
Proactive Scalability and Management of Resources
in Hybrid Clouds via Machine Learning

Dimiter R. Avresky
IRIANC–Munich, Germany

autonomic@irianc.com

Pierangelo Di Sanzo∗, Alessandro Pellegrini†, Bruno Ciciani‡, Luca Forte§
DIAG–Sapienza, University of Rome

{∗disanzo, †pellegrini, ‡ciciani}@dis.uniroma1.it
§luca.forte@hotmail.it

Abstract—In this paper, we present a novel framework for
supporting the management and optimization of application
subject to software anomalies and deployed on large scale cloud
architectures, composed of different geographically distributed
cloud regions. The framework uses machine learning models
for predicting failures caused by accumulation of anomalies. It
introduces a novel workload balancing approach and a proactive
system scale up/scale down technique. We developed a prototype
of the framework and present some experiments for validating
the applicability of the proposed approaches.

I. INTRODUCTION

Nowadays, software anomalies are recognized as some of
the major problems affecting performance and availability of
computer applications. For example, in [1] it has been shown
that in web applications an average of 40% of anomalies is due
to software errors. Accumulation of software anomalies (such
as memory leaks, unterminated threads, unreleased locks and
file fragmentation) may cause performance loss and/or reduce
service availability due to system hangs or crashes. These
problems become more complex to be addressed when dealing
with distributed applications deployed at a geographical scale.
Indeed, these kinds of applications typically involve large
amount of resources, complex system architectures and heavy
and high dynamic workload. This makes it particularly hard
to cope with failures of any nature, to understand associated
causes and to promptly perform proper actions to address
associated problems.

In this paper, we propose a novel framework for proactive
management and optimization of geographically-distributed
applications which are affected by the presence of software
anomalies. We focus on the case of applications deployed on
IaaS (Infrastructure as a Service) cloud architectures composed
of multiple and geographically-distributed cloud regions. The
framework leverages, as a building block, our previous work
described in [2], where we presented the PCAM (Proactive
Client-server Application Management) Framework. PCAM is
a framework designed for the case of a single cloud region,
where a number of virtual machines (VMs) host server replicas
of a client-server application. PCAM exploits machine learning
(ML) models for predicting, at run-time, the Remaining Time
to Failure (RTTF) of VMs, where failures of VMs are caused
by accumulation of anomalies. A failure can be a crash, a
violation of a given threshold of the response time, or (more
generally) any situation where the VM does not adequately
respond to user requests—these situations can be established
by user. Based on RTTF predictions of VMs, PCAM proac-
tively removes a VM from the pool of active VMs (i.e. the

set of VMs serving client requests) when it is approaching a
failure. Upon removing a VM, PCAM adds a new VM (which
is available in a pool of stand-by VMs) to the pool of active
machines. Additionally, it triggers a software rejuvenation [3]
procedure for the deactivated VM (e.g. by restarting the VM)
to remove accumulated anomalies in order to restore it to a
correct working state. Once this procedure terminates, the VM
is added to the pool of stand-by VMs and becomes available
to replace an active VM when it is approaching a failure. By
using the above-described strategy, PCAM constantly ensures
efficiency of all VMs in the poll of active VMs. Ultimately,
PCAM can improve system availability and guarantee adequate
average system response time, although VMs are subject to
accumulation of anomalies. For technical details and experi-
mental results regarding PCAM, we refer the reader to [2].
Further, as for details on ML-based prediction models used by
PCAM, we refer to [4].

As we discussed, PCAM has been designed for a single
cloud region. In this paper, we consider a geographically-
distributed cloud architecture composed of a number of cloud
regions. We assume to have in each cloud region an Autonomic
Cloud Manager (ACM) which uses an instance of PCAM to
manage local VMs. Cloud regions can be either public or
private, thus they can also form hybrid cloud infrastructures.
We call the new framework that we present in this paper Inter-
ACM Framework (I-ACMF). Basically, the contribution of I-
ACMF is twofold: 1) I-ACMF extends the usability of PCAM
to the case of a geographically-distributed cloud architecture,
and 2) it introduces a novel load balancing strategy across
different cloud regions based on the Mean Time to Failure
(MTTF) of VMs. Specifically, as for the first contribution,
I-ACMF enables to create, in a straightforward way, large
scale deployments of applications on dynamic multi-cloud
architectures. I-ACMF allows to dynamically add or remove
cloud regions (also belonging to different cloud providers) at
run-time, in order to cope, e.g., with overall system workload
fluctuations. As for the second contribution, I-ACMF is able to
proactively distribute the workload across cloud regions, so as
to balance the overhead associated with proactive management
of failures of VMs in different regions, and to avoid overloaded
regions. Particularly, I-ACMF can balance the workload also
accounting for different anomaly occurrences in different re-
gions and different computing power of regions.

I-ACMF leverages a distributed architecture composed of
a set of controllers, one for each cloud region, each one
connected to the local PCAM instance. A controller monitors
the values of the predicted MTTF of each VM in the pool of

active VMs of its region. These values are used to evaluate the
average MTTF of VMs of the cloud region, which we refer to
as RMTTF. The RMTTF allows to calculate the average VM
failure rate of the region (i.e. the reciprocal of the RMTTF).
This rate is used as an indicator to evaluate if the cloud
region is able to properly respond to the current workload.
In fact, the average VM failure rate of a region is affected by
various factors, including the current workload of the region,
the available computing power in the region (e.g. the number of
VMs and their configurations), the specific anomalies affecting
the application software components deployed in the regions.
As an example, since the workload of a region is spread across
VMs of the local pool of active VMs, in a region with a
small pool, each VM is subject to higher workload. This may
increase the anomaly generation rate of VMs of the region,
thus also the average VM failure rate of the region.

We note that, although PCAM can ensure the efficiency of
active VMs of a regions, this comes at the cost of performing
rejuvenation procedures and activation/deactivation of VMs.
Thus, when a region is subject to higher average VM failure
rate, the management overhead of PCAM grows. In other
scenarios, when some regions have low computing power,
or they are subject to different anomalies with respect to
other ones, some regions may be excessively overloaded (thus
reducing service availability and causing performance loss),
while resources of other regions may be underutilized. I-
ACMF copes with these problems by using the average VM
failure rate of regions for both local a global purposes. Locally,
it uses the average VM failure rate of a region to determine
when additional VMs should be added to the pool of active
VMs (or when the size of the pool can be reduced) to ensure
adequate availability and performance in the region. Globally,
I-ACMF uses the average failure rates of all cloud regions
to decides how to balance the workload across regions. The
strategy used by I-ACMF aims at ensuring that all available
regions of the multi-cloud architecture show the same RMTTF
(thus also the average VM failure rate). Overall, the I-ACMF
approach can prevent various undesired situations and provide
various advantages:

• Locally, it improves both availability and performance
of a region.

• Globally, it can avoid situations where some regions
show lower availability and lower performance with
respect to other ones.

• Workload is automatically balanced with respect to
different computing power of regions, and to different
anomaly occurrences in different regions.

• When a VM joins (leaves) a region, the region work-
load is automatically spread across local VMs (by the
local PCAM instance), and, consequently, the global
workload is automatically balanced across regions
(according to the new global configuration) by I-
ACMF, which detects the variation of the RMTTF
caused by the VM join (leaving).

• Cloud regions can be added or removed by simply
calling join or leaving operations. I-ACMF automati-
cally manages the new global cloud configuration, and
it automatically spreads the workload across regions

based on the variation of the RMTTF of all regions
of the new configuration.

Overall, I-ACMF aims at simplifying the deployment and
the management of applications on multi-cloud architectures.
Indeed, I-ACMF has been designed to transparently perform
various tasks to improve availability and provide optimal per-
formance at both local and global level. Particularly, I-ACMF
aims at sparing system administrators from the burden of
performing complex deployments, configurations and recovery
tasks in front of the presence of software anomalies and various
kinds of failures.

The remainder of this paper is structured as follows. In
Section II we discuss related work. Section III discusses
the design and implementation choices of our Framework.
Experimental data to assess the validity and viability of our
proposal are reported in Section IV. Section V draws the
conclusions.

II. RELATED WORK

In the context of management of resources for cloud com-
puting environments, several proposals have been presented in
order to manage the accumulation of anomalies via proactive
software rejuvenation [3]. Nevertheless, our work stands as
an innovative solution, because it can manage any number of
VMs, even geographically distributed, without any constraint
on the topology of the distributed deploy of the application.
Specifically in the context of hybrid cloud environments,
the work in [5] proposes a hybrid cloud computing model
to make the best use of public cloud services along with
privately-owned data centers. The paper presents as well a
workload factoring service designed for proactive workload
management. In [6], a resilient hierarchical distributed loop
self-scheduling algorithm able to cope with VMs crashes
is presented. Contrarily to these works, in our proposal we
enforce proactive rearrangement of the cloud organization, and
we are further able to redirect incoming requests to different
geographical areas, so as to reduce the impact of software
rejuvenation of availability of the system.

A work similar in spirit to our one is presented in [7].
This paper proposes a capacity allocation algorithms which can
coordinate multiple distributed resource controllers operating
in geographically distributed cloud sites, coupled with a load
redirection mechanism which distributes incoming requests
among different sites. Nevertheless, the main focus of the pro-
posal in [7] is to reduce the cost of allocated resources. In [8],
custom interfaces for implementing policies and provisioning
techniques for allocation of VMs under inter-networked Cloud
computing scenarios are presented. Compared to these works,
we offer a transparent deploy of virtualized applications on a
geographical scale, offering at the same time an increase in
the availability of the system.

In [9], workload forecasting and optimal resource al-
location is studied. This is done by illustrating a model-
predictive algorithm for workload forecasting that is used for
resource auto scaling. Similarly, the work in [10] presents a
provisioning technique that automatically adapts to workload
changes related to applications for facilitating the adaptive
management of system and offering end-users guaranteed
Quality of Services (QoS) in large, autonomous, and highly

dynamic environments, using an analytic model. As well,
in [11] Markovian Arrival Processes are used for the same
purpose. Statistical models, for the same goal, are presented
in [12]. Differently from these proposals, we offer a complete
framework which, being based on ML techniques, allows for
the integration with any virtualized application. In particular,
transparent deploy at a geographical scale, with self-tuning
capabilities and proactive management of the workload are
specific differences with these proposals.

In [13], the authors present a simulation framework for
online capacity planning of cloud-based in-memory data stores.
This work relies as well on ML methods, but only to determine
network latency, while other aspects proper of the application
are predicted using a simulative/analytic model. Contrarily,
we broaden the applicability of our proposal to any kind
of application, not only in-memory data stores. Furthermore,
we rely only on ML techniques, which can capture hidden
dynamics of the application.

III. THE I-ACMF ARCHITECTURE AND
IMPLEMENTATION DETAILS

I-ACMF allows to manage distribute resources over cloud
regions in different geographical locations. Resources may
belong to different cloud providers, private clouds, as well
as to hybrid infrastructures. In each cloud region, I-ACMF
manages a set of VMs. Each VM hosts a server replica of
the application. According to the PCAM protocol described
in [2], each VM of a cloud region can be either in the ACTIVE
state or in the STANDBY state. VMs in the ACTIVE state
process requests coming from remote clients. Upon receiving
an activation command, a STANDBY VM switches to the
ACTIVE state and starts to process incoming requests. The
activation command is sent by PCAM to a STANDBY VM
whenever an ACTIVE VM has to undergo the rejuvenation
procedure (because it is predicted approaching a failure), or
when whenever I-ACMF decides that a higher number of VMs
is necessary to process local workload of the cloud region.
Conversely, if I-ACMF decides that the pool of active VMs
has to be reduced, it changes the state of an active VM to the
STANDBY state.

In Figure 1, we show the I-ACMF architecture for a
scenario with three cloud regions. Different colors are used to
represent the components belonging to different cloud regions.
In each cloud region there are two main components:

• A Controller, which is in charge of managing local
resources of the cloud region and of communicating
with controllers of other cloud regions.

• A Load Balancer (LB), which receives requests from
remote clients and forwards them to local VMs or to
LBs of other cloud regions. LB receives from CON
information about fractions of workload to forward
locally and to LBs of other cloud regions.

The internal architecture of a cloud region is shown in
Figure 2. In the I-ACMF architecture, LBs act as entry points
of the application for remote clients. We note that having
multiple LBs in the system is typical of several real-world
scenarios. In fact, applications deployed on geographically
scale usually have multiple entry points, which can be reached

Controller

load

set

con guration

Figure 2. Internal architecture of a Cloud Region

by clients through, e.g., directory services, such as DNS
servers.

In the follow, we provide specific details about I-ACMF
architecture components and their implementations.

A. MTTF Prediction Models

As discussed, I-ACMF leverages ML models provided by
PCAM for predicting the MTTF of each active VM in a
cloud region. Here, we briefly provides some details about ML
models generation. These models are generated by a training
process which exploits data related to run-time measurements
of a set of system features (such as memory and CPU us-
age) and events related to VM failures, which are collected
while observing VMs running. To reduce the set of system
features used to build prediction models, PCAM uses Lasso
regularization [14]. This allows to reduce both the training
time of ML models and the overhead for VM monitoring at
run-time. PCAM uses WEKA [15] to generate differentiated
ML prediction models. Particularly, PCAM produces models
by using the following algorithms: Linear Regression [16],
M5P [17], REP Tree [18], SVM [19], LS-SVM [20] and
Lasso as a predictor [14]. Predictions models produced by
the training process are complemented by a set of indicators
which allow the user to chose the most suitable MTTF model
for the application. For each prediction model, the follow-
ing indicators are provided: Maximum Absolute Prediction
Error (MAPE), Relative Absolute Prediction Error (RAPE),
Relative Absolute Prediction Error (RAPE), Relative Absolute
Prediction Error (RAPE), Relative Absolute Prediction Error
(RAPE), Mean Absolute Error (MAE) and Soft-Mean Absolute
Error (S-MAE). We refer the reader to [4] for a thorough
description of the training process and the provided indicators.

B. Global Workload Balancing Strategy

In the I-ACMF architecture, one controller acts as a leader.
I-ACMF relies on the leader election algorithm presented
in [21]. It is an efficient and scalable algorithm and is highly
resilient to changes in the network of participants. By relying
on this algorithm, I-ACMF is able to enforce dynamic network
reconfiguration, even in case of multiple node and link failures
in high-speed networks with arbitrary topology.

Overlay

Network

Controller

Load

BalancerClients

Load Balancer

Controller

Clients

Controller

Load Balancer

Clients

application

data

application

data

commands
features

co
n

ap

d

g
lo

b

a
p
p
lica

tio
n

d
a
ta

commands

featu
re

s

applicat

data
Cloud Region 2

Cloud Region 1

. . .

VMs

. . .

VMs

. . .

VMs

conf.

conf.

conf.

Figure 1. Global System Architecture with 3 Cloud Regions

The leader collects, from other controllers, data related to
incoming client request rate and to RMTTF of each cloud
region. The controller of a cloud region periodically sends
these data to the leader. Upon receiving updated data from
controllers, the leader decides how to distribute the current
global workload across cloud regions. Specifically, it decides
the fraction of the global workload to be assigned to each
cloud region. The RMTTF of a cloud region is calculated
based on the Sensible Routing approach, as described in [22].
In detail, upon receiving a new value of the RMTTF from the
cloud region i at time t, say RMTTF t

i , the RMTTF of the
cloud region, say RMTTFi, is updated by using the following
weighted average:

RMTTFi ← (1− β) ·RMTTFi + β ·RMTTF t
i , (1)

where 0 ≤ β ≤ 1.

Assuming to have N cloud regions, the fraction fi of global
incoming client requests to be forwarded to cloud region i is
calculated as:

fi =
RMTTFn

i∑N
j=1RMTTFn

j

(2)

We note that, using this approach, if a cloud region shows
a higher RMTTF (i.e. lower VM failure rate), then I-ACMF
forwards to this cloud region a higher fraction of workload
with respect to cloud regions with lower RMTTF (i.e. higher
VM failure rate). The effect of this policy is to level the
RMTTF of cloud regions.

Once calculated fi for each region, I-ACMF calculates
a global forward plan. This plan establishes, for each cloud
region, the fractions of incoming client requests received by
the local LB to be forwarded to local VMs and to be forwarded
to LBs of other cloud regions. I-ACMF uses the following

algorithm. Assume that si is the fraction of incoming client
requests of LB of the cloud region i with respect to the
global incoming client requests. In the first step, the algorithm
evaluates, for each LB of each cloud region, if si ≤ fi. If yes,
all client requests received by LB are locally forwarded. For
cloud regions for which the previous condition in not true, a
fraction of incoming client requests of the cloud region has
to be forwarded to other cloud regions. Then, in the second
step, for each cloud region for which si > fi, the algorithm
distributes the fraction of requests si−fi to other cloud regions
for which the already assigned total fraction of incoming client
requests is less then fj , where j is the cloud region identifier.
Then, the final output of the algorithm is sent to LBs, which
start to forward local incoming client requests according to the
new global forward plan.

C. Proactive Activation/Deactivation of VMs

When the global workload increases, the failure rate of
VMs in one or multiple cloud regions may increase, so
that excessive performance loss and low availability may be
experienced by clients. As a countermeasure to this issue, I-
ACMF can proactively change the number of active VMs in
each cloud region. If the RMTTF of a cloud region becomes
less (more) than a given threshold, then the local controller
can activate news VM (deactivate some active VMs) by using
MTTF prediction models to evaluate the expected RMTTF as
a result of the VM activation (deactivation).

IV. EXPERIMENTAL EVALUATION

In this section, we present results of an experimental study
we conducted to assess I-ACMF. We show results for the case
an hybrid cloud architecture, where we used three cloud re-
gions: Region 1, hosted in the Ireland Region of Amazon EC2,
Region 2, hosted in the Frankfurt Region of Amazon EC2, and
Region 3, privately hosted in a 32-cores HP ProLiant server
with 100 GB RAM, located in Munich (Germany). We used

 0

 500

 1000

 1500

 2000

 0 50 100 150 200

M
T

T
F

 (
s
e

c
o

n
d

s
)

Execution Time (seconds)

Region 1
Region 2

Global

Figure 3. RMTTF variation when a new cloud region joins the system

m3.medium Amazon EC2 instances in Region 1 and Region
2, and VMs with equivalent configuration in Region 3. The HP
ProLiant server was equipped with VMware Workstation 10.4
as a hypervisor. All VMs were equipped with Ubuntu 10.04
Linux Distribution (kernel version 2.6.32-5-amd64). The test-
bed application was the TPC-W benchmark [23], a multi-tier
e-commerce web application that simulates an on-line book
store. We used a Java implementation of TPC-W [24] devel-
oped using servlets, and relying on Mysql [25] as a database
server. Clients were emulated using emulated web browsers
to generate requests according to TPC-W specifications. We
modified the TPC-W implementation for randomly generating
software anomalies at run-time, including memory leaks and
unterminated threads. Specifically, anomalies were generated
with different probabilities on each VM when receiving a client
request. This led to scenarios where each VM (thus each cloud
region) was showing different anomaly occurrence patterns.
We varied the number of active clients (towards each cloud
region) in the interval [16, 512]. Based on our previous result
in [4], we selected REP Tree as a ML model for predicting
the MTTF.

As a preliminary assessment, in Figure 3, we show the
effects on the RMTTF when a cloud region joins the system.
We started the experiment using only Region 1. After about
50 seconds (the time is marked by the vertical red line in
the figure) Region 2 joins the system. At this point, the two
controllers start exchanging information. By the figure, we can
see that, before Region 2 joins the system, the RMTTF of
Region 1 is about 1000 seconds (also, it is equal to the global
RMTTF). After Region 2 joins the system, the RMTTF of
Region 1 and Region 2 start to converge to comparable values.
Overall, the global RMTTF increases. This shows that I-ACMF
has been able to distribute the global workload between the two
regions, in a way to even out the RMTTF of the two cloud
regions and to reduce the global VMs failure rate.

In Figure 4, we show some results for demonstrating how
the load balancing approach of I-ACMF works. We used
Region 1 and Region 2. In this experiment, the emulated
web browsers are connected only to Region 1. Initially, only
Region 1 is connected to the system, thus all client requests
are processed by Region 1. We note that, initially, the RMTTF
of Region 1 is about 3000 seconds and the forward probability
of client requests (i.e. the fraction of global workload) towards

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60 70

F
o
rw

a
rd

 P
ro

b
a
b
il
it

y

Execution Time (minutes)

Region 1
Region 2

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

R
M

T
T
F
 (
s
e
c
o
n
d
s
)

Region 1
Region 2

Figure 4. MTTF and Forward Probability, 2 regions, Constant rate (500
requests per sec)

 0

 200

 400

 600

 800

 0 20 40 60 80 100 120 140

R
e
q
u
e
s
ts

 p
e
r

s
e
c
o
n
d

Execution Time (minutes)

Request Rate

 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

b
a
b

ili
ty

Region 1
Region 2
Region 3

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

M
T

T
F

 (
s
e
c
o
n

d
s
)

Region 1
Region 2
Region 3

Figure 5. Request rate, MTTF, and Forward Probability, 3 regions, variable
rate

Region 1 is equal to 1. After about 22 minutes (first red line
in the figure), Region 2 joins the system, thus I-ACMF starts
to balance the workload. Just after the join, the RMTTF of
Region 2 is higher than Region 2, given that all VMs in Region
2 are in a "clean" state (i.e. no anomalies are accumulated).
Thus, the forward probability rapidly increases for Region 2
and decreases for Region 1. Around minute 34, the system
reaches an equilibrium: the forward probability is constant
(about 0.5 per region), and the RMTTF of the two regions
becomes almost the same. Around minute 55 (second red line
in the figure), Region 2 leaves the system. Then, given that
I-ACMF can no longer distribute the workload, the RMTTF
of Region 1 returns to the same low value as in the first part
of the experiment.

In Figure 5, we report the results of an experiment using all
three cloud regions. Differently from the previous scenarios,
in this experiment the load generated by the emulated web
browsers connected to Region 1 changes over time (while
it is constant for Region 2). In particular, after minute 22
(first red line in figure), the client request generation rate
increases from 300 to about 700 requests per second. This
highest value is reached around minute 75. Initially, there are
only Region 1 and Region 3 (Region 2 joins the system after
about 90 minutes - second red line in figure). We note that,

while the incoming request rate increases, the RMTTF of both
regions decreases. However, although the incoming request
rate increases only for Region 1, I-ACMF is able to keep
balanced the RMTTF of both cloud regions. Finally, when
Region 2 joins the system, the RMTTF of the all cloud regions
starts to increase, as long as the forward probabilities changes
and reaches an equilibrium. This shows that I-ACMF has been
able to cope with different incoming client request rates in
different cloud regions, as well as with variations due to scale
up/scale down of the system.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented I-ACMF, a framework for
proactive management and optimization of application subjects
to software anomalies and deployed on distributed geograph-
ical (hybrid) multi-cloud infrastructures. As building block.
I-ACMF exploits machine learning models for predicting the
mean time to failure of virtual machines of different cloud
regions caused by accumulation of anomalies. Overall, I-
ACMF uses a combination of strategies and techniques, such
as a proactive rejuvenation, a workload balancing approach
based on virtual machine failure rates, and a proactive system
scale up and scale down technique. Experimental results show
that I-ACMF can simplify application deployment and man-
agement, also in front of non-uniform client request rates in
different cloud regions, workload variations and system scale
up/scale down at both cloud region level and global system
level. As a future work, we plan to address issues related to
communication over geographical scale in I-ACMF. We plan
to use an overlay network to support reliable and efficient
communication between cloud regions.

ACKNOWLEDGEMENTS

The research presented in this paper has been supported
by the European Union via the EC funded project PANACEA,
contract number FP7 610764.

REFERENCES

[1] S. Pertet and P. Narasimhan, “Causes of Failure in Web Applications,”
Carnegie Mellon University, Tech. Rep. CMU-PDL-05-109, 2005.

[2] P. Di Sanzo, A. Pellegrini, and D. R. Avresky, “Machine Learning for
Achieving Self-* Properties and Seamless Execution of Applications in
the Cloud,” in Proceedings of the Fourth IEEE Symposium on Network
Cloud Computing and Applications, ser. NCCA. IEEE Computer
Society, 2015.

[3] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software
aging and rejuvenation: Where we are and where we are going,” in
Proceedings - 2011 3rd International Workshop on Software Aging and
Rejuvenation, WoSAR 2011, 2011, pp. 1–6.

[4] A. Pellegrini, P. Di Sanzo, and D. R. Avresky, “A Machine Learning-
based Framework for Building Application Failure Prediction Models,”
in Proceedings of the 20th IEEE Workshop on Dependable Parallel,
Distributed and Network-Centric Systems, ser. DPDNS. IEEE Com-
puter Society, 2015.

[5] H. Zhang, G. Jiang, K. Yoshihira, and H. Chen, “Proactive workload
management in hybrid cloud computing,” Network and Service Man-
agement, IEEE Transactions on, vol. 11, no. 1, pp. 90–100, March
2014.

[6] Y. Han and A. T. Chronopoulos, “A Resilient Hierarchical Distributed
Loop Self-Scheduling Scheme for Cloud Systems,” in IEEE 13th
International Symposium on Network Computing and Applications,
2014.

[7] D. Ardagna, S. Casolari, M. Colajanni, and B. Panicucci, “Dual time-
scale distributed capacity allocation and load redirect algorithms for
cloud systems,” Journal of Parallel and Distributed Computing, vol. 72,
no. 6, pp. 796–808, 2012.

[8] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning
algorithms,” Software - Practice and Experience, vol. 41, no. 1, pp.
23–50, 2011.

[9] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud
using predictive models for workload forecasting,” in Proceedings -
2011 IEEE 4th International Conference on Cloud Computing, CLOUD
2011, 2011, pp. 500–507.

[10] R. N. Calheiros, R. Ranjan, and R. Buyya, “Virtual Machine Provision-
ing Based on Analytical Performance and QoS in Cloud Computing
Environments,” 2011 International Conference on Parallel Processing,
pp. 295–304, 2011.

[11] S. Pacheco-Sanchez, G. Casale, B. Scotney, S. McClean, G. Parr, and
S. Dawson, “Markovian workload characterization for QoS prediction
in the cloud,” in Proceedings - 2011 IEEE 4th International Conference
on Cloud Computing, CLOUD 2011, 2011, pp. 147–154.

[12] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson, “Statistics-
driven workload modeling for the cloud,” in Proceedings - International
Conference on Data Engineering, 2010, pp. 87–92.

[13] P. Di Sanzo, F. Quaglia, B. Ciciani, A. Pellegrini, D. Didona, P. Romano,
R. Palmieri, and S. Peluso, “A Flexible Framework for Accurate
Simulation of Cloud In-Memory Data Stores,” Simulation Modelling
Practice and Theory, 2015.

[14] R. Tibshirani, “Regression Shrinkage and Selection Via the Lasso,”
Journal of the Royal Statistical Society, Series B, vol. 58, pp. 267–288,
1994.

[15] I. H. Witten, E. Frank, L. E. Trigg, M. A. Hall, G. Holmes, and S. J.
Cunningham, “Weka: Practical machine learning tools and techniques
with Java implementations,” 1999.

[16] K. P. Murphy, Machine Learning: a Probabilistic Perspective. MIT
Press, 2012.

[17] Y. Wang and I. H. Witten, “Inducing Model Trees for Continuous
Classes,” in Procedings of the 9th European Conference on Machine
Learning, 1997, pp. 128–137.

[18] H. A. Chipman, E. I. George, and R. E. Mcculloch, “Extracting
Representative Tree Models From a Forest,” in IPT Group, IT Division,
CERN, 1998, pp. 363–377.

[19] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learn-
ing, vol. 20, no. 3, pp. 273–297, 1995.

[20] J. A. K. Suykens and J. Vandewalle, “Least Squares Support Vector
Machine Classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–
300, 1999.

[21] D. R. Avresky and N. Natchev, “Dynamic reconfiguration in computer
clusters with irregular topologies in the presence of multiple node and
link failures,” IEEE Transactions on Computers, vol. 54, no. 5, pp.
603–615, 2005.

[22] L. Wang and E. Gelenbe, “Adaptive dispatching of tasks in
the cloud,” CoRR, vol. abs/1501.00567, 2015. [Online]. Available:
http://arxiv.org/abs/1501.00567

[23] W. D. Smith, “TPC-W: Benchmarking an ecommerce solution,” 2000.
[24] T. Bezenek, T. Cain, R. Dickson, T. Heil, M. Martin, C. McCurdy,

R. Rajwar, E. Weglarz, C. Zilles, and M. Lipasti, “Characterizing a Java
implementation of TPC-W,” in Proceedings of the Third Workshop On
Computer Architecture Evaluation Using Commercial Workloads, 2000.

[25] MySQL, “MySQL database server,” http://www.mysql.com, 2004.

