, pages

1–4. IEEE, 2009.

[15] Jun Wang and Carl Tropper. Selecting gvt interval for time-warp-based

distributed simulation using reinforcement learning technique. In Pro-

ceedings of the 2009 Spring Simulation Multiconference, page 49. Society

for Computer Simulation International, 2009.

[16] Jeffrey S Steinman, Craig A Lee, Linda F Wilson, and David M Nicol.

Global virtual time and distributed synchronization. In ACM SIGSIM

Simulation Digest, volume 25, pages 139–148. IEEE Computer Society,

1995.

[17] Friedemann Mattern. Efficient algorithms for distributed snapshots and

global virtual time approximation. Journal of Parallel and Distributed

Computing, 18(4):423–434, 1993.

74 BIBLIOGRAPHY

[18] Steven Bellenot. State skipping performance with the time warp oper-

ating system. In 6th Workshop on Parallel and Distributed Simulation,

volume 24, pages 53–64, 1992.

[19] Yi-Bing Lin and Ed D Lazowska. Reducing the saving overhead for

time warp parallel simulation. University of Washington Department of

Computer Science and Engineering, page 79, 1990.

[20] Josef Fleischmann and Philip A. Wilsey. Comparative analysis of peri-

odic state saving techniques in time warp simulators. SIGSIM Simul.

Dig., 25(1):50–58, July 1995.

[21] Avinash C Palaniswamy and Philip A Wilsey. An analytical comparison

of periodic checkpointing and incremental state saving. In ACM SIGSIM

Simulation Digest, volume 23, pages 127–134. ACM, 1993.

[22] Herbert Bauer and Christian Sporrer. Reducing rollback overhead in

time-warp based distributed simulation with optimized incremental state

saving. In Simulation Symposium, 1993. Proceedings., 26th Annual,

pages 12–20. IEEE, 1993.

[23] Robert Rönngren, Michael Liljenstam, Rassul Ayani, and Johan Mon-

tagnat. Transparent incremental state saving in time warp parallel dis-

crete event simulation. In ACM SIGSIM Simulation Digest, volume 26,

pages 70–77. IEEE Computer Society, 1996.

[24] Darrin West and Kiran Panesar. Automatic incremental state saving. In

ACM SIGSIM Simulation Digest, volume 26, pages 78–85. IEEE Com-

puter Society, 1996.

BIBLIOGRAPHY 75

[25] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. Di-

dymelor: Logging only dirty chunks for efficient management of dynamic

memory based optimistic simulation objects. In Proceedings of the 2009

ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Dis-

tributed Simulation, pages 45–53. IEEE Computer Society, 2009.

[26] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. Auto-

nomic log/restore for advanced optimistic simulation systems. In Mod-

eling, Analysis & Simulation of Computer and Telecommunication Sys-

tems (MASCOTS), 2010 IEEE International Symposium on, pages 319–

327. IEEE, 2010.

[27] Christopher D Carothers, Kalyan S Perumalla, and Richard M Fu-

jimoto. Efficient optimistic parallel simulations using reverse com-

putation. ACM Transactions on Modeling and Computer Simulation

(TOMACS), 9(3):224–253, 1999.

[28] Justin M LaPre, Elsa J Gonsiorowski, and Christopher D Carothers.

Lorain: a step closer to the pdes’holy grail’. In Proceedings of the 2nd

ACM SIGSIM/PADS conference on Principles of advanced discrete sim-

ulation, pages 3–14. ACM, 2014.

[29] Chris Lattner and Vikram Adve. Llvm: A compilation framework for

lifelong program analysis & transformation. In Code Generation and

Optimization, 2004. CGO 2004. International Symposium on, pages 75–

86. IEEE, 2004.

76 BIBLIOGRAPHY

[30] Samir Das, Richard Fujimoto, Kiran Panesar, Don Allison, and Maria

Hybinette. Gtw: a time warp system for shared memory multiprocessors.

In Simulation Conference Proceedings, 1994. Winter, pages 1332–1339.

IEEE, 1994.

[31] Alessandro Fabbri and Lorenzo Donatiello. Sqtw: A mechanism for

state-dependent parallel simulation. description and experimental study.

In Proceedings of the Eleventh Workshop on Parallel and Distributed

Simulation, PADS ’97, pages 82–89, Washington, DC, USA, 1997. IEEE

Computer Society.

[32] Michael Lees, Brian Logan, Rob Minson, Ton Oguara, and Georgios

Theodoropoulos. Distributed simulation of mas. In Multi-Agent and

Multi-Agent-Based Simulation, pages 25–36. Springer, 2005.

[33] B. Logan and G. Theodoropoulos. The distributed simulation of multi-

agent systems. Proceedings of the IEEE, 89(2):174–185, Feb 2001.

[34] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDon-

ald, Nathan Bronson, Jared Casper, Christos Kozyrakis, and Kunle

Olukotun. An effective hybrid transactional memory system with strong

isolation guarantees. In ACM SIGARCH Computer Architecture News,

volume 35, pages 69–80. ACM, 2007.

[35] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic perfor-

mance tuning of word-based software transactional memory. In Proceed-

ings of the 13th ACM SIGPLAN Symposium on Principles and practice

of parallel programming, pages 237–246. ACM, 2008.

BIBLIOGRAPHY 77

[36] Maurice Herlihy and Eric Koskinen. Transactional boosting: a method-

ology for highly-concurrent transactional objects. In Proceedings of the

13th ACM SIGPLAN Symposium on Principles and practice of parallel

programming, pages 207–216. ACM, 2008.

[37] Michael F Spear, Virendra J Marathe, William N Scherer III, and

Michael L Scott. Conflict detection and validation strategies for soft-

ware transactional memory. In Distributed Computing, pages 179–193.

Springer, 2006.

[38] Horst Mehl and Stefan Hammes. How to integrate shared variables in

distributed simulation. SIGSIM Simul. Dig., 25(2):14–41, September

1995.

[39] MPI Forum. Message Passing Interface Forum. http://www.mpi-

forum.org/, 1994.

[40] Roberto Toccaceli and Francesco Quaglia. DyMeLoR: Dynamic Mem-

ory Logger and Restorer Library for Optimistic Simulation Objects with

Generic Memory Layout. In Proceedings of the 22nd Workshop on Prin-

ciples of Advanced and Distributed Simulation, pages 163–172. IEEE

Computer Society, 2008.

[41] Francesco Antonacci, Alessandro Pellegrini, and Francesco Quaglia.

Consistent and efficient output-streams management in optimistic simu-

lation platforms. In Proceedings of the 2013 ACM SIGSIM conference on

Principles of advanced discrete simulation, pages 315–326. ACM, 2013.

78 BIBLIOGRAPHY

[42] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. The rome

optimistic simulator: Core internals and programming model. In Pro-

ceedings of the 4th International ICST Conference on Simulation Tools

and Techniques, SIMUTools ’11, pages 96–98, ICST, Brussels, Bel-

gium, Belgium, 2011. ICST (Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering).

[43] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 13(1):124–149, 1991.

[44] Alessandro Pellegrini and Francesco Quaglia. Programmability and

Performance of Parallel ECS-based Simulation of Multi-Agent Explo-

ration Models. In Proceedings of the 2nd Workshop on Parallel and

Distributed Agent-Based Simulations, Porto, Portugal, 2014. LNCS,

Springer-Verlag.

[45] Dieter Fox, Jonathan Ko, Kurt Konolige, Benson Limketkai, Dirk

Schulz, and Benjamin Stewart. Distributed Multirobot Exploration and

Mapping. Proceedings of the IEEE, 94(7):1325–1339, 2006.

[46] H Mehl. A deterministic tie-breaking scheme for sequential and dis-

tributed simulation. In Proceedings of the Workshop on Parallel and

Distributed Simulation. ACM, 1992.

Acknowledgements

First of all, I wish to ...

i

