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Abstract—The emergence of the microservices-oriented archi-
tectural style calls for novel methodologies and technological
frameworks that support the design, development, and main-
tainance of applications structured according to this new style.
In this paper, we consider the issue of designing suitable strategies
for the governance and the automation of testing activities
within the microservices paradigm. We focus on the problem of
discovering relations between test programs that help avoiding
to re-run all the available test suites each time one of its
constituents evolves. We propose an analysis technique, based
on symbolic execution of test programs, which is able to collect
information about the invocations of local and remote APIs
performed when running such programs. Symbolic execution
enables the analysis of sets of executions corresponding to
different input data, and hence it is also suitable for parametric
test programs. The information extracted by symbolic execution
is processed by a rule-based automated reasoning engine, which
infers dependencies and similarities among test programs. In
particular, test programs are considered similar if they involve
the same microservice instance, or they connect to the same
remote API, or they locally activate overlapping APIs, or they
raise similar kinds of errors. We show the viability of our
approach by presenting a case study within the context of a real-
world microservice application that implements an open-source
educational platform.

Index Terms—software testing, microservices architecture, test
program similarity, symbolic execution, automated reasoning.

I. INTRODUCTION

Microservices architectures promote the construction of
software systems as distributed software units, each one abid-
ing by the single responsibility principle [1]. The functional-
ities offered by a microservice are supposed to be contained
within clearly defined boundaries, encapsulating the imple-
mentation of atomic features in the considered domain [2].
Also, the principles of microservices architecture suggest a
strong control of the coupling among software units, advocat-
ing the adoption of design solutions that mitigate the impact
of the evolution of each microservice. In other words, going
through the various life-cycle phases of different microservices
(i.e., their design, development, deployment, or update) should
require minimal (or even zero) coordination effort with each
other, possibly limited to immediate dependencies.

In order to take full advantage of this new architectural style,
novel methodologies and new technological frameworks are
needed for designing, developing, and maintaining microser-
vices applications. In particular, testing activities demand

for appropriate strategies and tools for achieving satisfac-
tory levels of automation within the microservices paradigm.
Current trends on testing of microservices architectures are
highlighting that specific responsibilities can be assigned to
each test phase: from unit testing, to integration, and contract
testing, up to end-to-end testing [3].

In the microservices architectural style, each testing strategy
aims to provide confidence of correctness on each microser-
vice, or on a set of them. As detailed in [3], unit testing
has the responsibility for validating the internal behaviour of
a microservice. Integration tests have the responsibility for
validating the communication paths and interactions among
the composed microservices—their goal is to check that each
microservice can communicate with others. As such, they
are often considered as a fast feedback toward integration.
Similarly, contract tests have the responsibility for checking
interactions at the boundary of the application asserting that
each microservice in the application meets the contract [4]
expected by an external consuming service. Finally, end-to-
end tests have the responsibility for checking if the considered
system-as-a-whole achieves its intended goals. In general, end-
to-end tests focus on testing the message-passing between the
services, but they could also include checks validating the
correct configuration of extra network infrastructures (e.g.,
firewalls, proxies, load-balancers).

In addition, both technical and managerial independence
of microservices admit a dynamic scenario for applications
built with this paradigm: the evolution of one or more con-
stituents could take place according to several governance
schemata opening to different degrees of challenges about
the validation of the resulting system [5], [6]. Specifically,
continuous evolution suggests the establishment of procedures
and resources ascertaining that changes have not caused novel
and undesired issues. Across the different stages of testing
activities, regression testing [7] aims to guarantee that the
changes introduced in a software module do not harm its
behaviour, or the one exposed by the whole software system.

Relevant empirical considerations related to Cohn’s
metaphor of the Testing Pyramid [8] hinder the testing of any
software system, but the decentralised nature of microservices
solutions make them more difficult to mitigate. Both the in-
dustry and the academia proposed many successful approaches
for unitary testing, and many of them result in effective



technologies contributing toward automation in software test-
ing. However, the context changes when addressing testing
activities toward the top of the pyramid.

In the case of governance of regression testing activities,
several classes of approaches aim at preventing the retest-
all strategy by: i) skipping redundant test cases from the test
suite [9], or ii) selecting some test cases [10], or iii) prioritising
those expected to yield earlier fault detection [11], [12]. How-
ever, in most cases, these approaches require some knowledge
about the considered set of microservices, their immediate de-
pendencies, and their possible interactions. Unfortunately, the
lack of detailed specification for the considered microservices
and, in some cases, the lack of source code could hamper the
direct application of such testing techniques [13].

In addition, regression testing activities have to cope with
the maintenance and the evolution of the regression test
suites [14]: augmenting their significance by deriving new test
cases from existing ones, or by inferring a better understanding
of the considered software system by leveraging evidences
from the test cases. Among the others, the observation of the
actual interactions among microservices instances are investi-
gated as a means of contributing to the evolution of regression
testing test suite [15]. Also, test cases have been proposed as
viable solution for checking compliance of contracts across
service releases [16].

This work contributes to the governance of regression
testing, taking into account the specific context of microservice
applications. One relevant information that is often useful
when designing regression testing strategies is the similarity
between test cases. For example, test cases could be considered
similar if they include the same activities, but focusing on a
different testing strategy; if they target the same testing goal
and strategy, but using different test data; or if parametric tests
have significant overlaps for some values of the parameters.
Inferring such relationships is a complex task in the general
case, as they strongly depend on the specific nature of the
considered software system (e.g., application domain, referred
architectural style, adopted technologies). As detailed in the
following, this work leverages the specificity of the microser-
vices paradigm in order to structure retrieval procedures that
enable reasoning about test program similarities. Then, the
knowledge of test case similarities allows the design of flexible
regression testing strategies and policies, which avoid running
again all test programs in an order fixed in advance.

Specifically, this work assumes that a set of test cases for
a given microservices application is available because: they
are shipped with the microservices, or some system integrator
made them available (e.g., contract tests for microservices that
are commonly used together), or they are provided by the
integrator of the overall application. Also, it relies on symbolic
execution techniques [17] in order to gather information about
the behaviour of a test program and the interactions it estab-
lishes among the microservices in the referred application.
This symbolic approach allows the exploration of sets of
concrete executions, and it also allows us to handle parametric
tests in a very natural way. The information extracted via

symbolic execution is processed using logic-based reasoning
techniques [18] in order to establish similarity relations.

Our reference implementation has been bundled in the
Hyperion package, which is publicly available as open source
software1.

The rest of the paper is organised as follows. In Section II
we discuss the related work. Our overall approach to extract
relations among test programs is depicted in Section III. The
technique used to extract information from test programs is
described in Section IV, while the rules to determine the
similarity are presented in Section V. Section VI presents the
results of an experimental case study. Section VII draws the
conclusions of this work.

II. RELATED WORK

A recent systematic study surveyed specific techniques
for testing microservices architecture-based applications [19].
Some of these techniques propose the use of formal methods
(e.g., model checking) for automated test case generation [20],
[21]. However, at present, the issue of inferring dependen-
cies and similarities among test programs has received very
little attention, especially with respect to their structural or
behavioural analysis.

In the context of automated software testing, symbolic
execution has been largely used as an effective technique for
finding errors in software applications and for generating high-
coverage test suites [22]–[29]. This technique, which was first
introduced in the mid 1970’s [30], [31], has been conceived
to exercise a software system by searching for potential
configurations/states violating a given set of assertions.

In the literature, the basic idea of symbolic execution is
strongly related to techniques for bounded model checking
of software, which use satisfiability modulo theories (SMT)
solvers for checking that a specified program property is
not violated by any execution path, up to a given length
bound [32].

The symbolic exploration of the program states often re-
quires the generation of very complex combination of con-
straints. The resolution of these constraints frequently leads
pure symbolic approaches to suffer from severe scalability
issues. Concolic approaches mitigate such a risk by combining
symbolic evaluation with concrete execution, along with, in
some cases, random data generation [23]–[26], [29].

In the implementation of our technique, we use the Java
Bytecode Symbolic Executor (JBSE) [33], a symbolic Java
Virtual Machine able to deal with complex heap data struc-
tures. We also use a form of concolic execution to handle
methods in charge of setting up the environment for a test
program execution (e.g., @Before in JUnit). However, the
main goal of our work is neither the search for errors nor the
generation of test cases. In fact, we want to infer relations,
e.g., various forms of dependency or similarity, between test
programs, and we do so by extracting high-level information
from symbolic execution paths and states. Our approach is par-
ticularly suitable when dealing with parametric test programs.

1Source code available at http://saks.iasi.cnr.it/tools/hyperion.



Some techniques for relational verification make use of
constraint logic programming (i.e., logic programming aug-
mented with constraint solving) to verify relations between
programs [34], [35]. However, the kind of properties targeted
by relational verification are very strong (in general, unde-
cidable) relations, such as full functional equivalence, while
here we focus on test programs and we are interested in much
weaker dependency and similarity relations based on suitable
abstractions of the finite set of paths generated by symbolic
execution. In this respect, our work bears some relationships
with symbolic execution techniques for crosschecking opti-
mised versions of data-parallel programs with respect to the
optimised ones [36].

III. OVERALL APPROACH

Structuring a governance framework for regression testing
includes the formulation of both strategies and policies that
Quality Assurance Teams can use while making decisions on
testing campaigns or in order to guide the root-cause analysis
of issues that have been spotted. Such policies can be either
enforced offline by planning the regression testing activities
(e.g., test suite reduction, test case selection/prioritisation), or
rather online while dynamically driving the test case execution
by means of a test case orchestration [37]. In both cases, the
role of test suites dependencies/similarities is crucial, as they
enable the declaration of flows of test cases that could be run
in sequence, parallel, or alternative combination [6].

Dependencies among regression test cases could emerge
because of explicit declarations by the software engineering
teams in build automation tools or continuous-integration (CI)
frameworks. Also, similarities can be inferred from available
software artifacts by means of some (semi-)automatic mining
procedures. For example, with respect to the domain microser-
vices applications, the test cases in a set of integration test
suites could be considered similar if they all explicitly involve
the same set of microservices. Also, all the unitary tests for a
given microservice msi could be considered related to integra-
tion tests that involve msi. Indeed, if an integration test fails
spotting a system regression, it could be meaningful to check
if any regressions also occurred in the microservices it refers.
Similar criteria can be also formulated among regression test
cases/suites targeting all the test levels (e.g., contracts, end-
to-end). Finally, even the data used during the execution of
test cases can be referred to as a source of similarity. In
the following, test programs for microservice applications are
considered “similar” if they:

1) involve the same microservice instance, or they connect
to the same remote API;

2) locally activate overlapping APIs;
3) raise similar kinds of errors.
Microservices are distributed components whose interac-

tions take place across some abstraction of the network
interface, and in most of the cases abiding by the REST
architectural style [1]. Test programs opening connections
against the same remote APIs are acting as test drivers for
the same type of microservices or, in some cases, among

@Test public void t1() {
…

}

@Test public void t2() {
…

}

t1 t2
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Fig. 1: Symbolic Execution and Analysis of Test Programs.

the same instances. Such connections to remote APIs can
be directly coded in the test program by means of basic
frameworks providing functionalities for accessing resources
via HTTP (e.g., the HTTP Clients in the JDK, or Apache
libraries). Also, their implementation could be mediated by
means of some structured application framework (e.g., Spring2

or Postman3), or even mediated by means of some local
libraries automatically generated starting from the remote APIs
specifications (e.g., the client SDKs generated by means of
Swagger Codegen4). This last technological solution opens the
possibility to look for similarity among those test programs
that locally activate overlapping APIs. In addition, item 2 is
also considered useful when looking for test programs that
converge on to a cohesive set of activities: for testing purposes,
but also about the configuration of the test environment, or
about their referred assertions. Finally, as a further refinement
of the considerations about local libraries invocations, the pre-
sented approach leaves testers with the possibility to leverage
dependencies on those test program implementations that raise,
catch, or handle similar types of exceptions (see item 3).

In some cases, the microservices may interact by adhering to
some asynchronous communication schema; for example their
interactions could be mediated by means of some publish-
subscribe middleware remotely shared among the different
microservices. In this cases, the analysis of the interactions
may require digging information from the payloads exchanged
in the shared channels. In this sense, such a kind of commu-
nication schema is out of the scope of the referred scenarios.

The identification of similarities among test programs is
guided by an automatic analysis procedure scanning their im-
plementations (e.g., available from source-code repositories).
The analysis procedure assumes that test programs are clearly
identifiable from the rest of the source code, for example
by means of explicit JUnit annotations. Also, the proposed
approach relies on the symbolic execution of each considered
test program. The aim of this step is twofold: (i) to carve
test data by exploring admissible executions subsumed by
the test program; (ii) to exercise (parametric) test programs
independently of their arguments.

Indeed, a parametric test program offers greater opportuni-
ties than a traditional test program. They arise from recognis-

2see: https://spring.io/microservices
3see: https://www.postman.com
4see: https://swagger.io/tools/swagger-codegen/



1 public void foo(int a, int b) {
2 int x = 0, y = 1;
3 if(a > 0) {
4 x = 2 * y;
5 if(b < 0)
6 y = a - b;
7 }
8 assert(x - y != 0);
9 }

Fig. 2: Which values of a and b make the assert() fail?

ing that the parametric test program has an inherent ability
to exercise the system under test in greater form. However,
in traditional testing scenarios, parametric tests reduce this
actual capability due to the possible small range of (concrete)
parameters used to run the tests themselves.

Our overall approach is depicted in Fig. 1. The symbolic
execution step explores admissible executions determined by
the test programs implementations, and it produces assertions
about the reached configurations. The analysis of such col-
lected information follows the symbolic execution phase, and
its objective is to reveal existing dependencies among test
programs. Specifically the analysis phase is built upon a given
set of inference rules which define the dependency criteria.
As discussed in the following, an initial set of inference
rules has been investigated within this work. Nevertheless,
further dependency criteria can be covered by the approach
simply developing additional inference rules or extending the
existing ones. The execution of the available set of rules
with tailored queries allows for specific consultancy of the
assertions produced during the symbolic execution phase.
The resolution of each query either checks if a dependency
criterion is verified against several test program instances, or
it proposes evidences that lead to satisfy a given dependency
criterion.

IV. CARVING TEST PROGRAM SIMILARITY

This section details the methodology, based on symbolic
execution, which is leveraged to carve information from test
programs. We also discuss our reference implementation.

A. Information Extraction Methodology

Unlike concrete execution, where a program is run on a
specific input and a single control flow path is explored,
the basic idea of symbolic execution is to allow variables to
take on “symbolic values”, as well as concrete values. This
characteristic of symbolic variables allows the simultaneous
exploration of multiple paths that a program can take under
different inputs. Every time that some condition is checked
against a symbolic variable, a branch is taken, in the sense
that multiple control flows are maintained at the same time by
the symbolic execution engine.

The symbolic execution engine can be regarded as an ab-
stract execution machine, which maintains a state represented
by the triple 〈insn, σ, π〉, where:
insn is the program point which has been reached during the

symbolic execution of the program;

insn
line 2

σ = {a 7→ αa, b 7→ αb}
π ← true

insn
line 3

σ = {a 7→ αa, b 7→ αb, x 7→ 0, y 7→ 1}
π ← true

insn
line 8

σ = {a 7→ αa, b 7→ αb, x 7→ 0, y 7→ 1}
π ← αa ≤ 0

0 − 1 = 0 ∧ αa ≤ 0 ⇔ false 3

insn
line 4

σ = {a 7→ αa, b 7→ αb, x 7→ 0, y 7→ 1}
π ← αa > 0

insn
line 5

σ = {a 7→ αa, b 7→ αb, x 7→ 2, y 7→ 1}
π ← αa > 0

insn
line 6

σ = {a 7→ αa, b 7→ αb, x 7→ 2, y 7→ 1}
π ← αa > 0 ∧ αb < 0

insn
line 8

σ = {a 7→ αa, b 7→ αb, x 7→ 2, y 7→ αa − αb}
π ← αa > 0 ∧ αb < 0

2−(αa−αb)=0∧αa>0∧αb<0 ⇔
true if αa = 1 ∧ αb = −1 7

insn
line 8

σ = {a 7→ αa, b 7→ αb, x 7→ 2, y 7→ 1}
π ← αa > 0 ∧ αb ≥ 0

2−1 = 0∧αa > 0∧αb ≥ 0⇔ false 3

αa≤0 αa>0

αb<0 αb≥0

Fig. 3: Execution tree of the example program in Fig. 2.
Dashed boxes correspond to states in which a branch is taken.
The leave node marked with a 7 is associated with a terminal
state which violates the assert() in the example program.

σ is a symbolic memory store, associating variables with
either expressions over concrete values or symbolic val-
ues αi;

π is a first-order logic formula—the so-called path condi-
tion—i.e. a formula that expresses a set of constraints on
the symbols αi built during the execution of the branches
observed up to insn.

Any branch instruction executed on a symbolic variable
updates the path condition π, while assignments update the
symbolic store σ. An SMT solver [38] checks whether there
are any violations of the constraints along each explored path,
and if the path itself is realisable. As an example, the symbolic
execution of the code snippet in Fig. 2 generates the tree
depicted in Fig. 3.

We pick symbolic execution as the main methodology to
extract information from (parametric) test programs. Indeed,
being able to observe all symbolic execution states across
which a symbolic execution transits allows us to extract a large
amount of information associated with what methods of the
system under test are used, or more in general what parts of
the system under test are exercised. The extracted information
is represented as a set of logical assertions written as Prolog
facts [18] enabling suitable rule-based reasoning techniques.

In more details, we extract from the traversed states facts
related to method invocation. These facts track an invocation
of a certain method within a certain class, from a certain caller.
Given the nature of symbolic execution, these facts describe
the possibility that, for certain concrete inputs to the test
program, a certain method invocation could be materialised
in a concrete execution. We recall that we are targeting
parametric tests, therefore symbolic execution allows us to
explore the whole class of inputs that could be fed into test
programs, independently of the concrete input values specified
by the programmer. The simplest representation of this fact can
be the following:
1 invokes(TestProgram, Caller, Callee)

where invokes is a Prolog predicate, TestProgram is a
unique identifier of the test program in the currently-analysed
test suite, Caller is the invoking method, and Callee is the
invoked method. This type of Prolog fact, however, does not



1 public void f() {
2 for(int i = 0; i < 1000; i++)
3 g();
4 }

Fig. 4: Effect of the presence of calls within loops.
1 public void a(int count) {
2 b();
3 if(count > 0)
4 a(0);
5 c();
6 }

Fig. 5: Effect of recursion.
1 public void a(int count) {
2 if(count == 0)
3 return;
4 b();
5 a(0);
6 b();
7 c();
8 c();
9 }

Fig. 6: A fragment generating a sequence of invokes equiv-
alent to that of Fig. 5.

carry the information about the symbolic execution path where
the invocation takes place, among the various ones generated
by different symbolic inputs to the considered test program.
The invokes predicate must be then augmented to keep track
of the point in the symbolic execution tree at which a certain
method call is observed. Thus, we introduce a list of branching
points, which can be regarded as a linear representation of a
path in the branching tree. The predicate thus becomes:
1 invokes(TestProgram, BranchingPointList, Caller, Callee)

Let us now consider the example code snippet in Fig. 4.
Here, we find repeated invocations to g(), which will in turn
generate multiple invokes facts. One could argue that every
single invokes fact generated by a call to g() is actually
a different incarnation, and should be therefore considered
different. To enforce this difference, we expand the invokes
predicate as follows:
1 invokes(TestProgram, BranchingPointList, SeqNum, Caller,

ProgramPoint, Callee)

where SeqNum is a monotonic counter which is incre-
mented every time that an invokes fact is generated, while
ProgramPoint is a unique identifier of the location of
the method call in the original program. Therefore, every
invocation of g() in the example in Fig. 4 will bear the same
value for ProgramPoint and a different value for SeqNum,
thus allowing us to disambiguate invocations within iterations.

To complete the construction of the invokes predicate, let
us consider the example provided in Fig. 5. Here, depending
on the (either concrete or symbolic) value of the method
parameter count, a different set of methods is invoked. If the
example program is invoked as a(1), a sequence of predicates
will be generated, corresponding to the invocations of b(),
a(0), b(), c(), c(), all appearing as being called from
a(). The problem, here, is that the same sequence of facts
could be also generated by the example program in Fig. 6.

The two programs are inherently different though, and cannot
be described by the same sequence of invokes. While the
example deals with a recursive invocation, we note that the
same problem might arise with repeated invocations of the
same method from the same caller.

This anomaly stems from the impossibility to distinguish
between different “invocation contexts” in the invokes facts.
To overcome this limitation, we enhance the predicate as
follows:
1 invokes(TestProgram, BranchingPointList, SeqNum, Caller,

ProgramPoint, FrameEpoch, Callee)

where FrameEpoch is an additional monotonic counter
which is handled as follows. Every time that a method
invocation occurs in the symbolic execution, this counter is
incremented. The new value is then pushed onto a stack. Every
invokes fact is annotated with the value associated with the
caller, i.e., the second-to-top element on the stack. Every time
that a return instruction is symbolically executed, we pop the
top element from the stack. In this way, recursive or repeated
invocations will bring a different frame epoch for every called
method.

Finally, we might consider two invocations to the same
method as similar if they observe the same symbolic path
condition, of if they have the same set of parameters. To this
end, the final incarnation of the invokes predicate becomes:
1 invokes(TestProgram, BranchingPointList, SeqNum, Caller,

ProgramPoint, FrameEpoch, PathCondition, Callee,
Parameters)

B. Reference Implementation
To support symbolic execution, we have relied on

JBSE [33], a symbolic Java Virtual Machine which allows
us to carry out symbolic execution starting from any method
within any class.

In order to support the generation of invokes facts
that enable similarity analysis of complex microservice-based
architectures, we have developed a tool (targeting the JUnit
testing framework) which enumerates, for a certain test suite,
every method which is annotated as @Test. We therefore
initially build a hashmap that, for every class, allows the
retrieval of a set keeping all test programs, which will be
the entry points for instances of symbolic execution. To be
consistent with the JUnit specification, we also build an
additional hashmap to keep track of the set of all methods
annotated as @Before. These methods will be invoked right
before giving control to the test program.

After having discovered all the test programs belonging
to the test suite of the microservice-based application, our
tool starts an instance of the JBSE virtual machine for ev-
ery enumerated test program. During the execution, JBSE
is configured so as to give back control to our tool once
specific conditions are met, in order to carry out information
logging activities. In particular, if we traverse a symbolic state
associated with the invocation of a method:

• we extract all the information required to assemble an
invokes fact, and cache it in an in-memory data struc-
ture;



1 wrapper method body:
2 {
3 TPClass kl = new TPClass();
4 kl.setUp(); // @Before
5 kl.testCase(); // @Test
6 }

Fig. 7: Method injected to account for @Before annotations.

• we increment the monotonic counters used in the predi-
cates, and we push the frame epoch counter on the frame
stack.

Once the execution of a test program completes, we emit
Prolog facts on a file on disk, to prepare for the symbolic
execution of the next test program in the pool.

As mentioned above, special care is taken to execute test
programs that belong to a class in which methods annotated
as @Before are present. In this case, to mimic the behaviour
of JUnit, we perform the following tasks. First, we generate
on the fly a method similar to the skeleton provided in Fig. 7.
Here, after having created an instance of the test class, we
invoke (in any order, which is compliant with the JUnit
behaviour) all methods annotated as @Before, which were
discovered in the previous method enumeration phase. Then,
the actual test program is invoked. To generate this artificial
method, we rely on Javassist [39].

Nevertheless, running a symbolic execution starting from
this artificially-generated method would generate an amount
of information which is not strictly related to the test program.
Therefore, we rely on a form of concolic execution [26],
which is essentially a “mixed” concrete/symbolic execution. In
particular, we instruct JBSE to rely on a “guided” execution:
we launch an additional concrete JVM, starting from an
artificial main() program which loads via reflection our
generated wrapper method, and invokes it. By relying on JDI,
we set a breakpoint on the method associated with the test
program. Once that breakpoint is hit, JBSE takes back control
and runs the same code—up to the breakpoint—by making
decisions using the actual branches which were taken in the
concrete execution. In this way, we can quickly reach the entry
point of our test program, without having to explore execution
paths which are not relevant for the extraction of similarity
information.

V. RULES FOR SIMILARITY

The data set consisting of invokes facts generated by
the symbolic execution of the test programs can be used to
conduct a variety of analysis tasks on the functional behaviour
of such programs. These tasks may be performed by inspecting
the execution traces of the test programs to discover which
methods of the system under test are invoked, or the sequences
of direct method invocations performed by a caller method to
discover which implementations of a specific operation are
being tested.

In the following, we show how Prolog rules [18] can be
conveniently used to sieve through the sets of invokes facts
at different levels of abstraction, and shape them into suitable

data structures to be used within queries for reasoning about
the similarity among test programs.

A. From Invokes to Endpoints

In order to inspect the execution traces of a test program, our
system provides the predicate trace(TP,Trace) (shown
in Fig. 8), which relates a test program TP to an execution
trace Trace of the method annotated as @Test in TP, that
is, the entry point of TP. The execution trace Trace is a list
of invokes facts whose head Ep is the entry point of TP.

1 trace(TP,Trace) :-
2 tp_entry_point(TP,Ep),
3 trace_starting_with(Ep,Trace).

Fig. 8: Prolog rule that defines trace(TP,Trace).

Suppose that, instead of execution traces, we want
to analyse the sequences of direct method invocations
performed by a caller method annotated as @Test
in the test program. Our system provides the predi-
cate invoke_sequence(TP,Caller,ISeq) (shown in
Fig. 9), which relates a test program TP and a caller method
Caller with a sequence of method invocations ISeq per-
formed directly by Caller. The sequence of method invoca-
tions ISeq consists of invokes facts whose first and fourth
arguments are TP and Caller, respectively.

1 invoke_sequence(TP,Caller,ISeq) :-
2 first_invokes(TP,Caller,FirstInvokes),
3 iseq(FirstInvokes,ISeq),
4 ISeq = [FirstInvokes|ISeqTail],
5 last_invokes(TP,Caller,LastInvokes),
6 last(ISeqTail,LastInvokes).

Fig. 9: Prolog rule that defines invoke_sequence(TP,
Caller,ISeq).

Therefore, to get the traces generated by the symbolic
execution of a given test program, we can collect the answers
to the query trace(TP,X), where TP is bound to the test
program name and X is an unbound variable. Similarly, to
compute the sequences of method invocations generated by
a given caller in a test program, we can collect the answers
to the query invoke_sequence(TP,Caller,X), where
TP and Caller are bound to the test program name and the
caller method, respectively, and X is an unbound variable.

The answers provide values for X, that is, lists of invokes
facts, that can be analysed for discovering similarity relations
between test programs by using suitable helper predicates.

In particular, when testing microservice applications, it is
useful to have predicates that: (1) select those invokes facts
that represent invocations of methods belonging to remote
APIs, (2) extract from the selected invokes facts specific
information related to the remote API invocation, that is, the
HTTP method used to perform the request (e.g., get and post)
and its URI, and (3) generate new facts of the form:
1 endpoint(TestProgram, Caller, HTTPMethod, URI)



1 filter([],XSchema,XSelFun,XExtFun,YName,[]).
2 filter([X|Xs],XSchema,XSelFun,XExtFun,YName,[Y|Ys]) :-
3 eval_sel_fun(X,XSchema,XSelFun), !,
4 eval_ext_fun(X,XSchema,XExtFun,YArgs),
5 Y =.. [YName|YArgs],
6 filter(Xs,XSchema,XSelFun,XExtFun,YName,Ys).
7 filter([X|Xs],XSchema,XSelFun,XExtFun,YName,Ys) :-
8 filter(Xs,XSchema,XSelFun,XExtFun,YName,Ys).

Fig. 10: Prolog rule that defines filter(Xs,XSchema,
XSelFun,XExtFun,YName,Ys).

representing that the method Caller of the test program
TestProgram invokes the remote API identified by URI,
using the HTTP method HTTPMethod.

Fig. 10 shows the Prolog rule defining the predicate
filter(Xs,XSchema,XSelFun,XExtFun,YName,Ys),
which performs the operations (1)–(3) on a given list of
invokes facts.

From an input list Xs, the predicate filter generates a list
of terms Ys satisfying the following conditions. Any element Y
of Ys: (i) is a term with functor YName, (ii) is obtained from a
term X in Xs for which all predicates in the list XSelFun hold
(that is, XSelFun is list of functions for selecting elements
form Xs), and (iii) the i-th argument of Y is obtained by
applying to X the i-th predicate in the list XExtFun (that is,
XExtFun is a list of functions for generating the arguments
of Y using the information extracted from the selected X).
The second argument XSchema of filter is a ground term
that defines the structure of any term in Xs by assigning
labels to its arguments. The mapping between the arguments
of XSchema and the arguments of terms in Xs provides an
easy way to get any argument of a term in Xs by using the
corresponding label in XSchema.

In particular, the recursive rules of filter, that is, rules
starting at lines 2 and 7 in Fig. 10, take the head X of
Xs and perform the following operations. The predicate
eval_sel_fun in the second rule of filter checks if
the predicates in XSelFun hold for X. If so, the predicate
eval_ext_fun generates the list YArgs from X and makes
use of the Prolog “univ” operator “=..” (line 5) to construct a
new term Y, named YName, whose arguments are the terms in
YArgs; otherwise the third rule of filter applies and X is
ignored. The Prolog “cut” predicate “!” (line 3) prevents the
application of the third rule whenever the second rule applies.

The code snippet in Fig. 11 shows how to query the
invokes data set to select those facts that represent an
invocation to a remote API, and generate the corresponding
endpoint facts.

The first argument (line 2) of the query in Fig. 11 is
a list of invokes facts (e.g., obtained from trace or
invoke_sequence). The second argument (lines 3–11) is
a ground term that describes the structure of any invokes,
that is, a mnemonic for its arguments. The third argument
(line 12) is a singleton list consisting of the helper predicate
isHttpMethod applied to the argument labelled as callee
in the invokes that holds if the callee argument is a call to an
HTTP method (that is, filter selects only those invokes

1 filter(
2 InvokesLst, %(1) Xs
3 invokes(testProgram,
4 branchingPointList,
5 seqNum,
6 caller,
7 programPoint,
8 frameEpoch,
9 pathCondition,

10 callee,
11 parameters), %(2) XSchema
12 [ isHttpMethod(callee) ], %(3) XSelFun
13 [ testProgram,
14 method(caller),
15 httpMethod(callee),
16 head(parameters) ], %(4) XExtFun
17 endpoint, %(5) YName
18 EndpointLst ) %(6) Ys

Fig. 11: Prolog query to generate endpoint facts.

1 matching_endpoint(E1,E2) :-
2 E1 = endpoint(TP1,Caller1,HTTPMethod1,URI1),
3 E2 = endpoint(TP2,Caller2,HTTPMethod2,URI2),
4 HTTPMethod1 == HTTPMethod2, % (c1)
5 atom_string(URI1,U1), atom_string(URI2,U2),
6 rest_api_regex(REX),
7 re_match(REX,U1), re_match(REX,U2). % (c2)

Fig. 12: Prolog rule that defines the predicate
matching_endpoints(E1,E2).

facts that call a remote API through an HTTP method). The
fourth argument (lines 13–16) is a list consisting of four helper
predicates that extract from the selected invokes: (1) the
name of the test program (testProgram), (2) the method
that invokes the remote API (method(caller)), (3) the
HTTP method (httpMethod(callee), such as get and
post), and (4) the first argument of the list of parameters of
the HTTP method (head(parameters)), that is, the URI
of the remote API. The extracted arguments are shaped into a
new fact with functor name endpoint (line 17).

The data set consisting of the invokes facts collected
during the symbolic execution can thus be enriched with
the endpoint facts generated from traces (Fig. 13 shows
an excerpt of this new data set) or sequences of method
invocations.

B. Similarity Reasoning

Now, we are able to introduce a notion of “similarity
between endpoints”, which will be the basis of a similarity
relation between test programs. Given two endpoint facts
E1 and E2, we say that they are similar if and only if:
(c1) they make use of the same HTTP method to invoke a

remote API, and
(c2) their URIs match the same regular expression belonging

to a list extracted from the test suite.
Indeed, the use of regular expressions is motivated by the

fact that URIs may include some parameters related to the call
site, which need to be ignored during their comparison.

Similarity between endpoints is evaluated by using the pred-
icate matching_endpoints(E1,E2) shown in Fig. 12.



The term REX (line 6) is a string representing a regular expres-
sion in the Perl-Compatible Regular Expression (PCRE) for-
mat asserted in the Prolog database using rest_api_regex
facts. Pattern matching is performed using the re_match
predicate (line 7) provided by the SWI-Prolog pcre library,
and atom_string (line 5) is a built-in predicate to convert
atoms into strings—according to the definition of similarity
between endpoints, the name of test programs, TP1, TP2, and
the callers Caller1, Caller2, occurring in the endpoint
facts are ignored.

Now, we can use the following predicate to reason about
similarity of test programs:
1 similar_tp(EpSrc,SimCr,TP1,TP2,Es1,Es2)

where:
• EpSrc specifies the source of the endpoint facts,
• SimCr specifies the criterion to evaluate the similarity

between the test programs TP1 and TP2, and
• Es1 and Es2 are nonempty lists of endpoint facts

generated from the invokes facts of TP1 and TP2,
respectively, that make TP1 and TP2 similar.

Without loss of generality, we assume to use endpoint
facts generated from the execution traces.

Among the many similarity criteria that can be de-
fined, in this paper we consider the criterion called
“nonemptyIntersection”, for which two test programs
TP1 and TP2 are similar if and only if there exist two
nonempty lists Es1 and Es2 of endpoint facts, ex-
tracted from the traces of TP1 and TP2, respectively, and
two endpoint facts E1 in Es1, E2 in Es2, such that
matching_endpoints(E1,E2) holds.

In order to quantify the degree of similarity between
test programs with respect to lists of endpoints, our tool
also provides the predicate similarity_score(SimCr,
Es1,Es2,Score), that computes a Score in (0, 1] from
any answer to the query similar_tp(EpSrc,SimCr,
TP1,TP2,Es1,Es2).

In particular, for nonemptyIntersection, the value of
Score is computed as follows:

Score =
|matchingSet(Es1,Es2)|

min(|setOf(Es1)|, |setOf(Es2)|)
where:

• setOf(L) is the set of distinct elements occurring in the
list L, and

• matchingSet(L1,L2) is the nonempty set of all el-
ements E1 in setOf(L1) such that there exists an
element E2 in setOf(L2) for which the predicate
matching_endpoint(E1,E2) holds.

VI. CASE STUDY

We have carried out an evaluation of the viability of our
approach by means of a case study based on a real-world appli-
cation5. In particular, we have used a microservice-based ap-
plication called Fullteaching6, an educational platform based

5The replication package is distributed with the source code of Hyperion
6https://github.com/OpenVidu/full-teaching

upon OpenVidu, which is an open-source videoconferencing
system employing the WebRTC API [40].

Fullteaching provides an extensive test suite implemented
using JUnit 4, which includes a total of 88 test programs.
Among them, 29 tests require contacting remote URIs, either
for integration or end-to-end testing purposes. These are the
test programs used for our case study, as they involve the
invocation of URIs using get, post, put, and delete methods.
All RESTful invocations are managed through the MockMvc
class by the Spring testing framework [41].

By the rules discussed in Section V, we have gener-
ated the endpoint facts that describe the URI(s) invoked
by the test programs. An excerpt is provided in Fig. 13,
where we show a subset of the endpoint facts gener-
ated from the symbolic execution of the two test programs
modifySessionTest and deleteSessionTest. These
facts allow us to answer multiple queries, such as: “which
test programs invoke the /api-users/new endpoint?”, or
“which test programs use the /api-courses/new RESTful
API after /api-users/new?”

With respect to the nonemptyIntersection similar-
ity metric discussed above, in Fig. 14 we report similarity
matrices (in the form of heatmaps) for all considered test
programs7. Since our symbolic execution tool can extract
multiple traces from the execution of a single test program, no
single similarity score value can be associated with a pair of
test programs. Therefore, we report in Fig. 14a and Fig. 14b,
respectively, the minimum and the maximum score values—
the diagonal is zero in all cells, as we do not compute the
similarity between a test program and itself. By construction,
the similarity matrix is a symmetric matrix.

To understand the usability of this information in the context
of a governance framework for regression testing, let us
discuss some values related to Fig. 14a and Fig. 14b. If we
consider the test program U, which tests login capabilities
of Fullteaching users, we observe that it is associated with a
minimum/maximum value of 0.5. The test programs we have
taken into account are all associated with authenticated APIs:
all test programs try to create a user (if it does not exist),
authenticate it, perform some action, and then conclude the
session. Therefore, U’s similarity score is stable with respect
to the other test programs, and it is set to a low value. In
this sense, we cannot consider it much similar to other test
programs. On the other hand, M is a test program which alters
several aspects related to a whole course, thus interacting with
many parts of the system under test. Due to its behaviour, it
exhibits a high score value, which is stable. This allows us to
conclude that it can be considered pretty similar to the other
test programs.

Let us now focus on test program A. If we compare the
minimum and maximum scores of the pairs A–O and A–
V, we may try to answer the question: “to which test is A
most similar?”. The pair A–O is associated with a minimum/
maximum value of 1.0, while A–V has a minimum/maximum
value of 0.75. We might conclude that, as far as endpoint

7The match with the test names in Fullteaching is in the replication package.



1 endpoint(’SessionControllerTest:modifySessionTest’, ’registerUserIfNotExists’, ’post’, ’/api-users/new’).
2 endpoint(’SessionControllerTest:modifySessionTest’, ’createCourseIfNotExist’, ’post’, ’/api-courses/new’).
3 endpoint(’SessionControllerTest:modifySessionTest’, ’newSession’, ’post’, ’/api-sessions/course/1’).
4 endpoint(’SessionControllerTest:modifySessionTest’, ’modifySessionTest’, ’put’, ’/api-sessions/edit’).
5 endpoint(’SessionControllerTest:deleteSessionTest’, ’registerUserIfNotExists’, ’post’, ’/api-users/new’).
6 endpoint(’SessionControllerTest:deleteSessionTest’, ’logIn’, ’get’, ’/api-logIn’).
7 endpoint(’SessionControllerTest:deleteSessionTest’, ’createCourseIfNotExist’, ’post’, ’/api-courses/new’).
8 endpoint(’SessionControllerTest:deleteSessionTest’, ’newSession’, ’post’, ’/api-sessions/course/1’).

Fig. 13: Example endpoint facts generated by the rules for similarity.
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Fig. 14: Similarity Matrices.

invocations are concerned, A is more similar to O than V. On
the other hand, if we compare the values of the pairs A–T
and A–V, we observe for A–T a minimum value of 0.75 and
a maximum value of 1.0 (depending again on the multiple
symbolic execution traces observed by our tool), while A–V
is stable at 0.67. In this case, we cannot conclude much on
the similarity among A, T, and V.

However, if we observe the results in Fig. 15, we can extract
more information. In the figure, we have selected a single
test program (A) and we have displayed the dispersion of the
similarity score with all the other test programs. By looking
at these results, we might conclude that A is more similar to
T than V, but not as much as we might imagine by looking at
Fig. 14. It is also interesting to note that, for some pairs (e.g.,
A–K), there is no dispersion at all—this is also reflected in
Fig. 14, where both the minimum and maximum values are
the same. This can be related to the fact that in the symbolic
execution tree there is only one feasible path for test program
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Fig. 15: Effect of Multiple Symbolic Traces
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Fig. 16: Number of Test Programs Deemed Similar.

K. In contrast, for other test programs, there are multiple
execution traces to compare, and therefore different similarity
scores are derived.

In Fig. 16 we show the number of test programs that can
be deemed similar by relying on our metric. In particular,
for each test program, we show the number of other test
programs that have a median similarity score among all
symbolic execution traces above 0.75 (Fig. 16a), and exactly
1.00 (Fig. 16b). As expected, the number of test programs
deemed similar decreases for higher median values. This is an
additional indication of the versatility of our approach. Indeed,
higher values of the similarity score might help at defining
narrower governance policies that can be enforced for reducing
regression test suites by selecting some test cases, skipping
redundant ones, or prioritising those expected to yield earlier
fault detection.



VII. CONCLUSIONS AND FUTURE WORK

We have discussed a methodology to extract relations
among (parametric) test programs for microservices applica-
tions. Through symbolic execution, we are able to extract from
a test suite relevant information about the methods that may
be called along some execution path—i.e., independently of
the actual concrete inputs fed into the test programs. This
information is processed by a set of Prolog rules, so as to
determine the endopoints that may be activated by running the
various test programs, and then used for computing a similarity
score. In a case study, we have observed that our approach can
generate a significant amount of information, which can be
used in the context of a governance framework for regression
testing for example by supporting decisions that could prevent
the enforcement of a retest-all strategy.

Future work will focus on a larger experimentation of the
proposed approach against known benchmarks or other avail-
able microservices applications. In addition, future research
directions will explore the formulation of alternative similarity
rules and their comparative study, as well. Finally, we plan
to apply the dependencies among regression test cases in
the context of test orchestrations graphs (i.e., active test case
selection and prioritisation), where the next set of test cases
to execute are dynamically chosen taking into account either
the observed test verdicts (i.e., test passed or failed), or the
output data produced by earlier executions.
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