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Abstract—Biochemical systems are characterized by rich
stochastic behaviors and complex interaction patterns, often mod-
eled through rule-based frameworks such as BioNetGen. Despite
the expressiveness of such high-level specifications, simulating
large-scale models remains computationally prohibitive. In this
paper, we present a model-driven framework for the parallel and
distributed execution of stochastic chemical reaction networks,
enabled by a model-to-model transformation of BioNetGen de-
scriptions. The transformation produces an intermediate repre-
sentation based on the Actor Model, in which actors encapsulate
local state and asynchronous communication, aligning with the
concurrency of biochemical processes. From this representation,
we generate executable code targeting ROOT-Sim, a speculative
parallel discrete-event simulation (PDES) environment based on
Time Warp. We propose an exact parallel implementation of the
Stochastic Simulation Algorithm (SSA), employing reaction par-
titioning to minimize inter-process dependencies and leveraging
an event-exchange protocol to ensure consistency and atomicity
of reactant consumption across logical processes. We introduce
refined rollback and reaction rescheduling mechanisms to address
potential correctness issues such as reactant overconsumption.
Extensive experiments on well-established models, such as FcεRI,
demonstrate substantial speedups over sequential methods.

Index Terms—SSA, BioNetGen, PDES, Model-Driven Engi-
neering, Actor Model, Time Warp, Chemical Reaction Networks,
Rule-Based Modelling.

I. INTRODUCTION

Biological systems are characterized by intricate behaviours
emerging from extensive interactions among numerous bio-
chemical entities. Computational modelling of biochemical
reaction networks is thus indispensable for researchers aiming
to understand, predict, and manipulate biological processes.
BioNetGen [1], a rule-based modelling framework, allows
researchers to succinctly represent complex biochemical net-
works through its dedicated domain-specific language (DSL).
Despite the expressiveness and usability of BioNetGen, effi-
ciently simulating large-scale reaction networks remains chal-
lenging due to their inherent stochastic nature and intensive
computational demands.

To overcome these computational hurdles, we propose a
framework that leverages model-driven engineering (MDE) [2]
in conjunction with the Actor model paradigm [3], [4]. Our
approach involves a model-to-model (M2M) transformation
that converts BioNetGen models into an intermediate rep-
resentation explicitly based on the Actor model [5]. In this
paradigm, computations are encapsulated within autonomous
entities, known as actors, which operate concurrently, maintain
local states, and communicate through asynchronous message

passing. This structure naturally aligns with the inherent
parallelism of biochemical reaction networks, allowing each
actor to represent either individual biochemical entities or dis-
tinct reaction processes. The resulting actor-based intermediate
representation facilitates automated translation into executable
code optimized for parallel and distributed computational
environments [5].

To support the execution of BioNetGen models on hetero-
geneous architectures, we also provide a parallel exact imple-
mentation of the Stochastic Simulation Algorithm (SSA) [6],
using the next-reaction method [7]. SSA precisely models
stochastic biochemical dynamics, capturing critical random
fluctuations and rare events that significantly influence biolog-
ical systems. Exact SSA methods are essential, particularly for
accurately simulating systems with low molecular concentra-
tions or reactions occurring infrequently but with considerable
biological impact. Consequently, exact SSA simulations are
fundamental for generating reliable predictions that can be
experimentally validated.

Despite its advantages, efficient execution of SSA within
distributed computing environments introduces notable tech-
nical complexities, particularly concerning state synchroniza-
tion and consistency. Accurate synchronization of molecular
populations across computational nodes is crucial, as reaction
probabilities depend on timely and accurate data. Delays or
errors in synchronization can lead to significant deviations
from accurate stochastic dynamics. Additionally, distributed
execution risks the occurrence of “double spending”, where
multiple nodes concurrently consume identical reactants, ne-
cessitating possibly complex synchronization and consistency
controls.

To address these challenges, we tested various reaction par-
titioning strategies to strategically distribute reactions across
computational nodes, aiming to minimize the number of
shared reactants and thus reduce synchronization overhead.
Nevertheless, certain reactants must remain shared to pre-
serve parallelism. In these cases, we ensure correctness by
employing an event-exchange protocol guaranteeing atomicity
and synchronized consumption of reactants. This protocol
efficiently prevents double spending and maintains simulation
consistency across distributed nodes by leveraging the actor
model’s asynchronous communication capabilities.

Furthermore, to optimize simulation efficiency, we integrate
speculative execution enabled by the Time Warp synchroniza-
tion protocol [8]. Speculative execution permits computational



nodes to optimistically advance their simulation states with-
out immediate synchronization, maximizing computational
throughput and minimizing idle time. When speculative com-
putations lead to inconsistencies, Time Warp addresses them
through rollback mechanisms, reverting the simulation state to
the last observed consistent one. This balance between com-
putational performance and simulation accuracy can maximize
resource utilization and thus performance.

We evaluate our framework using various biochemical mod-
els from the literature, representing a broad spectrum of com-
plexity and computational demands. Our results demonstrate
significant performance improvements relative to traditional
sequential SSA methods, validating scalability and efficiency.

Our implementation is released to the public as open-source
software 1.

The remainder of this paper is structured as follows. We
discuss related work in Section II. The approach to efficiently
execute parallel/distributed simulations of chemical reaction
networks, and the transformations used to translate a set of
reactions expressed in the BioNetGen DSL into our interme-
diate representation based on the Actor Model, are discussed
in Section III, along with the details on the parallel exact SSA
algorithm used to support the execution. The experimental
evaluation is provided in Section IV.

II. RELATED WORK

In this paper, we have a twofold goal: making a simple
BioNetGen-like description of a reaction network compatible
with speculative PDES simulators, and supporting their exact
parallel/distributed simulations by means of an SSA algorithm.

We tackle the first goal by using MDE techniques to
automate simulation model generation. Several recent works
have explored this pathway, which has been regarded as highly
promising. In [9], the authors have explored transformations to
automatically generate model versions suitable for heteroge-
neous architectures. The work in [10] explicitly targets interop-
erability across simulators, enabling simulationists to execute
identical models across multiple runtime environments. The
work in [11] advocates an MDE-based domain-specific mod-
eling approach focused on trustworthy agent-based simulations
by improving traceability and reproducibility, particularly for
critical decision-making contexts. We share the underlying
goal of these works, but focus on the biochemical reaction
domain.

Our second goal is to provide efficient execution of reaction
networks using algorithms from the family of SSA algorithms.
This problem has been of great interest, particularly because
the strong connection between the subsequent reaction and the
state of the entire system can make parallelization difficult.
In particular, accuracy and computational cost have been
recognized [12] as critical factors for an exact execution of
SSA algorithms, which we explicitly consider in this paper, in
contrast to approximate approaches.

1https://github.com/DomainProject/ParallelSSA.

Some works [13]–[15] have provided early optimistic im-
plementations with centralized coordination and lease-based
speculation. They share the use of master-worker approaches,
centralized components (e.g., brokers or message servers),
coarse-grained leasing or speculative windows, and explicit
focus on limitations arising from centralized bottlenecks such
as network round-trips, serial state uploads, and rollback
cascades due to large speculative windows.

All these works demonstrated that exact spatial SSA can
leverage optimistic Time-Warp synchronization across hetero-
geneous systems, but faced scalability limitations, especially
under high rollback frequency. Our fully distributed Time
Warp approach addresses these bottlenecks by clustering to-
gether reaction executions based on reactants, thus reducing
message exchange and rollback probability. Relying on re-
tractable messages also allows for reducing the burden at the
model level, exploiting platform-provided facilities to quickly
reorganize the future event set.

On the other hand, the works in [16]–[18] explicitly focus
more on distributed simulations without centralized lease bro-
kers, focusing on efficient management of rollbacks and mem-
ory management. In particular, these works aim to reduce the
rollback overhead by employing incremental state saving or
reverse computation techniques or relying on distributed GVT
algorithms to reduce the memory footprint. Other works [19]–
[21] introduce hybrid or controlled optimism schemes (e.g.,
Breathing Time Warp, dynamic local time windows) designed
to explicitly limit speculative execution to avoid rollback
explosions. They tend to evaluate more sophisticated syn-
chronization optimizations such as event retraction throttling,
selective rollback management, dynamic window-based throt-
tling, and fine-grained rollback triggering conditions. As such,
they are orthogonal to our proposal, because we focus on mak-
ing the forward execution phase more efficient, by reducing
the number of required interactions across Logical Processes
(LPs), thanks to proper static allocation of the reactions.
Moreover, we focus on the distributed interaction between the
LPs employing other techniques like retractable events. The
techniques studied in the above papers could also benefit from
the proposals in this paper.

Few works [22], [23] study the possibility of exploiting
accelerators (such as GPUs) or multicore machines to ex-
ploit hardware-specific optimizations, avoiding the burden of
supporting rollbacks in distributed environments. Although we
only perform an experimental evaluation of our proposal on
CPUs, we do not require any specific hardware platform.
Indeed, our proposal is compliant with the Time Warp syn-
chronization protocol and could therefore be exploited by any
platform abiding by it.

Hybrid methods and approximations have been studied
in [24], [25]. Here, the authors exploit approximations or
quasi-steady-state assumptions to improve performance at
the expense of strict exactness or scalability. In particular,
in [24] the authors propose a fully-sequential algorithm, while
in [25], although the authors mention the Time Warp protocol,
simulation trajectory corrections are strictly local: no state
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saving, rollback, or global virtual time is maintained, execution
remains single-threaded, and leap rejection is bounded by a
constant to curb overhead. Approximation is also exploited
in [26], where the authors rely on conservative synchroniza-
tion, fixed time windows, and approximate reaction-diffusion
decomposition strategies, offering scalability but sacrificing
exactness or incurring load imbalance due to conservative
policies. Unlike all these works, we tackle a fully parallel and
distributed optimistic execution scenario, while avoiding any
form of approximation.

The problem of handling the zero-lookahead nature of
SSA (biochemical) simulations has been thoroughly addressed
in [16], [21], [27]. These works mainly deal with explicit
minimization of rollback overhead through refined window
estimation, incremental state saving, or selective rollbacks. In
general, they study synchronization algorithms that differ from
those we rely upon. Many of the organizations of our model
at the LP level are also compatible with these works.

We share some background, goals, and approaches with
the theoretical work in [28]. This work, which is primarily
conceptual, introduces an SSA scheme based on Time Warp
synchronization, although no practical implementation nor
benchmarking is provided, while we have one. Also, differ-
ently from [28], we adopt a different distribution of reactions
to LPs, which could provide improved performance, while
reducing the number of simulation objects that are required to
carry on the execution—in particular, we only have LPs which
manage reactions, while the algorithm in [28] also requires
LPs that manage shared populations of reactants. Also, from
the details provided in [28], it is possible that, if two reactions
require the same reactant at the same time, the same reactant
will be used by both reactions, making the simulation’s result
incorrect. In our proposal, we explicitly deal with such corner
cases in an attempt to achieve higher accuracy.

III. PARALLEL SIMULATION OF REACTION NETWORKS

In this section, we discuss how we handle the BioNetGen
DSL to translate it into a parallel/distributed simulation model
of chemical reaction networks. We also illustrate how we
support the execution of such models at runtime.

A. The DSL Metamodel

We allow specifying a chemical reaction network using
the BioNetGen DSL, which is automatically transformed into
a parallel/distributed simulation model. We have realized a
BioNetGen DSL metamodel using JetBrains Meta Program-
ming System (MPS) as the reference language workbench. The
BioNetGen metamodel’s fundamental concepts and relations
are reported in Figure 1. This metamodel is then used to
transform a reaction specification into a software artifact (a
simulation model) that can be executed concurrently, also in
a distributed environment.

The central concept of the metamodel, encapsulating the
entire BioNetGen DSL, is the Script. The model is divided
into sections, as originally defined by the BioNetGen DSL.

Fig. 1: The BioNetGen DSL Metamodel.

The parameters section declares all scalar quantities that
may be used throughout the model, such as rate constants,
initial concentrations, and other numerical values. Each pa-
rameter is assigned a symbolic name and a numeric value.

The model’s fundamental molecular entities are specified in
the molecule types section. For each entity, its binding sites,
representing potential points of intermolecular interaction, and
its internal states, denoting distinct biochemical configurations
of those sites, are defined.

In BioNetGen, a molecule type represents a monomeric
unit, which we call a Species in our model. Each Species
includes binding sites, called SpeciesComponents, which may
have optional state values and binding states. A Complex is
formed when multiple Species bind together to create a larger
structure.

While the molecule types section defines the building blocks
and their component structure, it does not require all Com-
plexes to be enumerated. Instead, these emerge dynamically
through the reaction expansion, as will be discussed later.

The species section enumerates the molecules that are
initially present in the system, together with their initial
quantities, thus providing the initial conditions required to
instantiate the reaction network or initiate a simulation.

The reaction rules section encodes the system’s dynamic
behavior in terms of pattern-based transformation rules. Each
rule specifies a reactant pattern, a product pattern, and an
associated rate law. Reaction rules may be reversible or
irreversible and operate on molecular patterns rather than
enumerated species, enabling the compact representation of
systems with combinatorially large state spaces.

The observables section defines measurable quantities de-
rived from the system state, such as the concentration or count
of molecules with particular structural or state characteristics.
Each observable is assigned a name and one or more reactant
patterns to match. The value of the observable will be the sum
of the populations of reactants matching the patterns.



B. The M2M Transformation

The M2M transformation that we have envisaged to trans-
form a program expressed in the BioNetGet DSL into an
executable artifact has to deal with several intricacies, proper
to the DSL itself. Indeed, the DSL allows the specification
of high-level rules that are easy to code for the domain
expert, but must be transformed into the complete set of
biochemically meaningful reactions that define the system’s
dynamical behavior. Therefore, we must expand the rules into
the actual reactions, which are then mapped to the actor model
for further transformation.

1) Reaction Expansion: We implemented a reaction rule
expansion algorithm, similar in spirit to BioNetGen’s, that
generates all possible reactions and species reachable from an
initial system description. The expansion algorithm proceeds
iteratively and systematically constructs the complete reaction
network implied by the rules and initial species, as defined in
the subsections introduced. The algorithm operates as follows:

1) Initialization: The set of known species is initialized
using the species defined in the species block. The
initial reaction set is empty.

2) Iterative expansion: For each iteration (up to the user-
defined maximum), the algorithm examines all reaction
rules defined in the model. For each rule:

a) Each reactant pattern in the rule (which may
describe specific molecular components, states, and
bond constraints) is matched against the current set
of known species.

b) Pattern matching identifies all concrete species
that satisfy the structural and state constraints of
the reactant pattern. If multiple reactant patterns
are involved, the Cartesian product of all species
matching each pattern is computed to enumerate
all possible reactant n-tuples. In general, this is a
problem of subgraph isomorphism, which we have
solved by relying on the Ullman algorithm [29].

3) Reaction instantiation: For every valid combination of
matching species, the rule is applied concretely to gen-
erate new product species. The transformation respects
the binding, state changes, and topology specified in the
rule. Each generated reaction and resulting species are:

a) added to the chemical network only if they have
not been previously encountered;

b) used to update the global reaction and species lists.
4) Termination: The process repeats for the specified num-

ber of iterations or until no new species or reactions are
generated.

5) Observable expansion: Once the whole network is con-
structed, each observable defined in the observables
block is expanded by matching its reactant patterns
against the final set of species. All species that match
an observable’s pattern are grouped as the observed set
for that observable.

2) Mapping to the Actor Model: To transform a program
implemented according to the above metamodel, we have

relied on the Domain’s Actor Language [5], by implementing
a dedicated M2M transformation.

The resulting model defines a single actor type, representing
a processing unit responsible for managing a specific set of
reactions. The distribution of reactions across processing units
can follow five strategies: a standard round-robin assignment
based on a fixed number of units, a randomized round-
robin assignment obtained by shuffling the set of reactions
before applying a standard round-robin assignment, a batch
assignment splitting the network into a fixed number of equal
contiguous chunks, a grouping assignment that clusters all
reactions sharing at least one reactant onto the same unit, or
a graph-partitioning assignment trying to minimise dependen-
cies between units.

Since only one actor type is defined, a single behaviour is
generated, which is responsible for reaction scheduling, re-
action processing, and population adjustment. This behaviour
leverages the APIs provided by the runtime system developed
within the simulation environment.

3) From the Actor Model to an Executable Simulation
Model: To transform a reaction network expressed in the Actor
Model, we exploit the Domain M2T [5]. With these, we target
the ROme OpTimistic Simulator (ROOT-Sim) framework [30]
as the underlying simulation runtime environment.

The Domain M2T transformations are based on the cor-
respondence between the concept of actor and that of a
Logical Process (LP) proper of DES. The actor’s address is
automatically mapped during the M2T transformation into an
ID, which is used by ROOT-Sim to discriminate LPs and route
events.

Each actor takes care of a subset of the reactions in the
network. As such, all the actors share the very same behaviour,
associated with the execution of the SSA algorithm and the
management of the (local) population of reactants. Therefore,
the M2T transformation generates a single routine to process
each type of message (triggering of reactions, update of the
local population), and then relies on the exact parallel SSA
algorithm that we have devised. This algorithm is implemented
as an external library, i.e. an opaque part of an actor’s be-
haviour. Compiling the generated code against the ROOT-Sim
and parallel SSA libraries generates a functional artifact that
can simulate the evolution of the reactions initially specified
in the BioNetGen DSL.

C. The Exact Parallel SSA Algorithm

In contrast to simulation methods that use deterministic rate
equation models, that approximate reaction kinetics by as-
suming continuous concentrations and average behaviour, SSA
directly addresses the inherent stochasticity and discreteness
of chemical reactions by simulating a sequence of individual
reaction events that occur probabilistically, based on reaction
propensities, thus providing statistically exact trajectories of
the reacting system’s state in time.

The first algorithm to implement SSA was introduced by
Gillespie [6]. This algorithm, called the Direct Method (DM),



Algorithm 1 SSA Next Reaction Method (Gibson and Bruck)

Procedure: SSA NEXT REACTION METHOD
Set initial species populations
Initialize dependency graph G
t← 0 ▷ simulation time
for each reaction k do

Compute initial propensity ak
Sample rk ∼ U(0, 1)
Set τk ← t+ 1

ak
ln
(

1
rk

)
end for
while t ≤ max simulation time do

Let µ← argmink τk
t← τµ
Update species populations according to reaction µ
for each edge (µ, k) in the dependency graph G do

Update ak
if k = µ then

Sample new rk ∼ U(0, 1)
Set τk ← t+ 1

ak
ln
(

1
rk

)
else

Update time without resampling:

τk ← t+
aold
k

anew
k

(τk − t)

end if
end for

end while
end procedure

simulates the chemical kinetics by sampling the time and iden-
tity of the next reaction based on the propensities. It therefore
requires recalculating the total propensity and performing a
linear search through all reactions at each step. While exact,
its per-step complexity is O(N), where N is the number of
reactions, making it inefficient for large systems. Moreover,
parallelizing is more difficult because the search requires a
coherent view of the reactions and coordinated access to the
data structures.

Gibson and Bruck [7] improved DM’s efficiency by using
a dependency graph, indexed priority queues, and scheduled
reaction times, reducing per-step complexity to O(logN). This
structure, named the Next-Reaction Method (NRM), enables
event rescheduling without recomputing all propensities and is
well-suited for parallelism, especially in spatial or multiscale
models where localized reaction updates can be decoupled,
allowing for asynchronous and distributed simulation with
minimal global synchronization. We base our exact algorithm
on NRM.

Each reaction is defined as a set of reactants (the input
chemical species), a set of products (the output species), and
a specific rate constant, relating the rate of the reaction to
the quantities of reactants. For convenience, we also pre-
compute a vector of stoichiometry changes, expressing the
changes in the populations of the reactants consumed and

produced. During the simulation, each reaction holds two
dynamic properties: a propensity, which is the probability of
occurrence, and the time at which it will next occur, if any.
The propensity, denoted as ak, is computed as:

ak = ck ·
n∏

i=1

(xi)si (1)

where (xi)si = xi · (xi − 1) · · · (xi − si + 1), with ck rate
constants, xi reactants population, si stoichiometry factors.
The propensity computation is one of the crucial points of
NRM, as the main difference between NRM and DM is the
way propensities and reaction times are computed. In partic-
ular, the NRM generates only one uniform random number
in each step, while the DM requires two. Consequently, the
computation of the reaction time for each reaction becomes
strictly dependent on the propensity for that reaction, while in
the DM the reaction times are computed by choosing another
random number and normalizing with respect to the sum of the
propensities of all the reactions. The time of the next reaction
in NRM, denoted as τj , is computed as:

τk =
1

ak
· ln

(
1

rk

)
(2)

where ak is the propensity of reaction k and rk ∼ U(0, 1).
The M2M transformations described in Section III-B pro-

vide us with a graph G between the different actors that
characterizes the model’s dependencies among reactions and
species. The graph G is also partitioned into sub-networks of
reactions that we can simulate in parallel. These sub-networks,
thanks to the Domain M2T transformations described in Sec-
tion III-B2, are mapped to Logical Processes (LPs), which are
regarded by our exact-SSA library as SSA simulation objects.

Similarly to [28], we identify the species shared between
multiple sub-networks of reactions but do not allocate them
to a dedicated simulation object. Therefore, SSA objects are
responsible for executing the algorithmic steps of the SSA
algorithm, but also take on the responsibility of propagating
notices of reaction executions to other SSA objects.

We use retractable events [31] (i.e., simulation events that
can be removed from the system in case they are a-posteriori
detected as erroneous by the simulation logic) to manage
reaction execution events, while all the other events are regular
messages. While one may argue that this could antagonise the
simulation’s speculation capabilities, we chose this approach
because of the drastic reduction in the number of messages
in the event queue and the leanness of implementation, which
avoids costly slowdowns at runtime.

When the simulation starts, each LP populates its state and
selects the first reaction to execute among the ones associated
with it. At the beginning, the propensities and the reaction
times for each reaction are computed, using Equations (1)
and (2) described above. We find the next reaction to be
executed rµ (i.e. the one with minimum reaction time) and
use the schedule reaction method to schedule the execution
of rµ as a retractable event of type execute_reaction.



Upon receiving an event of type execute_reaction,
the method execute reaction is called to execute reaction
rµ. There, the LP responsible for executing rµ, i.e. LPe, first
notifies other LPs affected by this reaction about the reaction
execution. To do so, LPe gathers the list of LPs that are
interested in rµ. A reaction rd is interested in a reaction ri if
the execution of ri modifies the population of some species
used by rd as input. An LP is interested in a reaction ri if
it manages a reaction rd that is, in turn, interested in ri. For
each reaction, we pre-compute the dependency information
by constructing the list of interested reactions, starting from
the list of stoichiometry changes, which is in turn computed
using the list of a reaction’s inputs and outputs. LPe sends
an apply_reaction event to all LPs interested in rµ,
allowing them to update locally-stored population counts of
each chemical species, which are the local views of the LP
on the portion of simulation state it is interested in. The
apply_reaction events are sent with zero-lookahead to
ensure a consistent view of the global state across LPs. After
this dispatching, the reaction is executed locally, by applying
the stoichiometry changes to each reactant used and produced
by the reaction.

After executing the reaction, the
select reaction after execution method is called in order
to recompute reaction propensities and reaction times, as these
depend on the possibly changed reactant populations. Finally,
a zero-lookahead schedule_reaction event is scheduled
to self. Note that select reaction after execution is one
of the two select reaction x methods, which change based
on the event types that led to having to select a reaction.

To handle a schedule_reaction event, the LP selects
the reaction whose timestamp is closest in the future, and
schedules it using the aforementioned schedule reaction
method.

Lastly, upon receiving an apply_reaction event, an
LP must apply the population changes caused by the
executed reaction to the locally tracked reactant popula-
tions. After updating the view on molecule counts, the
LP uses the select reaction after cancellation method
to select the next reaction rµ to be executed, and
reschedules the retractable execute_reaction event
in accordance with the (new) next reaction time τµ
of rµ. Similarly to select reaction after execution,
select reaction after cancellation recomputes reaction
propensities and times.

The event ordering is paramount to guaranteeing ex-
ecution correctness. The event precedence is as follows:
execute_reaction precedes apply_reaction, which
precedes schedule_reaction. This has to be re-
spected because apply_reaction has to come after
execute_reaction, so as not to alter reactant populations
right before execution and both execute_reaction and
apply_reaction modify the reactant populations, thus
reaction scheduling with schedule_reaction has to nec-
essarily come after them. However, we must add an important
note about the special case where the last units of the reactant

are used simultaneously.
A crucial point not considered in [28] is the population

depletion upon reaction execution, an issue especially relevant
when we consider parallel and speculative execution. For
instance, given some reactant A, input of multiple reactions
rA,i, it can happen that two reactions rA,1 and rA,2 are fired at
the same time by different LPs. While concurrent reactions can
take place in SSA, the parallel nature of the presented approach
means that edge cases can arise, in which the population of A
is insufficient for both rA,1 and rA,2 to execute. In a (biased)
sequential implementation, the second reaction would simply
not be fired. However, in a parallel simulation, one has to
devise a way to decide which reaction goes through and which
does not.

For this reason, we see that the execute_reaction
→ apply_reaction → schedule_reaction ordering
fails to correctly avoid the “double spending” of the last units
of reactant on its own. We note that this corner case is likely
very rare, but it could wreck simulation correctness.

To fix the issue, one of the following techniques must be
employed:

1) The partitioning of the reaction graph G has to consider
the usage of shared reactants. The only way for an LP to
decide whether a reaction can be fired is to have the view
of all the populations of reactants it uses. By assigning
to a single LP all the reactions that share at least
one input reactant, we completely avoid the possibility
of scheduling two reactions that use the last unit of
reactant at the same exact time, as the execution within a
single LP is inherently sequential. We implemented this
solution with the reaction clustering approach presented
in Section III-B2. This however can lead to long chains
of interdependent reactions, reducing the parallelisation
opportunities even for larger models, and potentially
leading to heavy workload imbalance.

2) A change in the tie-breaking rule, to include the sender
LP’s ID in the message ordering, before the event type.
For simplicity and without loss of generality, suppose
that a smaller ID is preferred by the tie-breaking. Sup-
pose two LPs LP1 and LP2 manage reactions rA,1 and
rA,2 respectively. Suppose that rA,1 and rA,2 both use
reactant A. Should rA,1 and rA,2 be scheduled for the
same time while not enough units of A are available for
both reactions to execute, then LP1’s messages would
take precedence over all of LP2’s messages. This way,
LP1 will handle an execute_reaction event e1
locally, generating an apply_reaction event a1 to
send to LP2, which will in turn execute a1 from LP1

over its own execute_reaction e2, triggering a
recalculation of reaction times, which will discover that
rA,2 is not fireable for lack of reagents, preventing e2
from being scheduled in the first place. This is the
solution we employed, as it was revealed to be the most
efficient, while being less restrictive.

3) The usage of superposition primitives [32] offered by
the underlying simulation runtime environment. These



allow the SSA library to look at all the simultaneous
events, and possibly reorder them (or deny the execution
of some of them) based on the current population.

We emphasise that this problem is not related to the absence
of a dedicated object to manage the reactant population: even
in this case, the same pattern could cause a “double spending”.
Again, deciding whether a reaction can be applied requires
full knowledge of the current quantities of the reactants
used: an object dedicated to managing the populations of
shared reactants exclusively would not have access to enough
information to decide whether to apply a reaction or not.
To have enough information, the object would have to stop
managing only shared reactant populations, while requiring
a reaction network partitioning in the fashion of the first
proposed technique, effectively moving the entirety of reactant
population management away from the SSA objects.

A second point that deserves attention is that reac-
tions may not be fireable because of a lack of re-
actants. An immediate implementation (which is also
used in [28], without considering the case of non-
fireable reactions) for select reaction after execution and
select reaction after cancellation, entails computing the
new propensity of each involved reaction either from scratch
using Equation (2), taking a new random number if the target
reaction was the one just executed or previously non-fireable,
or update it using Equation (3) otherwise. A more efficient
solution (provided in the original NRM paper [7]) entails
keeping track of the last non-zero propensity and reaction time
interval, to use for computing the new reaction time once the
required reactants are available again, and avoid drawing more
random numbers. The formula for updating the reaction times
without drawing random numbers is reported in Equation (3):

τk =
ak
āk
· (τk − t) + t (3)

To address the occurrence of non-fireable reactions, we
compute the new propensity and check whether it is zero or
not. If it is zero, we must discriminate whether the reaction
was the last one executed or not. In the former case, we
set the reaction time to a large negative value, in order to
know that this reaction’s execution time will have to be
generated from scratch once the reactant population becomes
greater than zero, using Equation (2). In the latter case, we
store the negative of the difference between the reaction time
and the time at which the propensity became zero for the
first time, in place of the next reaction time. That is, the
(τk − t) portion of Equation (3). We also save the last non-
zero propensity as the reaction’s propensity. This mechanism
allows us to manage non-fireable reactions while generating
the same amount of random numbers as a complete sequential
NRM implementation and reusing space.

When we compute the reaction times, we must consider
the described protocol to take care of non-fireable reactions.
Hence, whenever attempting to compute the next reaction time
for a given reaction r̂, we check the values stored for r̂:

• If we are computing the reaction times after executing and
r̂ was the last executed reaction, r̂’s reaction time needs
to be recomputed as if it was just injected into the system,
using a new random number as specified in Equation (2).
Should r̂ be non-fireable for lack of reactants, we instead
do not compute the reaction time and store −inf as its
next reaction time for future reference.

• If r̂ was not the last executed reaction and does not have
enough reactants to be fired, we check the value stored
as the next reaction time.

– If it is positive, then r̂ just stopped being fireable. We
keep the last non-zero propensity and save −(τk− t)
as its next reaction time.

– If it is negative, then r̂ stopped being fireable in the
past, and we have already saved the relevant data and
move on to dealing with the next reaction.

• If r̂ was not the last executed reaction and has enough
reactants to be fired, we check the value stored as the
next reaction time.

– If it is positive, r̂ was fireable and continues to be.
We calculate the new propensity and reaction time
using Equations (1) and (3).

– If it is negative, then r̂ stopped being fireable in the
past, and we check the stored reaction time ts.

∗ If it is ts = −inf , then we compute the reaction
time from scratch using Equation (2).

∗ Otherwise, ts is the inverse of the old reaction
interval ts = −(τk − t). We use the interval, the
old propensity ak and the new propensity āk in
Equation (3) to compute the new reaction time.

The implementations of select reaction after execution
and select reaction after cancellation differ in that the
former checks whether a reaction was the last executed one,
while the latter does not need to.

IV. EXPERIMENTAL EVALUATION

In our assessment, we have used real-world reaction net-
works from the literature, taken from epidermal growth factor
receptor (EGFR) signalling models [33], [34].

FcεRI represents the early events of immune cells respond-
ing when they detect some kind of threat, such as allergens. It
focuses on a receptor on the cell surface called FcεRI, which
reacts with the proteins Lyn and Syk, and a bivalent ligand
that aggregates FcεRI. The reaction network described by this
model, called fceri ji, contains 354 molecular species and
3,080 reactions with non-zero rate. We considered the original
FcεRI models as well as some extensions, one adding the
Lyn kinase to the model, called fceri fyn lig, with 2,506
molecular species and 28,072 reactions with non-zero rate, and
one adding the Fyn kinase to the model, called fceri fyn,
with 1,281 molecular species and 12,904 reactions with non-
zero rate. These extensions add more binding sites, species,
and reaction rules, enlarging the considered network.



A. Testbed Configurations

We have run our experiments on a multi-processor machine
equipped with 2 Intel Xeon Silver 4210R processors, each
one hosting 10 cores and 20 hardware threads. The machine
is equipped with 160GB of RAM, organized in two NUMA
nodes, and has 8-way 640KB L1 caches, 16-way 20MB L2
caches, and 11-way 27.5 MB LLC.

For the parallel runs, we have executed the above models
using the code generated according to the M2T transforma-
tions described in Section III-B, using ROOT-Sim [30]. We
have varied the number of threads to analyse scalability from
2 to the maximum parallelism available on our machine, that
is, 40 cores. We executed our tests using a target end-time
in Virtual Time for both our and BioNetGen’s simulations,
set to 100 simulated seconds. The choice of 100s as end-
time is a trade-off between the convergence to a steady-
state (typically hundreds of seconds of virtual time), and
performance accuracy and consistency across the simulators.
Finally, we considered a GVT period of 100ms.

We test our implementation against BioNetGen [1]. As
discussed, we implement the NRM for exact stochastic sim-
ulation, while BioNetGen implements DM. We also note that
BioNetGen runs a sequential kinetic Monte Carlo simulation,
hence computing the time and ID of the next reaction by
sampling from the sum of reaction propensities at each time
step, thus avoiding any overhead for managing reactions’ and
simulation’s states.

To ensure fairness, both simulators were run on the same
hardware, and all stochastic simulations were repeated 10
times per configuration to account for runtime variability due
to system noise and stochastic event ordering, as we measured
the elapsed time in seconds for both simulators.

Since our algorithm involves messages to notify LPs pos-
sibly affected by the execution of a reaction ri, reaction
partitioning has a crucial role in avoiding incurring com-
munication overhead among LPs. We have explored several
partitioning techniques to analyse if and how they affect
simulation performance: batch, round robin, randomized round
robin, reactant clustering, and metis. For each of them, we
build models partitioned into 24, 100, and 1,000 LPs.

The batch partitioning consists of giving a set amount
of contiguous reactions to each LP, possibly limiting the
dependencies among reactions on different LPs, as reactions
generated close in time to one another could be more likely to
be interdependent. The expected advantage is to favour clus-
tering of dependencies and reduce inter-LP communication.
However, it could cause load imbalance, especially for models
with few reactions.

The round robin approach is the simplest one, and it consists
of giving one reaction to each LP in a round robin fashion,
while randomized round robin shuffles the reactions before
applying the round robin scheme. The advantage of round
robin approaches is that they guarantee the fairness of the
assignment and avoid load imbalance. However, it does not
focus on dependencies across LPs.

The reactant clustering approach aimed to guarantee ex-
ecution correctness by removing the possibility of “double
spending” as discussed in Section III-C. The resulting par-
titions turned out to be highly imbalanced for all available
models, making them unusable.

As for the metis partitioning, we used gpmetis, the
well-known graph partitioning algorithm from the METIS
suite [35], to partition the graph of reactions in order to
reduce the dependencies across LPs. For this scheme, we
represented the reactions as a graph G = (V,E), V being the
set of reactions, E being the set of edges, with u, v reactions,
and (u, v) ∈ E if reaction v is interested to reaction u,
or vice-versa. This is because METIS works on undirected
graphs. Each partition found using gpmetis is assigned to
one simulation LP.

B. Results

In Figure 2, we report the elapsed time for each model and
each configuration. Under the batch strategy, we observe that
fceri ji’s performance degrades with 100 and 1,000 LPs, likely
due to the increased imbalance, as it is the smallest considered
model. However, with 24 LPs, the same model outperforms
BioNetGen, especially at high thread counts, indicating that
batch partitioning can be effective when the number of LPs is
small and the clustering of reaction dependencies is preserved.
In contrast, both fceri fyn and fceri fyn lig consistently out-
perform BioNetGen across all tested LP configurations when
using batch partitioning, especially at higher thread counts.
This suggests that for larger models, the benefits of co-locating
dependent reactions outweigh the downsides of potential im-
balance.

With metis, all models show improved performance over
BioNetGen when using 24 LPs, highlighting the advantage
of reducing cross-LP dependencies. While fceri fyn performs
similarly with 24 and 100 LPs, smaller LP counts generally
yield better performance due to over-partitioning avoidance.

Conversely, the round robin and randomized round robin
strategies fail to deliver consistent speedups. fceri ji and
fceri fyn both underperform across most LP configurations,
likely due to excessive inter-LP communication from the in-
terleaved reaction assignment. An exception is partially given
by fceri fyn lig, which sees improvements with 24 and 1,000
LPs, possibly due to better load balancing at scale. However,
these benefits might be model-specific and unreliable overall.
For clarity and readability, we omit the round robin results for
fceri ji with 1,000 LPs, as the results were severely impacted
by the overhead of distributing 3,080 reactions across 1,000
LPs.

We also show in Figure 3 a detail on the elapsed time for
a subset of the considered configurations, to better highlight
the gains obtained by our SSA implementation leveraging the
speculative PDES paradigm. Even for smaller models like
fceri ji, we observe a peak speedup of 1.85x with 16 threads
using batch partitioning and 24 LPs. This highlights that over-
partitioning such models introduces overhead, making fewer
LPs preferable.



2 4 8 16 24 32 40
Thread Count

0

2

4

6

8

10

12

14
El

ap
se

d 
Ti

m
e 

(s
)

fceri_ji: Average Elapsed Time vs Thread Count

(a) fceri ji

2 4 8 16 24 32 40
Thread Count

0

5

10

15

20

25

El
ap

se
d 

Ti
m

e 
(s

)

fceri_fyn: Average Elapsed Time vs Thread Count

(b) fceri fyn

2 4 8 16 24 32 40
Thread Count

0

20

40

60

80

100

120

140

160

El
ap

se
d 

Ti
m

e 
(s

)

fceri_fyn_lig: Average Elapsed Time vs Thread Count

(c) fceri fyn lig
BATCH 1000LP

BATCH 100LP

BATCH 24LP

METIS PARTITIONING 1000LP

METIS PARTITIONING 100LP

METIS PARTITIONING 24LP

RANDOMIZED ROUND ROBIN 1000LP

RANDOMIZED ROUND ROBIN 100LP

RANDOMIZED ROUND ROBIN 24LP

ROUND ROBIN 1000LP

ROUND ROBIN 100LP

ROUND ROBIN 24LP

BioNetGen SSA (mean = 25.65s)

Fig. 2: Elapsed time when varying thread count

2 4 8 16 24 32 40
Thread Count

1.0

1.5

2.0

2.5

3.0

3.5

El
ap

se
d 

Ti
m

e 
(s

)

fceri_ji: Elapsed Time vs Thread Count

BioNetGen SSA (mean = 1.65s)
BATCH 100LP

BATCH 24LP METIS PARTITIONING 24LP

(a) fceri ji

2 4 8 16 24 32 40
Thread Count

5

10

15

El
ap

se
d 

Ti
m

e 
(s

)

fceri_fyn: Elapsed Time vs Thread Count

BioNetGen SSA (mean = 8.31s)
BATCH 1000LP
BATCH 100LP
BATCH 24LP

METIS PARTITIONING 100LP
METIS PARTITIONING 24LP
RANDOMIZED ROUND ROBIN 100LP

RANDOMIZED ROUND ROBIN 24LP
ROUND ROBIN 100LP
ROUND ROBIN 24LP

(b) fceri fyn

2 4 8 16 24 32 40
Thread Count

10

20

30

40

50

El
ap

se
d 

Ti
m

e 
(s

)

fceri_fyn_lig: Elapsed Time vs Thread Count

BioNetGen SSA (mean = 25.65s)
BATCH 1000LP

BATCH 100LP
BATCH 24LP

METIS PARTITIONING 100LP
METIS PARTITIONING 24LP

(c) fceri fyn lig

Fig. 3: Elapsed time of a subset of the models when varying thread count

The model fceri fyn shows a more consistent performance
improvement across the schemes. We reach the maximum
speedup of 4.62x at 16 threads for the batch strategy with
100 LPs. Most configurations outperform BioNetGen from
8 threads onward (e.g. metis with 24 threads and 100 LPs
provides 1.95x speedup). Despite the spike of batch with 1,000
LPs at 24 threads, we note that this strategy outperforms
BioNetGen in most cases, suggesting that higher LP counts
can be supported. While round robin variants offer slight
gains with 24 LPs, their performance drops with more LPs
due to increased dependencies, reinforcing the advantage of
structured partitioning like batch and metis.

For the largest model, fceri fyn lig, batch and metis perform
best, with a peak speedup of 2.5x at 16 threads for batch with
100 LPs. Notably, batch with 1,000 LPs outperforms smaller-
LP configurations at higher thread counts (≥ 24), suggesting
that higher LP counts can be beneficial for highly complex
models, and that a more careful graph partitioning scheme
might be needed.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have demonstrated that a model-driven
transformation of BioNetGen specifications into an actor-based
intermediate representation enables efficient, parallel, and dis-
tributed stochastic simulation of chemical reaction networks.
By combining the expressiveness of the Actor Model with
the scalability of ROOT-Sim’s speculative PDES environment,
our exact SSA implementation achieves non-negligible per-
formance improvements over traditional sequential methods
while preserving stochastic accuracy. Our experimental results,
carried out on well-known models from the literature, have
confirmed the viability of actor-oriented model transformations
as a foundation for high-performance biochemical simulation.

Future work will focus on extending the framework to support
hybrid simulation strategies, automatic tuning of partitioning
schemes, and runtime adaptation to heterogeneous platforms.
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A. M. Uhrmacher, “Quantifying the roles of space and stochasticity
in computer simulations for cell biology and cellular biochemistry,”
Molecular biology of the cell, vol. 32, no. 2, pp. 186–210, Jan. 2021.

[13] M. Jeschke, R. Ewald, A. Park, R. Fujimoto, and A. M. Uhrmacher, “A
parallel and distributed discrete event approach for spatial cell-biological
simulations,” Performance evaluation review, vol. 35, no. 4, pp. 22–31,
Mar. 2008.

[14] M. Jeschke, A. Park, R. Ewald, R. Fujimoto, and A. M. Uhrmacher,
“Parallel and distributed spatial simulation of chemical reactions,” in
2008 22nd Workshop on Principles of Advanced and Distributed Simu-
lation. IEEE, Jun. 2008.

[15] F. Xing, Y. P. Yao, Z. W. Jiang, and B. Wang, “Fine-grained parallel
and distributed spatial stochastic simulation of biological reactions,”
Advanced materials research, vol. 345, pp. 104–112, Sep. 2011.

[16] Z. Lin and Y. Yao, “Parallel discrete event simulation of stochastic
reaction and diffusion using reverse computation,” in 2015 IEEE Inter-
national Conference on Smart City/SocialCom/SustainCom (SmartCity).
IEEE, Dec. 2015.

[17] Z. Lin, C. Tropper, R. A. McDougal, M. N. I. Patoary, W. W. Lytton,
Y. Yao, and M. L. Hines, “Multithreaded stochastic PDES for reactions
and diffusions in neurons,” ACM Transactions on Modeling and Com-
puter Simulation, vol. 27, pp. 1–27, 2016.
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