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Abstract: In this paper, we target collaborative kerbside collection from a planning and real-time monitoring point
of view. This is a non-trivial problem, where several vehicles are set on streets to finish a task—the collection of
all waste—by a certain maximum amount of time. While deciding upon a collaborative strategy is a well-studied
and complex problem by itself, we focus as well on re-planning, whenever live data collected by the vehicles
suggest that the current scenario has deviated from the provisional plan, due to changes in external environmental
factors. To this end, we propose a global mission-management architecture, which tries to optimize at once the time
required to finish the waste collection, the distance traveled by the vehicles, the amount of fuel burnt (accounting
as well for idle time at collection points), and the impact of pollutants emissions.

Key–Words: Kerbside Collection, Optimization, Re-Routing, Real-Time, Deep Learning, Scheduling.

1 Introduction
The problem of the management of urban solid waste,
which has always been the source of health and pub-
lic order problems [29], is far from being completely
solved. Differentiated causes, such as politics, bad
management, illicit interests, or misinformation pre-
vent an intelligent collection and disposal of urban
waste as widespread and as efficient as it could be
nowadays.

Kerbside collection is an even less trivial prob-
lem. Indeed, several different factors can significantly
affect the timeliness and efficiency according to which
such a system can be effective or not. Among them:
i) the timeliness according to which waste is collected;
ii) the time waste is left on public streets; iii) the ac-
curacy of people to dispose waste in proper bags/bins.

In this paper, we propose a global architecture to
address the three points above, in the context of Italian
kerbside waste collection [3, 21], although our pro-
posal can be easily adapted to other cities/scenarios.
The ultimate goal is to devise a collection systems
which is at the same time efficient and cost-effective.

To cope with points i) and ii) above, we note that
they strongly depend on the efficient management of
the vehicles used for collection. Therefore, our ar-
chitecture relies on an information system to monitor
in real time various territorial and environmental ele-

ments. This is done by means of vehicles equipped
with data capture devices (e.g., cameras, scanners,
electronic scales), positioning systems (based on GPS
technology), and assisted-driving devices (i.e., navi-
gators). Anyhow, external elements might interfere
with the optimality of a certain collection plan, such as
traffic and exhausted capacity of vehicles. Therefore,
we add to our waste collection architecture the capa-
bility to monitor in real-time the position, the state of
each vehicle—in terms of current available allowance,
current distance from collection points—so as to glob-
ally exploit this information to enforce possible re-
routing and re-assignment of tasks, considering all ve-
hicles as a collaborative system, and accounting as
well for current traffic conditions. We note that, by
itself, this is a non-trivial problem to solve: in fact,
finding an optimal routing strategies for vehicles sent
out to collect waste is already a complex task, simi-
lar to the traveling salesman problem [11], which has
been shown to be NP-hard [14]. Moreover, we add
to the problem’s complexity the fact that capacity al-
location [15] is taken into account, in a collaborative
fashion.

Similarly, we consider the possibility that during
its operation, some vehicle might be involved in an ac-
cident, or the vehicle itself might break. Each vehicle
is therefore equipped with a feedback system that al-
lows the driver to interact with the monitoring system,



in order to promptly notify unexpected events, and al-
low for an immediate replan. This allows to exploit
the remainder of the available fleet to take care of the
work which the unavailable vehicle cannot complete.

In addition, all the data acquired by vehicles, such
as daily waste production, is used for long-term data-
mining in order to forecast the possible amount of
waste that each vehicle could find along its route in
the collection process, and therefore prepare an initial
collection plan as accurate as possible. This allows
to reduce the likelihood that a vehicle gets filled dur-
ing the collection, thus demanding for a re-plan by the
monitoring system.

Regarding the aforementioned point iii), we note
that in order to increase people’s accuracy to dispose
waste, a form of incentive could be put in place. While
deciding upon the nature (and possibly the amount) of
the incentives is something more related to the gov-
ernment and management of the waste collection net-
work/city, we propose a technical solution to deter-
mine the amount of waste actually separated by sin-
gle people or aggregated groups of people (e.g., apart-
ment blocks).

Overall, this paper presents an architecture which
jointly exhibits the following three innovative aspects:

1. vehicles used to collect waste are equipped with
sensors and network elements which allow con-
tinuous monitoring and strategy (re-)planning in
a cooperative way and according to a global
monitoring plan. This allows to minimize the
time required to finish the overall collection of
waste, and reducing the length of the path trav-
eled by the vehicles themselves. The minimiza-
tion is done accounting as well for fuel consump-
tion and therefore for pollutants emission;

2. Travel time, and amount of waste collected
at each collection point is stored in a history
database. This information is exploited through
machine-learning and deep-learning techniques
to build, at the beginning of each collection day, a
provisional collection plan. This is a plan which
is expected to be as accurate as possible with a
high likelihood. In this way, the probability that
the system has to recompute a new plan, due to
some errors in the initial plan, are significantly
reduced.

3. The collected waste is categorized, by means of
optical scanners, into non-separated and sepa-
rated (per typology) waste. This allows to build

“customer merit tables”, which are a numerical
representation of the goodness of the separation
process at each collection point. This informa-
tion can be used to determine a reward for people
(or groups of people), and can be as well comple-
mented with certification of accuracy data at the
disposal points, which is anyhow out of the scope
of this paper.

Overall, a robust system for territorial gover-
nance needs to cope with on-line (re-)evaluation of
monitoring activities, while coping with both tim-
ing/spatial and resource constrains. This is exactly
the objective of this paper, where optimization and
dynamic re-evaluation are core aspects underlying de-
sign/development activities.

We complement our solution with an experimen-
tal assessment, carried out by means of simulation.
In particular, we exploit a micro-scale discrete-event
simulation model which simulates vehicles moving in
the city and the trucks set out to collect the waste.
Thanks to the introduction of traffic conditions and
random accidents on the vehicles, we show how our
collaborative re-routing strategy is able to reduce the
time required to collect all waste at all collection
points, and the distance traveled by each vehicle, with
respect to having them all stick to the initial mission
plan.

The remainder of this paper is structured as fol-
lows. In section 2 we discuss related work. Section 3
presents the application scenario for our proposal in
more details. Our automated kerbside collection mon-
itoring architecture is presented in Section 4. Sec-
tion 5 presents experimental data.

2 Related Work
As mentioned, waste collection, and more specifically
collaborative kerbside collection, is a non-trivial prob-
lem which touches several research aspects and fields,
from scheduling to capacity allocation, from real-time
monitoring to graph visiting in order to determine the
optimal collection path.

In the context of graph visiting, several works can
be used in scenarios similar to the one we target. For
example, in [11], a variant to the traditional Traveling
Salesman Problem (TSP) is proposed, namely the TSP
with profits. This is a generalization of TSP, where it
is not necessary to visit all vertices. A profit is asso-
ciated with each vertex. The overall goal is the simul-
taneous optimization of the collected profit and the



travel costs. Our problem shares with TSP with prof-
its the idea that each vertex, namely a collection point,
has some profit, which is a function of the amount of
waste to be collected, and possibly the time the waste
has been left there. Nevertheless, in our approach, we
explicitly set the number of vertices that cannot be vis-
ited to zero, as a successful collection is able to reach
all the waste bins.

The work in [16], on the other hand, explicitly
tackles solid waste collection in urban areas, explicitly
accounting for routes and the available vehicle fleet.
Nevertheless, the solution the work proposes is based
on an operational problem, while we complement a
nearly-optimal solution with live data to drive the col-
lection in real-time.

In [7], the authors investigate a way to assign sta-
tions to vehicles so that constraints are satisfied, and
the mileage covered by the fleet is a minimum. While
we keep this ability, we exploit communication tech-
nology and available computing power to repeatedly
recompute the strategy, so that the actions taken by
the fleet are resilient to environmental changes.

Several works [22, 26, 8, 9] have studied a prob-
lem similar in spirit, namely the vehicle and Trailer
Routing Problem (TTRP), which shares several goals
and constraints to kerbside waste collection. Most of
the proposed solution consider only the distance trav-
eled and time spent in the loading/unloading. On the
other hand, we consider as well the expected waste
to be found at collection points, thus making our ini-
tial plans more reliable. The work in [26] takes into
account as well the amount of fuel burned during the
detainment at specific places, which we further back
with machine learning-based data, to make our esti-
mate more plausible.

In the context of dynamic capacity acquisition
and assignment, several works have tried to find op-
timal solution using different techniques. Beyond the
more classical stochastic integer programming [1],
the work in [19] relies on discrete-event simulation
(DES). We rely as well on the DES paradigm, yet to
perform an assessment of our multi-layered proposal,
rather than as the core solver for the collection task.
In [27], on the other hand, the authors focus on the
situation when capacities are uncertain. We consider
this latter aspect as orthogonal to our proposal. In
fact, uncertainty can be introduced in our system in
the form of parameterization of the configuration, and
it is therefore not the central goal of our proposal.

Similarly, the works in [6, 5, 10] present forecast-
ing models related to waste generation in urban ar-

eas when the amount of historical data is very reduced
and/or there is a non-minimal lack of sampling. These
works rely on grey fuzzy dynamic modeling [6], on
analytic models [10], or on time series [5]. Again,
we consider all these approaches orthogonal to our
proposal, and they can be effectively plugged into
our architecture to improve the quality of provisional
plans, until the vehicles have collected enough infor-
mation during the collection missions, which allow
data-mining processes to be more accurate in their
prediction.

As for the reward system that can be enforced us-
ing our architecture, several works [17, 24, 23] have
studied the reasons behind an unsuccessful kerbside
collection strategy. Among the various reasons, these
papers highlight the fact that recycling waste bins are
often full and that there are no incentives in partici-
pation [17], a lack of social interaction among neigh-
borhoods [24], and the lack of educational and pro-
motional campaigns [23]. We believe that the reward-
oriented architecture that can be put in place by rely-
ing on our proposal, can significantly address all the
discussed reasons, and therefore make kerbside col-
lection more effective.

3 Application Scenarios and System
Model

We assume a complex differentiated waste manage-
ment problem which can cover a variety of real sce-
narios. We note that different scenarios may arise be-
cause of the diversity of the urban contexs, as well
as of the different tools that are available to carry out
tasks associated with waste collection. Since we con-
sider a complex (more general) problem, the solution
that we devise in this paper has a wide applicability.
Indeed, it can be used also for any scenario arising
from the simplification of one or more of the con-
straints of our problem.

A list of elements that may lead to different sce-
narios includes:

• Collected materials, which can be different in the
number and the type.

• Collection points, where material may be col-
lected at any time or only during restricted time
windows.

• Dumps, which can be different in number and in
type of material that can be dumped.



• Fleet of vehicles, which can be of different na-
ture, each one having different weight capacity,
volume and/or speed.

• Depots, where different vehicles can start/end a
tour.

• Urban streets, which can have different traveling
speed, as well as different width, so that some
vehicles may be prevented to pass through some
street.

In addition to the variety of scenarios arising from
the elements we discussed above, we also assume that
various events may occur while vehicles are carring
out a collection tour. These events include:

• Some vehicle may reach the maximum vol-
ume/weight capacity, or may break, before end-
ing a tour.

• Some street may become no longer viable, thus
some vehicle may no longer be able to complete
a tour according to the assigned schedule.

• Traffic adn/or other events may lead some vehi-
cle to delay execution of collection tasks, thus a
vehicle may no longer be able to complete a tour
within the schedule time.

To cope with such a complex and general sce-
nario, the system architecture that we propose relies
on two main capabilities:

a. Generating an optimal provisional routing sched-
ule for vehicles.

b. Performing real-time monitoring of vehicle
tours, and, if necessary, promptly generating an
updated routing schedule that has to be sent to
vehicle drivers, even in the middle of their tour.

We target a scenario with multiple trucks, and a
single centralized mission control system. This could
be as well replicated in order to increase availability
and dependability of the service, but this is out of the
scope of this paper. In fact, we are more interested
in managing the available resources (the trucks) in a
collaborative way in real time.

The mission control system collects data com-
ing from each vehicle, which is equipped with vari-
ous devices. Some of them are used to collect data
about the evolution of the mission, in terms, e.g., of
residual available capacity and volume/weight of col-
lected waste per each collection point. This latter
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Figure 1: Architecture Organization.

point is achieved in a differentiated way, depending
on the type of vehicle. In particular, if the vehicle
is set towards the collection of one specific type of
waste, the amount of collected waste is measured elec-
tronically (e.g., by using electronic scales installed on
the vehicles) and directly associated with the proper
typology—this works as well in the case of unsorted
waste collection. On the other hand, if the vehicle can
collect multiple typologies of waste1, a scanner can be
used by the operators to associate the waste with the
proper category. Still, the amount of waste is electron-
ically measured.

All the configuration parameters and the con-
straint to the waste collection problem can be speci-
fied by using a configuration file.

1We note that some recycling facilities might be able to pro-
cess different types of waste at once.



4 Automated Kerbside Collection
Monitoring Architecture

We now illustrate the organization or our architecture
to cope with points a and b illustrated in the previous
section. The overall organization of our architecture
is depicted in Figure 1.

Each vehicle is equipped with a mission assis-
tant device. This is composed of a navigation system,
which directs the driver according to the current waste
collection plan, and a feedback system which allows
the driver to explicitly interact with the central mis-
sion control. At the same time, the sensing devices
autonomously generate a continuous data flow, which
is intercepted by the on-board Delta Event Generator.

This is a component which locally (on each truck)
stores the data related to a (small) past time window.
Only if the variation from previous values exceeds
some thresholds (which are configured by the mis-
sion control system and can be specified for each mea-
sured dimension) the component generates a variation
event. This event is enqueued into a local event queue,
which serves as a local buffer to keep events in case no
network coverage (e.g., mobile broadband network) is
available during a certain portion of the mission.

Each truck therefore sends only delta events to the
mission control system. A component, named data
sink, allows to manage as well the possibility that a
batch of events is received from a single vehicle, and
combines them so that the processing time can be re-
duced. The data associated with these events are then
notified to the live mission control system. This com-
ponent creates, before processing, a copy on a live
data database, mostly to allow a safe fail-restart sce-
nario of the mission control system, which therefore
does not lose data on the current mission.

Once the waste collection mission is completed,
the live mission control system triggers the histori-
cal data filer, which gathers all the data related to
the current mission, and reduces them (by stripping
non-necessary information) into the historical data
database. This data can be used to extract the “cus-
tomer merit tables”, by determining the amount of
sorted waste by each customer or group of customers.

The data kept by these two databases, along with
the flow of events generated by trucks, are used to
setup missions, as described in the following.

4.1 Optimal Routing Schedule

As discussed in Section 2, the literature offers various
algorithms to solve a vehicle routing problems and its
many variants. Thus, given a specific scenario, the
algorithm can be selected among the ones whose un-
derlying problem formulation copes with all require-
ments of the scenario. Since a wide variety of sce-
narios and algorithms exists, we do not enter into de-
tails of the selection of the algorithms for each possi-
ble scenario. However, in this paper we consider an
example algorithm that cope with all requirements of
our complex scenario. In the case of simpler scenar-
ios, one could use our example algorithm by relaxing
some assumption, or could select some other litera-
ture algorithm which is based on a simpler problem
formulation.

The scenario which we target is the following one.
The fleet includes several and different vehicles that
can be set towards collection points (bins). They can
start their journey from different depots. When a vehi-
cle leaves its depot, it is already assigned a provisional
collection schedule, the construction of which will be
discussed after in this section. Each vehicle can be
associated with a specific type of waste—each col-
lection point could be reached by multiple vehicles.
The provisional plan takes into account the vehicles’
capacity/maximum weight, type of waste, expected
amount of waste to be found at collection points, and
distance to be traveled.

The algorithm that we consider is the one pre-
sented in [4]. The objective function of this algorithm
aims at minimizing the spatial and temporal costs of
the routing schedule. The total cost to minimize is
calculated on the basis of input variables that specify
a fixed cost for each vehicle, a unit-distance running
cost an hourly driver wage rate. Further, the problem
formulation includes 22 constraints that ensure that
the calculated routing schedule adheres to all require-
ments of our complex scenario.

When solving the linear program in [4], we set the
value of some parameters depending on historical data
collected during previous missions. As an example,
we set the service time of a certain collection point i si
proportional to a linear combination2 of the amount of
waste that was observed in the same weekdays, in the
same week of the months, and in the same month in
the past. We similarly set the travel time of the edges

2By empirical experience, we suggest that the multiplicative
factors of the linear combination can be learnt via reinforcement
learning [25].



tij, accounting for the expected amount of traffic. In
case of the startup of the system, we rely on grey fuzzy
dynamic modeling [6] to setup an acceptably-reliable
estimate from a few samples. We note that by measur-
ing and considering the service time si, we are actu-
ally trying to plan the visits of the collection points in
a way such that as well the fuel consumption is taken
into account, additionally when the truck is stopped at
the collection point.

Since the vehicle routing problem is NP-hard,
the proposed solution technique uses an heuristic ap-
proach based on local search. The experimental study
to evaluate the solution technique has been conducted
by simulating a collection scenario with more than
2800 containers located at 820 collection points, po-
sitioned over an are of approximately 2000 km2. All
details about the experiment results can be found in
the original paper.

Although complex, we can dedicate enough re-
sources and enough time to find a solution to this
problem. In fact, this is not a solution to be found
in real time, as this is only the provisional plan which
will be refined later, in case the scenario deviates to
much from the plan. Indeed, this provisional plan
could be computed as well while the previous collec-
tion mission is running.

4.2 Real-time monitoring and re-scheduling

Obviously, once selected the most appropriated algo-
rithm to solve the specific vehicle routing problem, the
calculated routing schedules are suitable in the case of
a static scenario, i.e. when no events that may alter the
initial conditions (based on which the routing sched-
ule has been calculated) occur until all vehicles com-
plete their tour. To cope with unforeseen events, our
system architecture relies on a real-time monitoring
system that verifies whether or not the tasks carried
out by vehicles since the begin of their tour, as well
as information received by vehicles while executing
the assigned task, may lead the current routing sched-
ule to fail. For example, a routing schedule can fail if
some vehicle reaches the maximum weight capacity
before reaching all assigned collection points, exces-
sively delays the execution of assigned tasks, breaks
before completing the tour, etc.

As mentioned, the overall goal is to minimize
costs associated waste collection optimization. At the
same time, we strive for automatic re-plan, in case live
data collected by the vehicles suggest that the current
scenario has deviated from the provisional plan, due
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Figure 2: Messages exchanged to install a new plan.

to changes in external environmental factors.
The data and the events collected by the vehicles

drive the re-evaluation of the mission by the back-end.
In particular, the live mission control system is config-
ured using a set of threshold from the configuration
file which determine when a new plan should be com-
puted. As an example, if a truck is late at reaching a
collection point due to, e.g., traffic conditions, a new
recomputation is triggered. Any explicit event, like a
truck outage, immediately calls for a replan.

The replan procedure is carried out by removing
from the set of vertices of the graph all the vertices
that have already been visited, plus each vertex that
is currently being reached by every truck. This lat-
ter vertices are removed in order to avoid scenarios
in which the driver does not notice the plan change
and therefore an additional replan is to be triggered
(to avoid multiple trucks reach the same point), and
to avoid degenerate scenarios in which a truck which
is very close to a destination vertex has to change di-
rection, which could possibly upset the driver towards
the system.

The new plan is computed by re-solving the lin-
ear program discussed in [4]. Once the new plan is
computed, the live mission control system transmits
to all mission assistants at each truck the new plan. In
any case, the new plan is not immediately installed. In
fact, there could be the case that some truck is out of
range of the mobile network. In this case, other de-
generate scenarios might arise, having multiple trucks
reach the same point.

Once a new plan is received, a truck sends back an
acknowledgement message to the live mission control



system. The system keeps track of which truck has
responded, and once a response from each truck is re-
ceived, the live mission control system sends to all
trucks an install control message. At this point, each
truck installs the new plan. This pattern is depicted in
Figure 2.

After a certain amount of time, if no install mes-
sage is received, the trucks discard the new plan, and
so does the live mission control system. This means
that some truck cannot be reached by mobile connec-
tion. We therefore seek for a sub-optimal solution in
the following way. Since the live mission control sys-
tem knows what are the trucks that did not send an
acknowledgement message, a new plan discarding it
can be computed.

In particular, the system searches for a new so-
lution to the linear program in[4] by removing first
the non-responding trucks and all the vertices that
are currently present in each non-responding truck’s
paths. In this way, we avoid at all that multiple
trucks reach the same collection point. Although
non-optimal, this replan exploits as well the non-
responding trucks to collaborate, as they are anyhow
reaching their previously-assigned collection points.
Once new delta events are received by all the currently
non-responding trucks, a new plan with all trucks can
be recomputed.

To avoid network flooding, after a new plan has
been installed by trucks, the live mission control sys-
tem waits at least for a specified amount of time before
triggering a new replan.

5 Experimental Results
In order to evaluate the effects of the proposed archi-
tecture, we have relied on a Discrete-Event Simula-
tion model, called traffic [28], which allows to sim-
ulate at a very fine grain the evolution of traffic con-
ditions, according to statistic distributions of traffic at
road segments and junctions. The model is able to ac-
count for randomized accidents, generated according
to some probability distribution. It takes into account
as well the expected time before the street is freed by
an accident, in order to generate traffic increase in the
roads located around an accident point.

We have run the traffic simulation model rely-
ing on a Parallel Discrete-Event Simulation engine,
namely ROOT-Sim [18, 28], in order to keep tractable
the problem. ROOT-Sim is a speculative simulation
model, developed according to the Time Warp syn-
chronization protocol [13].

Figure 3: Part of the city which has been micro-
simulated (in yellow).

As the simulation scenario, we have simulated
a neighborhood of Rome, the Italian capital city—
called Quartiere Aurelio, which is depicted in Fig-
ure 3—which has around 1000 waste collection
points, differentiated into paper, plastic and metal,
wet waste, glass, clothes, and unsorted. Although
this is not an extremely large neighborhood (it’s only
4.8 Km2 wide), it’s highly populated (around 9,000
people/Km2), and it serves as the access to the center
of the city where a high number of offices is present
for a large number of vehicles (a bit less than 1 mil-
lion vehicles are estimated to enter and leave the city
each day [12]). The effect is that the traffic in this area
is so high that it can take up to one hour to travel just
one kilometer. In this scenario, the waste collection is
carried out by an average of 15 trucks [2]. Each col-
lection point should be reached by different trucks, in
order to collect the different materials.

We have configured the traffic model so that only
major roads are simulated. In fact, by the topology
of the portion of the city, these are the roads that are
most commonly affected by high levels of traffic, and
are the actual roads that are traveled by the waste-
collection trucks. Similarly, we have configured the
traffic-generation probability according to real statis-
tics [20].

We have additionally varied the probability ac-
cording to which a truck gets broken, drawn according
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to a Gamma distribution. Overall, this has allowed us
to vary the probability according to which a replan is
triggered by the simulated vehicles after the execution
of each discrete simulation event in the interval [0.01,
0.8]. As discussed, replans might be less accurate, or
might be related to outages of trucks, and therefore
this is an indication of how much the situation is de-
viating from the original plan.

In Figure 4, we report the variation of the ratio of
actual mission plan vs. the probability of a replan. By
the results, we can immediately deduce that, despite
the highly-adverse environmental conditions, the sys-
tem is able to find a suitable replan up to a probability
value of around 65%. In particular, until that point,
the actual vs. initially-planned time ratio is kept be-
low 1.5, indicating an increase in the time spent (and
therefore in the mission cost) of up to 45%.

Additionally, up to a probability value of 35%
percent, the variation in the time ratio is so small that
it can be considered negligible. This is an indicator of
the importance and effectiveness of the collaborative
monitoring architecture that we have proposed.

6 Conclusion
In this paper we have discussed an architecture to
monitor in real time the waste collection process, car-
ried out by a set of trucks moving in the city. We
have illustrated how this organization can effectively
help in coping with execution plans of the collection
which can deviate from the initial forecast, due to ex-
ternal factors such as traffic, unexpected increase of
the amount of waste found at collection points, or
truck outages/accidents.

Our experimental evaluation, carried out by
means of discrete event simulation, has shown that our
proposal can significantly reduce the impact of unex-
pected/unpredictable events, affecting kerbside waste
collection. Moreover, our results show that by relying
on an architecture like the one we have discussed in
this paper, it is possible to cope with a replan prob-
ability of up to 65%, with an increase in the cost of
only 45%. Therefore, we conclude that it is funda-
mental, for waste collection systems of the future, to
embed monitoring and replanning capabilities like the
proposed ones, in order to be able to offer an efficient
system at a controlled cost.
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