
Master Thesis in

Engineering in Computer Science

Lightweight approximate virtual page
access tracing of multi-threaded
applications via static binary

instrumentation

Advisor Candidate

Prof. Francesco Quaglia Simone Economo

Co-Advisor

PhD. Alessandro Pellegrini

Academic Year 2014/2015

Acknowledgment
A thesis, be it a bachelor’s thesis, a master’s thesis or any other form of
dissertation, is not a thesis without acknowledgments. First of all, because
we should never lose the occasion to thank those we love and esteem. Sec-
ond, because many theses wouldn’t be possible without the professional and
emotional support of many different people—this couldn’t be more true for
my thesis. Last but not least, because they are so damn fun to read. So,
here we are!—beware: this chapter makes ridiculous use of italics, don’t say
I didn’t warn you!

My sincere gratitude goes above all to Prof. Francesco Quaglia and Prof.
Bruno Ciciani for introducing me to the amazing world of computer archi-
tectures and operating systems, and for turning me into a better engineer
through their wonderful courses. They are undoubtedly inspiring from a
professional point of view, but I mostly admire them as persons. I also wish
to thank PhD Alessandro Pellegrini for his support, especially in the last
crazy days before the graduation date, and for all the incredibly nerdy chats
we had between one “segmentation fault” and another.

I owe a big “thank you” to Davide too, a kind friend and colleague.
Your help has been invaluable to me and I am extremely grateful to you for
sacrificing your time in my darkest hours. I wouldn’t be here if it wasn’t
for you.

I cannot be more grateful to Lorenzo, Marco and Elisa for being the
best friends one can ever have. One way or another, you made me feel
lucky through your words, thoughts and actions—Marco’s langiullate de-
serve honorable mention... they’re memorable! I am proud to have you in
my life. Thanks also to Donato, Lorenzo N., Martina and Federica for being
a late but extremely welcome addition to this list.

To my friends of the exclusive “Frati Francescani del DIS” club, which
also happen to have founded the coolest Whatsapp group ever, “Le Panze
Sacre”, I wish to say: do you already have a schedule ready for next’s month
list of sagre and food festivals?! Jokes apart, thanks for all the amazing
moments that we had and, hopefully, will have in future. No, seriously...
sagra del tartufo anyone?

i

ACKNOWLEDGMENT ii

As for the emotional support, I cannot help but express my deepest grat-
itude to the people that hold a special spot in my life. My parents, Giancarlo
and Ileana, because they have always seconded my decisions and supported
my choices in every situation, even when they were a bit... doubtful. I hope
to be able to return to you at least a tiny portion of the boundless love
that you constantly give to me. My relatives, too, because they made me
feel part of a bigger family. Last but not least my second family, Annalisa,
Fabrizio and Diana, for teaching me the real meaning of happiness—but
also for pleasuring my stomach with delicious food!

Have I forgotten someone? I don’t think so... that’s all folks, you can
stop reading now!

ACKNOWLEDGMENT iii

To Claudia, I wish to say more things than I will ever be able to write.
We joked on the number of lines that you deserved in the acknowledgments,
like if you deserved a number! What you did for me, in these months... since
we met, it is something that make me feel loved in a way that is special and
unique. I see you as my half and my dearest friend. Someone to protect, but
also my strength. You complete me, but also challenge me in all positive
ways. You are the proof that a simple heart can be full of unimaginable
love, and I’m glad that, six years ago in Aula 16, you decided, completely
out of your mind, to take my hand for the first time. Thank you.

To Alessandra and Orietta,
for all the love that you gave to me.

Contents

Acknowledgment i

1 Introduction 1

2 Instrumentation 7
2.1 Hardware instrumentation 8
2.2 Software instrumentation . 8

2.2.1 Static instrumentation 10
2.2.2 Dynamic instrumentation 11

2.3 Hijacker . 13
2.3.1 Front-end . 15
2.3.2 IBR . 16
2.3.3 Back-end . 19

2.4 State of the art . 19
2.4.1 PEBIL . 19
2.4.2 DynamoRIO . 21
2.4.3 Pin . 23
2.4.4 Dyninst . 25
2.4.5 Valgrind . 26
2.4.6 Comparison . 28

3 Memory Tracing 30
3.1 Sampling . 31

3.1.1 Static sampling . 32
3.1.2 Dynamic sampling 32

3.2 Buffering . 33
3.3 State of the art . 33

3.3.1 MetaSim Tracer . 33
3.3.2 Effects of binary instrumentation on tracing 37
3.3.3 A threading-model for memory tracing 39

4 Virtual Page Tracing 42
4.1 Finding relevant code regions 43

4.1.1 Basic blocks and control flow graph 44
4.1.2 Computing basic blocks 46

v

CONTENTS vi

4.1.3 Computing program cycles 48
4.1.4 Ultimating basic block features 52

4.2 Detecting virtual pages . 52
4.2.1 Tracing back the section 53
4.2.2 Tracing back the virtual page 55
4.2.3 Resolving the virtual page address 58
4.2.4 Devising an efficient instrumentation strategy 58
4.2.5 Devising a solid threading model 60
4.2.6 Final instrumentation code 61

4.3 Contribution to Hijacker . 63
4.3.1 Front-end and IBR 64
4.3.2 Back-end . 64

5 Experimental Assessment 66
5.1 Worst-case execution time evaluation 69
5.2 Best-case accuracy evaluation 72
5.3 Trade-off assessment . 74

6 Conclusions and Future Work 79
6.1 Current limitations and future directions 81

List of Figures

1.1 A pictorial representation of Moore’s Law from 1970 to 2010. 3

2.1 Hijacker’s instrumentation process 14
2.2 Hijacker’s software architecture 15
2.3 Hijacker’s internal binary representation 17
2.4 Performance evaluation of PEBIL with respect to other in-

strumentation tools. 22
2.5 Performance evaluation of DynamoRIO with no dynamic op-

timization. 23
2.6 Performance evaluation of Pin alone with and without opti-

mizations. 24
2.7 Evaluation of the proportionality metric for Pin, PEBIL and

Dyninst. 26

3.1 Evaluation of the cache hit rate estimation error produced
by SimPoint-based sampling. 37

5.1 GSM area network example 66
5.2 Execution time evaluation in the worst-case with ρ = 25%. . 71
5.3 Execution time evaluation in the worst-case with ρ = 50%. . 71
5.4 Execution time evaluation in the worst-case with ρ = 75%. . 72
5.5 Accuracy evaluation in the best-case. 73
5.6 Trade-off efficiency evaluation when H = 1KB. 76
5.7 Trade-off efficiency evaluation when H = 2KB. 76
5.8 Trade-off efficiency evaluation when H = 4KB. 77
5.9 Trade-off accuracy evaluation when H = 1KB. 77
5.10 Trade-off accuracy evaluation when H = 2KB. 78
5.11 Trade-off accuracy evaluation when H = 4KB. 78

vii

List of Tables

2.1 A comparison of binary instrumentation tools 29

3.1 MetaSim Tracer collection time and prediction accuracy com-
parison using trace sampling. 35

3.2 MetaSim Tracer collection time and prediction accuracy com-
parison using an upper sampling limit on block traversal. . . 35

3.3 MetaSim Tracer collection time and prediction accuracy com-
parison using basic block hotness. 35

3.4 A comparison of memory address trace collection only for
different binary instrumentation tools. 41

5.1 Access counts for the scheduling and processing functions
when N = 10000 . 74

viii

List of Algorithms
4.1 Block splitting algorithm . 47
4.2 Program cycle detection: phase 1 49
4.3 Program cycle detection: phase 2 51
4.4 Program cycle detection: phase 3 51

ix

CHAPTER1
Introduction

If the auto industry advanced as rapidly as the semiconductor industry,
a Rolls Royce would get half a million miles per gallon,
and it would be cheaper to throw it away than to park it.

— Gordon Moore (1998, attributed)

Computing architectures are complex. In the early days of computing,
systems were simple. When it was clear that the original design could not
provide anymore the performance guarantees and the functional capabilities
demanded by industry, such design underwent a change. On the one hand,
the need for accelerated computer graphics resulted into dedicated graphic
cards, bundling special-purpose cores with support for unconventional op-
erations that can offload most of the floating-point-intensive tasks from the
main processor. On the other hand, the demand for powerful portable de-
vices with long-lasting batteries caused small power-efficient cores to be
placed side by side on the same chip with large high-performance ones.
Nowadays we have computing systems which are powerful and highly per-
forming, but also able to consume as little energy as needed to meet eco-
nomical constraints. Moreover, they are heterogeneous, meaning that their
ability to work at different performance and power level requirements is pro-
vided by a wide spectrum of complementary components, each possessing
different operational capabilities and peculiarities.

The road to heterogeneous systems was driven not only by industry
pressure, but also by physical constraints, i.e. ‘walls’ that deflected the
expected course of evolution of computing architectures in an unforeseeable,
yet fascinating way. The power wall, historically speaking, is the first of
such walls. It states that individual computing units cannot be made faster
without violating the limits imposed by fundamental physics via the power
equation [1]:

PDD = α · CV 2
DDfav (1.1)

In the above equation, PDD represents the average dynamic power dis-

1

CHAPTER 1. INTRODUCTION 2

sipated by a single CMOS transistor in response to an input change. When
the input value switches from high to low or vice versa, the internal capac-
itance needed to keep the circuit output stable gets charged or discharged.
For this reason, the above quantity depends on the capacitance load C, the
supply voltage that drives the circuit VDD and the average frequency of in-
put events fav. Additionally, an activity factor α is included to represent
the probability that the circuit’s internal capacitance state will switch upon
an input event.

Clearly, the higher the power dissipated by a transistor, the higher the
heat which is eventually radiated as a by-product, which in turns requires
more powerful (and expensive) cooling techniques. As we can see from
equation 1.1, the only way to decrease the dynamic power PDD consumed by
a circuit is by decreasing the value of all other quantities involved. However,
a decrease in the value of fav means a slower clock rate which, in turns,
yields a slower system. Therefore, to benefit from higher clock rates without
affecting the dissipated power, C and VDD must decrease.

If we look at Moore’s Law [2], we observe that from 1970 to 2004 the
number of transistors in a computing system doubled roughly every 18 to
24 months, while the clock rate increased every 34 months (see figure 1.1).
These trends can be explained by virtue of the power equation, since a
decrease in transistors size means a decrease in load capacitance. Hence,
by scaling down the size of transistors, processor manufacturers were able
to provide more horsepower at the same or slightly increase consumption
of power and heat radiation. At the same time, by reducing the supply
voltage of circuits, faster clock rates were possible. Over time, Moore’s Law
turned into a self-fulfilling prophecy, driven by hardened competition and
the demand for faster processors.

Unfortunately, circuit sizes and supply voltage cannot be driven arbi-
trarily down. The leakage current which is responsive for the static power
consumption component of circuits becomes more and more influential as
transistors shrink. Moreover, circuits become more and more sensible to in-
terfering signals as supply voltage approaches the same order of magnitude
as noise. Eventually, one cannot make transistors smaller or supply volt-
age lower, while also increasing the clock rate and keeping dynamic power
consumption below acceptable thresholds. One of them must be sacrificed.

This led to the concept of multi-core systems, i.e. computing architec-
tures where multiple processing units are present and operate in a parallel
fashion, at a lower individual clock speed than single-core systems but pro-
viding overall an increased computing power. By giving up individual clock
speed, the process of scaling down the size of transistors can continue. Be-
sides scaling in the vertical direction, increasing the number of processing
units allows to increase the overall number of transistors by virtue of hori-

CHAPTER 1. INTRODUCTION 3

Figure 1.1: A pictorial representation of Moore’s Law from 1970 to 2010.

zontal scaling, thus keeping up with Moore’s Law.
The memory wall is another of such figurative walls. Due to techno-

logical constraints, processor speed began to increase at a faster rate than
memory bandwidth. This ever-increasing imbalance turned out to drasti-
cally hamper the performance of even highly-optimized scientific applica-
tions [3]. As a result of this trend, processors started to bundle smaller and
faster memories closer to their cores, the so-called caches. The introduction
of cache memories was an important breakthrough for computing architec-
tures, since for the first time it invalidated the statement that all memory
accesses are equal. Nowadays, the concept of memory caches is so pervasive
that additional memory layers were gradually added, resulting into what is
referred to as the memory hierarchy.

Similarly to the power wall, the coherency wall has been hit not so ago.
It results from increasing the number of cores and the raw storage capacity
in a system up to a point where: (a) it becomes economically prohibitive
to maintain an unified shared-memory model with growing storage; (b)
cache-level synchronization protocols are the main source of bottleneck for
programs.

CHAPTER 1. INTRODUCTION 4

On the one hand, large-capacity memory banks are still too expensive
to produce with the current manufacturing technology. They are easily
defeated by summing up the capacities of smaller and cheaper memory
banks. By grouping cores in clusters and spreading such memory banks
in such a way that each cluster has its own memory banks, memory access
latency for local requests can be kept low to the detriment of remote accesses
which are more costly. Moreover, this allows the system to spread accesses
across different physical storage components, thus reducing contention at
memory buses. This is the model adopted by NUMA architectures (Non-
Uniform Memory Access) [4].

On the other hand, the presence of a high number of cores, hence of
many disjoint cache memories, poses challenges to any synchronization
scheme aimed at enforcing data consistency. Many-core systems with a
single memory bus usually implement a bus snooping protocol. According
to this scheme, every write request on a private cache memory produces a
broadcast event on the bus which forces all other caches targeted by the
update to invalidate their lines. For read requests that produce a cache
miss, a request message is also broadcast. This kind of architectural scheme
would not work in a many-core scenario because of the high probability of
contention at the interconnection level, even with the presence of multiple
memory banks and buses.

For this reason, many-core platforms implement the directory-based pro-
tocol. Whenever a core loads a cache line in its private cache, it registers
itself into a shared global directory. In this directory, for every cache line,
there’s a list of registered cores that expect to be notified upon a change
on that line, by means of an invalidation message, or a read request. This
mechanism scales better than the snooping bus, but it can still create con-
tention at the various interconnection buses if the number of cores that
share a line increase. For this reason, cache-incoherent architectures are
being studied where coherency of cached data along different clusters is not
automatically enforced by the firmware [5].

This thesis studies an ancient but still relevant problem in computer
science. Namely, the detection of the memory access pattern exhibited by
generic applications—both single-threaded and multi-threaded ones. Mem-
ory access traces have several applications both for performance and profil-
ing purposes. As an example, traces can be used together with a simulation
environment to assess the degree to which the application is able to effi-
ciently interact with the underlying memory hierarchy of the architecture,
as complex as it can be. The same kind of traces can also be used to guide
hardware design, in the long run, so as to more closely match the behavior
of a desired class of scientific applications.

Actually, the work presented in this thesis is a specialization of tracing

CHAPTER 1. INTRODUCTION 5

to virtual pages. To the best of my knowledge, virtual page access tracing
is a novel problem in the literature which, like generic memory tracing,
has many interesting applications. In the heterogeneous systems scenario,
tracing of virtual pages can be used to dynamically move data in a NUMA
architecture closer to the cluster where the thread is actually running, or
moving the thread closer to the NUMA node where its working set is actually
residing [6] [7]. To this extent, the target application can be both a generic
multi-threaded program or an application that runs on top of a custom
middleware, such as an optimistic simulation platform [8]. In this case,
moving data closer to a thread means tracing the state of a simulation
object not only to migrate it, but also logging it into a close memory bank
to support efficient rollback mechanisms [9].

The key technique to accomplish virtual page access tracing is binary
instrumentation, which is a way to transparently execute additional logic
at run-time without affecting the actual application-level behavior coded
by the programmer. Historically, instrumentation has been seen as a tool
for debugging and profiling purposes. Nonetheless, general-purpose instru-
mentation is starting to emerge in the literature as the means to imple-
ment any sort of additional logic, apart from that bound to maintenance
and monitoring tasks. Notice that instrumentation tends to work at the
application-level, thus leaving unaltered the library and operating system
levels. This allows instrumentation tools to work ‘out of the box’, without
any modification to the compilation tool-chain, the standard library envi-
ronment or the operating system. However, it is natural to look at the
problem the other way round—namely, from the point of view of the stan-
dard library and the OS. Even as instrumentation requires no adjustment at
these levels and other consolidated development tools, these layers and tools
alone can provide virtually the same services as instrumentation. Further-
more, they can do it with the same or even higher degree of transparency
of instrumentation—since no additional compilation pass to the application
must be made,—provided that we’re prone to developing patches for them.
The naturally rising dilemma is hence to choose one approach or the other,
aware of the benefits and drawbacks that come along with this choice.

To this extent, my work makes extensive use of instrumentation to the
detriment of the complementary methodology based on internal standard
library, kernel and compiler changes. The positive effect of the instrumenta-
tion approach, as will be clear later in this thesis, is that it allows for great
precision at the cost of a slightly increased run-time overhead for acquiring
traces. This shouldn’t be much surprising, given that we are perturbing the
baseline performance of the application with additional instructions that
serve an analysis purpose, and not the application’s business logic goal. Re-
ducing this instrumentation overhead, while affecting the accuracy to the

CHAPTER 1. INTRODUCTION 6

minimum extent, is a central topic in this thesis which will also be part of
more deeper investigations in the future. Another relevant topic is that of
controlling the balance between instrumentation accuracy and instrumen-
tation overhead so that different analysis need can be meet. This, however,
depends on the particular program being instrumented, the current behavior
of the program at run-time and possibly the presence of particular external
conditions. Once again, the importance of this topic is recognized in this
thesis, but I’ve only started to to scratch its surface.

The remainder of this thesis is structured as follows. Chapter 2 provides
an overview of instrumentation techniques and existing tools. It will then
focus on static binary instrumentation and Hijacker, a C toolkit designed
to achieve general-purpose static instrumentation through lightweight and
non-intrusive injection techniques. Chapter 3 builds on the concepts pre-
sented in the previous chapter to give a general perspective on the memory
access tracing problem, as well as the most important techniques employed
in the literature. Chapter 4 is the heart of this thesis and explains how
one can solve the problem of tracing virtual pages by leveraging on finer-
grained memory tracing techniques. Chapter 5 provides the reader with an
experimental and quantitative justification of the goodness of my approach
in terms of instrumentation overhead and tracing accuracy. Finally, chapter
6 lays out the conclusions of this thesis and anticipates possible directions
for future work.

CHAPTER2
Instrumentation

Your eyes can deceive you. Don’t trust them.
— Obi-Wan Kenobi, A New Hope (1977)

Instrumentation is the art and science of measurement and control of
the behavior of a program, achieved in such a way as to be transparent
to the functioning of the program itself. At its bare minimum, it entails
augmenting an application with additional logic and data, while leaving its
semantics untouched. Upon running, the program looks and behaves as if
it no changes were made to it. Underneath, the actual program behavior
has been extended with background functionalities aimed at a variety of
different goals. The traditional application of instrumentation techniques is
for profiling and monitoring purposes, but other usages are possible. Some
interesting uses of instrumentation are to check for programming errors in
the code, as well as security breaches. It can also be employed to review the
performance of an application, optimize it for future runs and even guide
the design of hardware and system components. Generally speaking, instru-
mentation is a technique that is frequently used to achieved the following
goals:

• Profiling the evolution of a program over time in terms of memory
access pattern, interaction with the cache subsystem, libraries and
the operating system, mostly for optimization purposes, performance
modeling and performance prediction.

• Debugging the execution a program to detect unrecoverable errors
(e.g. division by zero), security vulnerabilities (e.g. buffer overflows)
and correctness violations (e.g. in terms of program state predicates).

• Logging of higher-order application-specific metrics, such as commit-
ted vs. aborted transactions in a transactional system, or the number
of invalidated events in a discrete event simulation (DES) platform.

7

CHAPTER 2. INSTRUMENTATION 8

• Virtualization and sandboxing, as a way to protect the underlying
operating system and run-time environment from malicious code, as
well as to decouple the request for software and hardware resources
from their actual exploitation.

Instrumentation approaches can be classified at first according to the
adoption of either hardware or software tools. As for software instrumen-
tation tools, a natural way to classify instrumentation techniques is: (a)
by the software stack level at which they operate—i.e., operating system,
environment or application,—(b) by the actual level of abstraction seen by
these tools—i.e., source code vs. machine code—and, (c) by the use of
either static or dynamic approaches.

2.1 Hardware instrumentation

Hardware instrumentation is characterized at the architectural level by the
presence of additional hardware components which are able to perform cer-
tain low-level profiling tasks with almost zero-overhead with respect to
software-based equivalents [10]. The most common form of hardware in-
strumentation is high-resolution hot spot analysis and was introduced by
the z10 family of IBM processors along with the z/OS proprietary kernel.
Finding hot spots in the code allows to understand which portions of the
code are run more frequently, so that they can be further optimized for
performance purposes.

Interestingly, hardware instrumentation is fully transparent both to the
application developer and to the application code. Since all the instru-
mentation logic occurs in firmware which moves instrumentation data to
special-purpose hardware registers, the application code needs no changes.
This kind of instrumentation, albeit interesting, is quite rare outside of
mainframes and embedded systems. As such, it won’t be further investi-
gated.

2.2 Software instrumentation

Software instrumentation approaches are by far the most common. Pro-
gram patching is performed by injecting additional instructions and data
into the original program (or by modifying existing ones) in such a way
to implement the desired functionality. This form of patching partially re-
tains the transparency property with respect to the application developer,
but requires an additional instrumentation step either at compile-time or
run-time (or both). Moreover, it may or may not be transparent to the

CHAPTER 2. INSTRUMENTATION 9

application code itself, depending on the specific kind of instrumentation
technique being used (i.e., static or dynamic).

A nice property of software instrumentation is that it allows to instru-
ment software located at different logical levels, ranging from the operating
system to the final application, including middlewares and libraries. Oper-
ating system instrumentation is possible but is rarely employed, as it would
require patching a kernel image that follows completely different rules than
common executable, but also because it is much easier to extend the system
with dynamically-loaded modules. It is by far more common to instrument
either the support environment on top of which user-level programs are
built, or directly the program themselves. Conceptually, the two choices
can be rather similar, it depends on whether the programming language is
actually accompanied by an external run-time (as for interpreted languages
and just-in-time compiled ones) or relies on traditional compilation tech-
niques. In the latter case, instrumenting the environment means patching
one or more libraries which are explicitly invoked by the compiled program.

When talking about patched code, we must specify the level of abstrac-
tion spoken by the code itself. To this extent, software instrumentation
can occur at three different levels: machine code level, byte code level and
source code level.

Machine code level At machine code level, programs are represented by
a sequence of instructions and data bytes with no semantics. Instructions
are strongly typed in terms of the number of bytes that are involved in an
operation. At the same time, data items are seen as a sequence of bytes
with no meaning, along with a size. As a result, this layer provides no
clues as to how a program is structured, as well as to how data objects in
memory must be interpreted. Hence, it is not suitable for high-level instru-
mentation tasks such as those targeting high-level control flow structures
(e.g. try-catch or switch-case statements) or high-level data types (e.g.
struct’d or union’d types, classes, callbacks, etc.) On the other hand, car-
rying out monitoring tasks, such as detecting the memory access pattern of
an application, is extremely easy at this level, since all memory operations
are explicit. Moreover, this level allows to instrument pretty much every
executable resulting from a program written in a compiled programming
language, regardless of its syntax and constructs.

Byte code level At byte code level, programs are encoded into an inter-
mediate binary representation which includes a minimal amount of seman-
tic information concerning control flow structures and complex types. This
level is provided by interpreters and just-in-time (JIT) compilers for highly
abstract languages that aren’t directly compiled into machine code. As such,

CHAPTER 2. INSTRUMENTATION 10

it is only available in restricted contexts and depending on the programming
language in which the application logic is described. The only additional
benefit, with respect to the machine code level, is that instrumentation
tasks at this level are independent from the architectural idiosyncrasies of
the machine. As such, they are transparently compatible with whatever
Assembly encoding for instructions is adopted by the hardware.

Source code level At source code level, programs are fully described by
extremely complex structures and detailed meta-data. The level of precision
that can be achieved at this level in terms of program semantics is the
highest of all other levels, and portability of instrumentation tasks is at
its finest. On the other hand, injecting instrumentation code within the
application is much more complex, since the instrumentation logic must
deal complex program statements and data types. At the same time, this
kind of instrumentation requires the availability of the original source code
file, whose absence makes it impossible to carry out the desired task.

As already anticipated, instrumentation can be a compile-time issue or
a run-time one. Techniques that fall to one side or another are respectively
called static techniques and dynamic ones.

2.2.1 Static instrumentation

In static instrumentation, changes are applied at the end of the compilation
process, thus affecting the execution of the program ‘once and for all’. As
a result, the instrumentation cost is spent only once, ahead of execution.
Observe that static instrumentation is not transparent to the application,
since instrumentation code and data are directly inserted into the final exe-
cutable file being executed. Furthermore, it is not able to fully capture the
non-deterministic nature of applications. The program’s actual control flow
cannot be seen and it can only be modeled through a partially-ordered set
of states.

The two main static instrumentation techniques are referred to as relo-
cation and inlining. In relocation, the code to be instrumented is duplicated
and inserted into a new text segment where it can be freely instrumented.
In order for the instrumented code to be run in place of the original one, the
original code must be patched with new branching instruction which need
to be put at appropriate points in the original code called instrumentation
points. When an instrumentation point is reached at run-time, the branch-
ing instruction diverts the flow to the instrumented region. Then, as soon
as the execution of instrumented code completes, another branch diverts
the flow back to the original code, until another instrumentation point is
met.

CHAPTER 2. INSTRUMENTATION 11

This technique is welcomed by researchers because the amount of changes
that need to be applied to the original code are minimal. The addresses of
non-instrumented code regions need not be changed, therefore references
to locations in these regions remain intact. The only requirement is that
the instruction which holds the instrumentation point prior to patching the
original code be large enough as to accommodate a branch, without over-
writing the bytes of a subsequent instruction. This is as simple as it sounds
for RISC architecture, but becomes a critical problem in CISC systems.
Moreover, the overhead induced by relocation can be measured in terms of
two additional branches for each instrumentation point. This can quickly
become an issue in modern architectures, since branching instructions can
lead to pipeline stalls.

Inlining takes a quite different approach than relocation. Original code
is never copied, but rather instrumented in-place by inserting instrumenta-
tion code at the desired points, while shifting all instructions that follow. As
such, no original instruction in the code is ever replaced—unless the specific
instrumentation task to be carried out explicitly asks so. The cost of branch-
ing instructions is completely avoided, thus producing a more lightweight
instrumentation. On the other hand, all original references to code need to
be updated, included those that are indirectly encoded in data sections—
e.g., jump tables for switch-case statements and function pointers hold
by variables. This task can be more difficult the less meta-data is available
in the original executable file to detect or infer with enough confidence the
presence of such indirect references.

2.2.2 Dynamic instrumentation

In dynamic instrumentation, also called JIT instrumentation, program ex-
ecution is patched at run-time, on the basis of the occurrence of particular
run-time conditions. This latter approach tends to place a bigger burden on
the performance of the instrumented application, since the cost is spent in
minimal quantity ahead of execution and heavily at run-time. Also, com-
pared to the static approach, dynamic instrumentation tends to be more
opaque to the application developer, since dynamic instrumentation tools
usually come in the form of virtual machines (VM) and emulators, that must
be explicitly invoked by the user upon launching the client code. However,
dynamic instrumentation achieves higher precision than static instrumenta-
tion when it comes to tracking the evolution of a program over time, since
the control flow is observed on the fly and becomes a streamlined sequence
of encountered program states.

The vast majority of dynamic instrumentation toolkits instruments code
by either running it natively on the architecture or by means of emulation.

CHAPTER 2. INSTRUMENTATION 12

In native execution, chunks of the original application are executed on the
underlying architecture one at a time. Upon being launched, the instru-
mentation virtual machine (VM) loads the passed client program into its
same address space, intercepts the first instruction of the program and pulls
out the first chuck of code, rooted at that instruction. The last instruction
of this newly-created chunk is patched so that after the actual execution of
that chunk, control is passed back to the VM. The next chunk to be executed
is then created, starting from the next instruction which was scheduled for
execution prior to patching. During the creation of a chunk, code is instru-
mented according to the requested rules and external processing functions
are possibly invoked for the sake of analysis.

To speed-up execution, a software code cache is maintained where al-
ready created chunks are stored. Whenever the VM re-gains control over
the application, it first checks whether the next scheduled chunk already
exists by looking up in the code cache. In the positive case, the chunk is
retrieved and the client program resumes. Another useful technique, named
linking, allows to completely bypass the cache look-up mechanism while the
current chunk is being created by the VM whenever the next chunk to be
executed is already known to be in the cache. In such a case, it is not neces-
sary to invoke the VM dispatcher because the VM itself already knows that
the look-up will succeed. For this reason, the last instruction of the current
chunk and the first instruction of the next chunk are directly linked.

To ease the task of instrumenting applications in a machine-independent
way, some JIT VMs create an intermediate representation (IR) of the code
in each chunk where architectural-dependent details are abstracted away in
favor of a more explicit and general low-level language (similar in purposes
to byte code). This intermediate language features an arbitrary number of
virtual registers and explicitly represents the side-effect produced by origi-
nal machine-code instructions. On the one hand, virtual registers allow to
conceal certain register movement operations caused by the high register
pressure of the underlying architecture. On the other hand, annotating the
side-effect of each instruction makes it possible to the VM to keep track
of all the invisible effects that come from its execution. Instrumentation
that is performed on the IR is architectural-agnostic and gets implicitly
converted into actual machine code at a later stage, when machine-specific
optimizations are also performed. Observe that the increased expressiveness
inherited from the IR is payed in terms of instrumentation overhead, since
the first time a chunk is met the IR must be created, too.

The major drawback of the native execution technique is that it needs
to intercept all the instruction that diverts the natural execution flow of
the application. These instructions include direct and indirect branches,
but even instructions that call privileged services—e.g., through software

CHAPTER 2. INSTRUMENTATION 13

interrupts—or generate exceptions. Not only that, but other library and
kernel-level ‘curlicues’ must too be handled. This include asynchronous
invocation of callbacks—like the thread-level messaging system of Win-
dows or POSIX’s signal handlers—as well as other subtle schemes—such
as Pthread’s thread creation or the setjump/longjmp library services.

Emulate execution is a technique which is mostly adopted in contexts
where security is paramount and client code cannot be trusted. The major
difference with respect to the native counterpart is that every machine-level
instruction is interpreted, and a virtual processor state is manipulated by
the VM which never relinquishes control. The original application therefore
is never really executed, but can still be instrumented while its execution
is being emulated by the VM. This approach clearly produces an overhead
which is degrees of magnitude higher that the other form of execution.
Moreover, it becomes quite complex to implement when the ISA that must
be emulated is complex too—e.g., x86 and x86-64. Nevertheless, it is more
secure than native execution and can provide a sandboxed environment in
which the execution of the client program is evaluated without affecting
other part of the system.

In my thesis, I will stick to software binary instrumentation techniques,
since the kind of task which I wish to carry out—basically, tracing a subset
memory accesses—is a natural low-level functionality. As such, it is effi-
ciently performed at machine code level. Moreover, since I want this task
to be completed in the most lightweight and less intrusive way—so as not to
hamper the performance of the application—static techniques are preferred
to dynamic ones.

2.3 Hijacker

Hijacker is the static binary instrumentation tool of choice for my thesis. It
has been developed at the Department of Computer, Control and Manage-
ment Engineering “Antonio Ruberti” at Sapienza University of Rome for
high performance computing (HPC) settings [11]. Its main features are the
ability to support general-purpose instrumentation—i.e., not bound neces-
sarily to profiling or monitoring purposes—and the fact that it poses min-
imal code overhead on the target applications—a property which is highly
desirable in HPC scenarios.

Another peculiar feature of Hijacker is its exclusive support for relo-
catable files, as opposed to executable ones. The main difference between
relocatable files and executable ones is that executable files can be directly
loaded into a process’ address space, while relocatable files are typically not
amenable to loading and must pass through an additional linking step. More
precisely, an executable file is the union of one or more relocatable files, as

CHAPTER 2. INSTRUMENTATION 14

performed by the static linker during the compilation process. Hence, the
main advantage gained from instrumenting a relocatable file is that it allows
an instrumentation tool not to take care of any complex linking logic. Once
again, this is the approach taken by Hijacker. A pictorial representation
of the instrumentation process performed by Hijacker on relocatable files is
shown in figure 2.1.

.o

.c .o .o .out

compilation instrumentation linking
0101011

1101010

0101010

Original source Relocatable object

Instrumentation code

Instrumented

relocatable object
Final instrumented

executable code

Figure 2.1: Hijacker’s instrumentation process

In relocatable object files, the program is seen as a sequence of sections,
each of which contains a different kind of information. Some sections con-
tain program code, some program data. Other sections are only needed
to guide the linking process and won’t make through this step. All refer-
ences to objects and places within each section are expressed as displace-
ments from the beginning of the section and sometimes accompanied by
detailed annotations called relocations. Therefore, relocatable objects never
refer to functions or variables through virtual addresses, but rather through
displacements and relocations. When the linked is fed with a relocatable
object, it consumes all relocations and converts the relative addresses repre-
sented by displacements into absolute addresses, which are directly mapped
into the virtual memory as virtual addresses. Those sections that were only
needed for linking are discarded and the remaining ones become segments
which are amenable to being loaded into virtual memory at program launch.

As with other compiling and instrumentation tools, Hijacker relies on
the notion of intermediate representation. In some compilers, such as the
LLVM compiling suite [12], a program source code is translated into an in-
termediate low-level representation that flattens complex control and data
structures into simpler equivalents, as machine code does, while retaining
the property of being machine-independent. Because of this, every opti-
mization and manipulation that can be performed on a client program is
done at the intermediate level, and translation to the final machine code is
only performed as the last compilation stage. In Hijacker, the intermediate
representation has similar but not exactly equivalent purposes. In fact, it
is a representation for relocatable files rather than for source code, mean-
ing that it creates an abstract representation of relocatable files in terms of
sections, relocations and other entities.

CHAPTER 2. INSTRUMENTATION 15

The internal software architecture of Hijacker is depicted in figure 2.2.
From an extremely high-level perspective, Hijacker is the combination of
a front-end module and a back-end one. The front-end is responsible for
parsing an input relocatable file and emitting another relocatable file which
results from instrumenting the former. The back-end module takes care
of the actual instrumentation tasks and is responsible for maintaining and
altering the intermediate binary representation (IBR).

Back-end

Front-end

ELF

COFF

XML Parser File Loader File Writer

Executable

Interpreter

Assembly

Interpreter

x68

ARM

Rule Manager

Instrumentation

Engine

Internal Binary

Representation

rule

<xml>

input

asm

output

asm

Figure 2.2: Hijacker’s software architecture

2.3.1 Front-end

The front-end is the first and last module to take control of the entire
instrumentation procedure. It is divided into three additional components:

• The file loader parses the input relocatable file and creates an internal
mapping of sections, relocations and other entities (e.g. functions and
instructions) where displacements from the beginning of sections are
replaced by memory pointers. Eventually, the result of this operation
is the IBR that will be the subject of all manipulation throughout the
entire instrumentation process.

CHAPTER 2. INSTRUMENTATION 16

• The rule parser takes as input an XML file containing the requested
instrumentation rules to apply to the relocatable file. It is specified by
the user and its existence represents the support for general-purpose
instrumentation tasks. Specifically, rules are registered and fed to
an back-end subcomponent which is in charge of executing them in
sequence.

• The file writer has the opposite role of the first. It converts the mod-
ified IBR into the same binary encoding that were used to describe
the original relocatable file. As such, memory pointers are converted
again into (updated) displacements from the beginning of sections and
the IBR is eventually discarded.

The file loader and the file writer, during their execution, interact with
two interpreters that operate at two different representation levels. The
executable interpreter is the one which is directly responsible for building
up the IBR for the relocatable file. When faced with instructions belonging
to the code of the program, it gives controls to the code interpreter. The
latter converts the machine-code instructions into an abstract representation
which encodes the entire program logic as a chain of instruction descriptors.
This representation is eventually fed back to the executable interpreter,
which derives descriptors for functions and ultimates the IBR. In the inverse
direction, the one needed by the file writer, functions and instructions in
the IBR are converted back to their binary encodings.

It is worth saying that both the executable interpreter and the code in-
terpreter are designed in such a way to support respectively multiple object
file formats (OFFs) and multiple instruction set architectures (ISAs). Cur-
rently, Hijacker only supports ELF relocatable file formats and IA32/AMD64
machine-level encoding, although support for additional formats and in-
struction sets is on its way.

2.3.2 IBR

The Intermediate Binary Representation (IBR) provided by Hijacker can be
seen as a pointer-based representation of the same contents included in the
input relocatable file and referenced through displacements. Observe that
manipulating memory pointers is much easier than manipulating displace-
ments. For example, inserting a new instruction only requires to change
the memory pointers of the pivot instruction and update those of the newly
inserted one. Hence, changes are local and don’t disrupt the value of other
pointers. On the contrary, if the same insertion were performed directly on
the relocatable input file, it would require to shift the displacements of all
instructions that follow the newly inserted one, thus causing global changes.

CHAPTER 2. INSTRUMENTATION 17

function
name
...
insn
next

function
name
...
insn
next

function
name
...
insn
next

insn_info
...

reference
next
prev

insn_info
...

reference
next
prev

insn_info
...

reference
next
prev

insn_info
...

reference
next
prev

symbol
...

position
next

symbol
...

position
next

symbol
...

position
next

Data

Figure 2.3: Hijacker’s internal binary representation

The internal composition of the IBR takes much of its inspiration from
ELF relocatable files. As such, every other supported object format will be
converted into a representation that is highly inspired from ELF. In this
representation, we find three different components: sections, symbols and
relocations. Two additional types, functions and instructions, are built for
convenience and find no direct equivalent in any relocatable OFF. They are
required to provide Hijacker with a basic abstract representation of program
code. A visual description of Hijacker’s IBR is provided in figure 2.3.

Section

Sections represents coarse-grained portions of a relocatable file. Unavoid-
able ones are those for program code and program data. Other ones are
self-referential and contain, for instance, symbols or relocations. As already
explained, some of the sections that make up the file will eventually become
segments which can be loaded in memory when a process is created. All
sections that hold a portion of the compiled program in terms of code and
data belong to that category. Other sections, such as those which are self-
referential, are consumed by the static linker upon linking while producing
the final executable for the program.

Symbol

In ELF and other OFFs, symbols represent finer-grained byte sequences
than sections associated with a name, a size and a meaning in terms of

CHAPTER 2. INSTRUMENTATION 18

linking logic. They are the main target of relocations and can represent
data object, functions, relocatable sections and other entities. Symbols are
contained into a special section named symbol table. Inside the symbol
table, each entry is a different symbol. Beside the symbol name, size and
other flags, a symbol’s entry also tells the linker the section and displacement
within that section in which the symbol will be located inside the final
executable file. This is true for data symbols representing object such as
array and variables in general.

Relocation

Relocations are the peculiar feature of relocatable files. A relocation is an
entry in a special-purpose relocatable section which describes that a refer-
ence to a given symbol is performed at a given point in the program (e.g., in
the program code). Stated differently, a relocation represents the fact that
at a given displacement from a section, a reference to a certain location dis-
placed from the beginning of a symbol occurs. The most common forms of
relocations are references to C variables—triggered by memory movement
operations,—functions—triggered by call instructions—and instructions—
triggered from jump tables in data sections to encode the addresses of case
statements, but also the addresses of functions in the presence of indirect
branch instructions.

Relocations are a convenient form of annotation for memory references
whenever virtual addresses aren’t available. Since references to symbols are
expressed through rich meta-data, the exact location of such symbol in terms
of its virtual addresses is not needed. By the time the linker concludes its
job, all relocations have been consumed and flattened into real hard-wired
virtual memory addresses which explicitly refer locations in the executable
where symbols reside.

Instruction and functions

Instructions in Hijacker are represented with high-level descriptors that sim-
ply encode the size and type of the instruction (e.g. memory read, memory
write, integer, floating point, logical), its displacement from the beginning
of the code section, the presence of a relocation to a data symbol (if any),
and other architectural details. Moreover, instruction descriptors are linked
into a bi-directional chain that makes the implementation of many low-
level instrumentation tasks such as instruction insertion or deletion much
easier. Functions are derived from the instruction chain by checking the
original displacements of instructions against the displacements of the re-
spective function symbols. Eventually, a list of function is created where
each function records mainly its name and first instruction.

CHAPTER 2. INSTRUMENTATION 19

2.3.3 Back-end

The back-end represents the core of the instrumentation facility. It is com-
posed mainly of the rule engine, which is responsible for executing the pre-
viously stored rules on the current IBR. Many different rule types are sup-
ported. Among them, we can mention those that add new instructions to
the representation or those that replace existing ones. Furthermore, Hi-
jacker allows to easily inject new code into the program (either written in
Assembly or C technology), as well as to transparently call user-defined
function at desired point so as to execute the actual desired functionality
(be it monitoring, profiling, debugging or whatnot form of logic). Finally,
the instrumentation engine is invoked by the rule engine to actually manip-
ulate the IBR. It is composed of many manipulation functions for section,
symbol, relocation, function and instruction descriptors.

2.4 State of the art

In the rest of this chapter, an evaluation of some of the most popular instru-
mentation frameworks is provided. Later in this section, such frameworks
are compared against each other and with the Hijacker toolkit. Hopefully,
this should put into perspective the kind of instrumentation that I wish to
achieve for my thesis, in terms of its strengths and limitations.

2.4.1 PEBIL

PEBIL (PMaC’s Efficient Binary Instrumentation Toolkit for Linux) is a
static binary instrumentation tool for Linux x86 and x86-64 which uses re-
location as its main technique [13]. Not only that, but it is heavily oriented
toward lightweight and general-purpose instrumentation, just like Hijacker.
The high-level functioning of PEBIL is as follows. Whenever an instrumen-
tation point is encountered while scanning the application’s code, PEBIL in-
jects a branch instruction that gives control to an instrumentation preamble.
This instrumentation code saves the program state, invokes a user-defined
function that performs the requested tasks, restores the previously-saved
state and then branches back to the instrumentation point.

To provide sufficient space for the insertion of branches, PEBIL relocates
code at the function-level so that before any possible instrumentation point a
branch instruction can be injected. This procedure is split into four different
steps. In the first step, the contents of original functions are relocated
into an area of the code section that is allocated by PEBIL and private to
it. Relocating the contents of function is an elegant way to leave function
entry point unaltered. To link the entry point of the original instruction to

CHAPTER 2. INSTRUMENTATION 20

the actual relocated contents, the original entry point is replaced with an
unconditional branch to the relocated function.

The motivation behind function-level relocation is that typical text seg-
ments in a final executable are such that the next instruction after the end
of a function is the entry point for another function. This is to say that func-
tion code is not aligned nor padded, hence inserting additional instructions
in the code would require shifting all those that come after the insertion
point, included the entry points to other functions. This procedure is par-
ticularly delicate when it comes to executable files, as relocation entries are
gone. Therefore, references to other instructions and data object must be
recognized and update while shifting the instructions. Shifting is further
complicated by the fact that indirect call instructions may be present in
the code, which are hard to resolve before run-time. If PEBIL changed the
entry points to functions, it would have to tentatively discover indirect calls,
trace back call tables in data segments and update entry point addresses
accordingly. Quite a complex and unreliable task.

The second step deals with padding instructions in the relocated code.
For each instruction, an empty space is inserted before it and filled with
a sufficient number of null instructions as to accommodate the potential
insertion of a branch. On x86 and x86-64, 5 bytes are sufficient to hold a
jump instruction to a near code location. Whenever a regular instruction
is already a branch then it is ‘self-padded’, meaning that the byte length
of a branch instruction taking less than 5 bytes is increase up to this size.
Observe that this task would not be needed if the ISA of reference were that
of a CISC architecture, since in that case all instructions would take up the
same byte length. However, the cost of supporting a quite widespread family
of processors such as x86-(64) is paid exactly by its intrinsic ISA complexity.

The third step is the actual instrumentation. If a regular instruction
in the relocated code is recognized as an instrumentation point, a branch
instruction is inserted before it—or in place of it when it comes to exist-
ing branch instructions. By executing the newly inserted branch, control
is passed to PEBIL’s instrumentation preamble. As already explained, this
preambles saves the current architectural context and then invokes an anal-
ysis procedure which is defined by the user in a high-level language such
as C. After returning from the analysis procedure, the architectural stare is
restored and the application execution is resumed.

The major overhead of PEBIL’s instrumentation at run-time comes from
the insertion of additional branches in the code to achieve function-level
relocation and invoke the analysis routine, resulting in possible control haz-
ard at the micro-architectural code level. Moreover, as explained by the
authors, “since the code is being reorganized and expanded, some positive
alignment and size optimizations that the compiler might have made on the

CHAPTER 2. INSTRUMENTATION 21

instructions in the function might be destroyed.” Nevertheless, the effects
of relocating code and padding instructions alone, that is without branch-
ing to PEBIL’s instrumentation code, are measured on the SPEC CPU2000
Integer benchmark to be no higher than 5% more of the non-instrumented
execution.

Another critical source of overhead comes from the analysis procedure it-
self, whose execution can pollute instruction and data caches to an arbitrary
extent. Not only that, but it also requires PEBIL to save and restore the
processor context, which is a very expensive operation. Notice that beside
functions written in a higher-level language, PEBIL also enables the inser-
tion of lightweight assembly-level instrumentation snippets. Code snippets
written in low-level language minimize the effects of cache pollution and
relieve PEBIL from the save/restore logic. The task of preserving the value
of registers is now in charge of the snippet itself, which can optimize it by
only saving and restoring those registers that will be actually employed.

An experimental evaluation of PEBIL’s performance is derived, again,
from running an instrumented version of the SPEC CPU2000 benchmarks.
The analysis function in this experiment is in charge of counting the num-
ber of times that a basic block is executed. Basic blocks are explained to
a deeper extent in chapter 4. Basically, they are contiguous sequence of
instructions where either the first instruction is the target of a jump, or the
last instruction is a jump operation itself. Counting the number of times
a basic block is executed allows to estimate the overhead introduced by
PEBIL while minimizing that introduced by the analysis code, which can
be implemented as an Assembly snippet. As can see from picture 2.4, the
average overhead measured for PEBIL is 62%, compared to 151% for Pin,
408% for DynamoRIO and 734% for Valgrind.

2.4.2 DynamoRIO

DynamoRIO is defined by its authors as a dynamic optimization infrastruc-
ture for the IA32 family of architectures and the Windows environment [14].
The main idea behind this tool is to optimize the execution of a program
while it is running, thus overcoming the obstacles that are traditionally
posed by static compilation. Compilers are in fact incapable of predicting
the behavior of applications at run-time, therefore the kind of optimizations
that can be performed on program is restricted to those enabled by static
analysis. The main obstacle to dynamic optimization is that of maintaining
control over the running application at frequents points in its execution. In
practice, this means intercepting instructions that divert the regular execu-
tion flow of the application—for instance, branch instructions—as well as
instruction that perform a more aggressive form of control flow hijacking—

CHAPTER 2. INSTRUMENTATION 22

Figure 2.4: Performance evaluation of PEBIL with respect to other in-
strumentation tools.

such as those raising exceptions or invoking privileged services.
Conceptually speaking, DynamoRIO is a JIT optimizer which acts as

a wrapper around the actual executable. Code from the original program
is executed natively in blocks of consecutive code called fragments, which
terminate as soon as a control flow instruction is met. Such instruction is
intercepted so as to give control back to the DynamoRIO VM. Fragments
persist in a software-defined code cache for fast retrieval and are linked
together to avoid returning to DynamoRIO’s code at boundaries whenever
possible. Among them, those that have been identified as being executed
more frequently can be optimized by the VM to improve the performance of
the running application. Observe that beside direct and indirect branches,
Windows supports several other abnormal ways to transfer flow from one
point in the program to another. For instance, Windows supports callback
mechanisms for thread-level message queues. Another form of control flow
hijacking is exceptional control flow. All such mechanisms are successfully
intercepted by DynamoRIO.

To evaluate the slowdown incurred by applications run through Dy-
namoRIO, the SPEC2000 suite of benchmarks is executed without any form
of dynamic optimization. The results of this experiments in picture 2.5 show
that apart from pathological cases the slowdown introduced by DynamoRIO
is never higher than 2.0x.

CHAPTER 2. INSTRUMENTATION 23

Figure 2.5: Performance evaluation of DynamoRIO with no dynamic op-
timization.

2.4.3 Pin

Pin is a dynamic instrumentation framework available for Linux platforms
for IA32, AMD64, IA64 and ARM architectures [15]. Its design goals are us-
ability, transparency, portability, efficiency and robustness. The first three
goals are achieved thanks to a flexible API to develop Pin plug-ins, called
Pintools, which allows users to instrument arbitrary code locations. Many of
the tasks needed to preserve the correctness of the application—such as sav-
ing and restoring the processor state—are handled in a transparent manner
by Pin, which also abstracts away all the architectural-specific issues that
must be handled. Efficiency is achieved by improving JIT instrumentation
through code caching, trace linking, inlining of analysis functions and reg-
ister re-allocation. Another important source of efficiency is given by the
Pin’s ability to attach and detach from a running process, so as to activate
and deactivate instrumentation. Lastly, the robustness of Pin comes from
the fact that by using dynamic instrumentation many classic issues of static
approaches—such as not knowing the actual targets of indirect branch tar-
gets or not being able to instrument external libraries are—are naturally
absent.

The main technique adopted by Pin to instrument code is JIT native ex-
ecution. Pin receives the original executable as an input, intercepts the first
instruction and decompiles a contiguous sequence of instructions, named
trace, which ends with a branch instruction. Once a trace has been identi-
fied, Pin re-compiles it in such a way as to (a) instrument it according to the
desired rules and (b) make sure that the last instruction of the block gives
control back to Pin’s code. Then, Pin executes this re-compiled block na-
tively on the architecture. It must be noted that for efficiency purposes, all
code which passes through Pin is transformed from one ISA directly into the
same ISA without passing through an intermediate format. After regaining

CHAPTER 2. INSTRUMENTATION 24

control, Pin repeats the same step for a trace rooted at the original branch
target. A software code cache is maintained to store previously-recompiled
traces so as no to incur again in the recompilation overhead.

Pin also supports trace linking, in an attempt to directly move from
one trace to another whenever the destination trace is already in the code
cache. This avoids the expensive passage from the application code to Pin
and from Pin back into the application code. Another useful performance
booster is the inlining of analysis functions inside the code to be instru-
mented, similarly to what PEBIL does. Without inlining, control must first
pass to a bridge routine which protects the current architectural state prior
to calling the analysis snippet. In total, instrumenting code through the
bridge routine requires two calls and two returns. With inlining, on the
contrary, the bridge routine is avoided and the analysis snippet is directly
inserted into the application code, thus sparing the previous instrumenta-
tion cost in its entirety. A register allocator is in charge of handling possible
register conflicts that occur in the analysis routine, by exploiting possible
dead registers or temporary spilling out-of-context application registers to
the stack.

Experimental results on the SPEC2000 test suite indicate that the speed-
up gained from running Pin without any optimization to running it with all
optimization enabled can be as large as 10x on some benchmarks, as seen
in 2.6. A comparison of Pin, DynamoRio and Valgrind on the basic block
counting experiment suggests that Pin is 2x faster than DynamoRio and 3x
faster than Valgrind. On the other hand, when instrumentation is disabled
to appreciate the intrinsic overhead introduced by these tools at run-time,
Pin is considerably faster than Valgrind, but slightly less performing than
DynamoRIO. This is likely due to the fact that while DynamoRIO is thought
as a framework to optimize the execution of applications, Pin optimizations
are thought for instrumentation purposes.

Figure 2.6: Performance evaluation of Pin alone with and without opti-
mizations.

CHAPTER 2. INSTRUMENTATION 25

2.4.4 Dyninst

Dyninst is a binary instrumentation tool which puts strong emphasis on
the flexibility goal [16]. It can instrument a binary file either by using
static instrumentation techniques or by relying to dynamic approaches (a
technique called anytime instrumentation). Moreover, it can instrument
executables at any level of abstraction (anywhere instrumentation), rang-
ing from instruction-level to function-level, including basic blocks in the
control-flow graph (for an explanation of these two concepts, see chapter
4). The authors of Dyninst claim that it able to produce an instrumenta-
tion overhead which is always proportional to the number of instrumented
locations, independently on the kind of instrumentation being used.

The basic idea for anywhere instrumentation is to allow user-defined
analysis functions to manipulate program code by providing different kind
of instrumentation points. Typical instrumentation tool, included Hijacker,
only allows an external function to gain control over an instrumented ap-
plication prior to or immediately after the execution of a particular kind of
instruction (e.g., memory read, memory write, floating point, etc.) Dyninst,
on the contrary, provides additional instrumentation points such as func-
tion entry/exit, basic block entry/exit, loop entry/exit and loop iteration
entry/exit. These additional points are supported through the manipula-
tion of a global CFG whose nodes and edges are appropriately tagged. A
peculiarity of Dyninst is that instrumentation code is directly inserted in
this global CFG by means of additional nodes and edges. The augmented
CFG which results from the instrumentation is later used to generate the
final instrumented binary code.

To achieve proportional instrumentation cost, Dyninst chooses the code
that must be relocated and patched, then creates a relocated copy for the
selected code and instruments it with the desired rules. Finally, it patches
the original code so that control will be diverted to the relocated region.
To achieve anytime instrumentation, two techniques are introduced. The
first, called state interception, allows to move to the relocated region while
running the original code version. Rather than patching the original code,
state interception overwrites the process context by altering the content of
the program counter, so that control is transparently passed to the instru-
mented version. The second technique, named iterative instrumentation,
allows users to augment previously instrumented code with further instru-
mentation, or to remove pre-existent instrumentation so as to switch back
to normal execution. It internally employs state interception to move back
and forth between instrumentation versions, but it also allows to achieve
overhead proportionality since non-instrumented code can always be exe-
cuted.

To evaluate the performance of Dyninst, the SPEC2006 benchmark was

CHAPTER 2. INSTRUMENTATION 26

instrumented with a simple basic block counting logic. The obtained results
suggest that the overhead incurred by Dyninst is competitive with that of
Pin, DynamoRIO and PEBIL on almost all benchmarks. Moreover, Dyninst
achieves considerably less overhead than Pin when it comes to measuring the
proportionality metric, as shown in 2.7. This results from the fact that Pin
unconditionally intercepts all the executed code, included non-instrumented
one.

Figure 2.7: Evaluation of the proportionality metric for Pin, PEBIL and
Dyninst.

2.4.5 Valgrind

The main purpose of Valgrind is to enable extremely flexible and powerful
dynamic instrumentation which, although heavyweight, allows to carry out
complex analysis task which would not be feasible with other instrumen-
tation tools [17]. The flagship of Valgrind, as opposed to other tools, is
the support for shadow values. A shadow value is an in-memory annota-
tion that describes the value of one register of memory location used by
the program with another value. The meaning of a shadow value is defined
contextually to the kind of analysis one wishes to perform. Apart from that,
the execution of a program is always reflected by a shadow execution which
operates on shadow values.

Many popular plug-ins have been implemented on top of Valgrind’s core
and its support for shadow values. The most popular tool, Memcheck, uses
shadow values to keep track of which bit values are uninitialized and can
report accesses to undefined memory area with extremely high precision
[18]. Other useful tools have been developed, but overall they account for
less than 20% of Valgrind use by programmers. Another reason for running
applications against a Valgrind tool is that Valgrind has its own memory
allocator that is able to intercepts calls to malloc and free operations.
This allows Valgrind tools such as Memcheck to even notify the user about
incorrect usage of the heap, which is mostly due to memory leaks.

Similar to other dynamic instrumentation frameworks, Valgrind uses dy-
namic binary re-compilation. Whenever a program is run in Valgrind, it is

CHAPTER 2. INSTRUMENTATION 27

loaded into the same address space as the invoked Valgrind tool. Applica-
tion code is disassembled and re-compiled one code block at a time. The
disassembly product is an IR which is the target of the instrumentation tasks
carried out by the currently executing Valgrind tool. After instrumentation,
the result of is stored in a core cache so that the same code block doesn’t
have to go through the same process again in the future. Whenever the ex-
ecution of a translated block completes, the application relinquishes control
and gives it back to the Valgrind dispatcher, which checks whether the next
block to execute is already present in the code cache and, if not, creates it.
Contrarily to other dynamic instrumentation tool, direct chaining of code
blocks is not supported.

In the IR, the actual registers used by the host machine (hence called
host registers) are replaced with a set of guest registers to abstract away
the architectural limitations of having high register pressure and frequent
register spilling. Furthermore, a single architectural instruction might be
replaced by multiple IR instructions that describe, beside the visible effect
of the real instruction, all its side-effects. This IR is convenient to manip-
ulate for Valgrind tools because it is architecture-independent and highly
expressive.

To translate a single code block into an instrumented block, the process
is as follows. First, a code block is recognized according to some criteria
(e.g., by parsing instructions until a conditional branch is met). Then, each
instruction is disassembled into its IR code, which operates on guest regis-
ters. The resulting IR is optimized by removing redundant and unnecessary
operations, as well as performing constant folding, common subexpression
elimination and other kinds of flattening analysis. Then, the Valgrind tool
instruments the code block according to its own policy. Eventually, the
IR is translated back into machine-dependent code by first replacing guest
registers with host registers and then converting each IR expression into a
valid machine-level instruction.

The experiments conducted on the SPEC2000 benchmarks to evaluate
the baseline overhead induced by Valgrind yield results which are consistent
with the findings of other researchers. Valgrind is 4x slower than Pin and
4.4x slower than DynamoRIO when no instrumentation is performed. Sim-
ilarly, when basic block counting is evaluated, the slowdown with respect to
Pin and DynamoRIO are respectively 3.3x and 2.0x. However, the purpose
of Valgrind is to enable heavyweight complex instrumentation, rather than
lightweight instrumentation tasks. For this reason, the observed slowdown
as compared to other instrumentation tools is actually expected and quite
acceptable in perspective.

CHAPTER 2. INSTRUMENTATION 28

2.4.6 Comparison

This section is devoted to comparing the previously-discussed frameworks
according to the following criteria. First of all, tools can employ either static
or binary instrumentation. The benefits and drawbacks coming from the
employment of one technique over another have been discussed in section
2.2. Second, they can work at different stages in the compilation process,
with the differences being highlighted in section 2.3. Another interesting
classification is the level of granularity at which instrumentation can occur
(e.g., function-level, instruction-level, etc.) which is reflected in the overall
flexibility of the instrumentation toolkit.

Beside the usage of static or dynamic approaches, an instrumentation
framework is also identified by the specific techniques that are put into
practice (e.g., relocation or native IR-aided JIT instrumentation). Among
them, we stress multi-versioning, which in principle can be employed to
switch at run-time between differently instrumented version of the same
executable (including the baseline non-instrumented version) so as to place
different degrees of overhead over the instrumented application. This can
be useful in certain scenarios (e.g. transactional processing systems) where
the workload to which an application is subject can change over time as a
function of external input or system events.

As reported in table 2.1, Hijacker holds a unique spot within the spec-
trum of instrumentation tools. It is a static instrumentation framework
like PEBIL and also supports the same family of architectures. However, it
works on relocatable files, while PEBIL instruments executables. As such,
Hijacker can grants itself the luxury of using inlining without disrupting any
references from code to data and viceversa, thanks to relocations. More-
over, as opposed to PEBIL, it has a rudimentary IR support for code and
is highly oriented toward multi-versioning. The remaining tools, being all
JIT VMs, can too be easily compared. Pin and Valgrind support the higher
number of architectures, while Dyninst stands out due to its support for
anywhere instrumentation (arbitrary granularity) and anytime instrumen-
tation (which entails multi-versioning). DynamoRIO is interesting because
is oriented toward efficient execution, while Pin makes extensive use of regis-
ter re-allocation techniques to minimize run-time instrumentation overhead.
Lastly, Valgrind is awarded honorable mention due to its extremely peculiar
support for shadow values.

CHAPTER 2. INSTRUMENTATION 29

- PEBIL DynamoRIO Pin Dyninst Valgrind Hijacker
OS Linux Windows Linux Linux Linux, OSX Linux
ISA x86-(64) x86 x86-(64),

IA64, ARM
x86-(64) x86-(64),

ARM
x86-(64)

Approach Static Dynamic Dynamic Both Dynamic Static
File type Exec Exec Exec Exec Exec Reloc
Granularity Instr - Instr Any - Instr
Techniques Relocation Native Native Relocation Native Inlining
IR No No No Partial Yes Partial
Versioning No No No Yes No Yes
Other - Run-time

optimization
Register re-
allocation

- Shadow val-
ues

-

Table 2.1: A comparison of binary instrumentation tools

CHAPTER3
Memory Tracing

There is nothing like looking, if you want to find something.
You certainly usually find something, if you look,

but it is not always quite the something you were after.
— J.R.R. Tolkien, The Hobbit (1997)

Memory tracing is the fine art of collecting the stream of memory ad-
dresses generated by an application, also called memory access pattern or
memory access stride, throughout its execution. The output of this activity
is a trace—i.e. a sequence—of memory address that have been touched at
run-time, since the beginning of a program execution or the closest previous
processing point. For instance, accesses can be buffered for a given period
of time or buffer size, beyond which the in-memory storage is flushed and
the buffer is consumed by an external monitoring tool. Once reset, the
buffer can accommodate a new wave of accesses. An alternative technique,
perhaps less used, is to consume accesses in a synchronous way as a stream.

Memory tracing is typically a means to a higher end and is used both
by computer architects and software engineers. In the first case, memory
address traces are generally observed with the purpose of improving the
architectural design of an existing memory subsystem, either in terms of
performance or energy consumption. In the second case, traces are collected
with the intent of making better employment of the architecture in a given
application (e.g., by improving the cache hit ratio through cache-oblivious
algorithms). In either case, converting collected data into actual information
is rarely the main issue. More often, the act of collecting data itself is the
real hurdle.

When it comes to memory access tracing, the intrinsic difficulty of this
task can be decomposed into two complementary issues: (a) how many and
which accesses to collect; (b) when the consumption actually occurs. To this
extend, we now proceed to discussing two common tracing optimization.
The former is related to trace collection, the latter to trace consumption.
Both techniques, perhaps unsurprisingly, are typically based on the usage
of static or dynamic instrumentation. As a matter of fact, memory tracing

30

CHAPTER 3. MEMORY TRACING 31

can be seen as the most classic application of instrumentation to the art
profiling. In the remaining of this chapter, while talking about tracing
optimization techniques and state-of-the-art memory tracing tools, we will
often assume the exploitation of instrumentation techniques.

3.1 Sampling

When it comes to tracing problems, it is important to understand the trade-
off that exists between tracing accuracy and tracing overhead. Suppose we
have a very memory-intensive application with a quite huge trace. Since this
trace contains all accesses performed by the application, it is 100% accu-
rate, thus making every form of downstream analysis thorough and reliable.
However, collecting such traces could pose a big time and space overhead
on the profiling tool that performed this task, possibly with unacceptable
results.

For this reason, tracing is usually implemented through sampling tech-
niques that collect a ‘relevant’ subset of the memory accesses ever performed
by the application. Perhaps not surprisingly, the exploitation of sampling
doesn’t reduce the complexity of tracing, but in fact moves it to the issue
of finding a relevant subset. Formally speaking, sampling acts as a filter on
a set of memory accesses, possibly coded into a raw format and not directly
recognizable, as would happen with the machine-level representation of a
program. Program code is parsed instruction by instruction to detect mem-
ory access operations. Upon the occurrence of a memory access, an heuristic
function is run that decides whether such access must be collected or not.
The complexity and effectiveness of such heuristics depend on many factor
that will be later explained. As a result of this filtering, a subset of ac-
cesses is produced that includes all and only the sampled operations—that
is, those that the heuristic function decided to collect.

Clearly, the higher the number of memory accesses that are collected,
the higher the accuracy of the produced trace and the higher the overhead.
Collecting 100% of accesses yields full tracing and, as already said, is a
show-stopper because the benefits of increased accuracy might not compen-
sate for the increased overhead (a phenomenon called over-sampling). On
the other hand, sampling a very low fraction of memory accesses will yield
extremely low overhead, to the detriment of accuracy which may be disap-
pointing (under-sampling). Finding the optimal trade-off between accuracy
and overhead is the most difficult problem, but undoubtedly also the most
exciting one.

CHAPTER 3. MEMORY TRACING 32

3.1.1 Static sampling

Typically, sampling can be performed statically or dynamically. Static sam-
pling, is a form of sampling performed at compile-time. It usually relies on
control-flow analysis (CFA) as well as data-flow analysis (DFA) algorithms
to recover the highest amount of semantics from the machine-level represen-
tation of a program. At this level, as will be better explained in chapter 4,
control flow is represented as a graph with multiple destinations for a single
place in the code. Because of this high degree of uncertainty on the actual
execution path taken by the application, static sampling heuristics tend to
be extremely complex.

For static sampling, a logical way to proceed is to analyze a small subset
of the code regions that account for most of the execution time of an appli-
cation. Finding the ‘hottest’ regions is not necessarily easy and the exact
way to do that depends on our definition of hottest. Clearly, it must be a
region that will be visited ‘often’ at runtime. An example of smart static
sampling can be found in [19]. At that point other decision must be made
to decide which accesses to collect within the same region, with the purpose
of building a relevant trace.

The big advantage of this approach is that these functions have at their
disposal a complete representation of the program, therefore can span big
code regions and improve their decisions by reasoning on the program on a
global scale. Also, they can result into little overhead at run-time.

3.1.2 Dynamic sampling

Dynamic sampling, as opposed to static sampling, occurs at run-time. Just
like dynamic instrumentation, it typically produce higher overheads. How-
ever, such overheads being equal, it also yields generally higher accuracy.
The execution path taken by the application is observed as it evolves.
For this reason, dynamic sampling heuristics tend to be simpler and more
reasonable—they work on the actual memory access pattern exhibited by
the program. On the other hand, they only have at their disposal a more
restricted view on the program, devoid of any unseen past or sibling state
[20].

For example, to leverage on the previous idea of ‘hottest’ code regions, an
dynamic approach might decide to count the number of times that a region
is executed, then decide to analyze only those re-occurring regions whose
with an access count that exceeds a certain threshold. More convoluted
form of learning can be employed, depending on the downstream analyze
that we wish to carry out.

CHAPTER 3. MEMORY TRACING 33

3.2 Buffering

Consumption of traces, be it sampled or full, can occur according to two
different temporal schemes, namely synchronously or asynchronously. The
first case, the naive one, expects all accesses to be collected as soon as
they materialize in the execution of the program. It is suitable whenever
we require a timely stream of accesses that must be consumed on the fly.
However, albeit straightforward, it tends to pose excessive overhead while
profiling the application. For this reason, a generally better form of tracing
involves buffering. It entails storing the collected trace into a temporal
storage that is later ‘flushed’ to the consumer, at an appropriate moment in
the execution of the application—possibly even outside of its critical path,
e.g., through a background consumer process.

The natural justification to this asynchronous consumption scheme is
that most of the accesses need not be consumed on the fly. In the long run,
profiling tools need to collect as much information as possible about the
running process, but not immediately after raw data materializes. While
this increases the ‘time-to-processing’, which is the delay experienced by
a single datum before being consumed by the profiler, this also allows to
decrease the overall profiling time for the entire application. Observe that
the cost of processing a single access consumer-side tend to be comparable
to that of processing a much wider range of accesses at once. Therefore,
buffering is a technique which can drastically improve throughput to the
detriment of latency and is suitable in all those profiling contexts where
time-to-processing is not a interesting metric.

3.3 State of the art

Much of the interesting results obtained in the field of memory tracing are
related to performance prediction of programs. Therefore, in the following
section I will focus on performance prediction frameworks.

3.3.1 MetaSim Tracer

Among them, a trace-driven memory simulation tool called MetaSim Tracer
[20] is oriented to general scientific applications running on arbitrary HPC
platforms. It simulates how a given application will interact with the mem-
ory subsystem of a target machine. At the end of the simulation, statistics
on memory and communication access patterns are collected that enable
further analysis. The actual simulation is based on collecting application
signatures—like expected cache hit rates and memory operation counts—as

CHAPTER 3. MEMORY TRACING 34

well as machine profiles—which information on the cache sizes, associativi-
ties, line sizes and other features of the target machine. These two datasets
are collected independently one from another and then combined through a
convolution method to predict the memory execution time (MET) of that
application on that machine.

Apart from the convolution method, MetaSim Tracer is interesting be-
cause it can speed up address traces collection by using dynamic sampling.
As explained by the authors, the basic idea of sampled tracing is “to turn the
trace collection of an application on and off at certain intervals, while run-
ning the application”. As a result, only a small percentage of the addresses
are collected, which depends on user-specified parameters such as interval
length and number of contiguous traces to collect since the beginning of the
interval (called sample size).

On top of this basic sampling mechanism, two optimizations are built
that revolve around the notion of minimal code regions. A minimal region is
a contiguous sequence of instructions that cannot be divided into two smaller
regions without causing an exclusive control flow connection between the
first one and the second. It will be best explained in chapter 4. However,
in principle, for two connected minimal code regions the source and the
destination must respectively have an in-degree and an out-degree greater
than one.

The first optimization poses an upper limit on the number of times
a minimal region is processed to collect traces. This limit is justified by
the fact that a single minimal code region exhibits similar behavior across
multiple passes in the same program execution. For instance, the average
cache hit rate over 1’000 traversal on a given code region cannot deviate
much from that averaged over 1’000’000 traversals. Another optimization
entails tracing only certain regions of the application, usually the hottest
ones—i.e., those that are executed the most. Again, the motivation is that
in many applications, “there are only a small number of regions that account
for most of the wall-clock time in the application [and] capture most of the
[...] performance attributes.” To determine which region to trace, two static
passes over the application are performed, the first one being that which
identifies at run-time the hottest regions.

These trace time reduction methods are evaluated on an individual basis
first, then combined to prove that they are indeed lightweight and accurate.
The average slowdowns over the LINPACK benchmark are of 152x for 10%
sampling, 130x for an upper sampling limit of 1’000 times, 154x for sam-
pling the top 20 hottest basic regions. The respective relative errors in
prediction accuracy are 3.8%, 22.2% and 12.1%. Tables 3.1, 3.2 and 3.3
provide individual performance and accuracy evaluations respectively for
the periodic sampling criteria, the upper limit on block traversals and the

CHAPTER 3. MEMORY TRACING 35

hotness of blocks. A combined experiment involving all these techniques
(1% sampling, basic-block limit of 200 and top 100 basic blocks) yielded a
slowdown of around 7x with percentage errors falling below 4%.

Sampling size Slowdown factor Error
100% 859 4.6%
10% 152 -3.8%
5% 141 -4.6%
1% 132 -8.4%

Table 3.1: MetaSim Tracer collection time and prediction accuracy com-
parison using trace sampling.

Basic block limit Slowdown factor Error
None 859 4.6%
10’000 134 -20.1%
1’000 130 -22.2%
100 130 -23.4%

Table 3.2: MetaSim Tracer collection time and prediction accuracy com-
parison using an upper sampling limit on block traversal.

Basic block hotness Slowdown factor Error
All 859 4.6%
Top 20 154 -12.1%
Top 10 151 -9.6%

Table 3.3: MetaSim Tracer collection time and prediction accuracy com-
parison using basic block hotness.

Contrarily to this work, my thesis deals with static sampling. It defines a
measure of hotness for minimal regions on top of the CFG that simply counts
the number of cycles to which a single region participates to. Time-based
sampling (i.e. turning on and off sampling according to an interval) would
require dynamic sampling, hence dynamic instrumentation techniques, that
are outside the scope of this thesis. Notice that the thresholded sampling
method is too a time-based form of sampling, since it simply defines that
a region be not scanned again when its dynamic counter reaches a desired
threshold.

Another work on the same simulation tool [19] improves on the previ-
ous one through the adoption of an instrumentation toolkit for the Alpha

CHAPTER 3. MEMORY TRACING 36

platform called ATOM [21]. The main idea of this work is that the major
slowdown doesn’t come from instrumenting the program, but rather from
simulating the interaction of the application’s address stream against the
cache. As a result, the main purpose of the paper is to discuss a way
to defeat this slowdown by reducing the number of instructions that must
be simulated without impacting (much of) the simulation accuracy. The
improvements are obtained by using techniques developed in another simu-
lator, called SimPoint [22].

There are three main ways to perform simulation of multi-threaded pro-
gram driven by memory traces:

• Full-trace simulation (MetaSim Tracer)

• Simulation using periodic simulation intervals (MetaSim Tracer)

• Simulation using (aperiodic) intelligent simulation intervals (SimPoint)

Full-trace simulation is extremely accurate but performs way too poorly
with respect to the actual execution time of the program. In contrast, the
authors explain that by using regularly-spaced intervals the number of in-
struction that must be simulated can fall below 10%, while retaining almost
full accuracy. Unfortunately, this still yields a two orders-of-magnitude
slowdown compared to regular execution. According to the experiments
conducted in the paper, even 1% regular sampling produces at least one
order-of-magnitude slowdown at the expense of lower accuracy.

Evaluation is carried out by comparing intelligent simulation, as per-
formed by SimPoint, against full and periodic 10% and 1% simulation.
The former is conducted by SimPoint using light-weight dynamic basic
block traces and feeding an off-line classification algorithm that establishes
the weight of each simulation interval (made by multiple contiguous basic
blocks). The accuracy of simulation is evaluated by computing the cache
hit rate at basic-block level, weighted by the frequency of execution of the
basic block in the full trace (for cases 1. and 2.) vs. frequency of execution
in the intelligently-sampled trace (for case 3.).

The results, depicted in figure 3.1, suggest that SimPoint-guided cache
simulations are about as accurate as 10% periodic trace for L1 cache hit
rate. The overall cache hit rate differ from that of a full-trace simulation
by an average of 0.25%, while that of 1% and 10% periodic traces is off by
an average amount of 0.43% and 0.07% respectively. On the other hand,
SimPoint-guided simulation is faster than even 1% periodic sampling-based
simulation and much faster than the 10% case. Observe that a relevant
limitation of this paper is that experiments are run on benchmarks where
each process exhibits homogeneous behavior, therefore it is sufficient to
learn the right simulation intervals for a single process to know those of

CHAPTER 3. MEMORY TRACING 37

all running processes. On the other hand, we target general-purpose multi-
threaded applications where execution dynamics (and therefore memory
access patterns) can be different from thread to thread.

Figure 3.1: Evaluation of the cache hit rate estimation error produced by
SimPoint-based sampling.

3.3.2 Effects of binary instrumentation on tracing

Continuing our discussion of trace-driven simulation tools that employ instrumentation-
based techniques for trace collection and processing, [23] discusses the main
sources of overheads coming from binary instrumentation. These overheads
can negatively affect the simulation of program even when interval-based
sampling, or even guided sampling like that enabled by SimPoint, is in place.
The key factors that cause an instrumented binary application to run longer
than the original one are:

1. Instrumented code executes more instructions that does the original
binary. This cost is unavoidable and cannot be measured indepen-
dently from the others to follow.

2. Jumping to an analysis routine snippet is a control flow interruption.
The practical effect when analysis snippets are inserted after every
memory instruction in an otherwise well-scheduled binary is that the
pipeline frequently bubbles or breaks. The measured lower bound of
this overhead is a 10x slowdown, resulting from having an analysis
snippet that receives no parameters and does nothing.

3. Program state has to be saved when jumping to analysis snippets.
This overhead can be quite expensive if the processor has many reg-
isters to save and later restore. Theoretically, instrumentation tools
could target only the registers that are effectively used by the analysis

CHAPTER 3. MEMORY TRACING 38

routine, but in practice many instrumentation APIs simply save all
registers. The lower bound slowdown of this overhead when register
saves are optimized, is of about 20x when using a one-line analysis
snippet.

4. Analysis snippet pollute architectural caches. This is due to the
fact that instrumentation code is interleaved with instrumented code,
therefore there could be contention both in instruction and in data
caches. This too can impact performances considerably, with slow-
downs in the order of 10000x.

To optimize factors 3 and 4, buffering of memory addresses can be im-
plemented. Collection happens upon accessing a memory location, but pro-
cessing is done in batches, that is it is delayed until the current buffer is
full. This check belongs to an analysis snippet located at the end of each ba-
sic block, executed much less frequently due to its nature (especially when
blocks are large). Factor 3 is improved because state saving occurs only
when the buffer gets full. This approach also reduces the frequency of inter-
ference with the program’s cached data. It cannot improve factor 2 because
an analysis routine is still required to synchronously collect traces.

To address the issue of control flow interruptions, the authors devised a
technique which effectively reduces the number of times the effective address
information is stored in a buffer, without affecting accuracy. Interestingly,
this is achieved using static application analysis, and relies on two meth-
ods: chaining and delaying. The first technique group together memory
instructions in a given basic block which share a common base register, the
second generate effective addresses from base register values and immedi-
ate displacements by deferring the recording of these values and the actual
address computations until the end of the basic block.

• Chaining : Memory instructions are grouped into chains, based on
their addressing modes and the registers used to make up the effective
addresses. All instructions with the same addressing mode, employing
the same registers and having the same registers’ values are grouped
into the same chain. As a result, they only differ in their immediate
displacements from the base address. Only one instruction in each
chain is instrumented; the others’ effective addresses can be calculated
from the leader’s address by storing just the residual displacement
relative to that of the leader instruction.

• Delaying : Rather than storing the effective address of the leader in-
struction, register values are recorded in a deferred fashion wherever
possible. These values can be then used in conjunction with static

CHAPTER 3. MEMORY TRACING 39

knowledge of the basic block binary code, such as immediate displace-
ments, to re-create the effective addresses of each memory instruc-
tion. The goal of delayed instrumentation is therefore to find a way to
merge all memory address collection into a single instrumentation call
at the end of the basic block. If the value of a register changes before
reaching the tail instrumentation call, these changes are reversed to
the correct value prior to computing the effective addresses (it only
supports addition and subtraction).

The outcome of these optimizations is that slowdown can be improved
from a factor of around 30x to 50x to a value of 5x on average on real
applications (especially those with long running times). It’s worth saying
that in the authors’ words, “[this] static analysis techniques will vary in
impact based on the specific application to be traced”, i.e. depending on
how effective chaining and delaying can be in reducing the effective number
of instrumentation points in hot basic blocks.

Similarly to the previous work, [24] describes ALITER, a lightweight
instrumentation tool that employs deferred invocation of the user’s routine
through buffering of interesting events. Control is transferred to the user’s
analysis routine only when the buffer gets full. Furthermore, buffer mainte-
nance is inlined into the application’s code, thus avoiding an expensive call
to a maintenance routine. Overall, these optimizations allow to counteract
the effect of control hazards and cache pollution. The slowdown of acquiring
address traces in ALITER never exceeds the factor 2x for the NAS bench-
mark, compared to those of other lightweight (but synchronous) tools such
as ATOM and PIN, which are 20 to 40 times higher.

3.3.3 A threading-model for memory tracing

The last work discussed in this section is intimately related to instrumenta-
tion [25]. It, once again, explores memory tracing as a way “to understand
the low-level interactions between a data intensive code and the memory
subsystem of a multi-core processor or many-core co-processor.” It aug-
ments the PEBIL instrumentation tool for Linux x86 and x86-64 with multi-
threaded application support. This novel threading model is then compared
by the authors to that of two other tools, Pin and Dyninst (see chapter 2).

In summary, each thread has its own private pool of instrumentation
data structures, whose address can be retrieved in a hash-table based on
the thread’s ID and a hash function. The ID of each thread is obtained
by querying thread-level meta-data and, in case of collisions, the execution
is interrupted and it can be re-started with a bigger hash-table size. Ad-
dress traces are collected into this thread-local memory area. A number

CHAPTER 3. MEMORY TRACING 40

of optimizations are described, which decrease the overhead incurred while
executing the statically-instrumented program:

• Address trace batching : Address traces are buffered and then con-
sumed at once in batches to reduce the actual execution overhead.

• Private pool’s address caching : Rather than re-computing the loca-
tion of thread’s private memory each time a new memory access must
be recorded, PEBIL attempts to cache it into a dead register (if ex-
istent), so that subsequent instrumented accesses already have the
value available into that register. This is done on a per-function basis
and, whenever a dead register is found, re-computation of the memory
pool location is performed only at the entry and re-entry points of a
function.

• Interval-based sampling : Only a fraction of the memory accesses is
actually instrumented (sampling). When this fraction is contiguous,
execution can be seen as split into intervals and the instrumentation
tool can disable and later re-enable instrumentation on a per-interval
basis. In PEBIL, this is done by dynamically replacing instrumen-
tation stubs with no-operations, while Pin and Dyninst can actually
remove instrumentation code. Intervals have fixed size—1 billion in-
structions, while the program is running—and only the first 1% and
10% of the instructions of each interval are sampled in the experi-
ments. This drastically reduces execution overhead, “while still allow-
ing the properties of the memory address stream to be ascertained
with an acceptable level of fidelity.”

To measure the effects of memory address tracing only—that is, without
processing—traces are buffered and then discarded as soon as the buffer
becomes full. The results of these experiments, reported in 3.4, show that at
a 10% sampling rate, PEBIL incurs an average slowdown of 2.9x compared
to 4.4x with Pin and 897x with Dyninst. On the other hand, the overhead of
collecting full traces for multi-threaded programs is higher in PEBIL (7.7x)
than in Pin (4.7x), both of which are significantly lower than Dyninst (again
897x).

The paper is perfectly aligned with my purposes of tracing memory ac-
cesses in multi-threaded applications using static binary instrumentation.
However, in practice it gives little information on sampling (i.e. tracing a
subset of the accesses) as well as little original contribution to the sampling
vs. accuracy trade-off. It’s much more oriented to defining a reasonable
threading model for instrumentation. Notice that it is not clear as to how
sampling is actually implemented in these tools. Assuming that thread-
level code is shared among threads, a crucial aspect is that instrumentation

CHAPTER 3. MEMORY TRACING 41

Tool Sampling Average slowdown
PEBIL 100% 7.7x
PEBIL 10% 2.9x
PEBIL 1% 2.4x
Pin 100% 4.7x
Pin 10% 5.5x
Pin 1% 5.3
Dyninst 100% 897x

Table 3.4: A comparison of memory address trace collection only for
different binary instrumentation tools.

code be replaced or removed in such a way that no thread is ever exe-
cuting it. Also, this on/off mechanism somehow suggests that sampling is
enabled/disabled at a global level, that is for either all threads or no thread.
This contrasts with the multi-mode approach adopted by Hijacker, which
at least in principle allows each thread (even those sharing the same code)
to execute in a different instrumentation mode.

CHAPTER4
Virtual Page Tracing

It’s incredibly simple, like all difficult things.
— PKNA #14 - Carpe diem (1998)

Instrumenting memory accesses, as we learned in previous chapters, is a
tricky task that can seriously hamper the profiled applications as soon as it
is launched. Fortunately, sampling and buffering can alleviate this problem
to some extent. The purpose of this thesis, though, is not that of tracing
fine-grained accesses to memory but, rather, that of detecting accesses to
virtual pages. There are many reasons for which such a goal may actually
prove useful for analysis tools, some of which are explained below.

• Operating systems like Linux are oblivious to user-level fine-grained
memory accesses. A process’ address space is seen as a set of virtual
pages, indexed by a convenient hierarchical structure which works on
page addresses rather than full addresses. For this reason, many of
the system calls and services which can be used to manipulate the
address space of a process (e.g., movepages) work at the page-level
granularity [26] [27]. Hence, it is convenient for some analysis task to
adhere to this perspective on virtual memory.

• Checkpointing, intended as the task of saving the state of an object in
order to provide a restore mechanism, may too benefit from a coarser-
grained view on memory. This is true, in particular, for those appli-
cations where the states to be logged are intrinsically huge, or there
is a high number of smaller-sized states which must be logged and
they all are coalesced at the logical level. For example, an interesting
application of virtual page tracing on checkpointing scenarios is due
to migration of simulation objects in a PDES platform like ROOTSim
[8], together with their states [28]. More details on checkpointing in
HPC systems can be found in [29] [9] and [30].

• Virtual pages are the ideal unit of measure to track the working sets
of threads in a process, or those of processes in a system. In HPC

42

CHAPTER 4. VIRTUAL PAGE TRACING 43

scenarios, we can indeed expect applications to have localities that
span multiple pages. In this case, keeping track of accesses in terms of
fine-grained data structures is unproductive and excessively expensive.
The ideal granularity at which the application is issuing accesses is
no more that of generic memory addresses. To efficiently trace data
accesses at such levels, one better copes with virtual pages.

• Detecting page accesses rather than full accesses can create a new in-
teresting form of sampling based on access granularity. Simply speak-
ing, if two accesses are detected to fall within the same page, it’s
not necessary to instrument both. Therefore, sampling is driven by
the relative address distance between the two accesses under compari-
son. As a result, one may expect the percentage of final instrumented
accesses to be considerably lower than those instrumented for fine-
grained access tracing. In practice, this depends on many factors, as
I will explain later in this chapter.

My proposal relies on two complementary ideas. First of fall, finding
‘hot’ or somehow relevant code regions to instrument, while discarding oth-
ers. Then, instrumenting these regions according to a probabilistic detection
of virtual pages. By introducing appropriate parameters, this mechanism
can be tuned toward accuracy or toward efficiency, according to our needs.
Moreover, compared to classic memory tracing approaches where param-
eters tend to be somehow arbitrary, the nature of these new parameters
makes the above mentioned trade-off much more explicit.

As hinted in previous chapters, these techniques are developed for the
Hijacker project using static binary instrumentation, the ELF relocatable
file format and x86-64 as the reference architecture The first problem that
we must deal with is that of finding relevant code regions to instrument. It
is highly theoretical and involves notions and concepts that lay the foun-
dation of compiling theory. Later, the problem of actually instrumenting
such regions will be explored from a much more practical perspective, thus
involving concrete Linux, ELF and x86-64 assembly concepts.

4.1 Finding relevant code regions

The problem of finding relevant code regions can be seen as the composi-
tion of many different sub-problems. The first is deciding the granularity
at which code regions are defined. The second is giving a quantitative def-
inition to the concept of relevance. The third and most complex one is
performing the right kind of analysis on code regions at the chosen granu-
larity to extract the desired relevance value.

CHAPTER 4. VIRTUAL PAGE TRACING 44

For the purpose of this thesis, code regions are minimal (see chapter
3) and relevance is mainly defined as the number of times that a region
participates to a cycle in the program. Many other features can be derived
though. For example, the number of memory operations performed within
the region may be an indicator of how relevant that region can be for us.
Another feature may be the presence of particular kind of operations (e.g.
vectorial and floating-point ones).

Among all the possible features, participation to cycles allows to under-
stand at compile-time which kind of regions will have a likelihood to make
up for the vast majority of the execution time of the entire application. Such
regions are therefore ‘relevant’ because by focusing on them, while discard-
ing all the remaining ones, we can make a first significant step toward the
efficiency goal. After all, a region that never lies on a cyclic path will be
ephemeral by definition. As such, the effort put into instrumenting won’t
be compensated by the pay-off.

The following sections will deal separately with each of the above-mentioned
problems, by first devising a way to compute minimal code regions, then
proceeding to evaluate the number of different program cycles to which
every such region participates to.

4.1.1 Basic blocks and control flow graph

In compiling theory, it is typical to represent the execution flow of a program
in terms of a control flow graph (CFG) where nodes are minimal code regions
and edges represent the existence of a control flow hijacking from the source
region to the destination one [31]. Program cycle detection, along with
other analysis tasks, can easily be articulated after this structure. Before
providing a formal definition of a CFG, let’s give a deeper look at the
properties that make up its nodes. In the CFG, a node is called a basic
block, and is defined as follows.

Definition 1. A basic block is a contiguous sequence of instructions with
one entry point at the first instruction and one exit point at the last.

Informally, a basic block is such that execution can only flow through
it from the first instruction all the way to the last. Notice that it doesn’t
mean that there can only be an incoming edge and an outgoing edge. In
fact, in a CFG the in-degree and out-degree of basic blocks is typically larger
than one. The meaning of the above sentence, therefore, is only that if we
were to split basic blocks into as many nodes as the number of contained
instructions, incoming edges would reach the first node resulting from the
splitting, while outgoing edges would depart from the second.

By definition, no instruction in a basic block except the last can be an
instruction that divert the execution flow. In Assembly, such instructions

CHAPTER 4. VIRTUAL PAGE TRACING 45

are jumps, calls to routines and calls to interrupt or exception handlers
(there might be others, depending on the ISA being discussed.) Indeed,
was it in the middle of a block, it would violate the property that incoming
flow must necessarily go across the entire block to leave it. For similar
reasons, the destination of a diverting instruction cannot be in the middle
of a block too. Otherwise, flow could enter a block without passing through
its first instruction. To sum it up in a few words, if control flow runs into a
basic block, it can only enter it from above and leave it from below. There
cannot be sideways entrances or departures.

Perhaps surprisingly, the above definition of basic blocks allows multiple
implementations of the same concept. Provided that a code region adhering
to the definition cannot be made larger without violating the definition
itself—as it would contain either a diverting instruction itself or a diverting
instruction’s destination—they can be made as smaller as desired. In my
work, basic blocks are maximal, in the sense that no two directly connected
basic blocks can be merged without violating the definition. Observe that
this is exactly the same definition that was given in chapter 3 for minimal
code regions. Albeit confusing, the adjective ‘minimal’ there suggests that
we reached the definition from larger regions, while the term ‘maximal’
implies that we approached it from smaller basic blocks.

Now that we’ve defined basic blocks, it is time to give a more exact
definition of a CFG. We’ve already mentioned that it represents the control
flow of the application in terms of the possible trajectories that can be
drawn over code.

Definition 2. A CFG is a graph structure where every possible path repre-
sents a legal execution path for the described application.

Although this definition may result obvious, it hides a subtlety. Suppose
that a CFG is created for the entire program where call instructions are
included in the diverting instructions. Now, imagine to have a function
which is called in different places in the code. Such instruction will too
be represented as a graph of basic blocks, perhaps with a single entrance
block but more frequently with multiple exit blocks. The question now is:
to which node in the CFG should each of such exit blocks point to? If the
callee function has multiple callers, one might simply decide to let them
link to every possible return block of every possible caller. Unfortunately,
by doing so, we are violating the property of CFGs: a function, apart from
exceptional cases, never returns to a different caller than the one which
actually invoked it.

For this reason, it is natural to define multiple CFG, one for each func-
tion. This way, the correctness of the graphs is always preserved—every
path in every graph represents a valid program execution path within that

CHAPTER 4. VIRTUAL PAGE TRACING 46

function. To represent the fact that functions may call each other, a higher-
level structure is defined called function call graph (FCG). At this level of
abstraction, a node represents a function, and an directed edge between two
nodes encodes the fact that the source function is calling the destination
one. In the end, by decoupling the original CFG into as many CFGs as
the number of functions, along with a global FCG, control flow analysis
becomes much simpler.

4.1.2 Computing basic blocks

There are at least two ways to derive basic blocks for a program function.
The first follows a bottom-up approach, while the second a top-bottom
one. The bottom-up algorithm creates as many basic blocks as the number
of instructions in the function, then connects these instruction-level blocks
on the basis of which instruction can follow the current one at execution
time. By the end of this phase, we have a CFG which must be finalized
by merging basic blocks until they become maximal. The merging strategy
is actually straightforward: for any pair of connected blocks, try to merge
them without violating the definition. This process continues until there
isn’t any pair which can be merged anymore.

The top-bottom algorithm replaces the merging strategy with a splitting
one. A big block is first created for the entire function. Instructions in
the block are then parsed one-by-one until a diverting instruction is met.
At this point, two splitting operations occur respectively on the block that
contains the diverting instruction and that which includes the target one.
The diverting instruction becomes the last instruction of a newly created
block, while the target instructions becomes the first one of another, newly-
created block. The process continues until we reach the end of the function.

Let’s give a name to the set of all instructions that either divert the flow,
or are the target of a diverting instruction—the boundary set. Then, the
number of merges is roughly equal to the number of instructions that aren’t
in the boundary set, while the number of splitting operations is equal to the
boundary set cardinality. Hence, the choice of one approach over another
is naturally driven by an estimation of the ratio of boundary instructions
over non-boundary ones. If this ratio is greater than one, then the merging
strategy will be faster because it minimizes the number of operations to
reach a compact CFG. In the opposite case, the splitting strategy is better
for literally the same reason.

On average, user programs—included highly interactive ones,—have a
much larger number of non-boundary instructions than boundary ones. For
this reason, this thesis sticks to the splitting strategy. The pseudo-code for
the splitting algorithm is reported in 4.1, while an non-operational definition

CHAPTER 4. VIRTUAL PAGE TRACING 47

is proposed in provided in [32]. Its running time can be expressed in terms
of the number of instructions that make up the function n, the number of
diverting instructions d, the number of target instructions t and the costs
for routines splitFirst, splitLast and lastly findBlock (whose pseudo-
code is not provided as it would be largely implementation-specific):

O(n+ d× C(splitLast) + t× C(splitFirst) + t× C(findBlock))

Algorithm 4.1 Block splitting algorithm
Require: Function func
Ensure: Maximal CFG(func)

function splitFirst(blk, instr)
next(blk)← 〈instr, last(blk)〉
blk ← 〈first(blk), prev(instr)〉

end function

function splitLast(blk, instr)
next(blk)← 〈next(instr), last(blk)〉
blk ← 〈first(blk), instr〉

end function

currentblk ← 〈first(func), last(func)〉
instr ← first(func)

for all instructions instr in func do
if instr > last(currentblk) then

currentblk ← next(currentblk)
end if

if instr diverts flow then
splitLast(currentblk, instr)
for all destinations target of instr do

targetblk ← findBlock(currentblk, instr)
splitFirst(targetblk, target)

end for
end if

end for

CHAPTER 4. VIRTUAL PAGE TRACING 48

4.1.3 Computing program cycles

The task of computing participation to cycles can be easily divided into two
different problems:

1. finding program cycles in a given CFG

2. propagating participation to program cycles along function calls in
the FCG

Finding program cycles in a CFG

As far the first problem is concerned, it must be noted that is is probably the
hardest to solve. Indeed, program cycles and CFG cycles aren’t the same
thing. More specifically, while it a simple CFG cycle is always program
cycle, not all composite CFG cycles are program cycles in general. Recall
that a simple graph cycle is minimal, i.e., a cycle whose nodes don’t partic-
ipate to any other cycle. On the other hand, a composite cycle is such that
a subset of its nodes belong to a simple cycle. Perhaps more surprisingly,
while a CFG cycle is by definition a sequence of nodes, a program cycle can
be succinctly expressed as a loop header and a set of back edges.

Conceptually speaking, a loop header is a basic block that must be nec-
essarily visited before entering the next cycle iteration. Notice that it’s not
mandatory to visit this block to enter the cycle (e.g., do-while statements),
nor it is mandatory to visit it upon leaving the cycles (e.g., break). How-
ever, such block must always be visited before getting into the next iteration
(even when the continue construct is used). As such, a loop header is a
perfect candidate to form a 1:1 correspondence with program cycles in the
CFG.

The loop header alone allows to establish the presence of a program cycle,
but it cannot tell the blocks that make up its body. To accomplish this task,
back edges must be identified. A back edge is an edge in the CFG whose
destination block is always visited before the source block in any depth-
first CFG traversal run from the beginning of the CFG. A formalization of
these concepts relies on the definition of the dominance relationship between
blocks in the CFG.

Definition 3. A block d dominates another block s if and only if d belongs
to any path from the entrance block up to s included.

Definition 4. An edge from source s to destination d is a back edge if and
only if d dominates s.

Definition 5. A block h is a loop header if and only if it is reached by a
back edge.

CHAPTER 4. VIRTUAL PAGE TRACING 49

Based on the above, the problem of identifying program cycles in the
CFG is equivalent to the problem of identifying back edges (and therefore
loop headers) in the same CFG structure. The algorithm is presented in
listing 4.2, 4.3 and 4.4, one for each phase. In phase 1 (4.2), an ordinary
DFS traversal is performed on the CFG to recognize both back edges and
loop headers. The cost of this part is therefore equivalent to the cost of a
DFS algorithm.

Algorithm 4.2 Program cycle detection: phase 1
Require: CFG(func)
Ensure: CFG’(func) with loop headers and back edges appropriately
tagged

function DFSVisit(blk, edge)
if visited(blk) is True then

if active(blk) is True then
Tag blk as a loop header
Tag edge as a back edge

end if
return

end if

visited(blk)← True
active(blk)← True

for all destinations dest of blk do
DFSVisit(dest, (blk, dest))

end for

active(blk)← False
end function

DFSVisit(first(CFG(func)), ⊥)

In the second phase (4.3), for all distinct loop headers in the CFG, an-
other DFS traversal in performed in the reverse direction, i.e. from destina-
tion to source. Each of such DFS traversals is therefore rooted at a different
loop header. It visits blocks backwards, by only taking paths starting with
a back edge. They cannot reach any of the dominators of the loop header,
because all paths to them begin with a straight edge (i.e., not a back edge).
Furthermore, they cannot leave the loop in the forward direction because of
the reverse traversal. As such, the only nodes which can actually be visited

CHAPTER 4. VIRTUAL PAGE TRACING 50

are all the nodes that belong the program cycle rooted at the current loop
header. There’s a problem, though. If this program cycles contains other
nested cycles, they will be visited too. This is something that we wish to
avoid, since by definition those nodes belong to a different, although nested,
program cycle. For this reason, whenever a loop header is encountered while
exploring another program cycle, its back edges are excluded from the cur-
rent traversal. This is perfectly safe, since there’s another DFS traversal
already scheduled (or even completed) for that very same loop header.

The cost of a single DFS traversal is therefore related to the size of the
program cycle being explored, defined as the number of nodes and edges
that make up its body, minus the size of any nested program cycle. By
iterating on all loop headers, each header is visited at most twice. Once
during the DFS traversal rooted at it, once during another DFS traversal
involving an immediately upper cycle. The global cost of this phase can
be seen as the cost of a single DFS traversal on a graph with all nodes
and edges internal to any distinct program cycle (with certain loop headers
possibly counted twice). Provided that a single visit to a single block has a
cost proportional to its in-degree, we can estimate the cost as a function of
the number of cycles c, the number of per-cycle blocks bc and edges ec.

C(DFS(
∑

i
bi,

∑
i
ei)) ≤ C ≤ C(DFS(c+

∑
i
bi,

∑
i
ei))

In the end, the algorithm must come up with a method to link blocks
in the CFG to the closest (i.e., most nested) program cycle they are into,
if any. Even loop headers must be linked this way whenever they are, too,
part of another cycle. By doing so, computing the participation of a single
block to multiple cycles (from inmost to outermost) is quite easy. The
loop membership chain that the algorithm has created simply needs to be
traversed starting from the current block and moving, at each step, to its
loop header. The cost of this final step is equivalent to the number of blocks
in the program, times the longest membership chain, which however cannot
exceed c.

Propagating program cycle participation across CFGs

Now that we’ve computed the degree of participation of cycles for each
basic block within a single CFG, it necessary to look at the FCG to see
whether there are functions that are invoked from cycle contexts. To do
this, functions are parsed one-by-one and the list of caller blocks per each
function is examined. By the end of this per-function step, the caller block
with the highest participation to cycles propagates its score to all the blocks
that make up the current function.

CHAPTER 4. VIRTUAL PAGE TRACING 51

Algorithm 4.3 Program cycle detection: phase 2
Require: CFG’(func)
Ensure: CFG”(func) with loop bodies appropriately tagged

function DFSReverseVisit(blk, edge, header)
if edge is not a back edge ∨ visited(blk) is True then

return
end if

visited(blk)← True
header(blk)← header

if blk is a loop header ∧ blk 6= header then
for all sources src of blk such that (src, blk) is not a back edge do

DFSReverseVisit(src, (src, blk), header)
end for

else
for all sources src of blk do

DFSReverseVisit(src, (src, blk), header)
end for

end if
end function

for all loop headers header do
DFSReverseVisit(header, ⊥, header)

end for

Algorithm 4.4 Program cycle detection: phase 3
Require: CFG”(func)
Ensure: Basic blocks with cycle feature computed

for all blocks blk in CFG(func) do
header ← header(blk)
cycles(blk)← 0
while ∃header do

cycles(blk)← cycles(blk) + 1
header ← header(header)

end while
end for

CHAPTER 4. VIRTUAL PAGE TRACING 52

Observe that without this step, we wouldn’t be able to capture the fact
that certain functions, and therefore all the blocks that constitute them, are
actually part of program cycles contained in other functions. This is a pretty
common case in user applications, as function-level modularity speed-ups
development and aids long-term software maintenance.

4.1.4 Ultimating basic block features

Once all basic blocks have their features computed, it is time to flatten
them into single quantities. Absolute score values, also called weights, are
obtained by summing up the value of all features computed for the basic
block. Once all absolute weights have been computed, the heaviest block
has its value used as a reference for computing relative scores. In the end, all
blocks in the program will have weights in the [0, 1] range, with 1 referring
to the block(s) with the biggest absolute score.

This step will later allow to compare blocks by means of comparing their
scores, to eventually decide whether a basic block will be instrumented or
not. The acceptance threshold T will represent the lowest relative score
that a block must posses in order to qualify for the actual instrumentation.
Observe that low values of T increase the accuracy of the instrumentation,
since a higher fraction of virtual page accesses are intercepted. At the same
time, it increases the overall overhead experience at run-time by the instru-
mented application, because a higher number of blocks are instrumented.
High values of T , on the contrary, create lightly instrumented applications
to the detriment of tracing accuracy.

Finding the optimal value for T is a problem that has different solutions
for different applications. It depends on the features that are computed
per-block, as well as the characteristics of the application itself. In the end,
different distributions of block relative scores are produced by varying the
application or the application’s features. The shape of each distribution in
the ends determines which is the actual relationship between T , the accu-
racy and the overhead, hence the possible trade-offs that can be achieved
in the current set-up.

4.2 Detecting virtual pages

The second, big issue to solve concerns the identification of the actual virtual
page accesses that occur in the code. The difficulty of this task lies in the
fact that we’re working on relocatable files, i.e., an intermediate result of
the compilation process. As already explained in chapter 2, relocatable
files rely on the notion of offsets or displacements from the beginning of
sections. The final virtual addresses of code and data are not available at

CHAPTER 4. VIRTUAL PAGE TRACING 53

this stage and will be computed in the final linking phase. Therefore, virtual
page addresses too aren’t available, since they can be obtained by masking
the virtual address relative to a memory access against an appropriate bit
pattern.

The absence of virtual (page) addresses is a calculated risk of instru-
menting relocatable files. It poses an interesting challenge: devising an
appropriate heuristic function to determine whether any two memory ac-
cesses will fall within the same virtual page. Therefore, the rest of this
chapter is devoted to finding and implementing such heuristics for the sake
of accuracy and efficiency goals.

The basic intuition of this thesis is to instrument each basic block by
taking into account the partitioned model of relocatable files. Memory
accesses are performed from the code section to a data section. A data
section, in turn, can be a read-write or read-only section, as well as a section
which has initialized or non-initialized (therefore zero’d) data. Furthermore,
a data section might be private to a thread or be shared on a process scale.
Last but not least, such accesses are encoded through relocation towards
symbol, and are filled with several meta-data concerning the positioning of
the symbol within this model and its size.

By leveraging on this organization of relocatable files, it is possible to
trace a memory access back to the section where it belongs, as well as
probabilistically trace it back to the final virtual page that will hold it. Un-
fortunately, the address of the virtual page being identified is not known in
advance, so it must be resolved at run-time by instrumenting the original
code. Not only that, but instrumentation must be carried out efficiently,
while also taking into account the presence of multiple threads in the appli-
cation. Starting from this rough idea, I’ll further elaborate on each different
issue which must be solved in order to turn this into a feasible solution with
a concrete implementation.

4.2.1 Tracing back the section

To understand the importance of this issue, it is worth noting that, at
least on Linux, there’s a clear mapping between the sections that make
up a relocatable file and the actual segments in the final executable which
get loaded in memory. Virtually all data sections of an ELF file (e.g.,
.data, .bss, .rodata) have a direct segment equivalent in memory. For
this reason, tracing back the sections associated to accesses allows us to
establish the segment they will fall into at run-time even without knowing
the actual memory addresses.

Now, it must be noted that on x86-64 virtually all memory accesses
can be expressed as a combination of four quantities. The base register b

CHAPTER 4. VIRTUAL PAGE TRACING 54

specifies the base address from which the address computation starts. The
index register i is used as an index value whenever b points to an array-like
object. The scale, too, is used for array accesses to specify the size of a single
array entry and it can assume one of the values in {1, 2, 4, 8}. Together,
scale, index and base constitute the so-called SIB expression (Scale-Index-
Base). To obtain the final memory address, a displacement d is summed to
the result. The final formula is the following and is referred to as :

d+ b+ i× s

Since our task is that of determining the segment an access belongs to,
we must devise a way to trace back the segment by only looking at the
actual expression that makes up the address. The index register and the
scale are generally combined into an offset from the base register, therefore
they can’t give up any useful information. The remaining candidates are
the displacement and the base register. The base register may prove useful,
provided that we can establish a mapping between the name of the reg-
ister and the accessed segment. Unfortunately, this is hardly the case for
arbitrary accesses since the vast majority of the register in the x86-64 archi-
tecture are general-purpose. As such, when used in an address expression,
their names have no particular meaning.

The displacement is the only one remained. Whenever an access refers
to an object in a data section which is statically defined into the relocatable
file, its value is zero but associated with a relocation entry which specifies
the name of the symbol being accessed and the section the symbol belongs
to. Therefore, it is the perfect candidate for the job. On the contrary, for
accesses to dynamically-defined data sections (e.g. the stack and the heap),
the displacement is of little purpose and we are left with the base register
and the little to none information that it may leak.

Based on the above, we can distinguish between two basically differ-
ent kinds of accesses: symbol accesses and flat accesses. Symbol accesses
are associated with a relocatable entry, which describes the section con-
taining the symbol together with the symbol itself. Flat accesses are what
remains when the access is directed toward a dynamically-defined segment,
that is when there’s no relocation we can look into. As for the latter kind
of accesses, we can distinguish between stack accesses and heap ones. Ac-
cording to the System V Linux ABI for the x86-64 architecture [33], for
accesses that displace from the current stack frame pointer the base regis-
ter is defined to be either rbp or rsp. Therefore, knowing that the base
register is the base pointer (or the stack pointer) is sufficient to establish
that we are dealing with the stack segment. In contrast, when the base
register is a general-purpose register, the address is very likely to fall into
a dynamically-allocated general-purpose memory region. Therefore, when-

CHAPTER 4. VIRTUAL PAGE TRACING 55

ever the base register is not a stack register, the accessed is considered to
be toward the heap.

4.2.2 Tracing back the virtual page

Once we can relate two accesses at the segment-level, establishing whether
two accesses are likely to fall into the same virtual page is just a matter of
difference between displacements, both in the symbols being accessed from
the beginning of that segment (for symbol accesses) and in the actual dis-
placements contained in the instruction (for flat accesses). Put differently,
even if we cannot know precisely if two addresses will fall into the same
virtual page, we can make an educated guess.

The idea is as follows: given any two accesses Ax and Ay in the same
segment, we instrument the instruction I(Ay), provided that I(Ax) was in-
strumented, if and only if the difference between their displacements fall
outside of a H-byte sized area called estimated page size. If Ay gets instru-
mented, it becomes part of the instrumentation state and its value is used
to perform comparisons against newly encountered accesses. This is also
the case whenever no previous access Ax is found in the instrumentation
state, meaning that Ay represents the first observed access to the segment.
Otherwise, the value of Ay is simply discarded, meaning that Ax is already
believed to fall within the estimated virtual page.

The actual heuristic function is therefore:

d(Ax, Ay) = Ay − Ax ≥ H
Notice that the higher the value of d(Ax, Ay), the higher the probability

that the two address will actually be in two different consecutive estimated
pages. If we call N the size of an actual virtual page handled by the oper-
ating system, then:

• when d(Ax, Ay) ≤ N , there are only d(Ax, Ay) different ways for a
virtual page not to contain both the instructions, hence the probability
that Ax and Ay will be in two different pages is d(Ax,Ay)

N
;

• when d(Ax, Ay) > N , the two addresses will always fall into different
virtual pages.

Rather than working directly on the distance, we can operate on the
value H, which must not necessarily coincide with N . Since we claim that
the instrumentation rule does not apply when d(Ax, Ay) < H, then the
probability that Ax and Ay will be in two different virtual pages is:

P(False negative) <
H
N

CHAPTER 4. VIRTUAL PAGE TRACING 56

Similarly, we instrument Ay if and only if d(Ax, Ay) ≥ H, hence the
probability that Ax and Ay will be in the same page is:

P(False positive) ≤ 1− H
N

For this reason, tuning the value of H, therefore the size of an estimated
virtual page, will allow controlling the accuracy vs. efficiency trade-off of
instrumentation. Lower values for H decrease the likelihood of false neg-
atives but loosen the upper bound on the likelihood of false positives. At
the same time, higher values for H decrease the likelihood of false positives
but loosen the upper bound on the likelihood of false negatives. In either
case we are improving the quality of an upper bound while decreasing the
precision of the other. The latter effect doesn’t necessarily mean that we’re
increasing the likelihood of bad events, but only that we’re not able anymore
to provide a strict confidence bound on their occurrence.

Before considering the issue solved, we must give an answer to two com-
plementary questions. The first question is: how often is the instrumenta-
tion state discarded? Answering this question is important because once
an instrumentation state is cleared, the heuristic function must re-create its
history of already-instrumented accesses. It will instrument again all the
first accesses to distinct estimated virtual pages, even when such pages were
already captured in a previous instrumentation state. For the purpose of
my thesis, the idea is to reset the instrumentation state whenever a new
basic block is entered. The choice to work at the basic-block granularity
is driven by the fact that a same basic block can be involved into different
execution flow trajectories (as explained in section 4.1.1), therefore enabling
an inter-block reasoning is an extremely difficult task that is left for future
work.

The second question is: how can the distance function d(Ax, Ay) be ac-
tually implemented on x86-64 when dealing with ELF relocatable files? As
already discussed in the previous section, we distinguish between symbol
accesses and flat accesses. Once again, symbol accesses are extremely easy
to deal with because we can always use the information contained in a relo-
cation entry to reach a symbol’s meta-data. Such meta-data contain, beside
a reference to the section which contains the symbol, the displacement from
the beginning of the section at which the symbol can be found. Therefore,
the distance function is simply the difference between the displacements.

Notice that a more accurate technique would try to determine not only
the addresses at which the symbol begins in the parent section, but also the
actual displacement within the symbol at which the access is performed. Put
differently, comparing displacements from the beginning of the section is a
thing, but a 100% accurate tracing technique would also compare displace-
ments from the beginning of the symbol. Unfortunately, computing these

CHAPTER 4. VIRTUAL PAGE TRACING 57

‘second-order displacements’ is not possible by only looking at the address
expression, since they typically hide behind the index register and the scale
value. This is the first approximation that comes from using relocatable
files and compile-time instrumentation.

Stack frame accesses are equally simple to deal with, since by convention
rbp and rsp are used to maintain respectively the frame pointer and the
stack pointer. While the value of rsp changes whenever space for a local
variable or a function parameter is allocated on the stack, the value of
rbp typically remains stable along the whole function. Therefore, for stack
accesses that use rbp as the base pointer, the distance function is again the
difference between the displacements.

Unfortunately, the previously-mentioned System V ABI allows an opti-
mized execution mode where rbp is released from its purpose of maintaining
the stack frame pointer and turns into a general-purpose register. In this
case, all stack accesses are computed relative to the stack pointer rsp, which
as already explained is subject to frequent changes within a function. The
approximation in this case comes from the fact that all rbp-accesses are
treated as if they all fall within the same virtual page, therefore no distance
function is defined. While this is certainly not true in general, the probabil-
ity of having a false negative depends on the probability of having a stack
frame which is larger than the size of an operating system’s virtual page,
which is typically very low.

The second kind of flat accesses, those directed to the heap, are the
most difficult to cope with because the value of the registers that make up
the final address is not known until run-time. Moreover, since the heap
is a dynamic memory region, it has no associated static information in the
relocatable file and can grow and shrink freely. Data-flow analysis technique,
in principle, allows to simulate the execution of the program by computing
register values or at least tracking changes to register contents. However,
they are complex to implement and are of little use whenever register values
depend on an external (e.g., user input) or non-deterministic (e.g., random)
source.

In the end, in absence of any reliable DFA tool to estimate register
contents, we treat each heap access having the same base register as an
access to the same virtual page. That is, similarly to rbp-based accesses,
we again assume there’s no distance function to compute. At the same
time, two heap accesses are believed to fall within different pages whenever
the base register is different. Simply stated, the name of the base register
becomes the only discriminant for the heuristic function.

Clearly, this choice has severe limitations. For example, it cannot cap-
ture accesses to two very far heap regions which are encoded with the same
base register. However, while this scenario is certainly possible, it is my

CHAPTER 4. VIRTUAL PAGE TRACING 58

belief that it will occur as more rarely as the granularity at which the in-
strumentation state is maintained is reduced. If the instrumentation state
is maintained only within a single basic block (as it is in my work), then wen
can expect the probability of encountering two very different heap accesses
with the same base register encoding to be quite low.

A naive justification to this line of reasoning is that in typical user-level
applications, accessing two highly distant entries in the same heap object
within the same basic block can be quite rare. Note that ‘highly distant’
here refers to having two addresses whose distance is comparable to the
size of an estimate virtual page, therefore the smaller the size of H and
the higher the likelihood. However, if H and N have the same order of
magnitude, the rareness of the event is preserved. This is due to the fact
that heap object are rarely as large or larger than N , but even when they
are, most of the time they are accessed once within the same basic block—
for instance, once within the same loop iteration. Because of this, when
the same base register is used to access two different addresses within the
same heap object, then it happens either in a different visit to the same
basic block (temporal locality), or in a near basic block in the CFG (spatial
locality).

4.2.3 Resolving the virtual page address

For accesses tagged as ‘to be instrumented’, it is necessary to keep track of
the register values that make up the effective address of the virtual page, so
that it can be eventually resolved by the application itself at run-time. Since
the value of registers is not known at instrumentation time, it is reasonable
to resolve virtual page addresses upon encountering the memory access it-
self. Once this effective address is computed, obtaining the page address
is just a matter of masking it against the bit pattern 0xfffffffff000—
in standard x86-64 mode, virtual pages are indeed 4KB large and virtual
addresses are 48-bit long.

4.2.4 Devising an efficient instrumentation strategy

So far we know that when an access representing a newly encountered virtual
page is instrumented, the instrumentation code needed to resolve its address
must be placed synchronously to the access itself. However, we haven’t
decided yet when to pass this address to the user-defined function that
will consume it. In this case, it is appropriate to consider synchronous
vs. asynchronous schemes. The former calls the user-defined function upon
encountering the access, in the same way as the virtual page address is
resolved synchronously. The latter stores the computed address into a buffer

CHAPTER 4. VIRTUAL PAGE TRACING 59

in the instrumented application’s address space that is populated at run-
time and then flushed at the desired point in execution. As explained in
chapter 3, research on memory tracing suggests us that buffering is a nice
solution to reduce the instrumentation overhead.

In my thesis, buffering is employed at the function-level. Observe that
this temporary structure is not populated within the instrumentation tool,
but rather by the instrumented application. Therefore, it doesn’t exist
at instrumentation time, bur rather in the application’s final address space.
During instrumentation, the function is scanned for memory operations and
the heuristic functions decides which accesses to instrument. Not only that,
but the heuristics is also in charge of assigning a unique identifier to every
such access, to be used as an index within the buffer. By the end of this
parsing, all accesses to be instrumented have been collected, therefore we
have established a late 1:1 mapping of accesses with the estimated virtual
pages that have been detected. Not only that, but the number of accesses
performed to the same estimated virtual page within the same basic block
is also computed.

As a result of this pass, a data structure in the instrumentation tool
is maintained which stores all basic block instrumentation states that will
be encountered while traversing the function. Each instrumentation state
is basically equivalent to a list of ‘to be instrumented’ accesses within the
related basic block. Each access is an entry that holds the position that the
resolved address will have in the application’s address space buffer. It also
contains the position in the application’s code in which instrumentation has
to be carried out. The data structure is later read on an entry-per-entry
basis to write the actual instrumentation code into the application, at the
previously stored positions. This code resolves the address of the virtual
page and then stores it into the application buffer, at the position which
was uniquely determined in the first pass.

To refer to this buffer inside the instrumentation code injected into the
application, it is necessary to first create a new symbol in the appropriate
data section—.bss being the best candidate, as the buffer can be considered
empty at start-up. Then, we can access to such symbol simply by linking the
appropriate access instruction to a new relocation entry that references the
symbol itself. Once again, relocatable files make the actual implementation
logic amazingly simple.

Now that we have buffer transparently populated by the application at
run-time, we must decide the nature and number of the so-called flush-
points, i.e. points in the execution of the application where the buffer of
traced virtual page accesses are consumed by the user-specified function.
In my work, these points are (a) before the invocation of a local function
and (b) before the end of the current function. These two kind of flush-

CHAPTER 4. VIRTUAL PAGE TRACING 60

points are sufficient to provide an asynchronous flushing mechanism which is
both sufficiently frequent—at least for user-level applications with function-
level modularity—and not too intrusive—for the sake of efficiency. The
only detrimental effect of buffering (and invocation of user-defined profiling
functions) is that caches will be polluted with cache-lines resulting from
populating the application buffer. This effect, somehow unavoidable, is
better described in [13] and [23].

4.2.5 Devising a solid threading model

While dealing with multi-threaded applications, it will be necessary to ac-
tually have a separate application buffer for each different thread in the
final application layout, similarly to what has been done in [25]. No syn-
chronization should be ever required inside the user-defined routine, as that
would slow down the application excessively, thus sacrificing the effort put
into devising efficient instrumentation techniques. In practice, rather than
working with a single buffer as we assumed in the previous section for the
sake of simplicity, we actually need a way to maintain separate disjoint
buffers.

The threading model adopted for my work is based on the exploitation
of a low-level handling of thread-private memory called thread-local storage
(TLS). This model, supported by the majority of architectures and operat-
ing systems, allows to define particular data sections in relocatable files (as
well as data segments in executable ones) that are transparently handled
by the operating system and the standard library to provide each thread in
the application with a partitioned memory area. Symbols that fall in this
area are defined similarly to symbols in other data sections, and the same
holds true for relocations.

For ELF relocatable files, the Linux operating system and the x86-64
architecture, the TLS is found within two data sections: .tbss and .tdata.
Their functioning is quite similar to that of their process-level equivalents,
.bss and .data. They only difference is that whenever a thread access a
symbol within the process-level structures, there’s a single instance of that
symbol, therefore the symbol is shared by all threads. On the contrary, an
access to a TLS symbol is private, meaning that there are as many symbol
instances as the number of currently running threads.

Compared to the implementation logic suggested in the previous section,
the only difference is in the way the application buffer must be referred.
Again, a symbol must be defined—whose parent section, this time, is a TLS
data section such as .tbss. Then, a relocation entry must be created to
access the symbol through a memory instruction. To tell the linker that the
access must be actually performed relative to a thread-private memory area,

CHAPTER 4. VIRTUAL PAGE TRACING 61

the x86-64 address expression is augmented with a new quantity. For TLS
accesses, this quantity is a segment register, namely fs, which by convention
is always guaranteed to point to the beginning of this thread-private area.
These minimal changes are sufficient to implement a robust threading model
which is actually handled in its entirety by the linker and the run-time
environment.

4.2.6 Final instrumentation code

The concrete machine-level instrumentation code that is injected inside the
output relocatable file can be considered as the iterative application of two
different x86-64 machine-level code snippets: the first is devoted to storing
the address of an instrumented virtual page access, together with the access
count detected for that page within the same basic block. The second
snippet is executed upon encountering a flush-point to give control to the
external analysis routine.

The actual instrumentation snippet which is responsible for buffering ac-
cesses is reported in the code listing 4.2.6. It is located in the instrumented
program rightly before the access which is being instrumented, so that the
values of the registers plus the scale that constitutes the SIB expression—
below referred to as rbase, rindex and rscale,—are already populated
with the right values. Observe how the expression that computes the ad-
dress looks similar to the expression that loads the value found at that same
address. It is not by chance that both the instructions support SIB expres-
sions, and it is also not by chance that this x86-(64) ISA feature is being
exploited in the snippet.

Once the address has been computed, it must be stored into the ded-
icated TLS buffer by relying on the fs segment register. To displace to
the current position within the thread-local storage, a TLS-specific ELF
relocation must be created to the TLS symbol representing the buffer. The
index at which the entry for the detected virtual page is found is again
determined in a previous pass and can therefore be hardwired into the gen-
erated machine code. As for BUFFER_ENTRY_SIZE, it is a constant value
which is too copied ‘as is’ inside the instruction payload. Then, the access
counter for this page, which was computed previously along with the in-
dex, is stored in the second half of the buffer entry through an identical
relocation mechanism.

1 push %rsi
2

3 # Load the memory address expression into a register
4 lea 0x0(rbase , rindex , scale), %rsi #

Possible relocation
5

6 # Derive a virtual page address by masking out the
12 least -significative bits

CHAPTER 4. VIRTUAL PAGE TRACING 62

7 shr %rsi , $12
8 shl %rsi , $12
9

10 # Store the virtual page address into the TLS
buffer at byte position:

11 # index * BUFFER_ENTRY_SIZE
12 mov %rsi , %fs:0x0 # R_X86_64_TPOFF32

relocation
13

14 # Load the access counter into a register
15 movq counter , %rsi
16

17 # Store the access counter into the TLS buffer at
byte position:

18 # index * BUFFER_ENTRY_SIZE + BUFFER_ENTRY_SIZE /2
19 add %rsi , %fs:0x0 # R_X86_64_TPOFF32

relocation
20

21 pop %rsi
22

23 # Instrumented instruction
24 mov 0x0(rbase , rindex , scale), reg # Possible

relocation

The code snippet responsible for ‘flushing’ the buffered data to the ex-
ternal analysis routine looks as in 4.2.6. The most important task in this
snippet is represented by saving and restoring the processor state as seen
by the application prior to invoking the analysis function. In the System V
x86-64 Linux ABI document, registers are split between those that must be
saved by the caller (caller-save registers) and those that must be saved by
the callee (callee-saved registers). It is important to respect the ABI because
any Linux compiler which produces the machine-code level for the analysis
routine expects those conventions to be honored. Moreover, since the ex-
ternal routine and the code in the caller context are compiled separately by
two different compiler or two different compiler instance, there’s no room
for cross-function optimizations. This save/restore mechanism constitutes
the major source of overhead at run-time, as better explained in 5.

The user-defined analysis routine receives two parameters: the first is the
base address of the TLS buffer, the second is the number of entries (therefore
of virtual pages) that can have been detected to be touched by the current
function overall. It is typical for a function to only touch a subset of pages
in each basic block. For this reason, when the analysis function is called, it
is important to check whether the virtual page address located at an entry
has actually been accesses since the last flush-point. Notice that the access
counts for the active entries in the buffer are not automatically reset to zero
by the instrumentation code. Although this might be seen as a limitation of
my approach, it actually allows one to implement an aggregation mechanism
where access counts survives flush-points.

1 # Save processor context
2 pushf
3 push %rax
4 push %rcx

CHAPTER 4. VIRTUAL PAGE TRACING 63

5 push %rdx
6 push %rsi
7 push %rdi
8 push %r8
9 push %r9

10 push %r10
11 push %r11
12 ...
13

14 # Load the TLS base address into a register
15 mov %fs:0x0, %rdi
16

17 # Displace from the TLS base address to the address
of the TLS buffer

18 lea 0x0(%rdi), %rdi # R_X86_64_TPOFF32
relocation

19

20 # Store the total number of pages touched by the
function into a register

21 mov total , %rsi
22

23 # Call the user -defined routine
24 call routine # R_X86_64_PC32 relocation
25

26 # Restore processor context
27 ...
28 pop %r11
29 pop %r10
30 pop %r9
31 pop %r8
32 pop %rdi
33 pop %rsi
34 pop %rdx
35 pop %rcx
36 pop %rax
37 popf
38

39 # Flush -point
40 # e.g. call isntruction to a local function
41 # or end of function

4.3 Contribution to Hijacker

Part of the work put into this thesis involved the actual implementation of
the algorithms and procedures explained in this chapter into the Hijacker
instrumentation tool. On the one hand, this has been done to advance the
development of this software and augment its instrumentation capabilities.
On the other hand, a concrete evaluation of the algorithms and technique
shown above, like the one carried out in the next chapter, is needed to appre-
ciate the advances in the accuracy vs. efficiency trade-off of access tracing.
My contribution to the Hijacker project can be grouped into contributions
to the IBR, the front-end and the back-end modules.

CHAPTER 4. VIRTUAL PAGE TRACING 64

4.3.1 Front-end and IBR

The front-end has been augmented with further logic that enables Hijacker
to build a CFG for each function in the module to instrument. To do so,
changes have been reflected too into the IBR that is eventually build out of
this parsing step.

Branch tables

Beside regular jump and call instructions, Hijacker is now able to tentatively
build jump tables and call tables respectively for indirect jump and indirect
call instructions. Indirect jumps are usually exploited to implement what
in C language results into switch-case statements, while indirect calls
are used for (arrays of) functions pointers. The procedure that achieves
so relies on a quite simple heuristics which, upon encountering a branch
instruction of any kind, goes backward in the instruction chain until it is able
to resolve both the base address for the branch table and its size. Since such
information is usually encoded in two different previous instructions, the
heuristics stops as soon as it successfully resolves those pieces of information,
or upon exceeding the maximum defined look-behind. As a result of this
newly-introduced support for branch tables, the instruction chain has been
enriched with additional links between instructions resulting from indirect
jumps and calls.

CFG and FCG

After instructions, functions and branch tables have been resolved, Hijacker
starts a new procedure which, for each function, builds a CFG according to
the splitting strategy and the instruction chains previously built. While it
does do, Hijacker also checks for call instructions, either regular or indirect,
and create a FCG. In the end, the IBR used by the instrumentation engine
contains one additional layer for basic blocks, as well as two additional kind
of structures: a CFG for each function and a single FCG. Not only that,
but while basic blocks are derived by splitting, a balanced binary tree index
is maintained that allows to retrieve a basic block from an instruction in a
logarithmic number of steps. The adoption of an index is motivated by the
fact that the number of basic blocks in a program may well become too high
to bear the cost of a linear look-up procedure, especially if such procedure
has to be used often during instrumentation.

4.3.2 Back-end

The main contribution to the back-end is represented by the development of
the preset system. This is a new Hijacker component which allows to extend

CHAPTER 4. VIRTUAL PAGE TRACING 65

Hijacker with additional functionalities without affecting the core internals.
A preset can be seen as a specific-purpose instrumentation rule that tries
to solve a particular instrumentation problem (for instance, virtual page
access tracing) by relying on the APIs provided by the instrumentation
engine. Presets can be declared for usage in the rule file, can be passed
an arbitrary number of parameters and only require slight modification to
the main code-base to register their presence. Everything else—namely,
everything which is strictly related to the logic of that particular preset—
is bundled into a different C module. The invocation of a preset occurs
by passing to the registration procedure an initialization function and an
instrumentation function. The former is executed once upon switching to
a new executable version, while the second is executed whenever the preset
is invoked into the rule file with a particular set of parameters.

As already anticipated, the entire logic for the virtual page access tracing
has been implemented into an official Hijacker preset named vptracer.
The initialization procedure for this preset simply registers a TLS buffer
into the IBR which is unique to the current executable version—beside
being unique to a thread—and computes the supported features for each
basic block in the program. The instrumentation procedure accepts three
parameters: threshold is an implementation of the threshold value T ;
sizeexp defines a base-two exponent that is used to compute the value
of H; usestack is a boolean parameter which, when false, tells the preset
not to instrument stack accesses—since they tend to pollute the buffer with
uninteresting accesses. An example usage for these parameters can be found
in chapter 5.

CHAPTER5
Experimental Assessment

“Forty-two,” said Deep Thought, with infinite majesty and calm.
— Douglas Adams, The Hitchhiker’s Guide to the Galaxy (1979)

In this chapter, I provide an experimental evaluation of the virtual page
tracing technique discussed in my thesis on an application that simulates the
dynamics of a GSM-based Personal Communication System (PCS), shown
in picture 5.1. Specifically, I intend to assess the goodness of my instru-
mentation approach both in terms of run-time overhead and with respect
to accuracy. The simulation is run according to the principles of Paral-
lel Discrete Event Simulation (PDES) platforms [34], that is by scheduling
simulation events which correspond to the events that would occur in the
physical system under exam. The generation and consumption of these
events is actuated by a series of logical processes (LP), each of which ma-
nipulates a private simulation state. The union of all the private simulation
states, together with any state which is globally shared, constitutes the ap-
plication state. The latter represents the logical equivalent of the physical
state of the real system, included those parts which cannot be observed in
output or stimulated by input.

Cells

Base
stations

(Random) path of
mobile device

Figure 5.1: GSM area network example

In this model, there’s a LP for each distinct wireless cell covering a square
region. Cells are modeled as hexagons and induce a natural partitioned view
of the state of the entire region. Each LP can process or schedule one of

66

CHAPTER 5. EXPERIMENTAL ASSESSMENT 67

the following event types, corresponding to the event that would occur in
an actual wireless cell:

• Start Call and End Call simulate respectively the beginning and the
termination of a call at the current cell;

• Hand-off Leave and Hand-off Receive simulate the departure and ar-
rival of a pre-existing call from/to the current cell.

The simulation of power regulation and interference/fading phenomena
is driven by the results in [35]. Upon the beginning of a new call or the
occurrence of an hand-off, the current cell achieves power regulation by
looking at the currently allocated power for standing calls into a list of
power-management records. Then, the minimum transmission power re-
quired to setup the current call is computed, so as to achieve the desired
Signal-to-Interference Ratio (SIR). The simulation is highly configurable in
terms of simulation parameters:

• S is the size of the square region, expressed as a square number of
wireless hexagonal cells;

• N is the number of channels per cells;

• τA is the mean inter-arrival time of calls to a wireless cell;

• τduration is the expected duration of a call;

• τresidual is the expected residual residence time of a call into the current
cell.

Observe that the arrival distribution of call is considered to follow an
exponential distribution for the sake of simplicity, driven by τA. The same
holds true for τduration and τresidual, which together with τA make the sta-
tistical model quite simple to simulate. The utilization factor ρ of a single
channel can therefore be expressed as τduration/(τA · N). The impact of ρ
on the simulation is significant, as the higher this value and the higher the
extent to which channels are busy. This is turn affects the kind of com-
putation performed by a single thread to simulate a wireless cell, as the
number of power-management records for currently handled calls increases,
thus affecting the execution time and occupied memory to dispose of a single
event.

The actual structure used in the simulation platform to schedule and
fetch the next event to be processed is the so-called calendar queue [36].
As the name suggests, it basically maintains a list of events ordered by
timestamps. The event with the last time-stamp in the list is the first to be

CHAPTER 5. EXPERIMENTAL ASSESSMENT 68

processed, hence the first which gets extracted from the list when the next
event to dispatch is required by the simulation platform. The peculiar aspect
of the calendar queue is that it introduces an additional dimensionality to
the classic queue implementation, so it can actually be seen as an array of
queues. Taking inspiration from real solar calendars, event timestamps are
categorized into days and years. The number of array entries is equal to the
number of days that make a year in the current instantiation of the calendar
queue. Hence, all the events that are defined to occur within the same day
are placed into the same queue.

Inserting an event in the calendar queue entails computing its year and
day, so as to locate its queue in the array. Once the correct queue is found,
insertion in it is performed in an ordered manner on the basis of the actual
event time-stamp, from most recent to furthest in time. It might be possible
that two events scheduled for different years share the same day. In this case,
they will fall into the same day queue. Extraction of the next event from the
calendar queue is performed by querying the time-stamp of the first event
in each day, starting from the current day and the current year. These two
values constitute a persistent calendar queue state and respectively store
the day and year of the last previously-dispatched event. If the first event
found at the queue for the current day belongs to the current year, the
event is returned to the platform. Otherwise, if the event doesn’t belong to
the current year, the next day is examined. Upon successive queries on the
calendar queue, if there are no more events to be scheduled for the current
year—i.e., from the current day to the last day of the current year,—the
current year is incremented and a new search begins. As a result, insertion
is an O(d) operation where d is the size of a day queue, while extraction is
a O(y) operation which y being the size of a year. In practice, the geometry
of the calendar queue is optimized so as to make sure that there’s always
an event to schedule in the current day, therefore the average cost for both
extraction and insertion is O(1).

To experiment with the threading model discussed in chapter 4, a multi-
threaded simulation is considered. However, contrarily to the generic case
of PDES platforms, the implementation that fuels the PCS simulation sup-
ports multi-threads but execute them in a sequential fashion. The reasons
that led to this design for the testing framework will be clear in the next
section. In my experiments, the number of LP that make up the simu-
lation is kept fixed at 1024. Therefore, the square region size S is never
changed. At the same time, τduration is kept to 120 seconds and τresidual at
300. The inter-arrival time, on the contrary, is changed in such a way as to
produce three different per-cell average utilization factor, namely 25%, 50%
and 75%. By examining these three configurations, we have the opportunity
to ascertain the load to which each LP is subject to and the actual memory

CHAPTER 5. EXPERIMENTAL ASSESSMENT 69

access pattern that is exhibited.
Lastly, another free parameter of my experiments is the total number of

simulation events that a single thread is allowed to process before terminat-
ing. This quantity, called N , is an important parameter for our experiments,
given that larger values of N lead the application to run less or more ahead
of the actual termination condition that have we have selected for the sim-
ulation model. This condition has been set to 500 completed calls per cell.
Therefore, larger values of N can lead our experimentation to observe what
happens when running that simulation application ahead of the phase where
the reference termination condition is expected to be matched.

5.1 Worst-case execution time evaluation

The first experiment is aimed at assessing the overhead of the instrumenta-
tion approach in a worst-case scenario. The virtual page tracing preset has
been run using 1KB as the value of the estimated virtual page size H and
0.0 as the value of the instrumentation threshold T . This creates a scenario
where all blocks are instrumented and the likelihood of a false negative is be-
low 25% (see section 4.2.2). Stack accesses are filtered out because they can
be easily caught with dedicated and much more lightweight instrumentation
rules that live outside of the scope of this preset. Observe that only the PCS
application is instrumented, therefore no instrumentation is performed at
the platform level.

In total, this experiment involves 12 tests, split into three different con-
figurations for the utilization factor ρ and four different values for N . The
former is allowed to vary in the set {25%, 50%, 75%}, as explained before,
while the latter changes accordingly to the values 10, 100, 1000 and 10000.
To estimate the overhead introduced by instrumentation, the preset is in-
structed so as to invoke an analysis function which does nothing. This
way, the intrinsic instrumentation cost of my solution is isolated from that
obtained from invoking an actual function which arbitrary contents.

To give a more fair perspective on the slowdown, an adversary tracer
is implemented in user-space through the interception of SIGSEGV POSIX
signals. This tracer is instructed to protect heap, data and bss regions via
the mprotect system call, so that whenever an access is performed to one
of the above-mentioned regions a segmentation fault signal is raised. The
newly-installed handler intercepts these signals and does nothing, just like
the previous analysis routine, except for removing the protection on the
page in which the access occurred. This is done by invoking the mprotect
system call with reverse flags and prevents the handler from intercepting
again the same access.

This reverse protection mechanism inside the handler is needed because

CHAPTER 5. EXPERIMENTAL ASSESSMENT 70

routing signal handling to custom callbacks is an expensive operation which
should occur as sparingly as possible. Moreover, to create a worst-case sce-
nario for the instrumentation tracer, it is reasonable to evaluate it against
an adversary which operates under the best possible condition. The imme-
diate effect of this choice is that we can only evaluate the number of virtual
pages observed by both tracers, while a comparison of virtual pages access
counts is not possible. This is not so unfortunate, actually, as it highlights
the first strength of the virtual page tracer preset: implementing the same
mechanism in user-space by virtue of the above interception of SIGSEGV sig-
nals is virtually impossible due to the extremely high slowdowns that would
be observed.

The high-level functioning of the adversary tracing is as follows. Inside
the test framework, the custom handler is installed prior to launching the
simulation. Then, between the execution of two subsequent threads, protec-
tion of memory regions is enabled, disabled and then enabled again. This is
needed because memory accesses belonging to non-simulation variables must
not interfere with the tracing, and also because we want to intercept again
the accesses performed to the same memory regions by subsequent threads
to emulate a threading model. Promoting this enable/disabled logic to a
global scale, where the protection is enabled once prior to starting the simu-
lation and disabled once upon its termination, would create a scenario where
the adversary cannot distinguish accesses performed by different threads.
This, in turn, would make the comparison with the instrumentation tracer
completely unfair and pointless. This is also the reason why the simulation
is multi-threaded, but run sequentially.

The results for this experiments are depicted in figures 5.2, 5.3 and 5.4.
As we can see, the instrumentation tracer maintains a slowdown no higher
than 2x over the baseline case with no instrumentation—except for one
isolated case. As already explained, this is mostly due to the fact that all
the basic blocks in the application are being instrumented, while also trying
to increase the likelihood of false positives. This factors being accounted
for, the overhead looks quite acceptable. On the other hand, the adversary
tracer performs almost equally to the baseline, with the major slowdown
coming from N equal to 10 and ρ equal to 25%. That is, when the system
is lightly loaded and the number of events executed per-thread is low, the
cost of executing the signal handler is poorly absorbed by the simulation.
This cost becomes less and less important as N increases , since a higher
number of events is executed within the same thread. As a result, the
accesses triggered by this additional fraction of simulation events need only
be intercepted once, rather than twice from two different thread contexts.

CHAPTER 5. EXPERIMENTAL ASSESSMENT 71

Figure 5.2: Execution time evaluation in the worst-case with ρ = 25%.

Figure 5.3: Execution time evaluation in the worst-case with ρ = 50%.

CHAPTER 5. EXPERIMENTAL ASSESSMENT 72

Figure 5.4: Execution time evaluation in the worst-case with ρ = 75%.

5.2 Best-case accuracy evaluation

The second experiment is devoted to an evaluation of the accuracy exhibited
by the instrumentation tracer. The values of T and H are the same as the
previous experiment, with ρ and N that, too, have the same set of values
as before. This is a best case for the virtual page tracing preset because
it instruments all basic blocks, and within a single block the probability
of false negatives is at most 25%. The accuracy is evaluated relative to
the number of different pages recognized by the adversary, since we know
in advance that the instrumentation tool cannot detect pages which aren’t
detected by the user-space tracer.

The outcome of this experiment is shown in figure 5.5. The results
match our expectations for 9 cases out of 12. In such cases, we observe
that the accuracy of the instrumentation tracer never goes below 96%. In
the remaining three cases, which share the assignment N = 10000, the
accuracy quickly drops to 58%. While this trend may seem unexpected,
it has a clear meaning when it comes to the dynamics of the simulation
platform. Recall that instrumentation is only performed at the application
level, while leaving the simulation environment intact. This means that
if the system starts spending more and more time in the platform, the
instrumentation tracer won’t be able to capture this. Basically, this is
exactly what is happening in those three cases.

To explain why such a phenomenon only occurs when N = 10000, we

CHAPTER 5. EXPERIMENTAL ASSESSMENT 73

must recall that the termination condition for the simulation is that the
number of completed call be at least 500 per logical process. However,
evaluating such condition by the end of ever-increasing interval lengths N
lead the simulation to start a different phase. In this new simulation phase,
is not true anymore that for each event being produced a single event is
scheduled. This behavior was indeed part of a transitory, which was what
lower values of N actually captured. In the new phase, covered by N =
10000, the system stops issuing only Start Call events and starts simulating
hand-offs, which generate respectively an Hand-off Leave and an Hand-off
Receive at the source cell and the destination one. Given that two events
are now being generated at a time, the system starts spending more time
in the platform than in the application.

Notice also that when the load is low everything still looks acceptable,
since the new phase begins later in the simulation. However, when the
load is increased, the hand-offs phase begins earlier. Therefore, most of the
simulation time is spent by the system to produce more and more simulation
events that will never get executed, because they are scheduled beyond the
termination condition. Unfortunately, while the user-space tracer intercepts
all memory accesses in the platform relative to such insertions, this part of
the simulation is out of the instrumentation boundaries.

Figure 5.5: Accuracy evaluation in the best-case.

To better convince ourselves of this fact, it is instructive to look at
the number of times the scheduling function and the processing function
are actually executed in those three cases. These numbers are produced

CHAPTER 5. EXPERIMENTAL ASSESSMENT 74

via simple access counters which were incremented every time one of the
two functions was executed. As we can see from table 5.1, there seems
to be a connection between the events scheduled but not processed and
the number of pages intercepted by the segmentation fault handler but
not instrumented. Once again, the only reasonable explanation for this
phenomenon is that before the termination condition is met, the system
manages to schedule a residual number of simulation events which clearly
increases as the load, too, gets higher.

Scheduling Processing % Case Accuracy
2’202’116 2’000’000 90% ρ = 25% 90%
2’607’578 2’160’000 82% ρ = 50% 67%
2’974’663 2’360’000 79% ρ = 75% 58%

Table 5.1: Access counts for the scheduling and processing functions when
N = 10000

This experiment therefore serves to illustrate the fact that static instru-
mentation, on the one hand, cannot see instrumentation points which are
outside its scope (e.g., the input relocatable file). On the other hand, such
a limitation can also be seen as an opportunity to instrument different parts
of the application of the system with different instrumentation rules, driven
by incompatible analysis needs.

5.3 Trade-off assessment

The last experiment is aimed at assessing the kind of accuracy vs. efficiency
trade-off that can be achieved via the instrumentation tracer by tuning re-
spectively the values of H and T . In this experiment, N is fixed to 1000 and
ρ to 50%, therefore we are targeting an middle-load case. As opposed to pre-
vious cases, T is allowed to vary among the value {0.0, 0.25, 0.50, 0.75, 1.0},
while H can be 1KB, 2KB or 4KB. The configuration with T = 0.0 and
H = 1KB should produce the highest accuracy at the expense of the run-
time efficiency, while the configuration T = 1.0 and H = 4KB should yield
exactly the opposite outcome.

To more evenly distribute block scores, this experiment involves another,
previously unseen, block feature. It computes the ratio of encountered mem-
ory operations in a single block over the block length. Then, this value is
multiplied again by the number of memory operations in a single block, and
then divided by the highest number of memory operations seen in the en-
tire function. This feature should give more relevance to blocks with a large

CHAPTER 5. EXPERIMENTAL ASSESSMENT 75

fraction of memory instructions both in a relative (first ratio) and absolute
(second ratio) sense.

memblk

totblk
· memblk

maxblk(memblk)

The obtained score is then summed to the cycle participation feature
to obtain the final absolute block score, prior to converting it to a relative
value as section 4.1.4 explains.

As we can see from plots 5.6 to 5.8 and from 5.9 to 5.11, changing the
value ofH produces little no incidence on the trade-off. This negative results
can be explained by keeping in mind that the probabilistic model discussed
in section 4.2.2 is only valid within the boundaries of a single basic block.
Stated differently, the instrumentation tracer always tracks an occurrence of
the same virtual page if it origins from two different basic blocks. Therefore,
at least in the tested PCS simulation, the code almost never happened to
access two consecutive virtual pages—which were detected as one single
estimate page,—inside the same block.

Speaking about efficiency, we can see that instrumenting less and less
blocks had the desired effect of producing more and more lightweight in-
strumentation. Observe that the values of H don’t represent directly the
percentage of blocks being instrumented, but rather the lower instrumen-
tation score that a block must have to become part of the instrumentation
process. The actual gain, as already explained in this thesis, depends on
the application being tested and the features being provided. For the PCS
application and the two block features being computed, namely memory ra-
tio and cycle participation, the actual block score distribution is such that
there are virtually no scores ranging in the interval [0.25, 0.75).

As for the accuracy, the obtained results are extremely encouraging.
According to the reported plots, even instrumenting only the hottest basic
block(s) is sufficient to capture literally all the virtual memory pages ever
touched by the PCS simulation. This can be explained by observing that
all PCS events can be divided between those that do a lot of computations,
namely Start Call, and those that almost do nothing, hence the remaining
ones. Since the former is actually the one that triggers the actual power
regulation, the instrumentation tracer detects the block accessing a single
power record as the hottest ever. Once again, hotness is defined in this
experiment both in terms of participation to cycles—which are almost non-
existent in the PCS case—and the memory ratio feature—which, overall,
contributes to the hotness metric to least extent. Therefore, as far as the
PCS application is concerned, we get the best achievable trade-off between
accuracy and overhead.

CHAPTER 5. EXPERIMENTAL ASSESSMENT 76

Figure 5.6: Trade-off efficiency evaluation when H = 1KB.

Figure 5.7: Trade-off efficiency evaluation when H = 2KB.

CHAPTER 5. EXPERIMENTAL ASSESSMENT 77

Figure 5.8: Trade-off efficiency evaluation when H = 4KB.

Figure 5.9: Trade-off accuracy evaluation when H = 1KB.

CHAPTER 5. EXPERIMENTAL ASSESSMENT 78

Figure 5.10: Trade-off accuracy evaluation when H = 2KB.

Figure 5.11: Trade-off accuracy evaluation when H = 4KB.

CHAPTER6
Conclusions and Future Work

Roads? Where we’re going, we don’t need roads!
— Dr. Emmett Brown, Back to the Future (1985)

The work presented in this thesis is an attempt to solve the problem of
tracing accesses to virtual pages using static binary instrumentation alone.
The idea of using instrumentation to achieve this goal comes from the fact
that it is an approach that is completely transparent to the application
developer and non-invasive for the system, as opposed to more classic tech-
niques which involve modifications in the operating system, the standard
library or even the source code of the application itself. Many static and
dynamic instrumentation techniques have been studied in the literature.
However, when it comes to lightweight binary instrumentation, static ap-
proaches are still the best choice.

Part of the ideas used to optimize the tracing of virtual pages take inspi-
ration from techniques used to trace fine-grained memory access patterns in
performance prediction scenarios, such as sampling and buffering. The fact
itself that pages are traced, actually, is a form of sampling, since no two ac-
cesses that are believed to fall within the same page are both instrumented
if coming from the same basic block. Buffering is too employed in my thesis
at the function-level, by defining sufficiently-frequent flush-points that, once
encountered, cause the an external analysis function to be invoked and the
buffer of so-far collected accesses to be consumed.

This thesis also defines a solid and simple threading model based on the
reliance on thread-private storage, a mechanism to allocate memory visible
to a single thread which is supported by a wide range of architectures and
compilers. By virtue of this model, it is possible to support buffering at the
thread-level without the need for any synchronization scheme on a shared
data structure—which, it must be noted, would hamper the performance of
the application in a considerable way. Furthermore, no expensive techniques
for retrieving the ID a thread are ever needed, given that the mapping
between a thread and its private memory area is transparently handled by
the standard library and the operating system.

79

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 80

The presence of two complementary parameters, namely the block-level
instrumentation score threshold T and the size of an estimated virtual page
H, allow to control the trade-off between accuracy and instrumentation
efficiency according to a probabilistic model which is straightforward to the
user. This is better than having arbitrary parameters—such as the interval
of instructions between two tracing periods in dynamic sampling,—that
give little indication as to how much is lost and how much is gained from
using different values. Note, though, that the optimal assignments to these
two quantities depends from the application being instrumented and the
higher-end goal that one wishes to achieve by collecting virtual page traces.

A series of concrete contributions have been carried out in the form of im-
provements and additions to the Hijacker instrumentation tool. Specifically,
Hijacker’s intermediate representation has been extended with an additional
basic block layer on which control-flow analysis can be performed. A graph
representing calls between functions has too been implemented. Further-
more, Hijacker is now able to infer through a simple heuristic technique the
possible targets of indirect jump and call instructions. Last but not least, a
preset system has been developed to separate the Hijacker’s core logic from
the actual instrumentation tasks that can be implemented on top of it.

As a result of the experimental evaluations that have been conducted in
the previous chapter on a PDES application, the instrumentation approach
is twice as slow on average as the baseline non-instrumented case when
full instrumentation is enforced, while also achieving at least 97% accuracy
when most of the accesses are performed from within the instrumented ap-
plication. These results are encouraging and suggest that more time should
be invested in trying to reduce the worst-case instrumentation overhead
without affecting the best-case accuracy. Moreover, the particular applica-
tion being tested seems to react extremely positively to perturbations in the
value of H and T , thus suggesting that interesting trade-off balances can
indeed be achieved.

A possible application for the work that I’ve presented in this thesis
concerns the estimation of thread working sets. This problem has been
explored quite a few times in the literature, but can have many interesting
uses. The most relevant is the transparent movement of pages between
nodes in a NUMA architecture in order to maximize the fraction of memory
accesses that are local to the node where the thread is running. Observe
that, compared to classic memory tracing techniques, per-thread working set
estimation doesn’t need to track individual accesses. Indeed, the granularity
at which operating systems act on the address space of a process is the
granularity of virtual pages. Therefore, this scenario constitutes the perfect
example for a practical exploitation of the virtual page tracing described in
this thesis.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 81

6.1 Current limitations and future directions

The results obtained from the experimental evaluations of the techniques
illustrated throughout this thesis suggest that the ideas behind them are
reasonable and deserve further examination. However, the presented ap-
proach is limited by some factors:

• The probabilistic model allows pages to be missed or detected twice,
meaning that both false negatives and false positives are possible. The
number of such mistakes per block should be quite low, though. If H
= 4KB is chosen, the worst case occurs when considering all expected
pages shifted by an amount 4KB-1, therefore at most 1 error can be
committed per block. However, in certain situations this could still
be too much for the kind of analysis one wishes to perform, especially
when high accuracy is needed.

• The virtual page tracer may miss pages whenever sufficient informa-
tion is lacking in the relocatable file. As an example, the heap is
currently not properly handled. Two accesses with the same general-
purpose base register are treated as the same segment, but it may
happen that between the two accesses, the value of this register has
changed significantly. Since we don’t perform any kind of data-flow
analysis, we are not able to properly capture this situation.

• The instrumentation state is discarded whenever we leave the current
basic block to conduct virtual page analysis into another one. While
this approach is certainly conservative, it can be improved to a great
extent provided that inference on the control flow graph is involved
in the process. A simple example of inter-block reasoning comes from
allowing each block to see the instrumentation states of all dominator
blocks in its proximity. By doing this, a smarter heuristic policy
could decide, for example, not to instrument a certain virtual page
access whenever it was already instrumented in one of the close block
dominators.

• The assembly snippet in charge of invoking the external analysis func-
tion currently induces a quite high execution overhead. All caller-save
registers must be saved and then restored prior to executing the first
instruction from original code. These two expensive steps could be
optimized if we only were able to perform liveness analysis on the
registers used inside the analysis function, so as to only save those
caller-save registers that are actually employed in the callee.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 82

• Currently, Hijacker is not able to properly instrument relocatable files
resulting from compiling source programs under a non-zero optimiza-
tion level. Future work is therefore also oriented toward devising more
solid code analysis techniques to detect important program features
and disassembly obfuscated code. Specifically, such techniques must
be resilient to compiling optimization, meaning that features which are
concealed due to the use of advanced optimizations at the machine-
code level must nevertheless be detected with the highest possible
fidelity.

• Support for multiple object file formats and instruction set architec-
tures should be provided, possibly by relying on external libraries and
tools of widespread use in other compiling and development contexts.

To recap, future efforts are devoted to improving the work presented in
this thesis from many different points of view: theoretical by devising more
accurate heuristics as well as probabilistic models, practical by producing
more tailored machine-level optimizations in terms of instrumentation code
and instrumentation overhead.

Bibliography

[1] Neil H. E. Weste and Kamran Eshraghian. Principles of CMOS VLSI
Design: A Systems Perspective. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1985.

[2] G.E. Moore. Cramming more components onto integrated circuits.
Proceedings of the IEEE, 86(1):82–85, Jan 1998.

[3] Sally A. McKee. Reflections on the memory wall. In Proceedings of
the 1st Conference on Computing Frontiers, CF ’04, pages 162–, New
York, NY, USA, 2004. ACM.

[4] Zoltan Majo and Thomas R. Gross. Memory system performance in
a numa multicore multiprocessor. In Proceedings of the 4th Annual
International Conference on Systems and Storage, SYSTOR ’11, pages
12:1–12:10, New York, NY, USA, 2011. ACM.

[5] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Mem-
ory Consistency and Cache Coherence. Morgan & Claypool Publishers,
1st edition, 2011.

[6] Henrik Löf and Sverker Holmgren. Affinity-on-next-touch: Increasing
the performance of an industrial pde solver on a cc-numa system. In
Proceedings of the 19th Annual International Conference on Supercom-
puting, ICS ’05, pages 387–392, New York, NY, USA, 2005. ACM.

[7] Brice Goglin and Nathalie Furmento. Enabling high-performance mem-
ory migration for multithreaded applications on linux. In Proceedings
of the 2009 IEEE International Symposium on Parallel&Distributed
Processing, IPDPS ’09, pages 1–9, Washington, DC, USA, 2009. IEEE
Computer Society.

[8] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. The
rome optimistic simulator: Core internals and programming model.
In Proceedings of the 4th International ICST Conference on Simula-
tion Tools and Techniques, SIMUTools ’11, pages 96–98, ICST, Brus-
sels, Belgium, Belgium, 2011. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

83

BIBLIOGRAPHY 84

[9] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. Au-
tonomic log/restore for advanced optimistic simulation systems. In
Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2010 IEEE International Symposium on, pages
319–327. IEEE, 2010.

[10] George Nacht and Alan Mink. A hardware instrumentation approach
for performance measurement of a shared-memory multiprocessor.
In Ramon Puigjaner and Dominique Potier, editors, Modeling Tech-
niques and Tools for Computer Performance Evaluation, pages 249–
264. Springer US, 1989.

[11] Alessandro Pellegrini. Hijacker: Efficient static software instrumenta-
tion with applications in high performance computing.

[12] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In Code Generation and
Optimization, 2004. CGO 2004. International Symposium on, pages
75–86. IEEE, 2004.

[13] M.A. Laurenzano, M.M. Tikir, L. Carrington, and A. Snavely. Pebil:
Efficient static binary instrumentation for linux. In Performance Anal-
ysis of Systems Software (ISPASS), 2010 IEEE International Sympo-
sium on, pages 175–183, March 2010.

[14] Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. De-
sign and implementation of a dynamic optimization framework for win-
dows. In In 4th ACM Workshop on Feedback-Directed and Dynamic
Optimization (FDDO-4, 2000.

[15] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: Building customized program analysis tools with dy-
namic instrumentation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[16] Andrew R. Bernat and Barton P. Miller. Anywhere, any-time binary
instrumentation. In Proceedings of the 10th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools, PASTE ’11, pages
9–16, New York, NY, USA, 2011. ACM.

[17] Nicholas Nethercote and Julian Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design

BIBLIOGRAPHY 85

and Implementation, PLDI ’07, pages 89–100, New York, NY, USA,
2007. ACM.

[18] Nicholas Nethercote and Julian Seward. How to shadow every byte
of memory used by a program. In Proceedings of the 3rd International
Conference on Virtual Execution Environments, VEE ’07, pages 65–74,
New York, NY, USA, 2007. ACM.

[19] Michael Laurenzano, Beth Simon, Allan Snavely, and Meghan Gunn.
Low cost trace-driven memory simulation using simpoint. SIGARCH
Comput. Archit. News, 33(5):81–86, December 2005.

[20] Laura Carrington, Allan Snavely, Xiaofeng Gao, and Nicole Wolter. A
performance prediction framework for scientific applications. In ICCS
Workshop on Performance Modeling and Analysis (PMA03, pages 926–
935, 2003.

[21] Alan Eustace and Amitabh Srivastava. Atom: A flexible interface for
building high performance program analysis tools. In Proceedings of
the USENIX 1995 Technical Conference Proceedings, TCON’95, pages
25–25, Berkeley, CA, USA, 1995. USENIX Association.

[22] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. In Pro-
ceedings of the 10th International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS X, pages
45–57, New York, NY, USA, 2002. ACM.

[23] Xiaofeng Gao, M. Laurenzano, B. Simon, and A. Snavely. Reducing
overheads for acquiring dynamic memory traces. In Workload Char-
acterization Symposium, 2005. Proceedings of the IEEE International,
pages 46–55, Oct 2005.

[24] Xiaofeng Gao, Beth Simon, and Allan Snavely. Aliter: An
asynchronous lightweight instrumentation tool for event recording.
SIGARCH Comput. Archit. News, 33(5):33–38, December 2005.

[25] M.A. Laurenzano, J. Peraza, L. Carrington, A. Tiwari, W.A. Ward,
and R. Campbell. A static binary instrumentation threading model
for fast memory trace collection. In High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion:, pages
741–745, Nov 2012.

[26] Jeff Bonwick and Sun Microsystems. The slab allocator: An object-
caching kernel memory allocator. In In USENIX Summer, pages 87–98,
1994.

BIBLIOGRAPHY 86

[27] Mel Gorman. Understanding the Linux Virtual Memory Manager.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.

[28] Sebastiano Peluso, Diego Didona, and Francesco Quaglia. Supports
for transparent object-migration in pdes systems &star. Journal of
Simulation, 6(4):279–293, 2012.

[29] James S Plank. An overview of checkpointing in uniprocessor and dis-
tributed systems, focusing on implementation and performance. Tech-
nical report, Technical Report UT-CS-97-372, Department of Com-
puter Science, University of Tennessee, 1997.

[30] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. Auto-
nomic state management for optimistic simulation platforms. IEEE
Transactions on Parallel and Distributed Systems, PP(0):1, May 2014.

[31] Frances E. Allen. Control flow analysis. In Proceedings of a Symposium
on Compiler Optimization, pages 1–19, New York, NY, USA, 1970.
ACM.

[32] Daniel Kästner and Stephan Wilhelm. Generic control flow reconstruc-
tion from assembly code. In Proceedings of the Joint Conference on
Languages, Compilers and Tools for Embedded Systems: Software and
Compilers for Embedded Systems, LCTES/SCOPES ’02, pages 46–55,
New York, NY, USA, 2002. ACM.

[33] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. Sys-
tem v application binary interface - x86-64 linux. AMD64 Architecture
Processor Supplement, Draft v0, 99, 2013.

[34] Richard M. Fujimoto. Parallel discrete event simulation. Commun.
ACM, 33(10):30–53, October 1990.

[35] Sunil Kandukuri and Stephen Boyd. Optimal power control in
interference-limited fading wireless channels with outage-probability
specifications. Wireless Communications, IEEE Transactions on,
1(1):46–55, 2002.

[36] R. Brown. Calendar queues: A fast 0(1) priority queue implementation
for the simulation event set problem. Commun. ACM, 31(10):1220–
1227, October 1988.

	Acknowledgment
	1 Introduction
	2 Instrumentation
	2.1 Hardware instrumentation
	2.2 Software instrumentation
	2.2.1 Static instrumentation
	2.2.2 Dynamic instrumentation

	2.3 Hijacker
	2.3.1 Front-end
	2.3.2 IBR
	2.3.3 Back-end

	2.4 State of the art
	2.4.1 PEBIL
	2.4.2 DynamoRIO
	2.4.3 Pin
	2.4.4 Dyninst
	2.4.5 Valgrind
	2.4.6 Comparison

	3 Memory Tracing
	3.1 Sampling
	3.1.1 Static sampling
	3.1.2 Dynamic sampling

	3.2 Buffering
	3.3 State of the art
	3.3.1 MetaSim Tracer
	3.3.2 Effects of binary instrumentation on tracing
	3.3.3 A threading-model for memory tracing

	4 Virtual Page Tracing
	4.1 Finding relevant code regions
	4.1.1 Basic blocks and control flow graph
	4.1.2 Computing basic blocks
	4.1.3 Computing program cycles
	4.1.4 Ultimating basic block features

	4.2 Detecting virtual pages
	4.2.1 Tracing back the section
	4.2.2 Tracing back the virtual page
	4.2.3 Resolving the virtual page address
	4.2.4 Devising an efficient instrumentation strategy
	4.2.5 Devising a solid threading model
	4.2.6 Final instrumentation code

	4.3 Contribution to Hijacker
	4.3.1 Front-end and IBR
	4.3.2 Back-end

	5 Experimental Assessment
	5.1 Worst-case execution time evaluation
	5.2 Best-case accuracy evaluation
	5.3 Trade-off assessment

	6 Conclusions and Future Work
	6.1 Current limitations and future directions

