
Sapienza University of Rome

Ph.D. program in Computer Engineering

XXVI Cycle

Techniques for Transparent Parallelization of

Discrete Event Simulation Models

Alessandro Pellegrini

A.Y. 2013/2014

Sapienza University of Rome

Ph.D. program in Computer Engineering

XXVI Cycle

Alessandro Pellegrini

Techniques for Transparent Parallelization of

Discrete Event Simulation Models

Thesis Committee

Prof. Francesco Quaglia (Advisor)

Prof. Camil Demetrescu

Reviewers

Prof. George F. Riley

Prof. Philip A. Wilsey

A.Y. 2013/2014

Author’s address:
Alessandro Pellegrini
Dipartimento di Ingegneria Informatica, Automatica e Gestionale
Sapienza Università di Roma
Via Ariosto 25, 00185 Roma, Italy
e-mail: pellegrini@dis.uniroma1.it

www: http://www.dis.uniroma1.it/∼pellegrini/

mailto:pellegrini@dis.uniroma1.it
http://www.dis.uniroma1.it/~pellegrini/

Contents

Abstract 1

1 Introduction 5

2 Research Context and Achieved Results 17

2.1 Formal Definition of DES Models 18

2.2 Systemic Approach to DES . 26

2.2.1 Basic Components of DES 28

2.2.2 Simulation Kernel’s Basic Logic 32

2.3 Parallel Discrete Event Simulation (PDES) 33

2.3.1 The Synchronization Problem 38

2.3.2 Additional Components of PDES 55

2.4 Results Achieved within this Thesis 59

2.5 Hardware Setup and Base Software 62

2.5.1 The ROOT-Sim Platform 63

2.5.2 Hijacker and Ad-Hoc Assembly Modules 65

2.5.3 Benchmark Applications 66

i

3 Literature Survey 77

3.1 State Saving . 78

3.1.1 Copy State Saving (CSS) 78

3.1.2 Sparse State Saving (SSS) 79

3.1.3 Incremental State Saving (ISS) 86

3.2 Consistent Output Generation 91

3.3 Data Sharing across Concurrent Logical Processes 95

3.3.1 Advancements by the thesis 97

3.4 Non-Blocking Algorithms . 98

4 Efficient and Transparent Incremental State Saving 101

4.1 Overview of Di-DyMeLoR’s Architecture 103

4.1.1 Management of the Memory Map 105

4.2 Simulation Model Instrumentation Technique 111

4.3 State Log Operations . 119

4.4 State Restore Operations . 120

4.5 Memory Recovery . 123

4.6 Third Party Library Wrapper . 124

4.7 Experimental Evaluation . 125

4.7.1 Benchmark Applications and Configuration 125

4.7.2 Results . 127

5 Interacting with the Outside World 135

5.1 Output Management . 139

5.1.1 Involved Issues . 139

5.1.2 The Output Management Architecture 142

5.1.3 Optimizations . 154

ii

5.2 Experimental Evaluation . 158

6 Managing Global Variables 173

6.1 Shared-State Management Architecture 174

6.1.1 Read/Write Detection . 175

6.1.2 Accounting for Third-Party Libraries 178

6.1.3 Memory Map and Version Lists 179

6.1.4 Accessing Version Lists 185

6.1.5 Synchronization and Rollback Operations 186

6.1.6 Memory Recovery and Management 188

6.2 Correctness of the Approach . 189

6.3 Experimental Evaluation . 192

6.3.1 Test-Bed Application and Configuration 192

6.3.2 Results . 194

7 Cross-Accessing Logical Processes’ States 197

7.1 Event and Cross-State Synchronization 200

7.1.1 Cross-State Dependency Tracking 200

7.1.2 The Event and Cross-State Synchronization Scheme . . . 211

7.2 Experimental Evaluation . 221

7.2.1 Implementation within the ROOT-Sim Platform 221

7.2.2 Results . 222

8 Effects on Timeliness and Accuracy 229

8.1 Effects of Optimism on Simulation Results 231

8.1.1 Results . 232

8.2 Simulation Completion Detection via Output Management . . . 236

iii

9 Effects on Programmability 239

10 Conclusions and Future Work 255

A Hijacker 261

A.1 Design and Implementation . 265

A.1.1 Rule Specification . 265

A.1.2 Application Analysis and Internal Binary Representation 268

A.1.3 Code and Data Instrumentation 271

A.1.4 Bundled Instrumentation Features 273

A.1.5 Binary Multi-versioning 274

A.1.6 Binary Recreation . 275

A.1.7 Third-party libraries . 275

A.2 Experimental Evaluation . 276

B ROOT-Sim 279

B.1 Supported APIs . 282

B.2 Internal Features . 286

B.3 A Code Example . 288

B.4 Runtime Data . 290

Bibliography 291

iv

List of Figures

1.1 CPU specifications trend . 6

1.2 Parallel Speedup . 8

1.3 Amdahl’s Law . 9

2.1 Sample DEVS model: Producer/Consumer 22

2.2 Parallel Discrete Event Simulator Classical Architecture 35

2.3 Parallel Discrete Event Simulator Multithread Architecture . . . 36

2.4 Event Causality Violation . 39

2.5 Deadlock in Conservative Synchronization 40

2.6 Rollback Operation . 44

2.7 Reference Architecture for Optimistic Simulation Systems 55

2.8 Diagram of our Experimental Hardware Architecture 62

2.9 Top500: CPU Vendors share over time 67

2.10 Top500: OS share over time . 67

2.11 TCAR Simulation Model: Terrain and Agents 71

2.12 Client and Cache-Server LP . 74

3.1 Copy State Saving Approach . 78

v

3.2 Sparse State Saving Approach . 79

4.1 Di-DyMeLoR’s Architecture . 104

4.2 Main Memory Map Data Structures in Di-DyMeLoR. 105

4.3 x86/x86_64 addressing mode . 113

4.4 Simulation Model Instrumentation Process 119

4.5 Incremental Restore Process . 122

4.6 PCS – Variable τA . 128

4.7 PCS – Frequent Fading Recalculation 128

4.8 PCS – Memory Usage . 129

4.9 NoSQL – Execution Time . 133

5.1 Non-Rollbackable Interaction with the Outside World 140

5.2 Application Scenario of the Output Daemon 143

5.3 ROOT-Sim and the Output Daemon Architecture 154

5.4 Throughput for f = 1% . 162

5.5 Throughput for f = 7% . 162

5.6 Throughput for f = 12% . 163

5.7 Throughput for f = 35% . 163

5.8 Throughput with Different Data Types 164

5.9 Shared Memory Size for f = 1% 165

5.10 Shared Memory Size for f = 7% 166

5.11 Shared Memory Size for f = 12% 166

5.12 Shared Memory Size for f = 35% 167

5.13 Generation/Materialization Delay for f = 1% 169

5.14 Generation/Materialization Delay for f = 7% 169

5.15 Generation/Materialization Delay for f = 12% 170

vi

5.16 Generation/Materialization Delay for f = 35% 170

5.17 Frequency Variation . 171

6.1 Preallocated Shared Memory Map 182

6.2 Non-Blocking Linked List Operations 184

6.3 Occurrence of the Rollback Operation 187

6.4 Throughput Running on 32 Kernel Instances 194

6.5 Scaling with respect to the Number of Parallel Instances 195

7.1 The Paging Scheme in x86_64 processors 201

7.2 Example Association between Stocks and LPs. 203

7.3 LPx’s Memory Stock is opened for Access 204

7.4 State Diagram for Switch Operations between Page Tables 208

7.5 Deadlock Originated by a Rendez-Vous Generating Event 219

7.6 Domino-Effect due to a Rollback 220

7.7 Relative Speedup: Memory Management vs Sequential Run . . . 223

7.8 Relative Speedup: Memory Management vs Classical Parallel Run 225

7.9 Execution times for the NoSQL data store models 227

8.1 Global Execution Times . 233

8.2 Committed Events . 233

A.1 General Hijacker’s Architecture 266

A.2 Example configuration file . 266

A.3 Hijackers Internal Representation of Executables 270

A.4 Overheads Associated with Different Workloads 277

B.1 ROOT-Sim Architecture . 282

B.2 General Statistics Output File . 291

vii

List of Tables

2.1 Opteron Cache Details . 63

3.1 Comparison of State Saving Techniques 90

4.1 Di-DyMeLoR: Speedup values . 132

8.1 Mean Completion Simulation Time (in Simulated Hours) 235

8.2 Mean Completion Simulation Time with Output Manager (in

Simulated Hours) . 236

ix

List of Algorithms

2.1 DES Skeleton . 32

3.2 Optimal χ Selection . 82

5.3 Accessing the Logical Device in Write Mode 147

5.4 Accessing the Logical Device in Read Mode 172

6.5 Shared Memory Allocation . 182

6.6 Global Variable Read . 186

6.7 Global Variable Write . 187

2.8 Implementation of ROOT-Sim’s Simulation Loop 287

xi

Acknowledgements

The work leading to this dissertation has been a long journey, which would not

have been possible without the help of many. First and foremost, I would like to

thank Prof. Francesco Quaglia, my advisor and my mentor. He has initiated me

to the world of simulation, and has since then gone beyond the call of duty of

his advising work. He has been a great fellow in thinking, discussing, realizing

and assessing every proposal. The outcome of this work owes much to his

enthusiastic encouragement, continuous guidance, and permanent availability,

despite all. All the coherence that you will find in this work directly comes from

his personal ability in climbing the trees and see the whole forest.

A special thanks goes to Roberto Vitali, an invaluable co-worker and a real

friend. We have been working together since the time of my Bachelor’s degree,

we have spent many night asleep looking at cumbersome dumps to find subtle

bugs in assembly code, and he has never held back to give unconditional help.

All this would have never seen the light without him.

A word of gratitude goes to Prof. Bruno Ciciani. He has given me the

opportunity to be involved in so many interesting projects, which were aside from

the main track of my research, and which therefore gave me a more thorough

view on what is going on in the world. He has always emphasized that if your

xiii

work is amazing, but you are not a good person, then your work is not valuable.

This is a teaching that I will never forget.

To all the other guys in Room B120: Diego, Pierangelo, Roberto, and Sebas-

tiano. You have always been a source of inspiration, and you have never missed

the opportunity to criticize any work to make it better, or to look for a solution

altogether, whatever the problem was. It has been a great experience to work

with a group of very prepared people who enjoyed what we were doing. These

years will be stuck in my head forever.

I am very grateful to my whole family: Giorgio, Norma, Marta, Andrea, and

Francesca. They have always believed in me, and they have always encouraged

me to keep on working. The nights spent asleep have been many, but they have

been less hard, because you all were there supporting me!

Thanks to my old friends Giulia, Gian Marco, and Simone, the only ones

forcing me to shut my computer down to go out and see the light of the sun.

I make no pretence about the efforts made, the fear of the Lord is the be-

ginning of knowledge. He created everything with such complexity that, fortu-

nately, Ph.D.’s can still be earned for some time to come.

Thanks again to those who helped me, supported me, taught me a lot,

laughed with me, and kept me going. And to Marta for all of the above.

Alessandro Pellegrini

xiv

Abstract

Simulation is a powerful technique to represent the evolution of real-world phe-

nomena or systems over time. It has been extensively used in different research

fields (from medicine to biology, to economy, and to disaster rescue) to study

the behaviour of complex systems during their evolution (symbiotic simulation)

or before their actual realization (what-if analysis).

A traditional way to achieve high performance simulations is the employ-

ment of Parallel Discrete Event Simulation (PDES) techniques, which are based

on the partitioning of the simulation model into Logical Processes (LPs) that

can execute events in parallel on different CPUs and/or different CPU cores,

and rely on synchronization mechanisms to achieve causally consistent execu-

tion of simulation events. As it is well recognized, the optimistic synchronization

approach, namely the Time Warp protocol, which is based on rollback for recov-

ering possible timestamp-order violations due to the absence of block-until-safe

policies for event processing, is likely to favour speedup in general application/

architectural contexts.

However, the optimistic PDES paradigm implicitly relies on a program-

ming model that shifts from traditional sequential-style programming, given

that there is no notion of global address space (fully accessible while processing

1

2 Abstract

events at any LP). Furthermore, there is the underlying assumption that the

code associated with event handlers cannot execute unrecoverable operations

given their speculative processing nature. Nevertheless, even though no unre-

coverable action is ever executed by event handlers, a means to actually undo

the action if requested needs to be devised and implemented within the software

stack.

On the other hand, sequential-style programming is an easy paradigm for

the development of simulation code, given that it does not require the program-

mer to reason about memory partitioning (and therefore message passing) and

speculative (concurrent) processing of the application.

In this thesis, we present methodological and technical innovations which

will show how it is possible, by developing innovative runtime mechanisms, to

allow a programmer to implement its simulation model in a fully sequential way,

and have the underlying simulation framework to execute it in parallel according

to speculative processing techniques. Some of the approaches we provide show

applicability in either shared- or distributed-memory systems, while others will

be specifically tailored to multi/many-core architectures.

We will clearly show, during the development of these supports, what is the

effect on performance of these solutions, which will nevertheless be negligible,

allowing a fruitful exploitation of the available computing power. In the end,

we will highlight which are the clear benefits on the programming model that

the model developer will experience by relying on these innovative solutions.

Chapter Organization

In Chapter 1, we introduce the research problems which we will address through-

out this thesis. In Chapter 2 we specifically frame the research context in which

Abstract 3

this thesis is inserted. Chapter 3 discusses relevant research literature results

which will be used or advanced during this work.

In Chapter 4 we present an innovative transparent incremental state saving

subsystem, which allows the user to transparently scatter the simulation state

on dynamic memory, while enabling the simulation kernel to take benefit of

incremental state saving for performance enhancement. Consistent interactions

with the outside world (namely, the generation of consistent output from a spec-

ulative execution of the simulation model) is discussed in Chapter 5. Chapters

6 and 7 deal with transparent access to shared portions of the simulation state,

the former targeting global variables, the latter cross-LP state dependencies.

In Chapters 8 and 9 we highlight which are the benefits from the proposed

supports. In Chapter 10 we draw conclusions and open up for future improve-

ments in this, and other, research contexts.

Appendix A and Appendix B provide technical details on supporting soft-

ware which has been developed to implement all the proposed advancements in

this thesis.

Chapter 1

Introduction

“Where shall I begin, please your Majesty?” he asked.

“Begin at the beginning”, the King said, gravely,

“and go on till you come to the end: then stop”

— Lewis Carroll, Alice’s Adventures in Wonderland, 1865

Over the past 45 years, the total number of transistors available on a mi-

crochip has doubled every 18–24 months, a trend which is known as Moore’s law

[109]. This yielded a proportional increase in a single processor’s clock speed

which, in the past decades, was bringing an enhancement in the computing

speed which researchers, developers and users were receiving for free, whenever

they were upgrading their hardware. Improvements in algorithms and/or code

optimizations were not strict requirements to be pursued, because—as the time

was passing by—the software was just working more and more efficiently.

Nowadays, while we are transitioning from petascale to exascale systems, we

are facing new challenging issues. In fact, even though the previous transition

(from terascale to petascale) could directly benefit from the aforementioned

implications of Moore’s law, we are now hitting limits imposed by fundamental

5

6 1. Introduction

Figure 1.1: CPU specifications trend1

physics, as shown by the dynamic power equation [180]:

P = ACV 2f (1.1)

where P is the power consumption, A is the activity factor (i.e., the fraction

of the circuit that is switching), C is the switched capacitance, V is the supply

voltage, and f is the operating frequency.

Historically, MOSFET technology was able to scale because, while increas-

ing the total number of transistors per chip, it was decreasing their size and

capacitance. At the same time, an increase in the overall frequency was counter-

balanced by a decrease in the supply voltage. This process, known as Dennard

scaling [33], was actually the electrical basis for Moore’s law. In Figure 1.1 we

see the trend of off-the-shelf processing units during the last 45 years. Moore’s
1Figure taken from [160].

7

law’s effect is clearly visible in the first part, as the number of transistors in a

CPU keeps doubling, and the frequency follows the same trend. Yet, around

year 2003 something happened: Although the number of transistors presents

the same trend, clock speed increase has stalled. This is connected to the fact

that switching noise in the circuits poses a limit to supply voltage decrease,

and current leakage (due to the extremely small size of transistors) causes the

chip to heat up, requiring a flattening in the clock frequency to keep Equation

(1.1) in balance [112]. In fact, 130 W of power consumption in a processor is

considered an upper bound, the so-called clock-frequency wall [160]: an increase

in the clock frequency would create an unacceptable power consumption.

The industry has therefore approached physical limits in the computing

power of a single processing unit, although the number of transistors per area

unit is still increasing. Nevertheless, the demand for continued improvements

in computing speed is still there, and this is driving hardware manufacturers to

switch to the multicore technology, where chips with multiple processing units

are being produced.

While it is interesting to note that Moore’s law is still present (as it’s now

describing the number of cores in a multicore CPU [11]), it’s important to em-

phasize that this fairly new technology paves the way to a massive usage of

concurrent programming, and requires at the same time a global rethinking of

the mechanisms and methodology used to build up parallel applications. The

naïve approach to parallel programming sees the user simply partitioning her

code and making it run on different processing unit instances (let them be cores

or parallel CPUs). What the user may expect is that, like in the past years, dou-

bling the computing power (which today means doubling the amount of CPUs/

CPU cores) consequently produces a proportional increase in the speed. This

8 1. Introduction

2x
4x

Speedup

8x

User Code

Cores

(a) Expected Speedup

Speedup

1.8x

6.5x

3.6x

User Code

Cores

(b) Real Speedup

Figure 1.2: Parallel Speedup

scenario is shown in Figure 1.2(a).

Unfortunately, this is not the real scale up: To ensure correctness of the

result, a program cannot freely execute any instruction in parallel. In particular,

every concurrent access to objects not being serialized by any underlying layer

(e.g., memory accesses) might produce unexpected (inconsistent) results. To

avoid this, several techniques have been proposed, the simplest of which is the

locking primitive, which enables one instance of the parallel program to read or

modify data only if no-one else is performing the same action at the same time.

As presented in Figure 1.2(b), this produces a reduced performance increase,

because many computing resources are burnt in locking operations to produce

consistent results.

There is a (theoretical) maximum speedup that a program being parallelized

can reach. This is stated by Amdahl’s Law [2]: Every program has some fraction

of its code (namely P) which can be run in parallel, since in that portion there is

no conflict on data accesses. In the optimal case, given that we have S processing

units which can run the program in parallel, the maximum achievable speedup

9

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8 9 10

S
p
e
e
d
u
p

Number of Processors

Parallel Speedup vs. Parallel Fraction

Linear
P = 0.95
P = 0.8
P = 0.5
P = 0.2

Figure 1.3: Amdahl’s Law

for the entire program is:

Smax =
1(

1− P
)

+
P

S

(1.2)

Usually, factor S is lower than the number of available processing units

which can concurrently run the program, because of secondary effects and inter-

process communication [15, 3]. As shown in Figure 1.3, if 80% of the program

is parallelizable and S is equal to the number of processors, then the maximum

achievable speedup is:

lim
S→+∞

Smax =
1

1− 0.80
= 5 (1.3)

10 1. Introduction

Therefore, no matter how many processors are used, this program can never run

more than five times faster.

The maximum theoretical speedup is anyway extremely difficult to reach. In

fact, data accesses must be synchronized, and in order to efficiently do so, a com-

mon approach is to reduce the amount of synchronization points by decomposing

the parallel tasks and by dividing the global set of data structures, so that the

so-defined subtasks and subportions of data structures can be mapped onto the

different processing units. This approach, often referred to as data separation,

is recognized as an efficient way of designing parallel application, but it’s not

necessarily applicable to any sequential program. In any case, this methodology

shows us that, in order to have an efficient parallel program, it is important to

reduce synchronization points and therefore find the maximum value of P . In

recent years, non-blocking algorithms [61, 62] have exacerbated this approach by

creating extremely fine-grained synchronization points, by relying on atomic op-

erations (like, e.g., compare-and-swap or load-link/store-conditional) provided

by underlying hardware architectures. This way of designing parallel applica-

tions produces hardly understandable code, showing us that the most efficient

serial algorithm is hardly the most efficient parallel algorithm, and yet the effi-

cient parallel one is usually less comprehensible by humans.

Writing an efficient parallel application is time- and money-consuming, and

requires skills which are prerogatives of a restricted set of experts. Yet, the need

for parallel application is very compelling nowadays. It is therefore necessary

to provide a methodology which is accessible to the masses. This is a very

hot topic, and the academic community is pushing a lot towards the definition

of new synchronization schemes, allowing the easy development of concurrent

application. For example, a promising approach is Transactional Memory [63],

11

which tries to alleviate the burden of implementing synchronization schemes by

relying on the notion of transaction, and have both hardware [47] and software

incarnations [149].

In this complex, unprecedented, quickly-evolving, and challenging scenario,

a very interesting and important role is played by simulation. On the one hand,

simulation is interesting because it offers a problem domain which often contains

a high amount of parallelism to be exploited [97] (thus, giving us the possibility

to find a value of P which is not minimal). On the other hand, the need for

high-performance parallel simulation is extremely clear, as number-crunching

applications require to process models which are continuously growing in both

the number of parameters, and the size of the datasets. Additionally, there is a

high demand for fast simulations, in order to make them applicable in context

where timely production of simulation-outputs is critical for decision making,

like e.g. symbiotic systems [5] and what-if analysis [142]. Furthermore, scientists

approaching simulation are not necessarily computer scientists, as a large part of

the models come from, e.g., the biology, medical, telecommunication, military,

physics, economics, and business-oriented processes fields, just to mention a few.

It is therefore a perfect context where to develop methodologies and frameworks

to bridge the gap between the need for efficient parallelism exploitation, and the

complexity of developing such an efficient application.

The goal of this thesis is to explore the simulation research field to provide

methodological and technical solutions towards the generation of efficient paral-

lel simulation models from sequential ones. In particular, a simple-yet-powerful

programming paradigm oriented at the development of simulation models—

namely Discrete Event Simulation (DES)—will be analysed: Some of its intrin-

sic properties will be selected to show how they can be directly exploited to

12 1. Introduction

support concurrent execution of simulation models. Others will be coupled with

runtime supports in order to make them suitable for the automatic generation

of parallel simulation models, from traditional (sequential) ones.

A central point of this thesis is to provide the reader with solutions which

will enforce transparency, in the sense that (i) no modifications will be made

by the application-model writer to the original (sequential) code to make it run

in parallel, and (ii) common services for supporting efficient parallel simulation

will be provided via means of specifically-targeted subsystems, allowing an expe-

rienced programmer to fully exploit the power of parallel simulations avoiding

the burden to manually fine tune its code. In the end, this will increase the

productivity of both categories of programmers, resulting (at the same time) in

a faster development and a reduced execution time of simulation models, giving

the opportunity to concentrate more on the actual model definition, and to cut

the expenses related to model development and parallelization. Whether multi-

core computing is a choice or a need, this thesis’ results can provide the end user

with supports that allow her to benefit from new-generation parallel computing

architectures, with a much lower effort.

All the ideas which are gathered into this thesis, some of the preliminary

results, or even some experiments which helped us shape in a better way the

needs and the goals of this work, have been published in the following research

works:

Book Chapters

[1] Francesco Quaglia, Alessandro Pellegrini and Roberto Vitali. Reshuffling PDES Platforms

for Multi/Many-core Machines: a Perspective with focus on Load Sharing. In Modeling

and Simulation-based Systems Engineering Handbook, Crc Pr I Llc, 2014. To appear.

13

Journal Articles

[2] Alessandro Pellegrini, Roberto Vitali and Francesco Quaglia. Autonomic State Man-

agement for Optimistic Simulation Platforms. In IEEE Transactions on Parallel and

Distributed Systems, TPDS. To Appear.

[1] Roberto Vitali, Alessandro Pellegrini and Francesco Quaglia. Load sharing for optimistic

parallel simulations on multi core machines. In SIGMETRICS Performance Evaluation

Review, PER, vol. 40, issue 3, pp. 2–11, August 2012.

Conference Proceedings Papers

[17] Alessandro Pellegrini and Francesco Quaglia. Transparent Multi-Core Speculative Paral-

lelization of DES Models with Event and Cross-State Dependencies In Proceedings of the

2014 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, PADS,

pages 105–116. ACM, May 2014.

[16] Alessandro Pellegrini and Francesco Quaglia. The ROme OpTimistic simulator: A tutorial

(invited tutorial). In Proceedings of the 1st Workshop on Parallel and Distributed Agent-

Based Simulations, PADABS. LNCS, Springer-Verlag, August 2013.

[15] Alessandro Pellegrini and Francesco Quaglia. A study on the parallelization of terrain-

covering ant robots simulations. In Proceedings of the 1st Workshop on Parallel and

Distributed Agent-Based Simulations, PADABS. LNCS, Springer-Verlag, August 2013.

[14] Alessandro Pellegrini. Hijacker: Efficient static software instrumentation with applications

in high performance computing (poster paper). In Proceedings of the 2013 International

Conference on High Performance Computing & Simulation, HPCS, pages 650–655. IEEE

Computer Society, July 2013. Candidate for (but not winner of) the Outstanding Poster

Paper Award.

[13] Francesco Antonacci, Alessandro Pellegrini, and Francesco Quaglia. Consistent and effi-

cient output-stream management in optimistic simulation platform. In Proceedings of the

2013 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, PADS,

pages 315–326. ACM, May 2013.

14 1. Introduction

[12] Alessandro Pellegrini and Giuseppe Piro. Multi-threaded simulation of 4G cellular systems

within the LTE-Sim framework. In Proceedings of the 8th IEEE International Workshop

on the Performance Analysis and Enhancement of Wireless Networks, PAEWN. IEEE

Computer Society, March 2013.

[11] Pierangelo Di Sanzo, Francesco Antonacci, Bruno Ciciani, Roberto Palmieri, Alessandro

Pellegrini, Sebastiano Peluso, Francesco Quaglia, Diego Rughetti, and Roberto Vitali.

A framework for high performance simulation of transactional data grid platforms. In

Proceedings of the 6th ICST Conference of Simulation Tools and Techniques, SIMUTools.

ICST, March 2013.

[10] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. A load sharing architecture

for optimistic simulations on multi-core machines. In Proceedings of the 19th International

Conference on High Performance Computing, HiPC. IEEE Computer Society, December

2012.

[9] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. Assessing load sharing

within optimistic simulation platforms (invited paper). In Proceedings of the 2012 Winter

Simulation Conference, WSC. Society for Computer Simulation, December 2012.

[8] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. Transparent and efficient

shared-state management for optimistic simulations on multi-core machines. In Proceed-

ings 20th International Symposium on Modeling, Analysis and Simulation of Computer

and Telecommunication Systems, MASCOTS, pages 134–141. IEEE Computer Society,

August 2012.

[7] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. Towards symmetric multi-

threaded optimistic simulation kernels. In Proceedings of the 26th International Workshop

on Principles of Advanced and Distributed Simulation, PADS, pages 211–220. IEEE Com-

puter Society, August 2012.

[6] Roberto Vitali, Alessandro Pellegrini, and Gionata Cerasuolo. Cache-aware memory man-

ager for optimistic simulations. In Proceedings of the 5th ICST Conference of Simulation

Tools and Techniques, SIMUTools. ICST, March 2012. Winner of the Best Paper Award.

15

[5] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. The ROme OpTimistic

Simulator: Core internals and programming model. In Proceedings of the 4th International

ICST Conference on Simulation Tools and Techniques, SIMUTools. ICST, 2011.

[4] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. An evolutionary algorithm

to optimize log/restore operations within optimistic simulation platforms. In Proceedings

of the 4th International ICST Conference on Simulation Tools and Techniques, SIMU-

Tools. ICST, 2011.

[3] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. Autonomic log/restore for

advanced optimistic simulation systems. In Proceedings of the Symposium on Modeling,

Analysis, and Simulation of Computer and Telecommunication Systems, MASCOTS, pages

319–327. IEEE Computer Society, 2010.

[2] Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. Benchmarking memory

management capabilities within ROOT-Sim. In Proceedings of the 13th IEEE/ACM

International Symposium on Distributed Simulation and Real Time Applications, DS-RT.

IEEE Computer Society, 2009.

[1] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. Di-DyMeLoR: Logging only

dirty chunks for efficient management of dynamic memory based optimistic simulation

objects. In Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on Principles of

Advanced and Distributed Simulation, PADS, pages 45–53. IEEE Computer Society, 2009.

Candidate for (but not winner of) the Best Paper Award.

Other Publications During my Ph.D. course, I have published together with

colleagues the following articles, which are not strictly related to the topic of

this thesis, but which helped me to put some lessons learned into practice in

different research fields.

[2] Diego Rughetti, Pierangelo Di Sanzo and Alessandro Pellegrini. Adaptive transactional

memories: Performance and energy consumption tradeoffs. In Proceedings of the Third

IEEE Symposium on Network Cloud Computing and Applications, NCCA. IEEE Computer

Society, February 2014.

16 1. Introduction

[1] Alice Porfirio, Alessandro Pellegrini, Pierangelo Di Sanzo, and Francesco Quaglia. Trans-

parent support for partial rollback in software transactional memories. In Proceedings of

the International Euro-Par 2013 Conference, Euro-Par. LNCS, Springer-Verlag, August

2013.

Chapter 2

Research Context and

Achieved Results

Οὐδ΄ ὅλως εὐχερὲς οὔτε τῶν παρόντων ἐξηγήσασθαι

διὰ τὴν ποικιλίαν τῆς πολιτείας, οὔτε περὶ τοῦ μέλλοντος προειπεῖν

(It is neither an easy matter to describe their present state, due to the

complexity of their constitution, nor to speak with confidence of their future)

— Polybius, Histories

The research context into which this thesis is plunged is simulation, which

(from the Latin simulare, to “fake” or to “replicate”) is the imitation of a real-

world process’ or system’s operation over time. In particular, we focus on Dis-

crete Event Simulation (DES), which is a simulation methodology expressing

the behaviour of a given system using a sequence of discrete events during time.

Events can only occur at a particular time instant, and they produce a change

in the simulation state of the system [139].

An event is said to be discrete because its duration is impulsive (i.e., the

time associated with its beginning corresponds to the time associated with its

ending). Therefore, between two consecutive events the simulation state does

17

18 2. Research Context and Achieved Results

not change, and the simulation time “hops” from one time instant to another.

In particular, the simulation time advances according to the timestamp of each

event that “happens” during the simulation.

This approach to simulation is therefore clearly different from continuous

simulation, where the evolution of the simulation state (and therefore of the

system) continuously tracks the system’s response over time according to a set

of equations, typically involving differential equations.

There are two main approaches which can be used to shape DES, one con-

sisting in a formalism for modelling and analysis of discrete-event systems, and

one consisting in a set of systemic tools and methodologies to support the actual

execution of a simulation model. In this chapter, both ways of addressing DES

will be presented, showing the respective strengths and weakness. The original

DES approach will later be transferred to parallel architectures, introducing the

Parallel Discrete Event Simulation (PDES) methodology, which will be used

throughout this thesis to build the automatic parallelization of simulation mod-

els technique. Finally, the results achieved within this thesis will be presented,

pointing to the specific chapters which will address them.

2.1 Formal Definition of DES Models

A formal definition of simulation models can efficiently rely on Discrete Event

Systems Specification (DEVS), which is a set-theoretic formalism introduced

in the early 70s [184], and can be seen as an extension of the Moore machine

formalism [183]. While the Moore machine formalism is essentially a finite state

automaton whose output is determined by its state only, DEVS (i) makes the

output directly depend on the input, (ii) associates a lifespan with each state,

and (iii) associates a hierarchical concept with an operation, called coupling.

2.1. Formal Definition of DES Models 19

Basically, DEVS1 provides a formalism used both to design hierarchically

decomposable discrete-event models and to have a general understanding of

discrete event systems, decoupling them from the computer-generated models.

At the same time it provides a framework for model generation and execution

via its abstract simulator concepts. The formalism defines a basic DEVS model

(namely the atomic model) to be a structure:

M = 〈X,S, s0, Y, δint, δext, λ, ta〉 (2.1)

where we have:

X: a set of external events;

S: a set of sequential states. A state’s definition can be extended with the σ

state variable, which tells the maximum time spent in a state when no

external events are received, before triggering an internal transition.

s0: the initial simulation state;

Y : a set of output events;

δint : S → S: the internal transition function, which specifies to which next state

the system will transit after the steady time specified for a given state

without the arrival of an external event has elapsed;

δext : Q×X → S : the external transition function, where Q = {(s, e)|s ∈

S, 0 ≤ e ≤ ta(s)}, and e is the elapsed time since the last state transition,

which specifies how the system changes state when an input is received;

λ : S → Y : the output function, which generates an external output just before

an internal transition takes place;

ta : S → R0→∞: time advance function, which determines the permanence time

in the state. Once the time assigned to the state is consumed, an internal
1A thorough description of the formalism and its semantics can be found in [185, 186].

20 2. Research Context and Achieved Results

transition is triggered. When the σ variable is present in the state, the

amount of time specified by σ is returned.

A model designed according to the DEVS formalism expressed by Equation

(2.1) transits along the states in S via its transition functions. If no events

occur, the time advances according to the ta function applied to the current

state. A new state is determined by δint applied to the old state. Output events

are generated by the model right before an internal transition takes place. The

function δext produces a state transition if an external event occurs, applied on

the old state, the time spent in the old state, and the external event itself.

As hinted, DEVS defines the concept of coupled model as well:

DN = 〈Xself , Yself , D, {Mi}, {Ii}, {Zi,j}, select〉 (2.2)

where

Xself : is set of external events handled by the coupled model;

Yself : is set of output events handled by the coupled model;

D: a set of component references, i.e. the name set of sub-components of the

model;

{Mi}: a set such that ∀i ∈ D: Mi is a component structure, i.e. a DEVS model

definition;

{Ii}: a set such that ∀i ∈ D ∪ {self}: Ii are the influencees of i, i.e. the set of

external input couplings;

{Zi,j}: a set such that ∀j ∈ Ij : Zi,j is the i-to-j output translation function,

i.e. a function which maps events generated by one of the models in D to

any other model in D;

select is the tie-breaker function, which defines how to select the event from

2.1. Formal Definition of DES Models 21

the set of simultaneous events.

The structure is subject to the constraints that for ∀i ∈ D, the i-th model

is defined according to Equation (2.1), i.e. like:

Mi = 〈Xi, Si, si0, Y
i, δi, λi, tai〉

and that:

Ii ⊆ D ∪ {self}, i 6∈ Ii i.e. influencees of i must be taken only among the avail-

able model definitions, and i cannot influence itself;

Zself,j : Xself → Xj i.e. external events handled by the coupled model can be

translated to external events of model j ∈ D;

Zi,self : Yi → Yself i.e. output events generated by any component structure

i ∈ D can be handled by the coupled model;

Zi,j : Yi → Xj i.e. output events generated by any component structure i ∈ D

can be translated to input events of any component model j ∈ D;

A coupled model, therefore, tells how to connect several component models

together to form a new model. The latter model is a DEVS model itself (thanks

to a closure property under coupling [185]), and can therefore be employed as a

component in a larger coupled model. This means that component structured

present in {Mi} can be defined either according to Equation (2.1) or Equation

(2.2). This is where the hierarchical notion of composable models comes into

effect.

To give an example of application of the DEVS formalism, let’s build the

model description of a producer-consumer system, according to the diagram

in Figure 2.1. The behaviour of the system is described by input and output

events. In the example, input events are ?consumed and ?produced, while out-

22 2. Research Context and Achieved Results

Producer Consumer
!produce ?produced

?consumed !consume

Produce,0.1

Wait,∞

!produce

?consumed

Consume,0.1

Wait,∞

!consume

?produced

Figure 2.1: Sample DEVS model: Producer/Consumer

put events are !produce and !consume. Both the producer and the consumer

have their states, namely Produce/Wait and Consume/Wait. Producer starts

the simulation in the Produce state, while Consumer in the Wait state. Pro-

duce takes 0.1 seconds to produce an item, and similarly Consume takes 0.1 to

consume it. When an item is produced, the output event !produce is sent out;

when the item is consumed, the output event !consume is similarly sent out.

The goal of this simulation model is to interconnect two sub-models (namely,

the producer and the consumer) into a larger simulation model. In order to

formalize the producer and the consumer, two atomic DEVS models can be

specified, by relying on the formalism expressed in Equation (2.1):

Producer = 〈XP , SP , sP0 , Y
P , δPint, δ

P
ext, λ

P , taP 〉 (2.3)

where:

XP = {?consumed}

Y P = {!produce}

2.1. Formal Definition of DES Models 23

SP = {(d, σ)|d ∈ {Produce,Wait}, σ ∈ [0,∞]}

sP0 = (Produce, 0.1)

taP (s) = σ, ∀s ∈ S

δPext(((Wait, σ), te), ?consumed) = (Produce, 0.1)

δPint(Produce, σ) = (Wait,∞)

δPint(Wait, σ) = (Produce, 0.1)

λP (Produce, σ) =!produce

λP (Wait, σ) = ∅

and similarly:

Consumer = 〈XC , SC , sC0 , Y
C , δCint, δ

C
ext, λ

C , taC〉 (2.4)

where:

XC = {?produced}

Y C = {!consume}

SC = {(d, σ)|d ∈ {Consume,Wait}, σ ∈ [0,∞]}

sC0 = (Consume, 0.1)

taC(s) = σ, ∀s ∈ S

δCext(((Wait, σ), te), ?produced) = (Consume, 0.1)

δCint(Consume, σ) = (Wait,∞)

δCint(Wait, σ) = (Consume, 0.1)

λC(Consume, σ) =!consume

24 2. Research Context and Achieved Results

λC(Wait, σ) = ∅

The final (larger) simulation model can be therefore expressed by merging

the atomic models expressed by equations (2.4) and (2.3) as a coupled DEVS

model according to Equation (2.2):

DN = 〈Xself , Yself , D, {Mi}, {Ii}, {Zi,j}, select〉

where:

Xself ={}

Yself ={}

D =Producer, Consumer

MProducer and MConsumer are defined according to Equations (2.4) and (2.3)

Ii ={}

Zi,j ={(Producer.!produce, Consumer.?produced),

(Consumer.!consume, P roducer.?consumed)}

Although it might look cumbersome to rely on a formal definition to describe

such an easy model, there are two main advantages:

1) The model definition can undergo a verification and validation process, to

check if it is accurate and credible [148, 87]. This is a very important factor,

considering that simulation models are just an imitation of the real world

phenomenon, and cannot exactly reproduce it. Therefore, depending on

the actual purpose of the application, it should be verified and validated

to the needed degree;

2.1. Formal Definition of DES Models 25

2) The model definition can be transformed into an actual computer model,

which can be run by a simulation algorithm. This can be a fully-automated

or a user-aided process, depending on the typology of the model.

As for point 1, when a given DEVS model falls in DEVS extensions like

Schedule-Preserving DEVS (SP-DEVS) [70], Finite & Deterministic DEVS (FD-

DEVS) [71], or Finite & Real-time DEVS (FRT-DEVS) [69], it is formally proven

that a behaviourally isomorphic finite structure can be derived from the infinite

state structure of the original model. This implies that a reachability graph

can be derived from the structure, allowing, e.g., to decide whether the model

suffers from deadlock and/or livelock [68, 71, 69]. In the case of SP-DEVS, it is

possible as well to define minimum and maximum execution time bounds [70].

Concerning point 2, in order to transform the formal definition of a model

into an actual computer simulation, DEVS handles atomic and coupled models

in a different way. In particular, the simulation of an atomic model is carried

out by a simulator, while the simulation of a coupled model is carried out by

a coordinator. The coordinator’s main role is to enforce time synchronization

and support message propagation. The former controls the advancement of the

simulation time in all the atomic models, in order to always have them aligned.

The latter transmits a triggering message (either input or output) along the

associated couplings, which are defined in the coupled DEVS model. As an

example, the CD++ simulation toolkit [175] allows many simulation models

to be automatically defined. In this way, the construction of new models is

simplified, along with their validation and verification.

Overall, this formal approach to discrete-event simulation has the benefit

that the simulation model can “exist” even though there is no actual implemen-

tation of it. This allows the simulation model writer to perform behavioural

26 2. Research Context and Achieved Results

analysis of the model itself, so that its properties can be studied/modified be-

fore the actual implementation is realized. Nevertheless, such analysis is diffi-

cult, and therefore «direct computer simulation will remain a primary means of

generating, and studying, model behaviour»[187].

2.2 Systemic Approach to DES

The systemic approach to DES tackles the discrete-event simulation field with

a more pragmatic approach, concentrating much more on model development

supports and on the internal implementation of the software taking care of the

simulation, usually referred to as simulation kernel or simulation core. In this

context, although many aspects are directly borrowed from the formal DEVS

definition of the model, much more effort has been put in the development of

simulation techniques aiming at maximizing the overall execution throughput.

From this point of view a model is seen as:

• the joint union of a simulation states, where the variables that keep track

of the studied system’s evolution are stored;

• a set E of events, which cause modifications to the state and describe parts

of the real-world phenomenon being studied;

• a transition function σ(s, e) : S × E → S which determines the actual

transition from a simulation state s to a simulation state s′ whenever an

event e ∈ E is executed.

Each (impulsive) event e is associated with a timestamp Te which allows the

global simulation time to advance. It is important, in this context, to make

a strong distinction between the concepts of simulation time (ST) and wall-

clock time (WCT). The former describes the logical time associated with the

simulation model and can be therefore expressed in any time unit (e.g., hours,

2.2. Systemic Approach to DES 27

day, years), depending on the phenomenon being described by the model. On

the other hand, the latter is the actual notion of time that we, human beings,

are familiar with. Simulation time is then used to describe the evolution of the

under-study phenomenon, while wall-clock time allows to determine the actual

speed of the simulation execution.

Traditional DES implementations directly borrow from the more broader

event-driven programming paradigm, where the flow of the program and the

actions taken are determined by events captured by the application, resembling

what happens with interrupts in computing architectures and operating systems.

This paradigm has seen many applications, from sensors networks to (more

modern) graphical user interfaces. Similarly, a DES model can be seen as a set

of event handlers2, which capture the events generated by the same application

(i.e., the simulation model) and, depending on the nature of the event, produce

a state variation. In fact, the nature of the aforementioned transition function

σ(s, e) is completely described by the set of event handlers and the operations

performed on the state by each of them.

During the execution of an event e, new events e′, e′′, . . . , en can be gener-

ated. This is related to the fact that the simulation model captures the causality

between operations. In particular, if an event e′ is generated during the execu-

tion of event e, it means that event e′ causally depends from e, as it describes

a portion of the system’s functioning which is strictly related to the operations

described by event e. It is important to emphasize that due to the temporal

nature of simulation models, and due to the causal correlation of events, any

event e′ generated during the execution of e must be associated with a times-

2An event handler is essentially an asynchronous callback, which is used by the simulation
kernel to pass control to the model’s code, delivering a piece of application-level information (i.e.,
an event).

28 2. Research Context and Achieved Results

tamp Te′ ≥ Te. From a model point of view, this means that an action in the

present cannot affect the past, which is clearly an acceptable assumption.

It is interesting to note that, similarly to the formal approach, this systemic

vision of DES can perfectly split a simulation into two components: the simula-

tion model and the simulation kernel. Although there is no standard definition

of the components of a DES kernel, practice tells us that there is a minimum set

of basic components which are essential. Additionally, due to the event-based

nature of the simulation models, the totality of the simulation kernels rely on

a simulation loop3 in order to make the simulation progress, although different

implementation might use different incarnations of it.

Since one of the simulation kernel’s duties is to manage events injected into

the system, whenever a simulation model wants to schedule a new event, this has

been traditionally achieved by using a provided ad-hoc API. Therefore, when-

ever during the execution of event e two new events e′ and e′′ are generated,

associated with timestamps Te′ = Te′′ (which is an acceptable causal depen-

dency), the simulation kernel must decide the order according to which these

two different events must be delivered to the proper event handlers. The prob-

lem of simultaneous events can be tackled by relying on a tie breaking function,

exactly as the DEVS formalism does, but is non-trivial, as it can affect the be-

haviour of some simulation models [176], as it might introduce a bias towards

some (logical) entity of the simulation model.

2.2.1 Basic Components of DES

Simulation State As shown before, the evolution of the simulation model

depends on the state transitions produced by a transition function in the form

3This is an element that is directly borrowed from event-driven programming.

2.2. Systemic Approach to DES 29

σ(s, e) : S×E → S. Therefore, a DES model cannot prescind from the presence

of a simulation state. Historically, simulations states where regarded as a set

of global variables which where explicitly defined within the model code and

altered by the execution of events.

Events The evolution of a simulation model proceeds thanks to the execution

of events. As stated before, an event is impulsive, i.e. it has no duration in

time. A simulation model must define the logic associated with each event a-

priori (i.e., no “unknown events” can be delivered to a simulation model), thus a

closed set E of events that can be executed during the simulation run must be

programmatically defined. Each event e ∈ E is therefore handled by one of the

event handlers registered in the system. Due to the sequential nature of DES,

during the execution of an event e any variable belonging to the simulation state

S can be freely accessed.

In order to give start to the simulation, an initial event (often referred to

as INIT) must be scheduled. The typical behaviour of this event entails the

set up of the simulation model, i.e. the definition of the simulation state’s

initial conditions and the scheduling of next event(s) to be processed. The INIT

event is usually automatically generated by the simulation kernel, but due to

its model-dependent nature, it must be explicitly managed by an event handler

specifically implemented in the simulation model.

Clock Since a simulation model describes the evolution of a system during

time, the model must keep track of this advancement. The simulation clock is

usually a global variable (which is often, but not necessarily, updated by the

simulation kernel) which tracks this temporal evolution. It is important to em-

phasize that the simulation clock tracks the evolution of the ST, not the WCT.

30 2. Research Context and Achieved Results

Therefore, given the nature of DES, its value does not continuously change, in-

stead it jumps from the timestamp Te of one event e to the timestamp Te′ of

the next event e′.

Event Queue During the execution of event e, the simulation model can

generate any number of new events, depending on the actual model’s logic.

For example, given that the events are impulsive, activities that extend over

time are often modelled as a sequence of differentiated events, which might be

generated, e.g., during the first event of the sequence. This behaviour requires a

data structure which takes care of managing generated (but still to be executed)

events.

Since all the events are associated with their respective timestamps, the

list of pending events must be ordered according to this value [59]. In this way,

determining which is the next event to be processed is as easy as taking the event

found on the head of the event queue. If the simulation kernel fails to do so,

it means that the simulation might execute event ex associated with timestamp

Tx > Tmin and modify state variables which were needed by event emin. This is

like having the future which affects the past, and is clearly unacceptable: this

kind of error is called causality error.

The actual implementation of the event queue is not necessarily a linked

list, as due to performance requirements we want to reduce the time needed for

insertion of events and selection of the next event to be processed [80]. Several

proposals entail the adoption of skip lists [131], calendar queues [17], splay trees

[153], or ladder queues [35].

Ending Condition A large number of simulation models describe phenomena

which do not automatically halt (e.g., network traffic, chemical reactions, . . .).

2.2. Systemic Approach to DES 31

Furthermore, many models involve stochastic processes to describe the evolution

of the system, making it impossible to predict before-hand how the simulation

will evolve (isn’t this the goal of simulation, anyway?!). In order to collect

statistics which are meaningful for a specific experiment, it is important to

configure the simulation so that when a particular ending condition is met, the

simulation halts. This can be done by specifying a time range of interest for

the simulation (this kind of ending condition can be handled by the simulation

kernel), or by inspecting particular values of the simulation state along the

simulation trajectory (this must necessarily be done by the simulation model,

using specific API provided by the simulation kernel).

Simulation Object Although a simulation object is not mandatory for a

DES model, it is an interesting extension which gives more semantic power to

the model writer, and is therefore supported by a large number of simulation

kernels. A simulation object describes a portion of the whole model, let it

be a spatial portion (e.g., a “cell” in grid simulations, like military simulations

[119]) or an agent (e.g., in agent-based social simulations [93], where simulation

objects can model the behaviour of agents acting within the system). This

allows the model writer to concentrate on the description of subportions of the

whole model, and to link them together in the end, via the usage of special

“interconnection events”, much like what the {Zi,j} set of Equation (2.2) was

thought for.

Additionally, the simulation state can be reorganized, so that each simulation

object has its own set of state variables. As it will be shown in Section 2.3, this

has been a fundamental step in literature to move DES to parallel/distributed

architectures.

32 2. Research Context and Achieved Results

Algorithm 2.1 DES Skeleton
procedure Init

End← false
initialize State, Clock
schedule INIT

end procedure

procedure Simulation-Loop
while End == false do

Clock ← next event’s time
process next event
Update Statistics

end while
end procedure

2.2.2 Simulation Kernel’s Basic Logic

As mentioned before, simulation kernels must allow the simulation model to

set up the initial conditions of their state (i.e., they must generate an INIT

event) and must handle the generation and execution of following events. The

basic structure of a simulation kernel’s implementation, cleaned from all possible

optimizations and additional facilities, is shown in Algorithm 2.1.

Two main parts are essential. First, the Init procedure:

1) sets the ending flag to false, saying that the simulation will halt only when

the ending condition is met;

2) initializes the simulation state, by allocating its memory, if needed by the

simulation kernel implementation;

3) initializes the simulation clock, by setting its value to the initial simulation

time, which is usually 0;

4) schedules the INIT event. This can be done by either calling the proper

2.3. Parallel Discrete Event Simulation (PDES) 33

event handler directly, or by placing the INIT event into the event queue,

before entering the main loop.

Second, the main loop (which is entered right after having initialized the

simulation) is essentially divided into two main phases:

1) Event selection: the smallest timestamped event emin is selected from the

event queue, in order to avoid causality violations;

2) Event handling: the clock is updated to the value Tmin associated with

event emin, to reflect the advancement in ST; then the event is passed to

the model, by calling the proper event handler, so that the logic associated

with it is actually executed.

An additional phase, which is not mandatory, is statistics update, which

involves logging, e.g., performance information about the simulation run, and

collecting model-related data from the simulation state. The latter point can

be done, of course, by triggering a specific function implemented within the

simulation model.

2.3 Parallel Discrete Event Simulation (PDES)

The research in parallel and distributed simulation began in 1979 with a work

by Chandy and Misra [25], and quickly gave birth to Parallel Discrete Event

Simulation (PDES) [48], which refers to the execution of a single discrete event

simulation program on a parallel/distributed system. This entails the “transfor-

mation” of a DES program into a PDES program. Due to the separate nature

of a DES program into model and kernel, as described in Section 2.2, this can

be done on the one hand by imposing a few restrictions on the model’s def-

inition, and on the other by significantly altering the simulation kernel. Of

34 2. Research Context and Achieved Results

course, the advantage of this approach is that the largest part of DES models

can be extremely easily ported to PDES systems, provided that they respect

the restrictions.

PDES strongly relies on the notion of Simulation Objects, as described in

Section 2.2.1, which here get the name of Logical Processes (LP), to emphasize

the similarity with operating systems’ processes, which (if they do not explic-

itly request the contrary) execute independently of each other and without any

shared portion of memory. We can generally say that a simulation is composed

by N LPs, each one uniquely identified by an integer number4 in the range

[0, N − 1]. We will call them LP0, LP1, . . . , LPN−1. Each LP is associated with

a private clock, which expresses the simulation time up to which it has pro-

gressed. The value of this private clock will be referred to as Local Virtual

Time (LVT), emphasizing the fact that LPi and LPj have reached the different

(local) ST values LV Ti 6= LV Tj .

The most important restriction to the implementation of a simulation model

regards the usage of shared variables. In particular, the model programmer is

requested to partition the whole simulation state S into per-LP subportions of

the state Si, which must guarantee the following property:

S =
N−1⋃
i=0

Si ∧ Si ∩ Sj = ∅, ∀i 6= j (2.5)

Equation (2.5) tells us that the partitioning into sub-states Si must not

leave out any additional portion of the global simulation state, i.e. no global

shared variables are allowed. Additionally, each LP cannot access any portion of

another LP’s state during the execution of one event. More specifically, inter-LP

4In case there is the need for a different representation of the LPs (e.g., symbolic names), a
mapping function can be used to transform it into integers.

2.3. Parallel Discrete Event Simulation (PDES) 35

Communication Network

Machine

Processor

Kernel

LP
LP

LP

Processor

Kernel

LP
LP

LP

Machine

Processor

Kernel

LP
LP

LP

Processor

Kernel

LP
LP

LP

... ...

...

Figure 2.2: Parallel Discrete Event Simulator Classical Architecture

communication is only allowed via event exchange.

The exclusion of global variables is straightforward in some applications (like,

e.g., queueing network simulations [151]), but can be burdensome in others. For

example, in several war game simulations, where units move across a terrain and

interact with each other only seldom (see, e.g., [182, 53]), the most immediate

way to store the simulation state is to have a global shared matrix representing

the state of each terrain grid. Although the grid might be replaced with a set of

messages being exchanged to retrieve/update the state of a cell, doubts should

arise about the performance and the scalability of this approach.

Provided that LPs do not share any portion of the simulation state, a classi-

cal (distributed) PDES simulation kernel’s architecture is shown in Figure 2.2.

Basically, the LPs are mapped to different simulation kernel instances, which

are different user-space processes being run on top of a processing unit. Differ-

ent instances located onto different machines are interconnected via a network.

Therefore, simulation kernel instances hosted by the same machine can commu-

36 2. Research Context and Achieved Results

Communication Network

Machine

CPU

Kernel

LP
LP

LP LP
LP

LP LP
LP

LP LP
LP

LP

...

...

CPU CPU CPU

Machine

CPU

Kernel

...CPU CPU CPU

Kernel

Figure 2.3: Parallel Discrete Event Simulator Multithread Architecture

nicate relying, e.g., on shared memory or inter-process communication facilities

provided by the underlying operating system, while remote instances can rely on

the distributed memory paradigm, which is turn is built on top of message pass-

ing primitives, like the message Passing Interface (MPI) protocol [110]. Each

message (let it be passed via shared memory or the network) envelopes one event,

so that in literature event exchange is often referred to as message exchange as

well.

A more recent research trend, which we consider the standard reference archi-

tecture in this dissertation, is addressing the topic of reshuffling the traditional

PDES architecture, to realize multithreaded simulation kernels [172, 30, 74].

This is a clear response to the architectural trend discussed in Section 1: If

there current machines are mostly multi-core or SMP, then in order to exploit

the available computing power a new technological paradigm should be enforced.

Independently of the actual implementation, a general description of the new

paradigm is shown in Figure 2.3.

By the picture, we can see that this new modern architecture has less kernel

instances deployed on a single machine (that can be, nevertheless, more than

one, as in the classical case) end each kernel instance is in charge of managing

2.3. Parallel Discrete Event Simulation (PDES) 37

multiple processing units. To this end, kernel instances relies on the worker

thread paradigm, where each thread implements a main simulation loop (as

in the traditional DES case) but message (i.e., event) passing between locally

hosted LPs can be implemented completely in user space, without requiring

external libraries’s support. This approach, although more complex in the im-

plementation, has been proven to be more efficient and scalable with respect to

the classical PDES implementation [169].

In this scenario, it is important to define which worker thread is in charge

of dispatching a specific LP. In fact, having a completely symmetric approach,

in which every worker thread can execute any LP, might affect performance due

to locality effects. To this end, the concept of LP binding [170, 171] is essential.

This concept defines virtual temporal windows which define a static coupling

between the (locally) available LPs and the worker threads. This temporal win-

dow can be set to the whole simulation (i.e., a static binding is implemented), or

can be periodically recomputed, in order to, e.g., level the workload on all the

available worker threads and therefore reduce the rollback probability, which in

turn enhances the overall performance. This is a technique called load sharing

(see, again, [169, 170, 171]), which is different to the more traditional load bal-

ancing. The latter was specifically targeting the classical PDES architecture,

and in order to reduce the rollback probability (due to imbalances in the work-

load) it supported the migration of LPs from one kernel instance to another

(see, e.g., [128]). Migrating a LP is a costly operation, as it entails transferring

(even on the network in case of remote kernel instances) the simulation state Si

as well.

Let us now discuss an aspect related to events exchange patterns in the

multithreaded architecture depicted in Figure 2.3. As mentioned, each worker

38 2. Research Context and Achieved Results

thread implements, de facto, the functionalities of a DES kernel, thus allowing

a parallel execution of the simulation models. It therefore has its own basic

components according to the description in Section 2.2.1. Let us assume that

on a single (local) simulation kernel instance at a given instant of WCT LPi

(bound to worker thread k0) and LPj (bound to worker thread k1) have reached,

respectively, simulation time LV Ti = 5 and LV Tj = 15. Since worker thread k0

and k1 have different event queues5, and since they both apply Algorithm 2.1

to carry on the simulation, they will select respectively events e0
min and e1

min as

next events for LPi and LPj . Let us assume that the timestamps associated to

the next events e0
min and e1

min are, respectively, Te0min
= 10 and Te1min

= 20. The

execution of these events brings LPi’s and LPj ’s clocks to the values 10 and 20,

respectively. If, during the execution of e0
min a new event e0

new associated with

timestamp Te0new
= 12 is generated, destined for LPj , we incur in the situation

where LPj ’s clock value is 20, but an event at time 12 has not been executed yet.

This “late” event is called a straggler message, and provides us with an example

of causal violation generated by the parallel nature of PDES, which is depicted

in Figure 2.4. This problem is not new, as the same situation might arise

in the classical PDES implementation, where the same behaviour is exhibited

by different (local) simulation kernel instances, rather than by different worker

threads within a same simulation kernel instance.

2.3.1 The Synchronization Problem

The problem which we have spotted in Figure 2.4 is related to the parallel/

distributed nature of PDES. This problem, which might generate causality errors

depending on the asynchronous (model and simulation-run dependent) pattern

5This is a general case. Common implementation of simulation kernels rely on multiple queues,
e.g. one per LP, for performance reasons.

2.3. Parallel Discrete Event Simulation (PDES) 39

LPi

LPj

Execution Time

Execution Time

15

5 10

20

20

Events

Timestamps

Straggler Message

12

LPk
Execution Time

7 17 25

10

Message

17

Message

Figure 2.4: Event Causality Violation

of events execution, generation and delivery, is known as the synchronization

problem.

To overcome this problem, and therefore enforce a correct simulation run

which is independent of the asynchronous events-exchange pattern, different

strategies have been discussed in literature [138, 48], which can be categorized

into conservative [19, 25, 26], optimistic [76], and hybrid [155, 157] approaches.

The first category tackles the synchronization problem by essentially avoiding

the possible occurrence of causality errors a-priori (i.e., an event is executed only

when it’s considered to be safe), while the second category executes pending

events independently of their safety and adopts a-posteriori strategies to detect

causality errors and correct them. Since both approaches can show performance

drawbacks, the third category essentially tries to determine which is, for a given

simulation model, the best-suited approach and selects it.

Conservative Synchronization

Historically, conservative synchronization has been the first mechanism devel-

oped to enforce consistency of PDES systems. As mentioned, the goal is to

40 2. Research Context and Achieved Results

LP1

LP2LP3

Non-empty Queue

Empty Queue

30 5 7

1028

33

Figure 2.5: Deadlock in Conservative Synchronization

determine, among the events which are present in the event queue of one LP,

which are safe to be executed. Then, simulation goes on by executing (among

the safe ones) the event enext which has the smallest timestamp [51].

The first approach, as shown in [19, 25], forced the model writer to explic-

itly indicate where each LP was communicating with other ones, by statically

defining communication channels. Therefore, each LP can have more than one

communication channel, and each one (which can be logically seen as a FIFO

queue) is associated with a timestamp. The timestamp of a queue is either the

timestamp of the message at the beginning of the queue, or the timestamp of

the last executed event if the queue is empty.

Each LP selects the queue with the smallest timestamp to get an event to

process. If the queue with the smallest timestamp is empty, then the execution

blocks until an event is received into that queue. If queues Q1 and Q2 are at

timestamp TQ1 < TQ2 and only Q1 is empty, then executing events at timestamp

TQ2 might produce causality errors because an event e at timestamp TQ1 ≤ Te <

TQ2 might be received, as this does not violate the FIFO ordering of Q1. Then,

blocking is a necessary (and sufficient) condition to avoid causality errors.

Nevertheless, this approach is prone to deadlocks. Let us assume that a

2.3. Parallel Discrete Event Simulation (PDES) 41

simulation model is realized according to the scheme in Figure 2.5. LP1 has a

communication channel towards LP3, which in turn has a communication chan-

nel towards LP2. Each of the three LPs have one additional communication

channel. Since all three queues associated with the three channels are empty,

we have a deadlock situation. It does not help the fact that each LP has one

additional queue which stores messages incoming from other LPs in the simula-

tion, given that the timestamps of the empty queues are lower than the others.

The selection algorithm, therefore, selects the empty queues as the ones to be

checked for incoming events.

This deadlock situation can be avoided by relying on null messages. They

are messages which are exchanged between LPs but do not carry any event to

be processed. Rather, they are the “promise” that LPi will not send any event

associated with a timestamp Tnull > TQi , where Qi is the queue where events

sent by LPi are stored. This means that by using null messages, the system is

capable of determining that it is impossible for LPi to receive any event ej with

a timestamp LV Ti ≤ Tj < Tnull. Any event ek belonging to a different queue,

with a timestamp LV Ti ≤ Tk < Tnull is therefore safe, and can be executed.

More sophisticated techniques to avoid deadlock are presented in [4, 21, 27,

55, 56, 98, 117, 122, 137]. Nevertheless, a central aspect necessary for these

approaches to work is that the system must know what is the minimum amount

of ST that can be between two consecutive events in an immediate future. This

is known as lookahead L, and if it can be correctly identified, then the LPi which

has reached the (system-wide) minimum ST LV Ti (i.e., the LP which has the

smallest clock value among all the LPs in the system) can execute all the events

associated with a timestamp in the interval [LV Ti, LV Ti + L]. Any other LPj

which has reached ST LV Tj such that LV Ti < LV Tj < LV Ti+L can execute all

42 2. Research Context and Achieved Results

the events associated with timestamps in the interval [LV Tj , LV Ti +L] as well.

The rule of thumb is that the larger the value of L, the higher the probability

that all the LPs have some safe-event pool from which to select the next event

to be executed. Nevertheless, the correct lookahead value is necessarily coupled

with the simulation model, and must be therefore explicitly specified by the

simulation-model writer, a process which can be extremely burdensome.

Additionally, if the lookahead value is too small (or even zero), the simulation

might proceed too slowly, frustrating the goal of providing high-performance

simulations by the usage of many computing resources. To this end, a proposal

aiming at increasing the lookahead can be found in [115], where a part of the

pending events chain is pre-computed, and at the end of the pre-computation

the resulting state is checked to see whether it is still consistent or not. This is a

technique that, although different in practice, is similar in spirit with optimistic

synchronization, which will be discussed later.

The conservative synchronization protocol provides several advantages:

• it is aggressiveless: the simulation is carried on in such a way that an

inconsistent simulation state is never reached. This is done exactly by

ensuring that each simulation step does not cause any error condition;

• it is riskless: results injected into the system always relate to a consis-

tent portion of the simulation trajectory, therefore no “uncertain” data is

externalized to other components of the model;

• it requires minimal synchronization among various LPs: differently from

what we will see in optimistic synchronization, ST always advances (i.e.,

it is never rewound). This ensures that detecting the global point in sim-

ulation at which all the LPs have progressed is a simple and non-costly

operation.

2.3. Parallel Discrete Event Simulation (PDES) 43

On the other hand, conservative synchronization is not able in the majority

of contexts to fully exploit the parallelism provided by the underlying archi-

tecture. In fact, if we take any two events e1 and e2 in the simulation, the

conservative synchronization scheme might force their serial execution indepen-

dently of whether they really have a direct (or indirect) dependency.

Optimistic Synchronization

Optimistic synchronization is based on the notion of speculative processing. This

technique, which has been effectively employed in a large variety of areas, like

branch prediction in pipelined processing units [154], in file prefetching [29],

and in transactional systems’ concurrency control [86], is based on the idea that

whenever a computing resource is available, it should be used to perform a task

which is likely correct and/or useful. Doing this work before it’s actually known

if it were to be done can provide benefits when it is later discovered that it was

actually needed. In case that part of work is a-posteriori known to be incorrect

or not useful, the result is simply discarded. The advantage comes from the

fact that waiting to know if a task is necessary might produce a delay in the

actual execution of the task itself. If the speculative processing is correct, i.e.

the guess on the work to perform was correct, this delay can be even reduced to

zero. In case of a wrong guess, the system pays the same delay as if it were not

speculative, except for the cost of discarding the wrong piece of work carried

out.

In PDES, this approach was presented (under the name of optimistic syn-

chronization) in the seminal paper [76], where the Time Warp mechanism was

introduced. Differently from the conservative approach, optimistic synchroniza-

tion selects, at each simulation kernel instance and at each worker thread, the

44 2. Research Context and Achieved Results

LPi

LPj

WCT

WCT15

5 10

20 12

20

events'

timestamp

straggler message

12

LPk WCT7 17 25

10

25

message

17

message

17

antimessage

antimessage

reception

Rollback Execution:

recovering state at

LVT 10

Rollback Execution:

recovering state at

LVT 7

Figure 2.6: Rollback Operation

next event to be processed among the local ones independently of their safety.

This clearly negates the guarantees provided by the conservative synchroniza-

tion scheme, so that the system can fall into an inconsistent simulation state

by following a simulation trajectory which is affected by a causal violation, as

previously depicted in Figure 2.4.

Rollback Operation It is therefore necessary to support a mechanism which

is able to a-posteriori detect the arrival of a straggler message and the occurrence

of a causality violation, to temporarily halt the execution of the simulation

model, to restore the simulation state to a previous (consistent) point in ST,

and then to restart the forward execution of the model by taking into account the

straggler message. This operation, known as the rollback operation, is depicted

in Figure 2.6.

In the example provided by the picture we see that the rollback operation

involves an additional problem. In particular, LPj is at LTVj = 20 when it

receives a straggler message estraggler associated with timestamp Tstraggler = 12.

2.3. Parallel Discrete Event Simulation (PDES) 45

Therefore, it rolls the execution back to ST LV Tj = 10, i.e. it discards the

state changes which were operated by events at timestamps T = 15 and T = 20.

This is sufficient for restoring a consistent state for LPj , i.e. the subportion

Sj of the global state is correctly restored to time T = 10. Nevertheless, we

notice that during the execution of the event at timestamp T = 15, LPj has

sent a message to LPk scheduled for ST T = 17. This message was the result

of a wrong simulation trajectory, as LPj reached LV Tj = 15 without taking

into account the piece of information stored into event estraggler. As LPj has

now rolled back to ST LV Tj = 10, it is possible that, upon the execution of

estraggler, the simulation will follow a different trajectory, involving the fact that

either that message scheduled at ST T = 17 should have not been sent, or that

the information associated with that message might change. Therefore, we have

that:

• LPi has sent a straggler message estraggler to LPj ;

• LPj rolls back to the ST LV Tj such that Tstraggler > LV Tj ≥ Temax where

Temax = max{Te|e is already processed};

• This involves undoing an event processed by LPj which caused the gener-

ation of a new event scheduled for LPk.

Due to the rollback operation which was involving LPj , LPk has reached as

well an inconsistent simulation state. Therefore, we must support a mechanism

which notifies LPk that an event which it has received belongs to an inconsistent

portion of the simulation trajectory. This is done by relying on antimessages.

An antimessage ē is a negative copy of an already sent (positive) message e,

scheduled by some LP to anyone else.

During the rollback operation, LPj checks whether some positive messages

46 2. Research Context and Achieved Results

where sent during the execution of the events the timestamps of which fall in the

interval [LV Trollback, LV Tj], where LV Tj is the ST stored into the clock of LPj

before the rollback operation takes place and LV Trollback is the value that will

be stored in LPj ’s clock after the rollback operation is completed. A negative

copy of all the messages falling into this category is sent to the destination LPs.

When LPk receives an antimessage, two situations might arise:

1) the antimessage ē is associated with a timestamp Tē > LV Tk. This means

that the positive message has not been processed yet. Then, the effect of

the antimessage ē is to simply annihilate the positive message e, i.e. e is

removed from the event queue of LPk;

2) the antimessage ē is associated with a timestamp Tē ≤ LV Tk. In this case,

LPk has already processed the event e which belongs to an inconsistent

portion of the simulation trajectory, and it has reached an inconsistent

simulation state as well.

In the second case, LPk must rollback to a consistent simulation state as

well (as in the example provided in Figure 2.6). This phenomenon is know as

cascading rollback, and can in turn affect more than one LP, if the same situation

(i.e., during the rollback some events which generated new events destined to

different LP are undone) arises.

It is important to mention that the rollback operation can be handled com-

pletely by the simulation kernel, if the implementation is able to know where

the simulation states Si of the various LPs are located in memory. If the ker-

nel is able to do so, then no modification to the model’s implementation must

be done. On the other hand, the programmer must explicitly tell where the

memory buffers storing the state are. This will be discussed more thoroughly

2.3. Parallel Discrete Event Simulation (PDES) 47

in Chapter 4, where we will approach transparency towards scattered-memory

states and incremental state saving.

In order to support rollback operations, two main approaches have been pro-

posed in literature. One, relies on the notion of state save & restore, and was the

original proposal in [76]. The other relies on reverse computation of simulation

events, which assumes that events can be coupled with negative events, which

are events that execute the same operations of the corresponding events, but

in reverse order. It is important to make a clear distinction between negative

events and antimessages, as they refer to a completely different logical opera-

tion. The former undoes the effect of processing one event on the simulation

state, while the latter completely annihilates one event, which might or not be

already processed. The two strategies will be discussed later in this section.

Global Virtual Time (GVT) If the rollback operation is easy to be proven

correct [92], it is harder to reason about the progress condition of the whole

system among all the rollback operations being performed. Additionally, since

events being processed might belong to a portion of the simulation trajectory

that will be later discovered as inconsistent, how is it possible to check whether

the ending condition has been reached? And how is it possible to handle error

conditions or I/O operations? Although the problem of I/O operations will

be thoroughly discussed in Chapter 5, the original proposal in [76] provided a

global control mechanism which is based on the concept of Global Virtual Time

(GVT). GVT is a property of an instantaneous global snapshot of the system

at WCT t, and is defined as follows:

Definition 2.1 (Global Virtual Time). GVT(t) is defined as the minimum

timestamp of any unprocessed message or anti-message flowing in the system at

WCT t

48 2. Research Context and Achieved Results

Definition 2.1 tells us that the value of the GVT at WCT t can be computed

by inspecting the timestamps associated with all messages in the system that

are not yet processed, but it does not say where the messages are likely to be

found. In particular, while it is easy to inspect the timestamps stored into the

event queues of the various simulation kernels, if a message has been sent from

LPi to LPj , but it has not been received yet by LPj (due, e.g., to network

latency in the case of remote simulation kernels), then the value of that message

(which is referred to as in-transit message) must be taken into account as well.

There are several other definitions of GVT, and differentiated implementa-

tions [100, 99, 177, 8, 50, 159, 104, 12, 94] which address different simulation

scenarios and different computing architectures. Nevertheless, computing the

GVT value is an essential component of (distributed) PDES, as it allows to

define the commitment horizon of the simulation. In fact, we recall that the

original DES model’s definition states that during the execution of an event e

a new event e′ can be generated only if associated with a timestamp Te′ ≥ Te.

Then, at any instant t of WCT, since the value of GV T (t) is the minimum

timestamp among all the not-yet-processed events in the whole system, it is

clear that no event executed by whichever LP in the system can generate a new

event e′ associated with a timestamp Te′ < GV T (t).

Thus, this property states that at WCT t, no rollback operation can bring

any LP i to a ST LV Ti < GV T (t). All the executed events associated with a

timestamp T < GV T (t) are therefore committed, and can be used to verify, e.g.,

the simulation’s ending condition.

Rollback Supports: State Save & Restore As mentioned before, to sup-

port the rollback operation, one of the two main approaches is state save &

restore. The first proposal of this technique appears in conjunction with Time

2.3. Parallel Discrete Event Simulation (PDES) 49

Warp, in [76]. The technique is based on the idea that a snapshot of the sim-

ulation state of a LP can be taken (i.e., the memory region(s) containing the

private state variables of Si are copied into a separate buffer) and is associated

with a timestamp (namely, the timestamp of the last executed event6). Again,

depending on the programming model supported by the simulation kernel, this

operation can either be done transparently, or shall require the user to explicitly

specify which are the memory regions containing the LP’s simulation state Si.

Whenever a rollback operation occurs, the ST Trollback is defined, and the

state restore operation can be simply executed by retrieving the state snapshot

s associated with timestamp Ts = Trollback and restoring back in place the

values of the state variables. In this way, if a straggler message is received

and a rollback operation shall be executed, the system can select the simulation

snapshot associated with the highest timestamp among the ones which are lower

than the straggler’s7.

It is interesting to note that taking state snapshot is a costly operation, both

in terms of execution time and memory usage. To cope with memory usage, we

can rely on the notion of GVT as presented in Definition 2.1. In fact, since

state snapshots are only required to support rollback operations, and given that

at any WCT instant t it is not possible to execute a rollback operation to ST

T < GV T (t), all the state snapshots s associated with a timestamp Ts < GV T (t)

can be discarded, and the memory buffers can be retrieved for future usage. This

operation, known as fossil collection [77], can be performed periodically. The

frequency according to which the value GV T (t) is computed (and therefore the

6In fact, given the property that between two consecutive simulation events the value of the
clock does not increase, the timestamp of the last executed event can be safely associated with
the ST span which is described by this single state snapshot.

7Again, in case contemporaneous events are processed, a tie-breaking function can help in the
selection of the correct state to be restored among the ones associated with a same timestamp.

50 2. Research Context and Achieved Results

fossil collection operation is performed) can be either manually specified at sim-

ulation start-up, or might depend on the underlying hardware architecture [8].

Of course, executing the fossil collection often might affect the overall simulation

throughput, as more computing power is used to compute the GVT reduction

and to release old (committed) buffers.

The issue of execution time for taking snapshots is, on the other hand, tack-

led by modifying the frequency of the state saving operation (which indirectly

tackles memory usage as well), and by tuning the amount of information that is

stored into one of them (namely, a snapshot can be either full or incremental).

Rollback Supports: Reverse Computation A completely different ap-

proach to support the rollback operation is reverse computation [23], which

essentially relies on the notion of reverse events to restore a previous simulation

state. By relying on compiler techniques, the work proposes to automatically

generate reverse events which are able, by executing the same operations of

regular events but in reverse order, to undo the effects of one event on the sim-

ulation state. A rollback operation is therefore supported by executing at the

rolling back LP i all the reverse events in backwards order, starting from ST

LV Ti up to Trollback.

A reverse event is essentially a copy of a regular event which executes the

same operations but in reverse order. If, for example, we consider this sample

regular event shown in [23] which models a cell transition of an ATM multiplexor

model:

1 if(qlen > 0) {

2 qlen−−;

3 sent++;

4 }

2.3. Parallel Discrete Event Simulation (PDES) 51

The reverse event would be:

1 if(qlen "was" > 0) {

2 sent−−;

3 qlen++;

4 }

We note that while reversing arithmetic operations can be straightforward,

the branching condition is not, as the reverse event must check an “old” state

variables’ value, which is not available when processing it.

Thus, reverse computation relies on the modification of regular events by

adding bit variables, which are transparently-added state variables which tell

whether a particular branch was taken or not during the forward execution

phase. The regular event presented in the example above would therefore be-

come:

1 if(qlen > 0) {

2 b = 1;

3 qlen−−;

4 sent++;

5 }

and the reverse event can now rely on a (bit) state variable which was set after

the branch was taken:

1 if(b == 1) {

2 sent−−;

3 qlen++;

4 }

This approach increases the size of the simulation state, but relying on

bit variables allows to do so in a very negligible way, as the state increase is

log(#branches). This approach can be used to keep track of the execution of

n-way if statements and switch/case constructs as well.

52 2. Research Context and Achieved Results

In reverse computation, nevertheless, we note that not all operations are re-

versible. For example, disruptive operations like = or %= must be handled relying

on state saving techniques. Nevertheless, since these operations have a very fine

granularity, and considering that the model’s executable is instrumented to alter

the original logic to support the execution/generation of reversible events, this

operation can be done using a technique similar to the one in [179] described

above, where memory updates are tracked and a fine-grain word-based log is

generated for each particular memory update.

Loops can be handled by simply taking note of the number of iterations

n—which is extremely important in case of variable number of iterations like

with the while statement. The reverse loop will be then executed n times.

On the other hand, handling jump instructions (i.e., goto, break, and

continue instructions) or function calls requires that some bit variables are

used to store the actual flow of the forward events. The reverse events can then

rely on a set of (automatically-generated) switch/cases to reproduce the ac-

tual (reverse) execution flow. This problem can generate a non-negligible state

increase, depending on the complexity of the code and on the actual runtime

execution flow of the model.

An important aspect in reverse computation is that of (pseudo) random

number generators. This problem, which is similar to the one described in the

case of State Saving, requires that repeated calls to random generators belonging

to the same (logical) invocation return the same result, thus allowing a piece-

wise deterministic execution of the model. This can be done by applying the

same rules used to generate reverse events to the random number generator

code, provided that they do not rely on lossy floating point operations, which

are anyway hard to support in the generation of reverse events.

2.3. Parallel Discrete Event Simulation (PDES) 53

Overall, reverse computation adds a limited overhead to the forward exe-

cution of the simulation model, and can provide a significant reduction in the

delay of rollback operations, provided that the rollback length is not very high.

On the other hand, if the simulation model has a large number of disruptive op-

erations, it can substantially fall back to ISS, but with an overall performance

which is lower than ISS’.

Hybrid Synchronization

As shown by the discussion, both conservative and optimistic synchronization

schemes can provide the simulation model writer with several advantages or

disadvantages, depending on the actual model’s logic. Although Time Warp

has been proven very efficient in a large range of applications, it can suffer

from thrashing phenomena in case of, e.g., the presence of many zero-lookahead

events.

To this end, several approaches have been proposed in literature, a couple of

the most representative ones are here discussed. The proposal in [136], discusses

an approach aiming at combining both synchronization techniques, called Local

Time Warp (LTW). This approach is specifically targeted at simulation models

entailing a large number (i.e., thousands) of LPs, and is realized by introducing

the optimistic protocol within the conservative one.

Whenever an unsafe event is detected, rather than stopping the simulation’s

execution, it is executed optimistically. Two different optimistic executions can

be supported:

1) Limited aggressiveness: events are executed optimistically only locally, i.e.

if a portion of the simulation trajectory is found to be inconsistent, it is

sufficient to restore the (local) simulation state, without the need for any

54 2. Research Context and Achieved Results

antimessage to be sent;

2) Unlimited aggressiveness: execution is more biased to the traditional op-

timistic synchronization protocol, so that cascading rollbacks might arise,

but the optimism is limited so that they only involve a limited number of

LPs.

The latter strategy is realized by defining a temporal window which identifies

an upper bound in the ST of events that can be optimistically executed. In this

way, the simulation trajectory which might be detected as inconsistent does not

evolves indefinitely, and therefore undoing it will not result in an unbounded

execution cost.

Of course, having a too small temporal window might result in a pointless

usage of optimistic synchronization, as the performance gain might not justify

the more complex synchronization protocol. To this end, probabilistic estimates

or machine-learning approaches can be used, in order to fine tune the length of

the window, as it has been proposed, e.g., in [177].

On the other hand, the work in [157] proposes a technique called Elastic Time

which tries to limit the aggressivity property of optimistic synchronization. In

particular, the proposal notes that whenever a LP has reached a LVT value

which is “too far” from the minimum LVT in the system, then the probability

of rollback of that LP is likely going to increase.

Therefore, that particular LP is “pulled backwards”, as constrained by an

elastic, towards the minimum LVT value. This technique, called throttling, es-

sentially relies on giving more importance (i.e., a higher scheduling probability)

to those LPs which are “closer” to the minimum LVT in the system. This simple

approach implements a Near Perfect State Information system, i.e. a situation

where all the LPs are not “too far” from the minimum, although there is not the

2.3. Parallel Discrete Event Simulation (PDES) 55

Application Level Software ()
Unique LP Identi er

Local Virtual Clock

In Message Queue Out Message Queue State Queue Current State

Messaging

Message/antimessage

sending

Message/antimessage

receiving

GVT

Termination Detection

Commitment horizon

determination

Fossil Collection

Network (Message Passing)

CPU scheduling

Priority determination

and LP dispatching

data structures

subsystems

Figure 2.7: Reference Architecture for Optimistic Simulation Systems

requirement for a significant synchronization effort.

2.3.2 Additional Components of PDES

By the above discussion, it is clear that PDES simulation kernels cannot rely

solely on the elements described in Section 2.2.1. In fact, while the conservative

approach might require more than one event queue (if implementing, e.g., the

solution in [25] that we discussed before), Time-Warp-based simulation kernels

must store all pending events, all processed events (in order to support the

re-execution of parts of the simulation trajectory), and simulation states.

In Figure 2.7 we show the essential building blocks for a reference architecture

supporting the optimistic synchronization protocol. From the picture we can

see that at least the following additional data structures and services must be

supported by an optimistic simulation kernel.

Input and Output Queues In addition to the (input) event queue, an output

queue must be used, in order to keep track of events (and their destination)

56 2. Research Context and Achieved Results

which have been sent during the execution of other events. This information is

mandatory, as during the rollback operation antimessages must be sent to undo

the effects of inconsistent operations at remote LPs. To simplify the rollback

operation, many implementations [67, 129, 22, 32] rely at least on a per-LP

output queue, so that when scanning for antimessages to be sent, the check can

be performed only on the send time, without checking (on a per-message basis)

the LP identification code as well.

Messaging Subsystem To decouple from the application model the fact that

LPs can be stored either locally or on a remote kernel instance, a messaging sub-

system takes care of messages “routing”. In this way, the simulation model can

simply rely on a uniform API for events’ scheduling. It is the simulation kernel

that determines where (and how) the message must be delivered. Additionally,

the messaging subsystem can internally handle the output queue, so that the ex-

ecution of a rollback operation can be decoupled from the antimessage-sending

procedure.

State Queue & State Management Subsystem In case of a simulation

kernel implementing the rollback operation by means of state saving & restore,

state queue is the fundamental data structured used to recover an LP’s consistent

execution whenever a causal inconsistency is detected.

The state queue is handled by the state management subsystem, the role of

which is related to:

1) maintaining a timestamp-ordered list of states, adding new nodes when a

new snapshot is required by the system;

2) performing rollback operations (i.e., determining what is the state which

2.3. Parallel Discrete Event Simulation (PDES) 57

has to be restored from the log, or executing reverse events up to the

rollback time);

3) performing coasting forward operations (i.e., fictitious reprocessing of in-

termediate events in between the restored log and the point of the causality

violation);

4) performing fossil-collection operations (i.e., memory recovery, by getting

rid of all the events and state logs which belong to an already-committed

portion of the simulation).

GVT Subsystem The Global Virtual Time (GVT) subsystem accesses the

message queues and the messaging subsystem in order to periodically perform

the global reduction aimed at computing the new value for the simulation’s

commitment horizon. In addition, this subsystem cares about termination de-

tection, by either checking whether the new GVT oversteps a given predeter-

mined value, or by verifying some (global) predicate (evaluated over committed

state snapshots), which tells whether the conditions for the termination of the

model execution are met. Finally, this subsystem is also in charge of perform-

ing the so-called fossil-collection procedure, aimed at recovering memory buffers

currently keeping obsolete messages and logs, namely those related to the newly-

committed portion of the computation.

Event Scheduler A central point relates to the CPU-scheduling approach

used to determine which LP, among the ones hosted by a given simulation-

kernel instance, must take control for actual event processing activities. As

discussed, the common choice is represented by the Lowest-Timestamp-First

(LTF) algorithm [96]. It selects the LP whose pending next event is associated

58 2. Research Context and Achieved Results

with the minimum timestamp, compared to pending next events of the other LPs

hosted by the same kernel. LTF has the advantage of avoiding the generation

of causality violations across the LPs hosted by the same kernel instance. This

is because these LPs are dispatched in a similar way to what would happen

on top of a sequential simulation engine, which imposes a timestamp-ordered

sequence of CPU-schedule operations for all the events. Hence, rollbacks can be

generated only in relation to events scheduled between LPs hosted by different

kernels, which contributes to the reduction of the amount of rollbacks.

Different design/implementation variants for LTF exist, along with the basic

(stateless) approach in [96] which exhibits O(n) time complexity and relies on

traversing pending next events across the input queues of all the LPs. For

example, an O(1) statefull approach has been recently proposed [147], which is

based on reflecting variations of the priority (i.e., of the next-event timestamp)

of the LPs into the CPU-scheduler state—which is done in constant time—and

in determining the LP with the highest priority (again in constant time) by

running a query on the current CPU-scheduler state.

Random-Number Generators As discussed before, both incarnations of

optimistic synchronization (i.e., state-saving-based and reverse-computation-

based) require that (pseudo) random number generation is carried piece-wise

deterministically. To this end, simulation kernel must provide random number

generators which are aware of the rollback operations, and can therefore rollback

their internal state as well. This can be done either by storing the internal seed

along with a state snapshot, or by implementing a generator which is associated

with a reverse function, able to undo the effect of a generation on the internal

state.

2.4. Results Achieved within this Thesis 59

2.4 Results Achieved within this Thesis

This thesis explicitly tackles PDES systems based on optimistic synchroniza-

tion implemented relying on state saving & restore, and targeted at multicore

systems. The final goal of this thesis is to provide methodologies and system

supports which will allow almost any sequential DES model to be run on top of

a parallel system without any modification to the original code implementation.

We specifically address simulation models implemented relying on the ANSI-

C programming language. This choice allows us to face a scenario where the

model writer has a very large freedom, having the possibility to directly manip-

ulate any portion of the memory, without calling any service provided by the

simulation kernel, as it would be possible by relying on methods overloading of

higher-level languages. At the same time, this poses the highest burden on the

simulation kernel, as it has to handle many different programming possibilities

to ensure consistency in the final result. Overall, at the end of the thesis, the

reader will be provided with a set of results which allow the programmer to

implement the simulation model relying on the ANSI-C standard in a perfectly

sequential-like style, without any concern about the issues of optimistic synchro-

nization, and having the model being run on a parallel architecture in a fully

transparent way.

Particularly, after having presented in Chapter 3 a survey of some litera-

ture results which are of interest for this dissertation, in Chapter 4 we present

an extension to an existing memory management subsystem which allows the

programmer to scatter the LPs’ simulation state at runtime, by relying on stan-

dard calls to the malloc memory management API. The subsystem proposes

a solution to ISS which is completely transparent: In fact, the user can invoke

malloc API at any time during the execution of an event, and the simulation

60 2. Research Context and Achieved Results

kernel is able (by means of software instrumentation) to detect which are the

simulation state’s regions that are modified during the execution of the event.

Additionally, state checkpointing is not immediately executed, rather memory

updates are “marked” by relying on a dirty bitmap, so that the checkpointing

interval can be tuned at runtime by relying on all the solutions that have been

proposed in literature. Transparency is supported by relying on static binary in-

strumentation of the simulation model, intercepting assembly instructions which

(might) involve an update of the scattered simulation state.

In Chapter 5 we deal with interactions with the outside world in a portion

of the simulation trajectory which is not yet committed. We will show how

it is possible to allow the execution of operations which are intrinsically non-

rollbackable (like, e.g., writing on a file) during the optimistic execution of any

simulation event. This will be done by relying on an “output daemon”, i.e. a

separate process which executes along the main simulation kernel instance. The

additional benefit of this approach is that generated (and committed) output

can be materialized even on a remote machine (and from multiple, distributed

sources). For performance reasons, the operations to support the interactions

between the worker threads and the output daemon are implemented as non-

blocking algorithms [62]. A discussion of the latency for generating the commit-

ted buffers is provided as well.

Chapter 6 addresses the problem of global variables in optimistic simulation

models. In particular, the discussion will build a subsystem which allows to

drop the constraint expressed by the first part of Equation (2.5), i.e. it will

allow to have portions of the global simulation state S which does not belong

to the “private” simulation state Si of any LP. This will be realized again via

static binary instrumentation to find which are the possible instructions dealing

2.4. Results Achieved within this Thesis 61

with global variables update. Then, the actual global variables are realized

via multi-version lists, which are again accessed (for performance reasons) via

non-blocking algorithms.

The second part of Equation (2.5) is dropped in Chapter 7, where we

will discuss a protocol and an execution support which jointly allow simulation

events to access other LPs’ simulation states. This is non-trivial, as different

LPs may have reached different ST instants, provided that the simulation model

writer does not have to provide any information about the “will” to access dif-

ferent per-LP states. For this part, we rely on an operating-system kernel-level

fully innovative memory management architecture, which allows to track inter-

dependencies with a much more reduced cost.

To complete the voyage towards transparency, in Chapter 8 we start study-

ing the implications of the previous advancements. In particular, we analyse

what is the impact of optimism on the precision of simulation results, and show

how some of our proposals allow to (transparently) experience the same preci-

sion of the parallel run as if it were perfectly sequential, yet with the benefit of

concurrency.

All the implications of this dissertation on model programmability are pro-

vided in Chapter 9, where we show what the user really has to face for develop-

ing a simulation model when our advancements are in place. Finally Chapter

10 draws the conclusions and throws down the challenges of future work.

All our proposals have been implemented within the ROme OpTimistic Sim-

ulator (ROOT-Sim) [67], a multi-threaded optimistic simulation kernel written

in ANSI-C based on the Symmetric Multi-Processing (SMP) paradigm and ulti-

mately relying on MPI for remote communication, which has been implemented

during the years by our research group. As mentioned, some of the propos-

62 2. Research Context and Achieved Results

L3 L3

MEMORY

Processor

L3 L3

MEMORY

Processor

L3 L3

MEMORY

Processor

L3 L3

MEMORY

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

Processor

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

core
L1d L1i

L2

MEMORYMEMORY

MEMORY MEMORY

Figure 2.8: Diagram of our Experimental Hardware Architecture

als rely on static binary instrumentation, which has been carried out using the

Hijacker Software Instrumentation tool [123], which we have developed as a

support tool for our research. For the sake of clarity, in the next Section we

will give a glance to all the software which will be used throughout this work,

while for completeness, Hijacker is described in Appendix A, and ROOT-Sim

is presented in Appendix B.

2.5 Hardware Setup and Base Software

Our reference computing platform is an HP ProLiant server equipped with four

2GHz AMD Opteron 6128 processors working at 64 bits. Each processor is

composed by 8 cores, for a total amount of 32 cores. Each core has a private

128 KB L1 cache (64 KB data-cache and 64 KB instruction-cache) and a private

512KB L2 cache. The last level of cache (LLC), having 5118 KB capability, is

shared among four cores within a single processor, for a total of 10236 KB within

the same processor. The machine is equipped with 64 GB of RAM based on a

2.5. Hardware Setup and Base Software 63

L1 Data L1 Inst L2 L3
Associativity Ways 2 2 16 48
Type Data Instruction Unified Unified
Size (KB) 64 64 512 5118
Shared vs Private Private Private Private Shared (4 cores)

Table 2.1: Opteron Cache Details

NUMA (Non-Uniform Memory Access) architecture, where each group of cores

that share the LLC sees 8 GB as close memory and the remaining 56 GB as

far memory8. A diagram of the machine’s architecture is shown in Figure 2.8,

while details related to the caching system are provided in Table 2.1.

This hardware architecture has been used only for simulation during all the

experiments (i.e., no other process, except for the system ones, where running),

thus entailing a scenario where the hardware environment is dedicated to high

performance simulation.

The operating system installed on the machine is 64-bit Debian 6, with

Linux Kernel version 2.6.32.5. The compiling and linking tools that have been

exploited are gcc 4.3.4 and binutils (as and ld) 2.20.0.

Concerning the simulation configuration, we have configured ROOT-Sim to

perform GVT and fossil collection every second of WCT.

2.5.1 The ROOT-Sim Platform

We have integrated all our solutions into the ROme OpTimistic Simulator

(ROOT-Sim) [127, 124, 67], a multi-threaded ANSI-C/MPI-based open-source

8In NUMA architectures several CPU cores share memory resources, and the memory is split
in a way that each bank is “close to” a subset of the CPU cores, commonly called node. Each
node accesses its close memory banks in fast way, while slower access is experienced for memory
banks that are close to others node. The access type is called non-uniform because all the nodes
see the whole memory, but each node accesses different memory portions with different latencies.

64 2. Research Context and Achieved Results

optimistic simulation platform based on the Time Warp protocol [76] and tai-

lored for UNIX-like systems. For a complete description of the simulation, we

refer to Appendix B, while we give here the essential information which allows us

to make a general discussion of the experimental results which will be provided

into the forthcoming Chapters.

ROOT-Sim is designed as a general-purpose solution, supporting differenti-

ated simulation models adhering to a very simple and intuitive programming

model. The platform transparently handles all the mechanisms associated with

parallelization, like mapping of LPs on different worker threads on the same ma-

chine, and/or different simulation kernel instances (i.e., operating system pro-

cesses) on remote machines, thus enabling a complete parallel and distributed

DES execution on heterogeneous environments.

The programming model supported by ROOT-Sim is based on standard

ANSI-C programming and relies on the following API:

void ProcessEvent(int me, simtime_t now, int evt_type, void *content, int size,

void *state) – a callback that gives control to the application to process

an event. This is the main entry point which allows the simulation model

to call the proper event handlers. me identifies the dispatched LP, now is

the current LVT, evt_type is event numerical code, content is the buffer

keeping size bytes of event payload, and state is the pointer (automati-

cally set to the current value of state_base_address) allowing the LP to

access its state in memory.

int ScheduleNewEvent(int where, simtime_t timestamp, int evt_type void *content,

int size) – this function injects a new simulation event into the system,

destined for any LP identified by where (the other parameters have the

same meaning as before).

2.5. Hardware Setup and Base Software 65

int OnGVT(int me, void *state) – a callback that passes control to the applica-

tion, delivering to LP the last simulation state belonging to the committed

computation part.

As it can be seen from the API, the application programmer is not requested

to reason on any aspect related to parallelism, thus the model code can be im-

plemented in a sequential-like fashion. She is only requested to understand that

what is coded within the ProcessEvent callback will be executed speculatively.

Hence, a committed portion of the state trajectory can be only seen through

the OnGVT callback. The execution of non-rollbackable operations within the

ProcessEvent callback (i.e., during a not-yet-committed portion of the simula-

tion trajectory) will be discussed in Chapter 5.

2.5.2 Hijacker and Ad-Hoc Assembly Modules

Hijacker [123] is a static binary instrumentation tool. It works at compile time,

and is able to handle relocatable objects, i.e. it does not allow to alter finally-

linked executables (this has been a specific design choice, to prevent it to be

used on closed software), but it can be seen as an additional compilation stage

within the whole compilation tool-chain.

Essentially, Hijacker is both instruction-set independent and executable-

format independent, as it performs all its instrumentation activities on an in-

ternal (intermediate) representation of the executable. It allows the user to rely

on customizable xml-specified rules to carry on the instrumentation process.

Additionally, native instructions are grouped into families, allowing the user to

specify, e.g., a rule which targets all the instruction accessing memory in read

mode.

Specific rules can be used to inject into the executable new code snippets,

66 2. Research Context and Achieved Results

either in any location (in case of, e.g., new functions being inserted into the

program) or at specific positions (e.g., right before or after a specific instruction/

instruction family). The provided code, nevertheless, must be specified directly

in the host architecture’s assembly language. This allows the user to rely on

the whole compiling tool-chain to produce it from higher-level source code, or

enables the assembly programmer to directly code its new facilities.

To this end, whenever needed, we have decided to directly code our code

in assembly, to be passed to Hijacker. This has given us the control to imple-

ment specific hardware-related operations in a more efficient (and simple) way,

rather than coding bit bashing operations using more complex (higher-level)

constructs. In particular, we have specifically targeted our assembly code at

x86/x86_64 instruction sets [72, 73]. We have concentrated as well on the ELF

executable formats for x86 and x86_64 architectures [165, 105]. This combi-

nation of formats currently represents the vast majority of modern computing

architectures targeted at high-performance computing, as it is shown in Figure

2.9 and Figure 2.109.

2.5.3 Benchmark Applications

Different experimental evaluations have been carried out relying on various

benchmark applications, which we have developed specifically for the ROOT-

Sim platform. We hereby present a quick description of them, which will allow

the reader to notice that they exhibit different interaction patterns and different

memory requirements (namely, large versus small simulation states, or constant

versus varying overall size) which will allow us to explicitly test the different

solutions using the most appropriate one(s).

9Figures are drawn with data taken from http://www.top500.org as of March 2014.

http://www.top500.org

2.5. Hardware Setup and Base Software 67
S

h
a

re
 (

%
)

Year

Other
Sun

Motorola
MIPS

Intel
IBM

HP
Hitachi

Fujitsu
Cray

AMD
Alpha

 0

 20

 40

 60

 80

 100
 1

9
9

3

 1
9

9
4

 1
9

9
5

 1
9

9
6

 1
9

9
7

 1
9

9
8

 1
9

9
9

 2
0

0
0

 2
0

0
1

 2
0

0
2

 2
0

0
3

 2
0

0
4

 2
0

0
5

 2
0

0
6

 2
0

0
7

 2
0

0
8

 2
0

0
9

 2
0

1
0

 2
0

1
1

 2
0

1
2

 2
0

1
3

Figure 2.9: Top500: CPU Vendors share over time

S
ha

re
 (

%
)

Year

Other
 Mac OS BSD-Based Windows Mixed Unix Linux

 0

 20

 40

 60

 80

 100

 1
99

3

 1
99

4

 1
99

5

 1
99

6

 1
99

7

 1
99

8

 1
99

9

 2
00

0

 2
00

1

 2
00

2

 2
00

3

 2
00

4

 2
00

5

 2
00

6

 2
00

7

 2
00

8

 2
00

9

 2
01

0

 2
01

1

 2
01

2

 2
01

3

Figure 2.10: Top500: OS share over time

68 2. Research Context and Achieved Results

PCS Personal Communication System (PCS) benchmark, which models a mo-

bile network adhering to GSM technology. Each LP models the state’s evolution

of an individual hexagonal cell, and the whole set of cells provides wireless cov-

erage to a square region of variable size.

Each cell handles a parametrizable number N of wireless channels, which are

modelled in a high fidelity fashion via explicit simulation of power regulation

and interference/fading phenomena, according to the result in [82].

Upon the start of a call, a call-setup record is instantiated via dynamically-

allocated data structures, which is linked to a list of already active records

within that same cell. Each record is released when the corresponding call ends

or is handed off towards an adjacent cell. In the latter case, a similar call-setup

procedure is executed at the destination cell. Upon call setup, power regula-

tion is performed, which involves scanning the aforementioned list of records for

computing the minimum transmission power allowing the current call setup to

achieve the threshold-level signal-to-interference ratio (SIR) value. Data struc-

tures keeping track of fading coefficients are also updated while scanning the

list, according to a meteorological model defining climatic conditions (and re-

lated variations).

The event types which can occur at any LP are:

• START_CALL, which simulates a new call installation on a target cell;

• END_CALL, which simulates a call termination;

• HANDOFF_LEAVE, which simulates the leave of an on-going call (i.e., of an

active device) from the current residence cell. The devices move according

to a random mobility model, across adjacent hexagonal cells;

• HANDOFF_RECEIVE, which simulates the installation of a call handed off

from an adjacent cell;

2.5. Hardware Setup and Base Software 69

• RECOMPUTE_FADING, which simulates the effects of climatic variations onto

the fading and (consequently) interference phenomena for ongoing calls.

This application is highly parametrizable. Beyond the already mentioned

numberN of wireless channels per cell, the set of configurable parameters entails:

• τA, which expresses the inter-arrival time of subsequent calls to any target

cell;

• τduration, which expresses the expected call duration;

• τchange, which expresses the residual residence time of a mobile device into

the current cell.

These parameters affect the utilization factor of available channels, expressed

as:

utilization factor =
τduration
τA ∗N

(2.6)

This impacts the granularity of the events, since the more the busy channels,

the more power-management records are allocated and consequently scanned/

updated during the processing of different events. On the other hand, higher

values of the channel utilization factor lead to higher memory requirements for

the state image of individual LPs. Both the above dependencies (namely, CPU

demand and memory) are bounded by the total number N of per-cell managed

channels. In fact, when a call-setup operation is requested due to a call arrival/

handoff arrival, if all the channels are already busy, then the call is dropped,

mimicking the real-world scenario where communication is interrupted whenever

the base station has no available resources to support the communication.

Terrain-Covering Ant Robots This agent-based simulation model is a vari-

ant of the Terrain-Covering Ant Robots (TCAR) model presented in [85]. This

70 2. Research Context and Achieved Results

type of simulation model is particularly interesting for the what-if analysis of

rescue scenarios. In particular, if some kind of accident occurs in a region which

is either unknown by the rescuers or altered by the accident itself (e.g., due to

explosions or collapses), the first action in order to actually rescue the victims

is to explore the whole region to determine a plan.

In this simulation scenario there is a non-negligible trade-off: The higher the

number of robots injected in the rescue terrain, the faster is the full exploration

of the region, but (at the same time) the higher the cost. Simulation can provide

rescuers with the optimal number of ant robots which must be unleashed in the

terrain to fully cover it in a given time.

In this model, the terrain is represented as an undirected graph, therefore

an agent (i.e., an ant robot) is able to move from one space region to another

in both directions. This mapping is created by imposing a specific grid on the

space region. The agents are then required to visit the entire space (i.e., cover

the whole graph) by visiting each cell (i.e., graph node) once or multiple times.

Differently from the original model, we have used hexagonal cells, rather than

square ones. This allows for a better representation of the agents’ mobility

in the real world, as the real ant robots (as physically realized in [161]) have

the ability to steer to any direction during the exploration. Robots start from

specific border cells in the terrain, and from each cell a given number of robots

starts moving around (mimicking the fact that rescue teams start from specific

positions, and unleash robots for discovery). Overall, the simulation scenario is

depicted in Figure 2.11.

The model relies on a node-counting algorithm, where each cell is assigned

a counter which gets incremented whenever any robot visits it, i.e. tracks the

number of pheromones left by ants, to notify other ones of their transit. When-

2.5. Hardware Setup and Base Software 71

S

S

S

S

Figure 2.11: TCAR Simulation Model: Terrain and Agents

ever an agent (i.e., an ant robot) reaches a cell, it increments the counter and

determines its new destination. Choosing a destination is a very important fac-

tor to efficiently cover the whole region, and to support this the trail counter

is used. In particular, the ant robots adopt a greedy approach, so that when

a robot is in a particular cell, it targets the neighbour with the minimum trail

count. A random choice takes place if multiple cells have the same (minimum)

trail count.

Although this greedy approach might not be optimal, it allows for a complete

coverage of the region taking into account the simplicity of the agents, which

may have a very limited and noisy sensing capability [161]. In the original model,

whenever an agent is in a given cell, it accesses the information stored in the

neighbour cells (i.e., trail counters) to make its decision.

As mentioned, the original TCAR model adopts a pull approach for gather-

ing trail counters from adjacent cells. Considering the traditional programming

model, where LPs communicate by means of (transparently handled) message

passing (i.e., LPs’ simulation states are disjoint), a large number of events should

be exchanged to proceed in the simulation, whenever an agent must change its

position. Given that the optimistic synchronization protocol [76] shows higher

efficiency when the number of exchanged messages is reduced, we have rather

adopted a push approach, relying on a notification message which is used to

72 2. Research Context and Achieved Results

inform all neighbours of the newly updated trail counter whenever an agent

enters a cell. Then, each LP stores in its own simulation state the neighbours’

trail-counters values. In this way—by relying on only one message—the agents

are able to make their decisions locally.

The set of events which are generated/executed by the simulation model are

the following:

• REGION_IN: an ant robot enters a given cell. When this event is executed,

the trail counter is incremented. Then, an UPDATE_NEIGHBOURS event is

scheduled at all adjacent cells, with an associated timestamp which is

equals to the REGION_IN’s one. This means that every neighbour is imme-

diately notified of the presence of a new ant robot in this cell at a given

simulation time.

• UPDATE_NEIGHBOURS: upon receiving this event, the LP taking care of its

execution finds in its local simulation state the entry describing the trail

counter for the sender of this event. Its value is updated with the one

piggybacked by this event. This allows any ant robot in the cell to have

(locally) a global view of the state of the neighbours.

• REGION_OUT: this event is associated with an ant robot leaving the cell

simulated by the LP which will process the event. The logic associated

with this event entails finding which is the neighbour to be reached (by

consulting the locally stored information on neighbours’ trail counters)

and therefore scheduling a REGION_IN event to the destination cell. We

note that, since the time spent by an agent in the cell is modelled by the

difference between the timestamps associated with a REGION_IN event and

its subsequent REGION_OUT event, and given that a REGION_IN event in any

neighbour cell entails the immediate (i.e., at the same timestamp) update

2.5. Hardware Setup and Base Software 73

of all trail counters in the neighbours, upon the execution of a REGION_OUT

event the ant robot can safely consult the locally-stored neighbours’ trail

counters, being sure that they contain the most up-to-date information,

obtained using the aforementioned push approach.

At simulation startup, every LP determines what is its position in the square

region (in terms of hexagonal coordinates) and checks whether they are bound-

ary regions or not. In the positive case, they store this information in order to

prevent ant robots to leave the terrain.

The cells which (at configuration time) are selected as sources for unleashing

the ant robots (e.g., the cells associated with the position of rescue teams on the

terrain) detect this, and schedule at themselves a REGION_IN event, at simulation

time 0. This allows the actual simulation to start.

NoSQL Data-Store Simulator This model, which is implemented on top

of the framework described in [34], implements a NoSQL Data Store based on

distributed/replicated serves, each keeping a subset of the whole set of keys

in the entire data-set. Particularly, we consider a model where atomicity of

the distributed transactions is ensured by running the 2-phase-commit (2PC)

protocol across all the nodes keeping keys that belong to the write set of the

committing transaction.

Each cache-server keeps track of a set of M data-object, each one modelled

as a 〈key, value〉 pair. Also, this information is kept and managed as a hash with

bucked data structure (indexed by key values), where buckets are implemented

as (list of) arrays in order to speedup the process of searching 〈key, value〉 pairs

when processing specific simulation events.

Each cache server is modelled via an individual LP, which is in charge of

simulating resource usage (e.g., CPU usage) at that cache server as well as the

74 2. Research Context and Achieved Results

Figure 2.12: Client and Cache-Server LP

evolution of the state of the data-objects kept by the server. A cache-sever LP

can be sketched as in Figure 2.12. By the scheme we can identify four main

software components:

• the transaction manager (TM);

• the distribution manager (DM);

• the concurrency control (CC); and

• the CPU.

The main types of events occurring at any cache server are:

• TX_BEGIN, which simulated the setup of the transactional context;

• GET, which simulates a read operation within a transaction;

• PUT, which simulates a write operation within a transaction;

• PREPARE, which simulates the start of the 2PC distributed coordination

protocol;

• COMMIT, which simulates the finalization of the transaction.

2.5. Hardware Setup and Base Software 75

We note that Get events can be scheduled across different LPs, which is

the case when attempting to read a 〈key, value〉 pair which is not hosted by

the local server that is in charge of running the transaction. Also, as expected,

interactions across different LPs also take place via the exchange of Prepare and

Commit events. Even though in this model the management of each transaction

requires dynamic installation of a proper transaction management record (which

is supported via dynamic allocation of a proper data structure), the most part

of the state of an LP is used to represent data objects. Hence, the larger the

data-set kept by each cache server, the larger the actual LP state.

For a more in-depth description of the framework, we refer the reader to [34].

Chapter 3

Literature Survey

La literatura es una batalla silenciosa en la que uno ha de ganar, o de perder;

palmo a palmo, un territorio quo no es suyo con armas que no le pertenecen.

(Literature is a silent battle in which everyone has to win or lose,

a territory that is not yours, not with weapons that belong to him.)

— Juan José Millás, Literatura y Necesidad, Revista de Occidente, 1989

As Chapter 1 has clearly highlighted, PDES is a very multifaceted topic.

An all-embracing discussion of the achieved results in literature from around

35 years of research would be too much off topic for this dissertation. There-

fore, in this section we will provide an overview of all the results which relate

together the programming model supported by PDES systems, the degree of

transparency offered to the programmer, the level of parallelism and the perfor-

mance of simulation. Some of these results will be used to support our proposals,

while some others will be discussed to emphasize on their pros and cons, to show

what are the different directions that we have taken. In this discussion, we will

focus on the optimistic flavour of PDES supported by state saving & restore, as

it is what we directly address. We will propose just a small digression on other

topics which form up the ground base of this dissertation.

77

78 3. Literature Survey

LPi

LPj

WCT

WCT7

5 10

15 12

18

events'

timestamp
straggler message

12

15

x 5

y 7

snapshots'

timestamp
Rollback Execution:

restoring simulation

state at T = 7

Snapshot taken

before the execution

of every simulation event

10

12

Figure 3.1: Copy State Saving Approach

3.1 State Saving

As mentioned in Chapter 1, optimistic synchronization can be supported via

state saving & restore. The way simulation states’ snapshots are taken (in

terms of frequency, and mode) can significantly affect performance and memory

usage.

3.1.1 Copy State Saving (CSS)

It is the simplest technique to support State Saving & Restore, and appeared

for the first time in [76]. When using CSS, a simulation state snapshot is taken

immediately before a new event is executed, as shown in Figure 3.1.

In this way, upon the execution of a rollback operation restoring the sim-

ulation execution at ST Trollback, it can always be found a simulation state s

associated with timestamp Ts such that Ts < Trollback, and there is no (pro-

cessed) event e associated with timestamp Te such that Ts < Te < Trollback.

3.1. State Saving 79

LPi

LPj

WCT

WCT7

5 10

13 19

28

19

24

16 21 34

16 24 13 16

Snapshot taken

periodically

197

5 21

straggler message

reception

snapshot timestamp

event timestamp
Rollback Execution:

restoring simulation

state at T = 7

Coasting Forward of

events at T = 13

and T = 16

Figure 3.2: Sparse State Saving Approach

Of course, taking a snapshot after the execution of each event is extremely

memory greedy. Therefore, to compensate for this, the fossil collection operation

(and thus the GVT calculation) should be performed more often, resulting in

the aforementioned performance decrease.

3.1.2 Sparse State Saving (SSS)

To overcome the high resource demand from CSS, various approaches which

all fall under the name of Sparse State Saving (SSS) have been proposed. The

basic idea is to take snapshots sparsely [95, 13], rather than before each event,

as shown in Figure 3.2. The event-period according to which a snapshot should

be taken can be either fixed—in the case of Periodic State Saving (PSS)—or

variable—in the case of Adaptive State Saving (ASS).

By relying on SSS, whenever a rollback operation should be performed, we

have two possibilities:

1) There exists a state snapshot associated with timestamp Ts = LV Trollback.

80 3. Literature Survey

Then the rollback operation is carried on exactly as in CSS;

2) There is no state snapshot associated with timestamp Ts = LV Trollback.

In the latter case, the state snapshot associated with the higher timestamp

among the ones lower than LV Trollback is restored. Then, as shown in Figure

3.2, some events must be reprocessed in order to re-align the clock of the rolling-

back LP to the value LV Trollback, an operation which is known as coasting

forward. It is important to note that, during the re-execution of these events,

no messages should be delivered by the rolling-back LP. In fact, since the events

have already been processed, the involved messages have been already sent.

And since the timestamp associated with any reprocessed event erepr is such

that Terepr < LV Trollback, the antimessages ērepr have not been sent. Then, if

during the coasting forward operation, messages are sent to other LPs, they are

going to receive multiple copies of the same messages, thus creating an error

in the simulation’s results. This re-execution without message sending is called

silent execution. Although in this scenario it would be practically correct to send

the antimessages for any event erepr, from a logical point of view it is not, as

they do not belong to a portion of the simulation trajectory which is discovered

to be inconsistent. Furthermore, doing so could generate biases in the execution

of the simulation.

Additionally, it is important that the re-execution of any event follows the

same (original) execution trajectory. If, for example, the logic associated with an

event relies on some probability distribution function (based on pseudo-random

number generation), it is important that re-executing the same (logical) call

to the random generator provides the event with the same exact result. In the

negative case, the logic associated with the event might produce a different result

with respect to the previous execution. This behaviour, known as piece-wise

3.1. State Saving 81

determinism (PWD) [41], is necessary to correctly reconstruct the very same

simulation state before executing the straggler event, and can be supported by

the underlying simulation kernel by exposing its own version of a random library,

which is aware of the rollback operation.

PSS has the undeniable advantage that memory consumption due to state

saving is reduced. Yet, the rollback overhead is increased, due to the cost of

the coasting forward operation. The efficiency of the approach depends on the

checkpointing period χ. If χ is too small, memory is inefficiently used. On the

other hand, if χ is too large, we should expect a performance decrease.

Various ASS techniques have been proposed, which try to fine tune the value

of χ depending on the actual execution dynamics of the simulation model. The

approach described in [121] selects the best checkpointing interval by relying on

an analytic model based on LP execution time. By assuming that the execu-

tion of events is non-preemptive1, and by assuming that the rollback length2 is

independent of each other, the optimal checkpointing interval is:

χopt =

⌈√
2δs
δc

+

(
N

kr
+ γ − 1

)⌉
(3.1)

where:

δs is the average time to take a state snapshot;

δc is the average time to execute the coasting forward operation;

N is the total number of committed events;

kr is the number of rollbacks executed;

1This has been the traditional behaviour of events’ execution. See Chapter 7 for a more
detailed discussion of this topic.

2Rollback length describes how many (optimistically-executed) events are undone by a rollback
operation. The average rollback length can be used as a measure of the amount of “wasted work”
in an optimistic simulation run.

82 3. Literature Survey

Algorithm 3.2 Optimal χ Selection
if n = 0 then

χn ← χinit

else if kobs = 0 then
χn ← d(1− ρ)χn−1 + ρχmaxe

else
χn ← max(1, d(1− ρ)χn−1 + ρmin(χmin, χmax)e)

end if

γ is the average rollback length.

Under the same assumptions, the work in [140] proposes to observe in a

WCT interval Tobs the number of rollback operations kobs and the number of

executed events Robs (both committed and uncommitted). A numerical sequence

of checkpointing intervals χn is generated, where the first element is given by:

χinit =

⌈√
2
Robs

kobs

δs
δc

⌉
(3.2)

The next values are then computed according to Algorithm 3.2, where:

ρ ∈ (0, 1) determines whether we are giving more importance to the history of

χn rather than to more recent observations;

χmin is the minimum threshold;

χmax is the maximum threshold.

This scheme does not take into account the fact that the execution time of

different typologies of events can vary. This aspect is captured in [152], where

the Event Sensitive State Saving (ESSS) is proposed. This technique emphasizes

that it is convenient to take a state snapshot when the granularity of the next

event3 increases. Then, starting from the model in [140], and classifying the

3By granularity of an event, we mean the average execution time of one type of event, with
respect to the average event’s execution time that considers all kinds of event to take the same
WCT to be executed.

3.1. State Saving 83

events in N different classes, the simulation kernel groups in the same class

n ∈ N all the events showing a similar behaviour (in terms of required WCT

for execution). A proper χopt is then selected depending on the most-occurring

class. Assuming that each class n of events is associated with an event frequency

fn and a state saving probability pn, the optimal checkpointing value is computed

as the geometric average of all the classes:

χopt =

(
N∑

n=1

pnfn

)−1

(3.3)

This approach, therefore, tries to reduce the coasting-forward time by avoid-

ing to reprocess chains of events containing ones that require a high amount of

WCT to be reprocessed.

A different approach is presented in [45], which regulates the checkpointing

interval by using a heuristic algorithm, based on the periodic re-calculation of

the cost function:

Ec = Css + Ccf (3.4)

where:

Css is the average WCT to perform a state saving;

Ccf is the average WCT to execute the coasting forward operation.

Taking into account observation periods which are completely independent

of the checkpointing intervals, the system periodically re-computes the value

of Equation (3.4). If its value increases, then the value of χ is increased by

one unit (up to a maximum threshold). If there is no fluctuation in the value

of Equation (3.4), then χ is decreased by one unit. Therefore, if the model’s

dynamics change—and this change is reflected in a variation of the rollback

probability— the time required to perform state saving and coasting forward

84 3. Literature Survey

operations changes, and the value of χ is adapted accordingly.

An additional approach in [133] proposes to observe LPs’ event history, tak-

ing into account the variations between the timestamp of two consecutive events,

to determine which is the best moment for taking a snapshot. In particular, a

rollback operation can involve any ST instant, specifically it can fall into any

interval bounded by the timestamps of two consecutive events. If LP i’s clock

has value LV Ti, and if the next event’s timestamp is Tnext, if the ST interval

I = [LV Ti, Tnext] is such that the difference Tnext − LV Ti has a positive (non-

negligible) variance with respect to the average value, there is a higher risk that

a rollback might affect that ST interval I, and it is therefore convenient to take

a log.

In [134] a cost model is proposed, to select the checkpointing position in an

optimized way. It is based on a heuristic which tries to minimize the rollback

length: the system decides to pay the cost of a checkpoint at a certain ST instant

only if the estimation of its possible (future) restore cost is higher.

The model takes into account the following parameters:

• the position of the last checkpoint;

• the granularity of the events executed in between the last taken checkpoint

and the current LVT;

• the probability that state S will be restored in the future, due to a rollback

operation.

which are combined in the equation:

CR(S) =

µs + P (S)µs if S is saved

P (S)

[
µs +

∑
e∈E(S)

µe

]
otherwise

(3.5)

3.1. State Saving 85

where:

µs is the save & restore cost of state S;

µe is the granularity of event e, which is part of the cost of the coasting forward

operation;

P (S) is the estimation of the probability that the current state S will be restored

in the future, which depends on the application dynamics and on the

interval I(S) which spans from the last checkpoint’s timestamp and the

current LVT;

E(S) is the set of events executed in the interval I(S) which will be re-executed

during a coasting forward operation.

Equation 3.5 is computed in both forms (as if it were necessary to take a snap-

shot, and as if it weren’t) before executing any event e. The result associated

with the most convenient option determines whether the checkpoint will be

taken or not.

In [166] we find a work which addresses an orthogonal problem to check-

pointing interval, but which is perfectly compatible with the aforementioned

SSS approaches. This work proposes a transparent memory-management archi-

tecture targeted at optimistic synchronization which allows the user to rely on

dynamically allocated memory to store the LPs’ simulation states. This work

is actually one of the basis upon which our solution in Chapter 4 is built, so we

remind the reader to that Chapter for a more specific discussion.

Other proposals oriented to transparency for checkpoint/restore operations

in the context of general memory layouts cope with optimistic synchronization in

the High-Level-Architecture (HLA) [144, 145]. They rely on kernel-level memory

86 3. Literature Survey

protection mechanisms offered by the Operating System, used to detect memory

accesses and to trigger incremental copies of the accessed pages.

Another proposal which targets checkpoints of scattered-memory simulation

states is the one in [156], which nevertheless offers a degree of transparency

reduced with respect to [166, 144, 145], as the user has to explicitly notify the

simulation kernel about which memory buffers are being used for storing LP’s

state variables.

3.1.3 Incremental State Saving (ISS)

If the above mentioned techniques address the problem of state log/restore by

tuning the checkpointing interval to minimize the WCT required for a rollback

operation, they do not take into account that, even if seldom-executed, a check-

pointing operation can be onerous due to the size of the the state Si being saved.

Additionally, if Si is large, but only a small portion of it was modified since the

last checkpoint, there is a large amount of wasted time spent copying redundant

information.

The goal of Incremental State Saving (ISS) is to limit checkpointing overhead

by reducing its execution time, and by limiting at the same time the amount of

memory used for a single log.

The first ISS approach has been published in [10], and is based on the fact

that each event e ∈ E is augmented with the following information:

• The value of modified state variables after the event is processed;

• The value of modified state variables before the event is processed;

• The ST Tgen when the event is generated;

• The ST Texe when the event must be executed, with Texe > Tgen;

The simulation kernel must handle a more complex structure than the event

3.1. State Saving 87

queue, where (for each LP) a list of modifications of the states is stored. The

nodes of this queue are linked to the events that caused the updates. Upon the

receipt of a straggler message associated with timestamp Tstraggler, the rollback

operation is carried on in a way different from the previously presented one. In

particular, all the events of the rolling back LP i such that Tstraggler ≤ Texe ≤

LV Ti are scanned, and the corresponding state variables that where modified

are put back in place, taking care that the same variable is updated only once4.

Of course, this technique is not transparent at all, as the model programmer

must be aware of the concept of rollback and state saving, and has to access the

kernel’s data structures to make copies of the state variables before modifying

them. This is necessary, because the simulation kernel is not aware of where the

simulation state is stored, and of which parts are being updated by an event.

The work in [141] makes an additional step towards transparency, by re-

lieving the application-model writer from directly modifying simulation kernel’s

data structure. In particular, it proposes to implement incremental checkpoint-

ing in a transparent fashion by relying on Object Oriented overloading mecha-

nism. This choice narrows its applicability to OO programming languages (like,

e.g., C++ or Java). The basic idea is based on two essential points:

• all (user-defined) functions which process events (i.e., the event handlers)

must be redefined by means of overloading ;

• state variables must be encapsulated within classes defined by the simula-

tion kernel.

Encapsulation allows the simulation kernel to discriminate state variables
4Although this might seem an incorrect algorithm for state restore, we emphasize that the

original proposal in [10] was targeted at a specific scenario, namely digital logic simulation, where
additional property guarantee that the final simulation state is restored correctly. We refer to
the original paper [10] for a complete discussion of the algorithm, and to Chapter 4 for a more
general approach to incremental restore.

88 3. Literature Survey

from other ones which might be used to store only temporary results used for

computation. The application must therefore notify the kernel of which are the

state variables by using the special signature State<class T>, which wraps the

class T that the system will handle as part of the state. The programmer will be

allowed to manipulate wrapped objects by using overloaded methods, which will

make a copy of the accessed data buffers before the actual update is performed.

In this scheme, the user must be aware of the notion of rollback and of

the fact that the simulation kernel will perform incremental checkpoints, yet

differently from [10] the operation is performed by relying on a service exposed

by the simulation kernel which gives a certain degree of freedom in the definition

of the simulation state.

The proposal in [179], targeted at x86 computing architectures, supports

transparent incremental state saving by relying on software instrumentation.

The simulation model’s assembly code is parsed and, whenever an instruc-

tion that updates a memory region is found, a call to an ad-hoc module is

prepended, which generates a copy of the old memory’s value before updating

it. Whenever a rollback operation is performed, the chain of memory updates

is scanned backwards, in order to realign the content of the simulation state

to time Trollback. This technique is oriented to the programmer, so that she

does not have to alter the original simulation code because the instrumentation

phase automatically detects which are the possible assembly instructions that

will alter memory content. Nevertheless, the approach used in [179] suffers from

a performance sub-optimization. Let us consider the following code snippet:

1 for(i = 0; i < MAX; i++) {

2 state−>array[i]++;

3 }

This code could be an acceptable model code, which might be used, e.g., to

3.1. State Saving 89

increment some statistics in the model’s state. Yet, each iteration of the loop

would entail two memory updates, one to variable i and one to state variable

state->array[i]. The proposed solution would call the ad-hoc module twice

per iteration, and would create a node in the state chain for each modification of

the state->array[i] variable, given that its granularity is word-based. There-

fore, the single event’s execution delay is increased depending on the memory-

access pattern of the simulation model which, even in simple examples like the

proposed one, could be non-negligible.

The work in [125], which will be thoroughly discussed in Chapter 4, tackles

this issue in the case of dynamically-scattered simulation states by relying on

a dirty bitmap. Essentially, it relies on assembly-code instrumentation as well,

but given that an ad-hoc memory manager is (transparently) interposed between

the simulation model and the underlying system memory manager, each memory

update is materialized by simply setting one bit (corresponding to the touched

memory area) to 1, stating that the memory area was updated. In this way, the

checkpointing operation is carried out periodically, saving only the areas that

were actually updated since the last checkpointing operation. This allows the

simulation kernel to rely on any of the aforementioned optimizations regarding

the checkpointing interval χ, as it has been shown in [168]. The latter approach

relies on an integral function for fine-tuning the checkpointing parameters, en-

forcing as well stability of the decision towards fluctuations in the execution

dynamics.

In Table 3.1 we show a comparative summary of all the state saving tech-

niques presented so far, which highlights which properties are provided by each

of the above-discussed approaches.

90 3. Literature Survey

SS Technique P
S
S

A
S
S

S
ca
tt
er
ed

S
im

u
la
ti
on

S
ta
te

In
cr
em

en
ta
li
ty

A
rb
it
ra
ry

G
ra
nu

la
ri
ty

T
ra
n
sp
ar
en

cy

In
st
ru
m
en
ta
ti
on

-B
as
ed

A
n
al
yt
ic

M
od

el

T
em

p
or
al

M
ea
su
re
m
en
ts

H
eu

ri
st
ic
s

A
u
to
n
om

ic
it
y

S
ta
b
il
it
y
to

F
lu
ct
u
at
io
n
s

[76]

[77]

[13] X X

[121] X X X X X

[140] X X X X

[152] X X X X

[45] X X X X X

[133] X X X X

[10] X X X

[145] X X X

[141] X X

[179] X X X X X X X

[125] X X X X X X X X

[134] X X X X

[168] X X X X X X X X X X X X

Table 3.1: Comparison of State Saving Techniques

3.2. Consistent Output Generation 91

Advancements by the thesis

As it will be discussed in Chapter 4 we will explicitly allow the programmer

to rely on dynamically-allocated memory to scatter the simulation state, and

to make it grow/shrink depending on the actual model’s execution dynamics.

This will be done transparently at linking time by relying on specific malloc

wrappers, which will redirect calls to the standard memory-allocation library

to our specific memory manager. The memory manager will work at chunk

granularity, i.e. upon simulation startup a large buffer (for each LP) will be

pre-allocated, for serving subsequent memory request by each LP.

Furthermore, we will transparently integrate (via static software instrumen-

tation) a memory-update tracking subsystem, which will allow the simulation

kernel to know precisely which portions of the simulation states have been up-

dated since the last log operations. This information will be kept as small as

possible, to cope with memory usage, by relying on a dirty bitmap, i.e. a com-

pressed data structure where each bit tells whether a specific chunk has been

modified.

By relying on this information, the simulation kernel will be able to transpar-

ently execute Incremental State Saving, thus reducing the overhead required for

taking a simulation snapshot and additionally minimizing the memory footprint

related to state saving.

3.2 Consistent Output Generation

The issue of output commitment in rollback-recovery systems has been thor-

oughly studied in literature, although often in other topics. An excellent survey

of the proposed approaches can be found in [41]. These solutions have been

92 3. Literature Survey

oriented to fault tolerance, where rollback occurrence is only due to failures,

potentially causing the loss of volatile state information causally related to the

output messages. Overall, these solutions support reproducibility of state tra-

jectories (and related outputs) in order to keep the system state aligned with

what is actually observed by the external world. Instead, in optimistic PDES

systems we experience the problem of masking the outcome of specific state

trajectories (those that are rolled back) towards the external world. Further,

the approaches surveyed in [41] deal with the Lamport’s causality model [89],

where no predetermination of events’ ordering is imposed by event timestamps,

as instead occurs in PDES systems.

Still in the context of fault tolerance, the work in [79] presents a protocol

for supporting output commitment with special emphasis on prompt delivery of

output data, which is one of our targets as well. It places special attention on

state-information copies on stable storage, to overcome the failure of processes

and minimizing the time for restarting the execution of the system in case of

failure.

The work in [178] addresses the problem of external-world interactions in

the context of Transactional Memories (TM). In particular, the work focuses on

what a TM system (either software or hardware) should support to allow the

execution of irrevocable actions, such as I/O and system calls, when the side

effects cannot be rolled back. The proposed solution allows the programmer to

mark a specific transaction as irrevocable, i.e. the interactions with the external

world are immediately finalized, and the correctness is guaranteed by avoiding

to abort such transactions. Whenever a transaction is marked as irrevocable,

the runtime support checks whether another irrevocable transaction is currently

being run. In the positive case, the new transaction’s execution is delayed until

3.2. Consistent Output Generation 93

the other irrevocable transaction commits. In the negative case, the transaction

is immediately executed, and in case some conflict on accessed data is detected,

the contention manager only aborts other transactions which are not marked as

irrevocable. This solution is not transparent, and does not allow multiple (con-

current) interactions with the outside world, which is desirable in the context

of high-performance computing.

In the context of operating systems supports, the work in [181] proposes an

architecture for enabling applications to define program-specific custom policies

to carry on speculative execution, e.g. for I/O operations. Despite the clear lack

of transparency—the programmer is required to manually specify policies to de-

termine which speculative branch is correct, which ones should be rolled back,

and to manually mark portions of code which can be executed speculatively—

this work mostly relies on system calls to communicate between the application

and the operating system, requiring a large number of mode/context changes

which can significantly affect the overall performance, while we specifically de-

cided to work completely in user space to maximize the simulation throughput.

Additionally, speculation is implemented via an ad-hoc version of the fork()

system call, in order to create a new speculative copy of the process, while in

optimistic simulation speculation is already intrinsic in the execution model.

As hinted before, in the context of optimistic PDES engines, one approach

to deal with I/O is based on ad-hoc API. One example along this direction is

the work in [135], where the optimistic engine is able to provide the user-level

software with past, committed (and globally consistent) state images. This is

done by passing control (and the snapshot) to the applications via a proper call-

back. Once taken control, the callback can invoke output operations providing

data related to the committed portion of the simulation.

94 3. Literature Survey

Recently, the issue of transparency in optimistic synchronization in the con-

text of HLA based simulations has been tackled [146], where the problem of

direct external interactions (e.g., with the underlying Operating System) is also

addressed. However, the provided solution is based on temporary suspension

of processing activities at the federates until the interaction is conservatively

detected to be safe, and thus committable. A similar approach, but less trans-

parent, has been adopted to PDES in [32], where an ad-hoc API is provided to

the application programmer in order to alert the operating system kernel that

a non-revocable I/O operation needs to take place. Suspending (or throttling)

the execution is not compatible with the optimistic synchronization protocol, as

it might vanish all the benefits coming from speculative execution.

In [75], any output message is routed towards this object in the form of an

event, which gets processed only after GVT advancement (namely when the

event is detected to be committed). While there is a methodological similarity,

this approach is based on ad-hoc APIs used to trigger the interaction with the

special object, thus providing a degree of transparency which is strictly lower

than ours. Additionally, relying on an external daemon gives the benefit of

removing most of the work for materializing the output from the simulation

engine execution path.

As for non-blocking algorithms, avoiding mutual exclusion has been con-

sidered a benefit since the early 1970’s [39]. Lamport [88] gave the first non-

blocking algorithm for the problem of a single-writer/multiple-reader shared

variable. Herlihy [62] proved that for non-blocking implementations of most

interesting data types (linked lists among them), a synchronization primitive

that is universal, in conjunction with reads and writes, is both necessary and

sufficient. A universal primitive is one that can solve the consensus problem

3.3. Data Sharing across Concurrent Logical Processes 95

[44] for any number of processes. In our implementation we rely on Compare &

Swap (CAS), which is a universal primitive

Advancements by the thesis

We will present, as it will be stated in Chapter 5, an innovative subsystem

allowing committed interactions with the outside world from (uncommitted)

event handlers. This will be done by introducing the notion of an output daemon,

i.e. a separate process which executes along the main simulation kernel instance,

and which communicates with it by relying on shared memory. This solution

allows us to perform output materialization operations outside of the critical

path of the simulation framework, thus increasing the overall efficiency of the

simulation.

As an additional benefit, this solution allows a (geographical scale) ordering

of the generated output buffers, which could be used as well in conjunction with

conservative synchronization schemes.

We will implement, for performance reasons, all the interactions between the

output daemon and the simulation kernel by relying on non-blocking algorithms.

3.3 Data Sharing across Concurrent Logical Pro-

cesses

The issue of bypassing state disjointness for concurrent objects in PDES sys-

tems has been dealt with by several studies. The work in [18] discusses how

state sharing might be emulated by using a separate LP hosting the shared data

and acting as a centralized server. This proposal also introduces the notion of

version records, where multi-versioning is used for shared data in order to cope

96 3. Literature Survey

with read/write operations occurring at different logical times, and to avoid un-

needed rollbacks of the centralized server in case of optimistic synchronization.

This is an approach similar to the one proposed in [107], where a theoretical

presentation of algorithms to implement a Distributed Shared Memory mecha-

nism is presented in terms of protocols to keep replicated instances of a variable

coherent. In particular, one of the provided algorithms proposes to realize vari-

ables as multi-version lists where write operations install new version nodes and

read operations find the most suitable version. The above approaches map read/

write access to shared variables to message-passing (namely, event schedule op-

erations). This places a hard burden on the centralized node(s), which in the

case of a simulation model performing frequent read/write operations on shared

variables can produce a non-sustainable overhead.

Another proposal has been presented in [43], where the notion of state query

is introduced. A LP needing a portion of the state which belongs to a different

object can issue a query message to it, and wait for a reply containing the

suitable value. In case this value is later detected to be no longer valid, an

anti-message is sent so to invalidate the query. Again, this approach relies on

message passing, and is not transparent to the application programmer.

The work in [52] proposes to integrate the support for shared-state in terms

of global variables, by basing the architecture on [28].This proposal provides

no transparency, as the application-level code must explicitly register a LP as

a reader/writer on the shared variables, and the synchronization between LPs

accessing shared variables is unlikely to scale well on multi-core architectures,

as it is based on locks.

The Software Transactional Memory (STM) paradigm [149] allows multiple

threads to access global information while ensuring consistency with respect to

3.3. Data Sharing across Concurrent Logical Processes 97

concurrent accesses. The user has to explicitly mask a transaction by relying on

constructs provided by the underlying middleware, which in turn takes the bur-

den of ensuring consistency of the executed read/write operations. These write

operations do not work in-place, i.e., data updating is performed by the mid-

dleware (again, by relying on ad-hoc programming API functions) on separate

buffers (i.e., write-sets) which are then copied (i.e., externalized) into the global

buffer after some safety predicate is computed during the commit phase. Any

externalized operation is considered committed, i.e. differently from the PDES

paradigm, there is no need to support (at that time) a rollback operation.

The work in [30] proposes a framework targeted at multi-core machines and

based on Time Warp, where so called Extended Logical Processes (Ex-LP),

defined as a collection of LPs, have public attributes that are referred to variables

which can be accessed by LPs in other Ex-LPs. The work proposes to handle

shared attributes accesses by relying on a specifically targeted Transactional

Memory (TM) implementation, where events are mapped to transactions and

the actual implementation of the TM is based on [52].

3.3.1 Advancements by the thesis

In Chapters 6 and 7, we will propose a solution which allows the model writer

to share any memory area, without the need for a-priori knowledge of whether

some sharing on a specific area can occur. This entails both global variables and

different LPs’ (private) simulation states.

This increases the level of transparency, again allowing a truly sequential-

style programming model to be exposed to the programmer. In fact, she is

allowed to make any LPs that takes control touch any valid memory location

within the global simulation state without the need for any particular care, just

98 3. Literature Survey

like it occurs in sequential-style programming and related sequential execution

scenarios.

Concerning global variables, this will be done by redirecting their accesses

(both in read and write mode) to specific management functions via static bi-

nary instrumentation. These management function will, in turn, handle multi-

versioning lists, the accesses to which will be implemented as non-blocking al-

gorithms.

As for LPs’ private states, we will present both an operating-system-level in-

novative memory management architecture (provided as a loadable kernel mod-

ule), which will allow different worker threads to share the same view of the

data, yet with different access privileges. This will allows us to “materialize” the

memory accesses by triggering a segmentation fault, which will be nevertheless

handled without relying on actual operating systems signals. Rather, the ker-

nel module will intercept it, and it will pass the control back to the simulation

kernel, allowing an innovative synchronization protocol to take place, in order

to synchronize the involved LPs in a rendez-vous phase which will allow direct

memory access to different LPs’ simulation states.

3.4 Non-Blocking Algorithms

To increase the performance of our solutions, given that we target multi-threaded

simulation kernels deployed on multicore machines, we will often rely on non-

blocking algorithms [62]. Avoiding mutual exclusion has been considered a bene-

fit since the early 1970’s [39]. Lamport [88] gave the first non-blocking algorithm

for the problem of a single-writer/multiple-reader shared variable. Herlihy [62]

proved that for non-blocking implementations of most interesting data types

(linked lists among them), a synchronization primitive that is universal, in con-

3.4. Non-Blocking Algorithms 99

junction with reads and writes, is both necessary and sufficient. A universal

primitive is one that can solve the consensus problem [44] for any number of

processes. In our implementation we rely on Compare&Swap (CAS), which is a

universal primitive.

A subtle problem associated with most lock-free algorithms is the ABA prob-

lem. It was first reported in association with the introduction of the CAS instruc-

tion on the IBM System 370 [24]. It occurs when a thread T1 reads a value A

from a shared object and then an interrupting thread T2 modifies the value of

the shared object from A to B and then back to A. When T1 resumes, it erro-

neously assumes that the object has not been modified. Given such behaviour,

there is a serious risk that T2’s execution is going to violate the correctness of

the object’s semantic. Practical solutions to the ABA problem include the use

of hazard pointers [108] or the association of a version counter to each element

in platforms supporting a double-word compare-and-swap primitive (CAS2). We

explicitly rely on the latter solution to avoid the ABA problem in our non-

blocking implementation.

An important work, which will be very useful to our needs, is the one in [58],

where a non blocking implementation of a linked list is presented. In particular,

insert operations are executed by locating the correct position where to insert

a new node, and then the new node is linked to the list by relying on a CAS

on the previous node. Instead, to perform a delete operation, a couple of CAS

operations are executed, one to logically delete the node, and one to physically

delete it.

Chapter 4

Efficient and Transparent

Incremental State Saving

Those who cannot remember the past are condemned to repeat it

— George Santayana, The Life of Reason, 1906

As mentioned in Chapter 2, a critical aspect concerning PDES when the

rollback operation is supported via state saving & restore is how simulation-

state snapshots are taken and managed.

This operation has a huge impact on both the performance of the overall

simulation, and the transparency that the user can experience. We will cope

with both these aspects in this Chapter, showing how it is possible to realize

a checkpointing subsystem which allows the simulation kernel to handle check-

pointing operations incrementally, and without asking the user to provide any

information about the in-memory location of the LPs’ states. Additionally, this

prevents the model writer from being required to have any awareness of the

optimistic synchronization mechanism supporting the parallel execution of the

simulation as far as recoverability of the local state of the LP is concerned. Fur-

101

102 4. Efficient and Transparent Incremental State Saving

thermore, we will show how it is possible to allow the simulation model writer

to scatter the simulation state on dynamically-allocated memory. This will be

done by allowing her to rely on standard C malloc API.

An important implication of this choice is that the simulation state can vary

during the execution of the simulation. Therefore, if in a certain execution phase

the model requires more memory, it can be obtained by relying on a malloc

call, even if the memory request is later discovered to belong to an inconsistent

portion of the simulation trajectory.

This subsystem, named Dirty Dynamic Memory Logger and Restorer (Di-

DyMeLoR) is based on a previous work [166] the goal of which was to support

the usage of dynamic memory for storing the simulation state. The goal of

the original work, and the design principle which has been followed while im-

plementing Di-DyMeLoR, is that a simulation state snapshot must be taken

periodically. This means that, differently from the proposal in [179], we do not

take a (word-based) log whenever a memory update operation is performed.

Rather, we “materialize” that operation relying on a dirty bitmap.

This proposal relies on software instrumentation for identifying memory-

update operations. This task has been carried out by relying on the Hijacker

static binary instrumentation tool. Although we will give some insights about

Hijacker in this Chapter, in order to clarify certain aspects of the proposal, a

complete overview of the tool is presented in Appendix A.

Di-DyMeLoR is also related to a number of works in the field of program

execution tracing (see, e.g., [46, 6, 132, 188]) for debugging, vulnerability assess-

ment and repeatability. These approaches provide detailed analysis of changes

in the state of the program, and of the execution flow. However, this is achieved

via performance intrusive techniques relying on dynamic instrumentation and/or

4.1. Overview of Di-DyMeLoR’s Architecture 103

kernel level services, unsuited in contexts (e.g., parallel simulation) where perfor-

mance cannot be sacrificed. Debugging supports showing basic operating mode

comparable to our one (namely, the employment of trap mechanisms based on

code insertion/replacement to detect memory write accesses) are those address-

ing data watch points (see, e.g., [174]). However they have performance targets

different from ours since optimizations mostly cope with search techniques for

verifying whether a memory reference falls inside a region that is currently sub-

ject to a watch point. In other words, aspects related to the identification of

areas that have been dirtied and to incremental log/restore operations are not

considered.

4.1 Overview of Di-DyMeLoR’s Architecture

From an architectural point of view, Di-DyMeLoR can be seen as a wrapper of

ANSI-C malloc services1, which is transparently interposed—via simple linking-

time directives—between the simulation model’s code and the traditional malloc

library. These facilities are present in most compiling tool-chains, and can be

triggered via ad-hoc directives/scripts. Figure 4.1 provides an illustration of

this approach, along with a visualization of the supported API.

For each LP, Di-DyMeLoR keeps a metadata table composed of malloc_area

entries. Each entry keeps information about a block of contiguous memory

chunks. Each contiguous block is used to serve memory requests of a given

size for that LP, thus different entries of the table are used to manage chunks

of different sizes. The sizes which are handled by Di-DyMeLoR are fixed, in

particular they are all the powers of 2 in between a min_size and a max_size

1Specifically, Di-DyMeLoR supports malloc, free, realloc, and calloc standard services
offered by the standard C library.

104 4. Efficient and Transparent Incremental State Saving

Application Level Software

Simulation Platform

Memory Map Manager

and Allocator

Third Party

Library Wrapper

Update

Tracker

Log/Restore Subsystem

malloc()

free()

realloc()

calloc()

Calls to 3rd

party functions

memory

accesses

take_full_log()

state_restore()

set_current_lp()

take_incremental_log()
Memory Recovery

Subsystem
prune_log()

dymelor_init()

SetState()

Figure 4.1: Di-DyMeLoR’s Architecture

which can be specified at compile time. The default values are 32 B and 32 KB.

When a malloc request is issued, Di-DyMeLoR rounds up the requested size

to the nearest power of 2, and then the corresponding block is allocated (via a call

to the underlying real malloc services). In this way, when one chunk is required,

actually a contiguous number of chunks of the same size is pre-allocated, so

that future requests will be handled more quickly. This pre-allocation strategy

tries to capture a “size-locality” property, in the sense that it is more likely for

a simulation model to allocate chunks of a predefined set of sizes, due to the

fact that the data structures used by the model are often statically specified in

the code, and in a finite number. Therefore, pre-allocating chunks for any given

power of 2 at simulation startup might cause a relevant under utilization of the

whole memory map.

Additionally, since chunks of the same size are pre-allocated in a block,

memory contiguity of the state layout is exalted for each LP. This can favour

performance during both event processing and log/restore operations. In addi-

tion, pre-allocation of contiguous chunks allows Di-DyMeLoR to use very concise

metadata for the identification of the status of each chunk (busy or free) within

a block. In particular, a simple bitmap of status bits is used to identify chunks

4.1. Overview of Di-DyMeLoR’s Architecture 105

malloc_area

malloc_area

... Block status

bitmap

Dirty

bitmap

c
h
u
n
k

c
h
u
n
k

...

Figure 4.2: Main Memory Map Data Structures in Di-DyMeLoR.

which have been already delivered to the application, and are therefore currently

in use. We will refer to this bitmap as status bitmap.

To further optimize memory usage, the status bitmap is placed at the head

of the pre-allocated block of chunks, and gets allocated only in case of real

allocation of the corresponding block (see Figure 4.2 for a schematization of

the relation between the main data structures describing the LP memory map).

Actually, the table of malloc_area entries can be expanded in case its entries

have been saturated, and the LP continues requesting more chunks during event

processing activities.

4.1.1 Management of the Memory Map

In order to allow rollbackable memory-management operations, the wrapper

must know the identity of the LP which is scheduled whenever a call to the

memory-management API is issued. Di-DyMeLoR requires the simulation kernel

to explicitly notify which is the running LP identifier at scheduling time. The

identifier handled by Di-DyMeLoR is an integer in the range [0, N − 1] which,

as discussed in Chapter 2, is a classical means for mapping LPs. N is the total

number of LPs locally hosted by the local simulation kernel instance, let it be

a single-threaded process within a classical multi-process PDES platform, or a

thread within a multi-threaded platform organization [172]

Upon the initialization of the simulation, the simulation kernel must issue a

call to the API function dymelor_init(int num_LPs), which is used to notify

106 4. Efficient and Transparent Incremental State Saving

the number N of locally-hosted LPs, and which in turn allocates the aforemen-

tioned metadata table, consisting in an array of num_LPs entries containing the

following fields:

base_state_address which identifies the address that should be passed to the

event-processing callback upon dispatching the LP to allow it to correctly

access its state in memory;

state_layout_info which identifies the address and the current size of a meta-

data table keeping information on the memory layout for the LP state

(i.e., in-use chunks, dirty chunks, and reserved—but not currently in use—

chunks).

The API void set_current_LP(int LP_id, time_t sim_time) allows a

simulation worker thread to notify Di-DyMeLor what is the identity of the local

LP that is currently about to execute its next simulation event. In this way,

the wrapper can identify the LP metadata it must refer to upon subsequent

malloc/free invocations by the simulation model’s software, and can be in-

formed about its LVT value. This is required to make memory deallocations

correctly rollbackable, based on the relation between the advancement of the

GVT and the simulation time associated with free calls (see Section 4.5 for a

more detailed description of the memory-recovery approach).

LP metadata, accessible via state_layout_info, are organized into table

entries structured as follows:

4.1. Overview of Di-DyMeLoR’s Architecture 107

struct malloc_area {

int my_index;

int dirty_area;

size_t chunk_size;

int total_chunks;

int in_use_chunks;

int dirty_chunks;

int next_free_chunk;

simtime_t last_access;

void *where;

struct malloc_area *prev;

struct malloc_area *next;

};

Each entry (which is associated with the my_index index, which tells the

position of the entry in the table) is used to manage a block of a given-size

contiguous memory chunks, and different blocks host chunks with size corre-

sponding to different powers of 2 (as supported by standard configurations of

the malloc library). The chunk_size field indicates the size associated with the

malloc_area entry. The where field is initially set to NULL, meaning that the

chunks’ block associated with that specific size has not yet been reserved. We

therefore say that the malloc_area entry is currently invalid.

When a malloc call is issued by the simulation model’s code, the chunk

size that best fits the request is identified, a block of contiguous chunks is allo-

cated by the memory-map manager via the underlying standard malloc library,

and its address is registered within the where field, thus validating that specific

malloc_area entry. This approach implements a classical pre-allocation strat-

egy, where a block of pre-allocated chunks is reserved for a specific LP, thus

108 4. Efficient and Transparent Incremental State Saving

improving memory locality for its state.

By default, the virtual address returned by the memory allocator upon the

very first malloc call for a specific LP is registered as the base_state_address

for that LP. This choice takes into account the fact that, as discussed in Section

2.3, at simulation startup the very first activity which involves a simulation

model is the setup of the LPs’ simulation state, triggered by the INIT event’s

delivery. It is reasonable, then, that during the execution of INIT event, the

simulation model’s code will rely on a malloc call to reserve the initial memory

for the simulation state.

However, if this is not the case, or if during the simulation’s execution one

LP decides to start using a completely different simulation state (i.e., by a

couple of free/malloc calls), Di-DyMeLoR offers the SetState(void* addr)

API, which allows the programmer to dynamically change the base state stored

in base_state_address. Of course, relying on SetState() can affect trans-

parency, as the simulation model programmer must rely on a specific API call

to notify the kernel of a state layout change. Yet, our experience tells us that

most part of DES simulation models have a static initial shape of the simulation

state, which is then made grow or shrink at runtime, by linking new dynamically-

allocated buffers to the initial one, via pointer, lists, or more complex dynamic

structures. This behaviour is fully-transparently captured by Di-DyMeLoR, and

has in fact driven our design principles.

We note that, in order to make the simulation state completely rollbackable,

the invocation of SetState() is stored into the log buffers, as it will be discussed

later, keeping track of the previous base_state_address, which can be therefore

restored in case of a rollback operation.

For both time and space efficiency, each chunk within a pre-allocated block

4.1. Overview of Di-DyMeLoR’s Architecture 109

is associated with a single bit that indicates its current status, in terms of

whether it is in use or not2. The resulting status bitmap is placed at the head

of the pre-allocated block of chunks, along with a dirty bitmap, which is used to

materialize memory-update operations, and which will be later described. These

support data structures are created and managed only in case the corresponding

block of chucks is actually allocated, thus considerably reducing the initialization

time. Figure 4.2 shows the exact memory layout for the aforementioned data

structures.

Upon a memory allocation request, the in_use_chunks counter is updated,

and the field next_free_chunk in the involved malloc_area is used to identify

the most convenient position for starting the bitmap search in order to select a

free chunk. The manipulation of next_free_chunk follows the classical a first-fit

policy used by the Linux kernel for managing processes’ file descriptors, aimed

at reducing both free-chunks and bitmap fragmentation by aggregating in-use

chunks in the initial part of the block.

When a block of chunks of a given size is filled up, the metadata table is

expanded via a standard realloc operation, leaving available at least one new

malloc_area entry, which gets linked via the prev and next fields, creating

a list of entries used to manage chunks of a given size. Also, a new block of

contiguous chunks of that size is allocated. In this scenario, we detect that

chunks of that size are highly useful for serving memory allocation requests for

the LP. Consequently, whenever we expand the metadata table and reserve a

new block of chunks, we double the block’s size (i.e., the number of chunks hosted

2This is a main difference from the original malloc library, where a more complex header is
associated with each managed chunk to maximize flexibility in memory usage (e.g., by dynamically
partitioning or aggregating chunks according to the so-called “boundary tagging” scheme [91]).
Nevertheless, Di-DyMeLoR exploits this flexibility by ultimately relying on the malloc library for
actual virtual memory allocation.

110 4. Efficient and Transparent Incremental State Saving

by a block)—as in classical operating-system schemes targeting pre-reserving for

the swap area destined to data sections of active processes. This strategy further

enhances memory contiguity for the LP state, minimizing costs associated with

malloc library accesses, due to memory blocks pre-allocation.

Upon a free call, the associated chunk (and the corresponding block) is

not actually released. Instead it is marked in the status bitmap as available for

future allocations. In this way, memory deallocations are correctly rollbackable

until they get eventually committed due to GVT advancement. Operatively, this

is achieved by also exploiting the last_access field within the malloc_area en-

try, which is used to record the logical time associated with the last memory

allocation/deallocation operation within the corresponding block, and to deter-

mine whether a block formed by chunks that have all been released can be really

deallocated, during the execution of the fossil collection operation.

The explicit design choice to avoid per-chunk metadata would require the

scan of all the malloc_area entries to check whether the entry is active, and

(in the positive case) whether the chunk being released via the free call be-

longs to it. To avoid such a scan, Di-DyMeLoR is equipped with a software-

level direct-mapped caching subsystem, with cache lines formed by the tuple:

〈chunk_address, chunk_end_address,malloc_area_index〉. Upon chunk al-

location, the cache line is filled so that, in case of a subsequent free operation

associated with that same chunk address, the wrapper retrieves the correspond-

ing malloc_area in O(1) time (unless for cases where the same cache line is

overwritten during the run). A cache line is reset only when the corresponding

chunk gets really deallocated, i.e. when the whole memory block containing it

is released.

To allow incremental state saving, Di-DyMeLoR must know which portions

4.2. Simulation Model Instrumentation Technique 111

of the memory map of a given LP were modified since the last log operation. To

this end, the dirty_area flag indicates whether any type of operation (namely

allocation, deallocation or chunk update) has occurred in the malloc_area since

the last log. Therefore, this flag is set upon the invocation of a malloc or

free call by the simulation model code, and is additionally set whenever a

memory-update operation is performed, according to the scheme which we will

present in Section 4.2. Additionally, the dirty_chunks field explicitly counts

the current number of in-use chunks that have been updated in the malloc_area

since the last log operation. The dirty bitmap, which has the same size of the

status bitmap, associates one bit with each memory chunk, allowing a fine-

grain identification of the memory areas which where updated since the last log

operations, again avoiding a costly per-chunk data structure.

4.2 Simulation Model Instrumentation Technique

As mentioned, the final goal of Di-DyMeLoR is to transparently support incre-

mental state saving. While the aforementioned approach is suitable to let the

simulation kernel transparently know where the simulation state of each LP is

located, to detect which memory regions are accessed (in write mode) during the

execution of an event, we rely on the static software instrumentation facilities

offered by Hijacker [123], which are thoroughly discussed in Appendix A.

Nevertheless, to clarify how Di-DyMeLoR updates its data structures when-

ever a memory-update operations takes place, we give here some insights on

the instrumentation process, which specifically targets ELF (Executable and

Linkable Format) [165, 105] objects generated by standard compilers for x86

and x86-64 architectures. At the very base, Hijacker works by parsing the ob-

ject generated after linking together all the application-level source modules,

112 4. Efficient and Transparent Incremental State Saving

and by identifying every memory-write instruction inside this object, namely

mov instructions with a memory location as the destination. The instrumen-

tation process is then supported via the insertion of a call instruction to an

update_tracker module (which is part of the Di-DyMeLoR subsystem). It’s

purpose is to perform the identification of the exact memory address and the

size (amount of bytes) involved in the memory-update operation.

Although this is a typical way for tracking memory update references (e.g., in

the context of program debugging techniques [174]), the usage of this approach

in optimistic simulation systems poses (more) stringent performance issues. In

particular, the update_tracker should perform its job via very few machine

instructions, in order to avoid a significant impact on event execution latency.

To cope with such a performance target we have decided not to employ run-

time disassembling of the memory reference instruction, which could be onerous

(compared to the event execution latency of non-instrumented software) espe-

cially due to the complexity and variable format/length of the x86/x86_64 in-

struction set. Instead, we cache some of Hijacker’s disassembly information into

a table which is accessed by update_tracker. Therefore, most of the disassem-

bly overhead is paid only once at compile time, leaving to the update_tracker

module the task of gathering a reduced set of information which are only avail-

able at runtime.

In particular, x86/x86_64 architectures identify a memory address as the

linear combination of (up to) five parameters, namely segment, base, index,

scale and displacement, as depicted in Figure 4.3. They maintain the follow-

ing information:

segment: a segment register. This is not directly specified in the instruction,

yet the addressing mode will use the segment where the currently being

4.2. Simulation Model Instrumentation Technique 113

CS:
DS:
SS:
ES:
FS:
GS:

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

+

EAX
EBX
ECX
EDX
EBP
ESI
EDI

∗

1
2
4
8

+ [displacement]

Figure 4.3: x86/x86_64 addressing mode

executed instruction is located;

base: this value is stored into one of the 8/16 general-purpose registers of the

processing unit3 (which is therefore referred to as base register) and is

commonly used to represent a base address from which to compute a final

memory location to access;

index: this value is stored into one of the general-purpose registers as well,

hence being called index register. It is commonly used to represent the

index of an array, the base of which is stored into the base register, or in

the offset;

scale: this variable, which can only assume the values 1, 2, 4, 8 only, is a

multiplier of the index value. It is directly coded into the instruction’s

binary representation, and is used, e.g., to represent the width of the data

which compose the array being accessed;

displacement: this value, directly stored into the instruction’s binary represen-

tation, is finally added to the outcome of the memory address evaluation.

It is clear that this complex addressing format simplifies the CPU user when

dealing with more complex data structures like structs or arrays. Yet, as

hinted before, some portions of the addressing format can be only evaluated at
3Depending on whether the architecture is a 32 bits or a 64 bits one.

114 4. Efficient and Transparent Incremental State Saving

runtime, namely the base and the index registers. All the other information can

be gathered at compile time by looking at the instruction’s opcode4 which tells

which of the four fields (the segment not being specified in the instruction) are

relevant for the address evaluation and what is the actual size of the involved

memory operation.

Hence, cached data from the disassembling of one single instruction, are

organized as follows:

struct update_tracker_entry {

unsigned int size;

char flags;

char base;

char index;

char scale;

long displacement;

};

The flags field is used to identify which of the aforementioned four pa-

rameters are actually relevant and should be considered by update_tracker for

computing the exact address for the memory-write operation. Also, the size

field immediately indicates to update_tracker the (compile-time defined) size

of the memory area to be dirtied by the current memory-write instruction.

We have two exceptions to this approach. One is for movs and stos in-

structions, used for moving arbitrary-size memory blocks. These instructions

keep the information for identifying the destination address and the current size

4For simplicity, we call opcode the actual opcode, the prefixes, the ModR/M and the SIB byte
of the x86/x86_64 instruction set, which can be all present, or only some of them, depending
on the actual instruction and addressing mode. We refer the reader to [72, 73] for a complete
discussion of the instruction set.

4.2. Simulation Model Instrumentation Technique 115

of the memory block being written into predefined registers, namely edi and

ecx, which are directly accessible by update_tracker. The second one involves

cmov instructions, which perform the memory update only if a particular con-

dition is met. To cope with this specific case, we replace the cmov instruction

with an assembly code block which mimics the execution of this instruction

(i.e., it performs the equivalent check), and if the condition is met, then the

memory is updated by relying on a traditional mov instruction, which is in turn

instrumented according to the same aforementioned policy. We note that this

approach is sub-optimal with respect to the execution performance of the cmov

instruction. Nevertheless, we note that to mark the memory area as updated,

we necessarily must evaluate the condition. At that point, relying again on

the cmov to perform the memory update would add an additional (although

minimal) cost, just to compute a value which is already available.

Recalling that the execution of update_tracker module is a performance-

critical operation directly impacting the event-execution cost, we have adopted

the following strategy for minimizing the performance overhead. In particular,

for each mov instruction involving a memory update, a set of push instruction

in injected before the actual call to the update_tracker module. The purpose

of the push instructions is to let update_tracker find on the stack a memory

area structured as struct update_tracker_entry, where the value of the fields

describe the original mov instruction which caused the actual invocation of the

module.

Upon its activation, update_tracker checks inside its own stack frame the

information needed to compute at runtime the memory address and the size of

the write operation. Given that this computation can unpredictably change the

value of the eflags register on board of the CPU, this register value is saved by

116 4. Efficient and Transparent Incremental State Saving

update_tracker upon its activation together with general purpose ones, and is

put back in place right before returning control to the memory write instruction

for which the tracking process has been activated.

In the memory model offered by Di-DyMeLoR, locations associated with au-

tomatic variables (allocated inside the stack) do not belong to the object memory

map, since they do not survive across different invocations of the event handler.

Hence, all those memory-write instructions that can be detected at compile-time

to access the stack (e.g., mov instructions addressing memory via base pointer

or stack pointer displacement) are not actually instrumented, by relying on a

special configuration rule. Anyway, in some cases write access into the stack

cannot be recognized at compile time. For this reason, after having computed

the address for the memory-write operation, update_tracker compares it with

the current value of the stack pointer. In case the access is an actual stack

update, update_tracker simply returns. Otherwise, the information about the

identified memory address and the size of the area being dirtied is passed to the

memory map manager. This is done by invoking an internal routine which flags

the dirty bit corresponding to the involved memory chunk(s). For this task, the

software cache described in Section 4.1.1 is exploited again in order to perform

a reverse query which translates a generic memory address into the chunk(s)

actually containing the memory buffers and the associated malloc_area entry.

This allows fast identification of the bitmap to be involved in the update opera-

tion. Additionally, dirty_area is set, and dirty_chunks is incremented by the

number of chunks which were involved by the memory-update operation.

While Hijacker is able to rebuild all the internal references between instruc-

tions and data, which are altered by the insertion of additional instructions in

the ELF text section, the x86/x86_64 instruction set allows to compute at run-

4.2. Simulation Model Instrumentation Technique 117

time the destination of the so-called indirect branches (also referred to as register

jumps), where the destination address is dynamically identified via the content

of CPU registers. To cope with this issue, we have implemented a second run-

time monitoring mechanism for supporting on-the-fly correction of destination

addresses of indirect branches. Like in the aforementioned approach, this mech-

anism is based on the insertion of a call instruction to a second assembly-level

monitoring module, called branch_corrector, prior to each indirect branches in

the original software. This monitoring module relies on a pushed data structure

which is associated with a single register jump instruction, and keeps the infor-

mation regarding which are the registers whose values determine the destination

address for the jump operation. This process is carried out in a way similar to

the one adopted for the generation of support information for update_tracker.

By exploiting the information in this data structure, branch_corrector

evaluates the original destination address for the jmp instruction (by reading

the CPU registers that specify the destination value). Then it corrects this

address on the basis of the amount of bytes by which the original destination

was shifted inside the instrumented object layout. To provide a lightweight

mechanism for address correction, we generate a table at compile-time, which is

visible to branch_corrector. Each entry inside this table identifies an interval

of addresses for which the instrumentation process gave rise to the same amount

of shift inside the final (instrumented) memory layout. Such an offset is also

maintained in the table entry. The table is ordered by interval extremes, and

branch_corrector performs a logarithmic-cost binary search to retrieve the

interval containing the original destination for the register jump, and the offset

to be applied for the correction.

Such a correction cannot however be applied by modifying the values of

118 4. Efficient and Transparent Incremental State Saving

the CPU registers involved in the jmp instruction. This would otherwise result

in an inconsistent processor state for the simulation model. We have rather

adopted a different approach where the original indirect-branch instructions

(whose relevant information is anyway logged inside the pushed data structures

available to branch_corrector), are replaced at compile-time by Hijacker with

(regular) offset jumps (not relying on CPU registers), where the destination

address is maintained inside one field of the instruction binary representation,

and is appropriately set by the on-the-fly correction mechanism.

To support the rewrite operation of the appropriate instruction field at run-

time, without impacting typical settings associated with memory protection, the

indirect-branch instruction has been moved inside a run-time re-writable ELF

section (specifically created by exploiting compiler facilities). Also, a jump-label

instruction has been inserted in place of the offset jump inside the original (non-

rewritable) section(s) of the application code, which passes control to the offset

jump right after the brach_corrector module has re-written the correct desti-

nation address (the offset) inside the ad-hoc re-writable section. Of course, in

case of simulation kernels which are implemented according to a multi-threaded

scheme, the instrumentation process involves the generation of one new writeable

section per each thread, to avoid race conditions. The whole instrumentation

process is illustrated in Figure 4.4.

We note that efficient solutions for correcting register jumps (e.g., via the

avoidance of run-time disassembling) have practical relevance since register

jumps are typically generated by standard compilers for machine language trans-

lation of switch/case constructs [164], which are relevant in simulation appli-

cations for, e.g., flow control inside the event handler(s) on the basis of the type

of dispatched event.

4.3. State Log Operations 119

mov $3, x
original memory

update

jmp *%eaxindirect branch

mov $3, x

jmp .Jump

call track

jmp 0xXXXX
.Jump:

push struct

new writeable section regular jump modi ed

by branch_corrector

call corrector

Instrumentation Process

Original Executable Final executable

push struct

regular jump

Figure 4.4: Simulation Model Instrumentation Process

4.3 State Log Operations

Basically, a state log operation is supported by packing the information to be

logged inside a contiguous buffer allocated via the underlying malloc services.

Incremental State Saving is supported by a set of operations which depends

on the current value of the data structures explicitly used for tracking dirty

data/metadata. Specifically, whenever a snapshot must be taken for a given LP,

each active malloc_area is checked to determine which, among the following

cases, is verified:

1) dirty_area is set and dirty_chunks is zero. In this case the malloc_area

is packed into the log buffer together with the status bitmap indicating

the current allocation of chunks inside a given block. Yet the dirty bitmap

and the currently in-use chunks are not logged.

2) dirty_area is set and dirty_chunks is greater than zero. In this case

the malloc_area is packed into the log buffer together with the status

120 4. Efficient and Transparent Incremental State Saving

bitmap, the dirty bitmap and the chunks that are currently in use, which

have been dirtied. All the other in-use chunks are not logged.

3) dirty_area is not set. In this case, no information associated with the

area is logged at all.

Finally, all the data structures used for tracking dirty data/metadata are

reset, independently of which, among the aforementioned cases, occured. This

is because all the information related to the modification of the malloc_area

has been saved in the just-taken log, so the system can restart tracking new

changes from scratch. Then, the state log is stamped with the current LVT

value, and is inserted into the timestamp-ordered state-log chain. Additionally,

the current value of base_state_address is stored as well in the snapshot, thus

allowing the recoverability of SetState() invocations.

Again, we emphasize that incremental state log operations are not required

after the execution of each simulation event, rather they can be taken peri-

odically. In fact they are based on recognizing memory portions that have

been dirtied since the last log, independently of the amount of events actually

performing the dirtying operations. Hence, state reconstruction at whichever

simulation time can be supported via a mix of state restore from the log, and

classical coasting forward.

4.4 State Restore Operations

When a restore operation needs to be executed to restore the execution at ST

Trollback due to the occurrence of a rollback operation, the log chain is searched

to determine the most recent log with time less than or equal to Trollback, and

all the logs with time greater than Trollback are simply discarded since they

4.4. State Restore Operations 121

refer to causally-inconsistent memory maps. To restore the incremental log, the

following steps are then iterated by backward traversing the chain of logs:

1) A malloc_area found inside the log buffer, which has not been restored, is

put back in place inside the metadata table. The associated status bitmap

is also copied back from the log buffer (recall that a logged malloc_area

is always associated with the corresponding status bitmap inside the log

buffer to guarantee recoverability of chunk allocation/deallocation opera-

tions).

2) Each dirty chunk which is found inside the log and which is associated with

the malloc_area, which has not yet been restored in a previous iteration

while backward traversing the log, is copied back in its correct position

inside the corresponding memory block.

The iterative restore procedure stops when all the active malloc_area en-

tries have been restored and all the in-use chunks that have been dirtied are

also restored. Although in principles this could entail an indefinite number of

iterative backward steps along the log chain, in practice the restore operation

can be immediately finalized if we find a full log while backward re-traversing

the log chain. In fact, all the in-use chunks that have not yet been restored are

immediately available inside the full log for copy-back operations. Therefore,

we periodically take a full snapshot of the simulation state, to avoid a (possibly)

infinite restore operation. To correctly select the optimal interval according to

which take a full log, in order to minimize checkpoint/restore latency and thus

maximize the overall simulation throughput, an approach like the one proposed

in [168] can be adopted. The steps executed to perform an incremental restore

operation are depicted in Figure 4.5

122 4. Efficient and Transparent Incremental State Saving

malloc_area 1

dirty
bitmap

malloc_area 3

malloc_area 2

status
bitmap

dirty
bitmap

status
bitmap

dirty
bitmap

status
bitmap

SimulationIObject'sIStateLogIChain

T1 T2 T3

dirty
bitmap

status
bitmap

malloc
areaI1

1

2

3

4

1

2

3

1

2

3

4

5

2

dirty
bitmap

status
bitmap

malloc
areaI3

1

5

dirty
bitmap

status
bitmap

malloc
areaI1

2

status
bitmap

malloc
areaI2

status
bitmap

malloc
areaI1

1

2

3

4

status
bitmap

malloc
areaI2

1

2

3

status
bitmap

malloc
areaI3

1

2

3

4

5

4

IncrementalILogs

Logs Timestamps
Log chain is

backward traversed

The content is restored back in place

The content is skipped

The content is cleared

FullILog

Content taken from Log at ST T1

Content taken from Log at ST T2

Content taken from Log at ST T3

Figure 4.5: Incremental Restore Process

4.6. Memory Recovery 123

Actually, to optimize the detection of already-restored chunks, which must

therefore not be copied-back again from the log, the iterative restore procedure is

based on temporary bitmaps (each one associated with an active malloc_area)

on which a couple of fast bitwise OR-XOR operations are executed each time

a dirty bitmap (associated with that same malloc_area) is extracted from the

incremental log.

4.5 Memory Recovery

As explained, incremental logs are linked all together within per-LP lists, sorted

by simulation time value. Obsolete logs can be discarded, thus allowing virtual

memory recovery, via the void prune_logs(time_t new_GVT). This function

scans the log queue for each managed LP, finds the oldest full log with time

less than or equal to the value of new_GVT, and prunes all the logs with a lower

simulation time.

Given the organization of the aforementioned recovery procedures, main-

taining at least one full-log with time less than or equal to the newly computed

GVT value allows correct recoverability of the LP state.

Whenever the log chain is pruned, an internal API function is triggered, to

check whether some memory blocks (allocated via the underlying real malloc

library) are keeping chunks which have all been free’d by the simulation model.

In this case, the free operations can be finally committed, i.e. the buffers

which were being kept to allow the recoverability of the free operations can be

discarded.

124 4. Efficient and Transparent Incremental State Saving

4.6 Third Party Library Wrapper

The possibility to rely on third-party libraries depends on whether they modify

the internal simulation state of the calling LP or not. In case they do, we need to

capture memory changes caused by their execution, let them be new allocations

or memory updates. However, libraries are not instrumented, and therefore we

cannot rely on allocation wrappers and update_tracker for memory-update

detection.

We have explicitly addressed the case of update operations performed by

third-party software, just focusing on stdlib. Specifically, Di-DyMeLoR provides

a set of function wrappers for all those functions which produce in-memory

changes by the application-level software through pointers passing. The wrap-

pers simply throw back the call to the underlying standard-library function, and

then pass control to the memory-map manager with explicit indication of the

address of the updated buffer, and the size of the updated memory block. In case

the size cannot be retrieved by the library function signature (as for pointers to

buffers used for strings), the memory-map manager updates the dirty bits for

all the currently allocated contiguous chunks starting from the pointed address.

This is obviously a conservative way of managing the memory map since some

chunks that have not been really dirtied by the library are actually considered as

dirty ones, thus being subject to log/restore operations. However, correctness is

not jeopardized, given that the wrapped stdlib library functions are all stateless,

thus posing no issue on the side of memory log/restore.

As for stdlib functions which allocate new memory buffers (e.g., strdup),

Di-DyMeLoR provides a set of wrappers as well, which in turn re-implement

the library functionalities by relying on its memory allocator, thus allowing the

new memory buffers to be located within the actual LPs’ state layout. Allo-

4.7. Experimental Evaluation 125

cation/deallocation and update operations of these buffers are therefore made

recoverable. We are currently working on techniques for allowing the application

code to automatically rely on any (stateful) third-party library.

4.7 Experimental Evaluation

4.7.1 Benchmark Applications and Configuration

To study the effects of Di-DyMeLoR when considering differentiated execution

and memory access patterns for the application layer, we use two different con-

figurations of the PCS application. In one configuration we simulate 1024 cells,

each one managing up to 1000 wireless channels, where the expected duration

of a call τduration has been set to 120 seconds, the residual residence time for an

active call in the current cell τchange has been set to the value 300 seconds, while

the inter-arrival time τA has been varied during the simulation so as to generate

a configuration where the actual load on the cells depends on the period of the

day.

Specifically, 17 hours of operation of the cellular system have been simulated

(from 00:00 AM to 17:00 PM) with variations of τA in the interval [0.64, 3.20],

with peak intensity of the workload during the morning until lunch time, and

minimum load very early in the morning (around breakfast). Consequently, the

utilization factor has been varied in the interval [0.31, 0.06]. For this configura-

tion of the PCS model, climatic conditions have been set as good and steady,

thus not causing the need for frequent recalculation of fading coefficients. We

will refer this configuration to as “Variable τA”.

On the other hand, the second configuration of PCS has been parametrized

by having the expected inter-arrival time τA fixed to the value 0.8 (giving rise

126 4. Efficient and Transparent Incremental State Saving

to channel utilization values on the order of 25%), which leads to focusing the

simulation on a morning operation scenario, but where the climatic conditions

exhibit variations that lead to periods where frequent recalculation of fading

coefficients needs to be operated. We will refer this configuration to as “Frequent

fading recalculation”. Both the above configurations lead to run time dynamics

that vary, e.g., in terms of event granularity and portion of the LP state that

needs to be updated by the events, however this is achieved in different manners

in the different scenarios.

Additionally, to study the behaviour of Di-DyMeLoR on a simulation sce-

nario where the size of the simulation state is large, we have relied on the NoSQL

benchmark. In our experiments we considered a configuration with 64 cache-

servers, each keeping M = 50000 data objects. This leads a global occupancy

of about 64 MB of current simulation state in our implementation. Consider-

ing that each data object is replicated 2 times, the total number of different

〈key, value〉 pairs kept within the simulated data-grid platform is equal to 1.6

million. In our experiments, we set to 100 the expected number of read/write

operations executed by any transaction, and to 0.2 the probability to access

a remote data-object within the data-grid system (namely a 〈key, value〉 pair

whose copy is not held by the local server neither as master nor as backup in

the replication scheme). Also, we run experiments where the data-access pro-

file of the transactions changes over time. Specifically, we initially have a read

intensive phase, where each transaction updates only the 5% of the accessed

data-objects (while accessing the remaining 95% in read mode). On the other

hand, in a subsequent execution phase, the transaction profile becomes write

intensive, meaning that the data objects accessed in write mode amounts to

the 50% of the total number of per-transaction accessed objects. We note that

4.7. Experimental Evaluation 127

changes in the read vs write intensiveness of transactions in a data-grid system

is prone to take place in relation to real-life events (e.g., associated with relevant

promotional sales on stocks of products in e-commerce applications). For each

phase (read vs write intensive) we simulated on the order of 320000 transac-

tions. We note that in this model events have a relatively fine granularity (on

the order of 10/15 microseconds) independently of the transaction profile. In

fact, differently from the PCS benchmark, no complex calculations need to be

performed for handling the events. Rather, event processing mostly entails re-

trieving the information on the target data-object, and updating its state (e.g.,

by temporary locking the data-object in case of the prepare phase in the 2PC

protocol). This leads to a scenario where fine grain events are coupled with rel-

atively large size of the LPs states. In principles, this scenario is not favourable

to full checkpointing, unless for the case where a large fraction of the state is

updated by subsequent events, which is the case for the write intensive phase.

Particularly, when the transaction profile is write intensive, a larger number

of data-objects need to be locked in the 2PC scheme, and then updated upon

committing the transaction. Given that the state of each object is kept in an

entry of a bucket (an array) in the hash table, then updating the entry leads to

mark as dirty the whole chunk keeping the array. This leads to increasing the

cost of incremental logging (compared to read intensive scenarios).

4.7.2 Results

We report in Figure 4.6 and in Figure 4.7 the cumulated committed events

achieved by the parallel run versus WCT for the PCS benchmark. These val-

ues have been computed as the average over ten runs (performed with different

pseudo-random seeds), with a minimal variance observed across different runs.

128 4. Efficient and Transparent Incremental State Saving

0

1.0⋅10
7

2.0⋅10
7

3.0⋅10
7

4.0⋅10
7

5.0⋅10
7

6.0⋅10
7

7.0⋅10
7

8.0⋅10
7

9.0⋅10
7

1.0⋅10
8

 0 50 100 150 200 250 300 350 400 450

C
u
m

u
la

te
d
 C

o
m

m
it
te

d
 E

v
e
n
ts

Wall-clock-time (seconds)

Incremental (Scattered state)
Full (Scattered state)

No Monitor (Scattered state)
Full (Contiguous state)

Figure 4.6: PCS – Variable τA

0

5.0⋅10
6

1.0⋅10
7

1.5⋅10
7

2.0⋅10
7

2.5⋅10
7

3.0⋅10
7

3.5⋅10
7

4.0⋅10
7

4.5⋅10
7

 0 20 40 60 80 100 120 140 160 180

C
u
m

u
la

te
d
 C

o
m

m
it
te

d
 E

v
e
n
ts

Wall-clock-time (seconds)

Incremental (Scattered state)
Full (Scattered state)

No Monitor (Scattered state)
Full (Contiguous state)

Figure 4.7: PCS – Frequent Fading Recalculation

4.7. Experimental Evaluation 129

 0

 200

 400

 600

 800

 1000

Full (S, V)

Increm
ental (S, V)

N
o M

onitor (S, V)

Full (C
, V)

Full (S, F)

Increm
ental (S, F)

N
o M

onitor (S, F)

Full (C
, F)

M
e
m

o
ry

 O
c
c
u
p
a
n
c
y
 (

M
B

)

Log Metadata
Actual State Log
Total

V: Variable τA
F: Fading Recalc.

C: Contiguous State
S: Scattered State

Figure 4.8: PCS – Memory Usage

This parameter (and the slope of the associated curve) indicates the speed ac-

cording to which a given platform configuration commits simulation events, and

hence how fast the configuration supports model execution.

We report four plots referring to:

1) the case when Di-DyMeLoR is used to take incremental snapshots, with

the value of χ optimized according to [140];

2) the case in which ROOT-Sim is configured to take full logs (according to

the implementation described in [166]) rather than incremental ones as for

the services offered by Di-DyMeLoR, again with the value of χ optimized

according to [140];

3) the case where we support the incremental log mode by having the sim-

ulation model directly calling the memory map manager to notify which

130 4. Efficient and Transparent Incremental State Saving

portions of the state have been updated by event processing (this is re-

ferred to as “No Monitor” in the figures);

4) the case in which the application code was modified to avoid using dynamic

memory, hence leading to the situation where the state buffer for each LP

is pre-allocated at startup in the form of an array of entries.

The plots for cases 1 and 2 express performance levels related to the incre-

mental/full log scheme. On the other hand, the plots for case 3 allow us to

assess the effects generated by the memory update facilities which are exploited

to take incremental logs transparently to the application code. In fact, case 3

represents scenarios that benefit by optimal checkpoint interval calculation and

incremental state log/restore, but require the intervention of the programmer

in relation to some of the tasks enabling incremental logging, thus offering a

transparency level which is strictly lower than the one offered by Di-DyMeLoR.

Hence, this case allows quantifying the performance penalty associated with

state-management full transparency. Finally, case 4 is representative of scenar-

ios where no facilities other than the bare minimal log and restore operations

are supported, and without any infrastructure allowing for dynamic memory

handling, thus requiring the state to be contiguous and statically sized to the

maximum value admitted by the model parametrization. This is a baseline for

our experimental evaluation.

By the results, we see that, depending on the specific phase within the simu-

lation run, (e.g., early morning vs lunch time for the variable τA configuration)

incremental and full modes alternately exhibit better execution speed (which is

indicated by the different slope of the cumulated committed events curve while

the run is in progress). In particular, for the scenario where τarrival is varied, the

incremental mode is slower while simulating heavier load periods. This reflects

4.7. Experimental Evaluation 131

the fact that, during heavier load periods and in the weekend, each GSM cell,

and hence each LP, exhibits a reduced state size due to the minimal number of

records allocated for ongoing calls, and therefore the cost for memory-update

tracking is not amortized by the cost of state checkpointing. This is not the case

for day-time periods, where the state size of the LPs can grow significantly (es-

pecially for rush hours), up to the limit of slightly less than 70 KB (per each LP),

and the update pattern of the state upon the occurrence of the events allows

the incremental log mode to outperform the full one, once the corresponding log

period get optimized.

Configuration 3 removes all the transparent facilities which are provided by

Di-DyMeLoR—in terms of identification and notification to the memory map

manager of the portions of the LP state that have been dirtied. Finally, com-

pared to the baseline configuration 4, Di-DyMeLoR has a throughput increase

up to 25%, which indicates how an enhancement in programmability (via the

transparent support for dynamic memory allocation) is strictly coupled with a

non-negligible performance increase. It is nevertheless interesting to note that

the slope curves related to configurations 1 and 3 are the same in all the phases

in which the incremental checkpointing mode actually provides some benefits

over the full checkpointing mode. This is related to the fact that, whenever the

state is scarcely updated, the cost paid to monitor memory updates is completely

amortized.

In Figure 4.8 we report average per-process memory usage for all the consid-

ered configurations. In particular, we show average memory occupancy for the

whole simulation process (i.e., simulation-platform layer and application-level

model), for state logs, and for metadata log. In all the runs we have set the

GVT (and memory recovery) period to 1 sec, which gives rise to negligible coor-

132 4. Efficient and Transparent Incremental State Saving

PCS execution time speedup by the parallel
configuration (seconds) run with Di-DyMeLoR
variable τA 6400 21.33

frequent fading recalculation 4442 31.72

Table 4.1: Di-DyMeLoR: Speedup values

dination overhead (given the tight coupling of the underlying architecture) while

allowing prompt release of memory buffers. Also, the memory usage samples

refer to the state of the processes as observed right before performing memory

recovery. As we can see, memory requirements for metadata is very reduced

(on the order of 1%) in any configuration, highlighting memory efficiency by the

data structures keeping track of memory allocation. The overall average memory

occupancy shows a greater variance when dealing with phase-interleaved config-

uration of the PCS benchmarks, due to the fact that some phases execute more

coarse-grained events and therefore require less logs per time unit. In both the

frequent fading recalculation and the variable τA configurations, the full snap-

shot execution mode has a higher memory requirement, which is a predictable

result due to the higher amount of information which is stored into a snapshot.

However, such a memory consumption remains significantly lower than the one

for the baseline case 4, especially for the variable τA configuration, which gives

rise to better locality still favouring performance. At the same time, the con-

figurations relying on the incremental snapshot mode and the one where the

application layer calls the memory map manager to explicitly update the dirty

portion of the memory map show a memory usage for logs which is very compa-

rable, indicating similar dynamics in terms of logging frequency, which confirms

that the impact on performance by Di-DyMeLoR is essentially related to the

overhead for transparently handling memory updates via instrumentation.

We also report in Table 4.1 the execution time for running the PCS appli-

4.7. Experimental Evaluation 133

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Increm
ental

Full
N
o M

onitor

Serial

O
v
e
ra

ll
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Read Intensive Phase
Write Intensive Phase

Figure 4.9: NoSQL – Execution Time

cations (very same code used for the parallel runs) in serial mode on top of a

calendar queue scheduler. By the data, the parallel runs with Di-DyMeLoR al-

low significant speedups, especially for the frequent fading recalculation setting.

Overall, the experimental study has been carried out with competitive parallel

executions.

As for the NoSQL case, in Figure 4.9 we report total execution times (again,

averaged over 10 different runs) for the configurations where incremental check-

pointings are taken by relying on Di-DyMeLoR, where the traditional (full)

checkpoints are taken, where incremental (non-transparent) checkpoints are

taken, and we additionally report serial execution times for comparison.

By the results, we see that the difference between the transparent incre-

mental and the non-transparent incremental (i.e., No Monitor in the Figure)

134 4. Efficient and Transparent Incremental State Saving

execution times (in both write-intensive and read-intensive phases) is negligible.

This is because, since the simulation states are very large, the cost for tracking

memory accesses is completely amortized. When running the write-intensive

phase, the speedup offered by the incremental checkpointing mode with respect

to the full one is in the order of 25%. This is related to the fact that, although

only 50% of the simulation state is accessed in write mode, the (large) size of

the simulation state still provides a benefit when the log operation is executed

incrementally. This becomes even more evident in the read-intensive phase,

where only 5% of the simulation state is accessed in write mode, and therefore

the speedup exhibited by the incremental approach is in the order of 40%.

Comparing the results to the serial run, we have that the speedup with

respect to the incremental checkpointing mode is in the order of 70% and 92% for

write-intensive and read-intensive phases, respectively, while with respect to the

full checkpointing mode it is in the order of 58% and 53%, showing again that the

experimental study has been carried out with competitive parallel executions.

Chapter 5

Interacting with the

Outside World

Our senses enable us to perceive only a minute portion of the outside world

— Nikola Tesla, The Transmission of Electrical Energy without

Wires as a means for Furthering Peace, 1905

Optimistic Synchronization divides the execution of the simulation into two

main distinct parts. On the one hand, we have the committed portion of the

simulation, which is composed at any WCT instant t by all the committed

events eC associated with timestamps TeC < GV T (t), where the GVT value is

computed according to Definition 2.1. This committed portion of the simulation

can be regarded as safe, meaning that no rollback operation occurring after WCT

t can affect its validity. On the other hand, we have the speculative portion of the

simulation, which is composed of executed (but uncommitted) events eU which

are associated with timestamps TeU ≥ GV T (t), which is a part of the simulation

trajectory which can suffer from causality violations due to the absence of any

consistency control before the execution of events.

135

136 5. Interacting with the Outside World

While we have shown so far how the rollback operation is able, whenever a

causality inconsistency is detected, to undo a portion of the speculative simu-

lation trajectory in order to bring back the execution to a consistent state, we

have not dealt with the problem of interaction with the outside world in this

particular uncommitted portion.

In fact, the validity of the rollback operation relies in that all the actions

executed during the (speculative) execution of an event can be undone. Yet,

this is not always the case. We can enumerate non-minimal series of operations

which cannot be undone:

• generation of output on a file or on a console screen;

• packet delivery to a network interface;

• interaction with any hardware device (e.g., a printer);

• invocation of the exit() function to tell that the simulation is complete;

• more in general, invocation of any system call exposed by the underlying

operating system.

In case any of the aforementioned operations is executed within an event

which is later detected as belonging to an inconsistent portion of the simula-

tion trajectory, its effect cannot be undone. This is because the services which

provide the API for executing such operations (like, e.g, a disk, a network in-

terface, or even the operating system) are not aware of the speculative nature

of the operations.

Given that we want to provide the simulation-model developer with full

transparency, we must assume that she is neither aware of the parallelization

technique used to deploy her sequential code onto a parallel architecture, nor

of the adopted optimistic synchronization strategy. Therefore, we can suppose

that she could actually invoke non-rollbackable output operations within any

137

event handler present in the simulation model. In fact, this would be a natural

way for the developer to, e.g., audit the current evolution of the simulation state

trajectory for statistics collection. We propose a support which enables a timely

and consistent interaction, which can be significant for the aforementioned sce-

nario and for all the ones where the evaluation of (possibly unstable) predicates

should be done on a global scale, via audit on individual LPs’ state trajectories.

In this chapter, we cope with the transparency versus performance issue for

what concerns the production of output streams in optimistic simulation runs.

Particularly, we focus on how to efficiently and transparently tackle the output

commitment problem [41] (see Figure 5.1) in optimistic simulation, thus allowing

the simulation-model developer to execute any non-rollbackable operation within

an event handler. Our approach moves the burden of materializing the actual

output from the model developer to a specifically-targeted runtime subsystem

which, at the same time, provides:

• consistency, by finalizing the actual output operation only if it is associated

with an event which gets committed, and by system-wide ordering the

output messages along the simulation time axis (as if they were produced

by a sequential run of the same model);

• efficiency, by introducing only a small overhead at the side of the engine

running the simulation model;

• timeliness, by placing only a reduced delay from the generation to the ma-

terialization of the output on the specified stream, unless for applications

constantly exhibiting I/O-bound profile along the whole run.

Although our proposal explicitly targets shared memory systems, as it will

be clearly depicted by the forthcoming discussion, the proposed architecture is

138 5. Interacting with the Outside World

perfectly compatible with a distributed scenario as well. In fact, the discussion

will show how the same architecture can be easily mapped onto a simulation

framework which can be even geographically distributed, requiring only a small

implementation effort at the side of the additional subsystem which we are about

to propose.

Traditionally, PDES simulation frameworks (see, e.g., [67, 103, 156, 75])

have relied on ad-hoc APIs for delivering consistent output related to the (pro-

gressively advancing) state trajectory while executing the simulation model, in

order to (incrementally) provide, e.g., model statistics. This forces the model

writer to look more deeply into the internal details of simulation supports, mak-

ing the development of the application more cumbersome and more constrained

to the specific programming model supported by the framework. On the other

hand, in case the modeller would rely on non-consistent output production via

the exploitation of standard I/O libraries, the output streams would need to be

post-processed for cleaning them from messages produced by events that were

possibly rolled-back, and for providing a unique globally timestamp-ordered

trace, if needed.

Our proposal is based on the concept of an ad-hoc daemon, i.e. a user-

space process separated from the actual simulation framework. Once equipped

with our kernel’s output subsystem, the simulation kernel worker threads within

the framework can communicate with the local daemon process via in-memory,

fast-access, shared data structures. They are used to support an additional

level of temporary buffering which is specifically optimized to reduce the cost of

managing output streams (and their consistency) at the side of the simulation

kernel (as opposed to the typical buffering rules/schemes used by standard I/O

libraries). Particularly, via this additional buffering subsystem we achieve

5.1. Output Management 139

• reduced interaction time, by developing a non-blocking algorithm for ac-

cessing shared memory segments from the simulation kernel worker threads

and the output daemon—a scenario where a near-to-zero-cost logical out-

put device is accessible by the simulation framework;

• enhanced scalability (even at geographical scale), allowing to process the

commitment of the output on a multi-level basis; particularly, the daemon

exploits GVT computation already natively performed by the simulation

kernel in order to finalize the production of the output streams, which

avoids the need for I/O-specific consensus protocols to be run.

As an additional advantage, the output daemon can run as a stream for-

warder, allowing the user to retrieve output on a separate (dedicated) machine

with respect to the cluster of machines used for model execution, in case a

distributed simulation run is executed.

5.1 Output Management

5.1.1 Involved Issues

Consistent output management in optimistic simulations is a non-trivial task,

due to the presence of the rollback operation, which is not handled by common

libraries for managing output streams. Let us consider a simulation scenario

where two LPs are present, namely LP1 and LP2. LP1 is scheduled for the

execution of event e1, associated with timestamp T1. During the execution of e1,

some output is produced via a call to the standard library’s printf() function.

After e1’s execution is completed, LP2 generates a new event e2 destined to

LP1, and associated with timestamp T2 < T1. According to the optimistic

synchronization scheme presented in [76], e1 is undone and the execution is

140 5. Interacting with the Outside World

Outside World

Simulation Framework

LP1

LP2

e1

output via printf()

m2 T2

e2: T2 < T1

rollback operation
not possible

T1

Figure 5.1: Non-Rollbackable Interaction with the Outside World

restarted from e2. However, the printf() invocation is already completed,

the output has been already materialized on the standard output stream, it is

inconsistent as it is associated with an undone event, but no corrective action

can be carried out. This is depicted in Figure 5.1.

The task of generating consistent output is even more complicated if we

consider two different points of view on the same issue. On the one hand,

the application-level programmer is interested in the ease of use, i.e. she does

not want to rely on complex APIs which force her to be aware of the notion

of rollback, and to look at the internal organization of the simulation engine.

On the other hand, consistently managing output streams must not make the

simulation engine pay a relevant performance penalty, in order to minimize the

overhead on the actual simulation execution. This tradeoff between application

transparency and simulation performance must be well balanced, in order to

effectively and efficiently support the management of output streams.

In order to address transparency, the architecture which we hereby propose

is again based on linking time facilities that, before creating the final simulation

model’s executable, redirect every output call in the application-level code from

the standard printf-family functions to an ad-hoc simulation kernel’s module,

which represents the kernel’s output subsystem within the architecture.

On the other hand, in order to enforce high performance of the simulation

5.1. Output Management 141

execution, all the operations associated with the management of the output

must exhibit an overhead—both direct and indirect—as small as possible. As

for direct overhead, we have explicitly designed our solution in order to minimize

the use of system calls during the execution of the simulation for buffering the

produced output until the generation-associated event is committed. In partic-

ular, at simulation startup, we pre-allocate a set of shared memory segments

which are used by simulation kernel worker threads to store any output on any

stream produced by the application-level code. These buffers are read, during

the simulation run, by a separate user-space process, which we refer to as output

daemon. This daemon is in charge of collecting all the output produced by the

LPs, sort it, and (in case of a rollback operation) remove the involved strings.

Whenever a set of events gets committed, the output daemon is able to use

this information to actually materialize the relevant (committed) output on the

associated streams.

As it will be thoroughly discussed later, this explicit design choice gives us

several benefits:

1) output buffering is completely handled in user space (by relying on shared

memory) avoiding mode/context changes during the execution of the sim-

ulation;

2) simulation efficiency is preserved, as the operations for producing the out-

put (independently of its eventual commitment) do not involve costly

procedures, giving most of the available CPU time to actual (relevant)

computation;

3) considering that each worker thread of the simulation kernel is assigned a

private shared memory segment, and considering that they only write on it,

and the output daemon only reads from it, a non-blocking algorithm for the

142 5. Interacting with the Outside World

interaction between kernel instances and the daemon can be implemented,

providing additional benefits due to the avoidance of contention on logical

data (i.e., no locking primitives must be exploited to allow kernel–daemon

communication).

On the indirect-overhead side, two main issues have been addressed, namely

data locality and CPU sharing. In the simulation-kernel instances, the output

is produced on a contiguous buffer (i.e., the private shared-memory segments),

avoiding costly cache-invalidation secondary effects during the generation of

output on whichever stream. The segment is used in a cache-aligned fashion,

avoiding at the same time false cache sharing effects. The daemon, on the

other hand, handles the output materialization relying on an efficient modified

version of a calendar queue [17], which is in turn able to minimize the computing

time required for sorting the output strings, and it is additionally featured with

an autonomic agent which is able to determine the best activation interval for

reducing CPU-sharing effects on the actual simulation, and to reduce the delay

from the generation of the output to its actual materialization.

5.1.2 The Output Management Architecture

Without any loss of generality, we can say that on a local machine a simulation

framework comprises K simulation-kernel instances, scattered across M ma-

chines, and each machine m hosts a set of Km worker threads. Of course, Km

can be different for each m, i.e. the computing power must not be necessarily

evenly distributed across the machines, depending on, e.g., the actual number of

processing units offered by each of them. Upon simulation startup, on each ma-

chine m a separate output-daemon instance is started, and Km shared-memory

segments are created (and shared with each kernel instance). These can be seen

5.1. Output Management 143

Figure 5.2: Application Scenario of the Output Daemon

as per-kernel private logical devices, on which the simulation-kernel instances’

worker threads write their LPs’ output messages, rather than on the requested

stream. In this scenario, considering the whole system, DK
M logical devices will

be installed, and each kernel k hosted on machine m will have is own device

Dk
m. This scenario is illustrated in Figure 5.2.

In particular, as mentioned before, upon the invocation of some function of

the printf-family (which is redirected to the kernel instance’s output subsystem

at compile time), the output subsystem stores output-related information in a

variable-sized data structure for keeping the information until the associated

event gets committed (or rolled back). The structure used for this intermediate

buffering is as follows:

144 5. Interacting with the Outside World

struct output_msg_t {

size_t size;

unsigned int LP;

double timestamp;

int fd;

unsigned int era;

char buffer[];

};

where:

size keeps the total size of the entry;

LP associates the output generation with a specific LP in the simulation;

timestamp stores LVT at which the LP has generated the output;

fd is the file descriptor associated with the output stream;

buffer is the actual output payload1.

The output_msg_t entry is then written (before returning control to the sim-

ulation model) into the per-kernel logical device Dk
m. We note that timestamp is

not required to be explicitly provided by the simulation model within the output

message (namely as a parameter of the printf() call). Rather, we assume the

corresponding LVT value (as well as the LP identifier) must be provided by the

simulation kernel to the output subsystem right before passing control to the LP

for actual event processing. In this way, the application modeller is not forced

to tag all (or part) of the output messages with timestamping information. She

will be anyhow transparently provided with an output-stream content matching

(system-wide) the advancement of simulation time.
1We note that, if output generation entails processing a format string, this can be easily done

by relying on the POSIX sprintf() library function.

5.1. Output Management 145

The logical device can be implemented as a circular buffer, where kernels’

output subsystems write new output messages (which are later processed by the

daemon in a FIFO order) with the aforementioned ad-hoc header for describing

the content of the buffer. The organization of this device is described via the

following structure:

struct logical_device_t {

size_t size;

volatile unsigned long long writing;

volatile unsigned long long wrote;

volatile unsigned long long read;

unsigned char buffer[];

};

where:

size identifies the (current) size of the circular buffer;

writing is an offset pointing the last byte which a worker thread is currently

using to deliver a message to the output daemon;

wrote is an offset pointing to the last byte in the device already written by the

kernel output subsystem;

read is an offset identifying the last byte read by the output daemon.

Accessing the Logical Device

If we consider one simulation kernel instance running with only one worker

thread, the logical_device_t’s fields are updated in isolation (i.e., the field

written by the one kernel worker thread is only read by the daemon, and vice

versa), then a non-blocking algorithm can be easily developed for managing

146 5. Interacting with the Outside World

the logical device. In particular, by checking if wrote and read store the same

value (either in modular or non-modular arithmetic), the daemon and the kernel

are able to determine whether the buffer is full or empty, and can immediately

access via displacement the correct position on which to perform a read/write

operation, without the need for any synchronization primitive. If the buffer is

full, then the simulation kernel must wait before finalizing the output generation

procedure, unless some resize procedure, like the non-blocking one described in

Section 5.1.3, is adopted.

Of course, if the simulation kernel instance has more than one worker thread,

there could be a race condition on the update of the wrote field. We therefore

use the writing field, and rely on a fine-grain synchronization primitive, namely

the compare-and-swap operation (CAS), which is provided by most instruction

sets currently available. This solution allows us to have as well a non-blocking

algorithm, thus providing a good performance when the available worker threads

do not try to access the buffer at the same WCT instant, which is an acceptable

condition given the (usually) complex nature of events’ execution flow. In par-

ticular, any worker thread writing an output message on the logical device starts

this operation by trying to “reserve” a portion of the buffer. This is achieved by

atomically reading the value of the writing field2 into a local (automatic) one.

This local copy is then incremented by the size of the output message being writ-

ten to the logical device. Finally, by relying on CAS, we (atomically) try to put

back in place the updated value. If the CAS fails, then some other worker thread

has (concurrently) updated the value of the writing field. In case it succeeds,

then all the other worker threads will see an updated value of the writing field,

and thus the memory buffer associated with that amount of bytes is reserved

2We emphasize that in many architectures, e.g. the x86/x86_64, reading a primitive type
variable (an integer in our case) from memory is intrinsically an atomic operation.

5.1. Output Management 147

Algorithm 5.3 Accessing the Logical Device in Write Mode
procedure Write_Output_Message(msg)

while true do
local_writing ← device.writing;
incr_local_writing ← local_writing + sizeof(msg)
if CAS(&device.writing, local_writing, incr_local_writing) then

break;
end if

end while
Copy msg to device.buffer[local_writing] . Executed in isolation
while device.wrote 6= local_writing do

no-op;
end while
device.wrote ← incr_local_write; . Executed in isolation

end procedure

for usage by the current worker thread. Then, the copy operation is executed,

but the output daemon is not yet informed of this new message in the device.

Then, the worker thread reads the wrote field, to check whether its value is

equal to the local copy of the writing field that it had read at the beginning

of the delivery operation. If it is not, then some other worker thread is already

performing its copy operation. If it is, all the other worker threads that reserved

a buffer on the device before the current worker thread have completed their copy

operation. In the latter case, the current worker thread simply copies the value of

its local copy of the writing variable into the wrote field. The whole algorithm

to access the logical device in write mode is reported in Algorithm 5.3. Although

this latter part of the write access on the logical device actually serializes the

updates of the wrote field, we note that the delay for this update by the first

worker thread accessing the device corresponds to the time required for copying

the output_msg_t data structure. Since the copy is executed on a contiguous

buffer by relying on fast string-copy assembly operations, the expected cost for

148 5. Interacting with the Outside World

this operation is minimal, thus causing a very reduced delay when the worker

threads have to actually wait for each other.

On a periodic basis, the output daemon wakes up and checks whether some

output message has been produced by some locally-hosted simulation-kernel

worker thread on its private logical device (again, this can be done by compar-

ing the values of read and wrote). In case a new output message is present, the

output daemon creates a local copy of it (i.e., in its own address space), updates

the read value, and inserts it in a specifically-modified version of a calendar

queue [17], which guarantees the correct ordering of the output messages by all

the output kernels. We also note that, in case the two counters match, but the

actual content of a new message has already been inserted within the device

(which does not impose atomicity with the update of the wrote counter), the

daemon will simply experience a false-negative on the presence of new messages,

which will be resolved at subsequent iteration steps. The final algorithm which

performs a read operation from the logical device must account for some addi-

tional performance issues which will be described in Section 5.1.3, and therefore

we delay the final illustration of the algorithm to that section.

Overall, with the above approach, no spin-locks or other types of atomic

operations (which are known to exhibit non-minimal direct and indirect costs,

possibly impacting the execution speed at the side of the simulation engine) are

used at all. This is done by trading-off with the actual delay for the delivery of

the message at the daemon.

Supporting the Rollback Operation

In order for the output daemon to correctly support the execution of rollback

operations, the traditional implementation of the calendar queue has been aug-

5.1. Output Management 149

mented with one additional operation, namely delete, which allows to remove

elements falling in a given [from, to] timestamp range. For efficiency reasons,

upon the invocation of this operation, the buckets associated with from and

to are computed, and then a linear search for removing elements is performed,

resembling the original direct search described in [17]. Of course, the delete

operation removes only the elements which are associated with a particular LP,

as specified in the output_msg_t structure. At the same time, we note that,

depending on the actual simulation execution, scanning all the buckets in the

[from, to] range can be a relatively costly operation which can affect the output

materialization performance. To this end, the output_msg_t structure keeps

track of the era field, namely a monotonic counter which is (atomically) up-

dated by every worker thread upon the execution of a rollback operation, on a

per-LP basis3. This can be regarded as a compressed information identifying

every output message related to a given era comprised in between two rollback

operations. The calendar-queue bucket array is therefore augmented, keeping

for every bucket a bloom filter [16] which is used to know whether output mes-

sages from a given era are present in the bucket. In this way, before starting to

scan the list associated with any bucket in the [from, to] interval, a check on

the bloom filter is performed, to determine whether that particular bucket can

be skipped.

To enable the execution of a rollback operation, and to enforce a timely ma-

terialization of output messages on the related streams, two control messages

are placed by kernel k (namely by the corresponding kernel’s output subsystem)

on device Dk
m, namely ROLLBACK and COMMIT. The former is a control message

with a payload structured as 〈from, to, LP, era〉, which directly triggers the

3To execute this atomic increment, again the CAS can be used. In our implementation we have
relied on the x86-specific lock; incl mem/64 atomic assembly instruction.

150 5. Interacting with the Outside World

aforementioned delete operation on the calendar queue. The latter, notifies

the output daemon on which portion of the per-kernel-generated output can be

considered as committed4. Whenever a COMMIT control message is found on a

device, the associated commitment timestamp is stored into a separate array,

which keeps track of the last commitment time for each locally-hosted simulation

kernel instance k. Periodically, the output daemon finds the minimum commit-

ment time TCmin among the ones notified by the kernel worker threads, and

invokes a flush operation on the calendar queue, which iteratively dequeues el-

ements from it until an element associated with a timestamp T > TCmin is found.

Every output message dequeued during this flush operation is materialized on

the associated stream, described by the fd field.

We note that these operations can be non-negligible in terms of CPU usage

by the output daemon. In order to produce a minimal impact on the simulation’s

overall performance, the daemon does not process all the available messages

(either output or control) from Dk
m∀k before returning to sleep. On the other

hand, after having processed any message, it checks whether its execution has

lasted more than a specific threshold value and, in the positive case, it returns

to sleep. Of course, the overall performance can be affected by the sleep and

working time. As it will be discussed later in Section 5.1.3, an ad-hoc solution

can be adopted to autonomically self-tune these parameters for maximizing the

simulation’s performance, while ensuring a timely materialization of committed

output messages.

4In fact, the COMMIT control message is generated immediately after the completion of the
GVT reduction operation.

5.1. Output Management 151

Working in a Distributed Environment

In case the simulation is executed on a distributed architecture (either a cluster,

a desktop grid, or on the cloud), the daemon-based approach is able to commu-

nicate only with the kernel instance which is locally hosted on the same machine.

In order to collect output messages from all the nodes in the system, the output

daemon can be configured to act as a forwarder, i.e. whenever a set of output

messages is detected to be committed, the messages are forwarded on the net-

work to an additional (remote) instance of the daemon which acts as a collector.

This additional instance, which can be even geographically far from the actual

simulation architecture, receives all the committed messages from every daemon

running in the simulation framework, and inserts them into an additional cal-

endar queue. Whenever COMMIT messages are forwarded, the collector daemon

relies on the same aforementioned logic for materializing the output messages

on the associated streams. We note that this approach is effective in two ways:

1) over the network we transfer only committed output, thus we early process

rollback operations, and avoid to pay costly network delays for exchanging

output messages which might not be committed, enabling for a consider-

able scalability even at a geographical scale;

2) we can finalize the materialization of the output messages on a remote

(possibly not dedicated to simulation) machine, allowing both an enhanced

simulation performance (in fact, materializing output on a stream can be

a non-minimal-cost operation) and the possibility to easily monitor the

execution of the simulation by the user on a separate machine, without

suffering a considerable delay.

152 5. Interacting with the Outside World

Working with Conservative Synchronization Systems

The output daemon can be flagged to work in autocommit mode. Using this

facility, the daemon (running in the aforementioned forwarding mode) can be

connected to a conservative distributed simulation framework, where the roll-

back issue is not present, but nevertheless for producing consistent output a

timestamp-based ordering must be performed on the output messages produced

by the various nodes in the system. Therefore, in this scenario, the facilities

provided by our proposal would never trigger a delete operation, but upon re-

ceiving a message, its timestamp is considered as the last committed timestamp

for the specific LP. By simply performing a local reduction across the current

LVT of the LPs (which, as said is communicated by the simulation engine to the

kernel’s output subsystem while the simulation proceeds), the set of (timestamp-

ordered) output messages to be flushed is identified as the set of those messages

with timestamp less than the reduction value, which are therefore immediately

flushed (i.e., forwarded) for output materialization. We note that this approach

to execute the reduction on the timestamps associated with output messages is

similar in spirit with the definition of GVT as for Definition 2.1.

Internal API Overview

To give the final picture, we list the core set of API functions that are pro-

vided by the kernel’s output subsystem, which can be used for integration with

differentiated simulation kernel layers:

commit_time(GVT): This function is exposed by the output subsystem in order

to allow the GVT reduction subsystem to notify the output daemon of a

newly-computed GVT value. This information is used by the subsystem

to generate a COMMIT control message to notify the output daemon.

5.1. Output Management 153

set_LVT(LP, timestamp): Using this function, the simulation kernel’s sched-

uler can notify the output subsystem about the identity of the dispatched

LP, and the timestamp of the dispatched event (hence the logical time to

be associated with any output message produced as a result of processing

this event).

rollback(from, to, LP): Using this function, the simulation kernel’s sched-

uler can notify the output subsystem about the reception of a straggler

message or an anti-message. Using this information, the output subsystem

can generate a ROLLBACK message for the output daemon, and instantiate

a new era.

out_msg(LP, stamp, msg, stream): This API is used by the simulation ker-

nel to transfer a particular output message destined to a specified stream

to the output subsystem, which will in turn write it on the kernel’s logical

device Dk
m.

autocommit(flag): If flag is true, every output message received is considered

as non-rollbackable, in order to support the integration with a conserva-

tive simulation engine. If flag is true, the daemon does not wait for

COMMIT messages before committing output messages. The commitment

is triggered by the aforementioned internal logic.

We recall that, in order to provide the application-level developer with com-

plete transparency, calls to output generation library functions must be properly

wrapped, in order to correctly redirect them to out_msg(). This can be easily

done, as already described, by relying on linking-time facilities.

As a final note, since the proposed output message data structure identi-

fies a particular stream using its file descriptor, the kernel instance’s output

154 5. Interacting with the Outside World

DyMeLoR

CCGS ManagerGVT Manager

Input/Output Queues Manager

Remote Messaging Manager

Scheduler
Intermediate Buffers

Call/Callback Interfaces

ProcessEvent

ScheduleNewEvent

OnGVT

Application Level Software

function calls

to libraries

MPI, Standard Libraries and Third Party Libraries

hook
malloc/free

Output Manager

O
u

tp
u

t
L

o
g

ic
a

l
D

e
v
ic

e
s
 (

S
h

a
re

d
 M

e
m

o
ry

)

ROOT-Sim Output Daemon

Global Output

Order Manager

Output Collector

and Manager

Output Writer

Third Party Library Wrappers

Figure 5.3: ROOT-Sim and the Output Daemon Architecture

subsystem intercepts calls to functions which actually open/close streams (e.g.,

fopen()-family calls) and produces on the logical device additional control mes-

sages (namely, OPEN and CLOSE) which tell the output daemon to process these

operations. In this way, the daemon is the only user-space process controlling the

actual output streams, for materializing committed output messages on them.

The interconnection with the simulation kernel, particularly the ROOT-Sim

kernel we are exploiting in this study, is depicted in Figure 5.3.

5.1.3 Optimizations

In case of an output-intensive simulation model (either because a large number

of events involves the generation of some output destined to some stream, or

because the output messages are considerably large) the logical device might

become the bottleneck of the system. In particular, since we want to ensure

exactly-once materialization of the output messages, if the circular buffer which

is used to implement the logical device gets filled, the kernel’s output subsystem

trying to write on it must wait for the output daemon to free some space for

5.1. Output Management 155

buffering the output.

Since this is a non-affordable cost, we have added to the logical_device_t

data structure an additional flag, namely subst_id, which is used by the output

subsystem whenever the current circular buffer is full. In this case, the output

subsystem uses a CAS to flag the subst_id field to tell other worker threads that

a new logical device is currently being created. Therefore, if any other worker

thread finds this flag already set, it simply wait for this field to be updated again.

The worker thread performing the new logical device initialization allocates a

new shared memory segment (of doubled size with respect to the old, full one),

stores its id in this field, detaches from the old segment, and starts buffering

output messages on this new device. Whenever the output daemon finds a

logical device to be empty, it checks whether the subst_id field is set to a valid

value. In the positive case, it attaches to the new logical device, releases the old

one, and starts processing messages from the new one.

If on the one hand this approach can reduce the time spent during the ex-

ecution of a simulation event inside the kernel’s management subsystems, on

the other it can affect memory usage if the simulation model’s activity is highly

output-bound. Although this can be regarded as a secondary problem, consider-

ing the large amount of memory available on modern architectures, optimizing

the actual tradeoff between CPU usage by the output daemon and memory

consumption by the logical device can provide benefits in terms of output ma-

terialization delay and problem feasibility.

We therefore propose an additional optimization, which tackles the time

spent by the output daemon processing messages from the devices and sleeping,

and allows the output manager to autonomically self tune its activation phase.

In particular, as for output materialization delay, given that output messages

156 5. Interacting with the Outside World

are flushed on the associated streams after the GVT computation (which is,

traditionally, a periodic operation), the best scenario arises when the kernels’

output subsystems try to write the COMMIT message on their devices and find

them empty. This situation happens whenever the total execution time of the

output daemon is such that every message placed in the device in between

two COMMIT messages has been processed. We therefore measure the processing

time of each message (namely, output message’s to, a COMMIT message’s tc, and

a ROLLBACK message’s tr) and continuously update their mean values t̄o, t̄c,

and t̄r according to an exponential average. Additionally, we rely on three

counters, namely c̄o c̄c, and c̄r which describe the (exponential) average number

of messages placed by simulation kernel worker threads in a GVT phase. By

relying on these values, upon the reception of a COMMIT control message, the

output daemon computes the expected total execution time which is needed for

emptying the logical devices during the next phase:

E(T) =
∑

x∈{o,c,r}

t̄x · c̄x (5.1)

If the value of Equation (5.1) is lower than a compile-time specified thresh-

old, it is then fragmented into several slots (resembling operating systems’ time

slices) and the sleep time is set accordingly in order to identify an execution

phase which is equal to the GVT phase. The compile-time threshold ensures

that, in case an application is extremely output-bound (at least in some phase

of its execution), then the output daemon will not significantly affect the over-

all simulation performance, while trying to minimize the output materialization

delay. We note that, by relying on this approach, the output daemon is able to

capture variations in the actual output generation dynamics by the application-

level software, thus adapting to execution phases which exhibit a higher/lower

5.2. Output Management 157

output generation rate. We are now able to present the final pseudo-code for

the read operation on the logical device, which is shown in Algorithm 5.4.

The last optimization concerns timely processing of output-messages roll-

back, which can prevent the output daemon to process wrong data before notic-

ing that it must be undone. In particular, upon initialization of the per-kernel

logical device, each simulation-kernel instance installs a second channel for the

delivery of high-priority control messages (namely the ROLLBACK ones) which

are used to early inform the daemon that some information that it is about to

process might be already uncommittable. Whenever the daemon notices that a

ROLLBACK message is present in the high-priority channel, it starts scanning the

associated logical device and marks as don’t care every output message which

should be rolled back. The circular buffer is scanned (without updating the

read flag) until the ROLLBACK control message corresponding to the one found

in the high-priority channel is found. When this operation is completed, the

normal behaviour is restored, with the exception that whenever a don’t-care

output message is found in the circular buffer, it gets simply discarded. We

note that this rollback optimization avoids enqueueing and dequeueing the out-

put messages which can be early detected as uncommittable, reducing the cost

of the operations on the calendar queue5. If some events involved in the rollback

operation were already in the calendar queue, when the processing of the logical

device (which, we recall, stores messages emitted by the associated simulation

kernel in FIFO order on per-LP basis) reaches the ROLLBACK control message,

the delete operation described in Section 5.1.2 is executed, which removes the

already inserted output messages.

5This situation might result in a calendar queue’s resize, which is a very costly operation.

158 5. Interacting with the Outside World

5.2 Experimental Evaluation

We have integrated the proposed I/O management architecture within ROOT-

Sim. The output management subsystem has been integrated respecting the

API described in Section 5.1.2, while the output daemon has been realized as a

separate process written in ANSI-C. Upon the ROOT-Sim startup, if requested,

the output daemon is launched and the output subsystem installs the logical

devices (one for every simulation-kernel instance) .

In order to evaluate different aspects of the proposed architecture, we have

conducted experiments on a family of configurations of Personal Communica-

tions Service (PCS), as described in Section 2.5.3. We have performed a set of

experiments where each cell sustains the same workload of incoming calls, whose

inter-arrival time is exponentially distributed, and whose average duration is set

to 2 minutes. The expected rate for call inter-arrival has been set to achieve

channel utilization factor, as described by Equation (2.6), on the order of 30%,

while the residence time of an active device within a cell has a mean value of

5 minutes and follows the exponential distribution. For the above scenario, we

have run experiments with 1024 wireless cells, modelled as hexagons covering

a square region, each one managing 1000 wireless channels. These have been

evenly distributed across 32 simulation-kernel worker threads running on the

32-core underlying machine.

For measuring the overall performance of the simulation runs, we have re-

lied on the measurement of cumulated committed events over wall clock time

advancement, i.e. a measure of how many events get committed while the sim-

ulation’s execution is carried on.

To capture different aspects of the impact on execution dynamics by the

output-management subsystem and the output daemon, we have modified the

5.2. Experimental Evaluation 159

PCS benchmark in order to provide statistics regarding the occurrence of the

hand-off event on the terminal console. In particular, with a certain frequency

f , the execution of the hand-off event entails the generation of an output string

which tells the total amount of per-cell hand-off events so far, and the average

duration of a handed-off call. We have explicitly varied the value of f so that,

among all the events (not only hand-off events) executed in the simulation run,

in between 1% and 35% of them involved some output generation (which corre-

sponds, in our configuration, to a total number of generated string in between

5 millions and 35 millions per simulation run).

We note that, for the above deploy/parametrization, the runs exhibited an

efficiency on the order of 80%. Hence the experimentation has been carried out

when considering well-behaving optimistic runs (namely not affected by thrash-

ing, which would lead the experimentation to be non-reliable), which however

show an amount of rollback that is expected to provide a good test case for

all the functionalities (e.g., output-message discarding functionalities) offered

by our output management subsystem. Further, running the above model on

top of ROOT-Sim (on the same multi-core machine used in this experimental

study) has been already shown to give rise to super-linear speedup values (see

the experimental data provided in [172]). Hence our experimentation is carried

out via competitive parallel runs.

We have compared this execution with two different scenarios, one relying

on the traditional ROOT-Sim framework (i.e., without the output subsystem

and without the output daemon), and one with the kernel’s output subsystem

working within the simulation kernel, but without any daemon listening on the

other side of the logical device (in this case the device has been configured like a

typical /dev/null device file, by simply discarding the incoming messages). We

160 5. Interacting with the Outside World

consider the former scenario as a good baseline situation, for assessing the overall

overhead introduced by the output management architecture, while the latter

allows us to evaluate what is the actual impact of having a separate process

(the daemon) running in time-sharing on a dedicated simulation environment,

for supporting the execution of additional housekeeping tasks. Further, we have

also considered runs based on a modified version of ROOT-Sim where the output

strings produced by the execution of an event are logged within the event queue

(as a list associated with the event-buffer), and are then flushed when fossil

collecting the event after GVT computation. This approach has resemblances

with the solution provided in [75]. We note however that this approach does

not provide global ordering of the output across the whole set of LPs.

By the results, shown in Figures 5.4–5.7 (obtained as the average over 10

runs done with different pseudo-random seeds), we note that the execution with

the device configured like a /dev/null device file exhibits a reduced overhead

with respect to the baseline configuration, showing that the operations internal

to the kernel’s output subsystem (and the interaction between the simulation

engine and the stub) do not impact significantly on the overall simulation perfor-

mance. When the output daemon is running, on the other hand, the simulation

throughput decreases when the application-level software exhibits more output-

bound behaviour. This is reasonable, considering that the CPU time required by

the daemon for a timely processing of the messages placed into the logical device

gets increased. However, the worst case for the overhead is on the order of 22%.

Further, the overhead scales well with respect to the increase of the frequency of

output production (in fact the overhead is quite similar for the cases where f is

set to 12% and 35%). On the other hand, for very reduced output-message fre-

quency (f set to 1% or 7%), as typical of when the application is configured for

5.2. Experimental Evaluation 161

primarily matching performance requirements via audit reduction, the overhead

introduced by our output-management architecture is quite bounded (namely

between 2% and 11%). It is interesting to notice that our proposal shows a

better performance than the scenario with no output architecture activated,

but with I/O calls performed while processing the events. This phenomenon

is due to the fact that the stdio library is not optimized for integration with

high performance computing, while our architecture has been oriented exactly

to this scenario. Further, standard I/O calls during event processing would even

give rise to non-consistent output, due to the fact that output materialization

associated with rolled back events is finalized as well (in the case of optimistic

synchronization), or should require an additional post processing to correctly

order the output (in case of the conservative synchronization), thus requiring

additional time for the end user to be able to perform its audit activities. Sim-

ilar considerations can be made when considering I/O management via logging

of the strings with the processed events and flush operations after GVT com-

putation. Particularly, while this approach introduces negligible overhead with

bounded frequency of output production, the overhead is significantly increased

for higher frequency of output message generation.

Another aspect which requires attention regards the overhead induced by

the evaluation of parameters within a format string being passed to the output

subsystem. In Figure 5.8, we present three different curves (whose samples are

again computed as the average over 10 runs), one entailing the evaluation of a

float, one of an integer, and a case where no parameters should be evaluated

at all. We recall that, in our proposal, parameters are evaluated immediately

within the kernel’s output subsystem (directly called by the application-level

code through library call redirection) via the POSIX-compliant sprintf() li-

162 5. Interacting with the Outside World

0

2.0⋅10
5

4.0⋅10
5

6.0⋅10
5

8.0⋅10
5

1.0⋅10
6

1.2⋅10
6

1.4⋅10
6

1.6⋅10
6

 0 10 20 30 40 50 60 70 80 90

C
u
m

u
la

te
d
 C

o
m

m
it
te

d
 E

v
e
n
ts

Wall-clock-time (seconds)

With Daemon
Without Running Daemon

Without Subsystem
No printf

Output in Event Queue

Figure 5.4: Throughput for f = 1%

0

2.0⋅10
5

4.0⋅10
5

6.0⋅10
5

8.0⋅10
5

1.0⋅10
6

1.2⋅10
6

1.4⋅10
6

1.6⋅10
6

 0 10 20 30 40 50 60 70 80 90

C
u
m

u
la

te
d
 C

o
m

m
it
te

d
 E

v
e
n
ts

Wall-clock-time (seconds)

With Daemon
Without Running Daemon

Without Subsystem
No printf

Output in Event Queue

Figure 5.5: Throughput for f = 7%

5.2. Experimental Evaluation 163

0

2.0⋅10
5

4.0⋅10
5

6.0⋅10
5

8.0⋅10
5

1.0⋅10
6

1.2⋅10
6

1.4⋅10
6

1.6⋅10
6

 0 10 20 30 40 50 60 70 80 90 100

C
u
m

u
la

te
d
 C

o
m

m
it
te

d
 E

v
e
n
ts

Wall-clock-time (seconds)

With Daemon
Without Running Daemon

Without Subsystem
No printf

Output in Event Queue

Figure 5.6: Throughput for f = 12%

0

2.0⋅10
5

4.0⋅10
5

6.0⋅10
5

8.0⋅10
5

1.0⋅10
6

1.2⋅10
6

1.4⋅10
6

1.6⋅10
6

 0 20 40 60 80 100 120 140

C
u
m

u
la

te
d
 C

o
m

m
it
te

d
 E

v
e
n
ts

Wall-clock-time (seconds)

With Daemon
Without Running Daemon

Without Subsystem
No printf

Output in Event Queue

Figure 5.7: Throughput for f = 35%

164 5. Interacting with the Outside World

 0

 200000

 400000

 600000

 800000

 1000000

 1200000

 0 5 10 15 20 25 30 35 40 45

C
u
m

u
la

te
d
 C

o
m

m
it
te

d
 E

v
e
n
ts

Wall-clock-time (seconds)

Integer
Floating Point

No Parameters

Figure 5.8: Throughput with Different Data Types

brary function. By the results, we can see that the overall execution time is not

significantly affected by the presence of additional (more complex) parameters

to be evaluated, showing the effectiveness of our proposal even in the case of

relatively complex outcome-messages from a simulation model.

To show how the CPU-usage/memory tradeoff is addressed by the output

daemon, in Figure 5.9–5.12 we report the total amount of shared memory allo-

cated for the logical I/O-devices during the execution of the simulation (these

plots refer to one of the 10 runs, where similar behaviour is anyway observed).

As in the case of the throughput discussed earlier, we note that (as expected)

the amount of required shared memory is increased when the application ex-

hibits a more output-bound behaviour. However, the reached bound (on the

order of 16MB) represents a relatively reduced absolute value—especially when

considering that optimistic simulation is known to be memory consuming on the

5.2. Experimental Evaluation 165

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80

P
a
g
e
s
 (

4
0
9
6
 b

y
te

s
)

Wall-clock-time (seconds)

Shared Memory Usage - 1 print every 70 handoff events - 1%

Figure 5.9: Shared Memory Size for f = 1%

side of the engine, and recalling that in the worst-case scenario 35 millions of

strings are generated. Further, being this memory virtualized by the underly-

ing operating system, and thanks to the fact that the shared memory segments

implementing the logical device are used according to the circular rule (not in

scattered mode), we may expect a reduced impact on the actual locality while

the frequency of output-message generation gets increased.

In Figures 5.13–5.16 we present plots which shows what is the actual output–

materialization delay exhibited by the output daemon (again for one of the ten

runs, which is anyhow representative of what observed in the different runs).

Both the x and the y axis represent wall clock time. To the x axis we associate

the WCT instant tG at which a specific (later committed) output message was

generated, while to the y axis we associate the WCT instant tM at which the

same output message was materialized. For the sake of clarity, we show a 45-

166 5. Interacting with the Outside World

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80

P
a
g
e
s
 (

4
0
9
6
 b

y
te

s
)

Wall-clock-time (seconds)

Shared Memory Usage - 1 print every 10 handoff events - 7%

Figure 5.10: Shared Memory Size for f = 7%

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80

P
a
g
e
s
 (

4
0
9
6
 b

y
te

s
)

Wall-clock-time (seconds)

Shared Memory Usage - 1 print every 6 handoff events - 12%

Figure 5.11: Shared Memory Size for f = 12%

5.2. Experimental Evaluation 167

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60 70 80 90

P
a
g
e
s
 (

4
0
9
6
 b

y
te

s
)

Wall-clock-time (seconds)

Shared Memory Usage - 1 print every 2 handoff events - 35%

Figure 5.12: Shared Memory Size for f = 35%

degree curve which represent a (theoretical) instantaneous materialization time,

i.e. a situation where there is no actual delay between the generation and mate-

rialization. In this plot, the steeper the slope, the higher is the materialization

delay induced by the operations by the output daemon. It is interesting to note,

by the plots, that the output materialization advances in steps. This is related

to the fact that the commitment operation of output messages can be started

only after a GVT calculation, which is a periodic operation. It is interesting

to note that in Figures 5.13 and 5.15, the autonomic self-tuning subsystem for

CPU/memory tradeoff optimization is able to capture the best configuration

to minimize the materialization delay. In fact, the slope of the curve, during

the simulation execution, tends to get gentler. The case in Figure 5.14 is quite

different, as the daemon tries to minimize the output materialization delay, but

then the CPU threshold is hit, and the daemon is not able to increase its com-

168 5. Interacting with the Outside World

puting power usage, in order not to significantly affect simulation performance,

and therefore the curve diverges. The scenario in Figure 5.16 shows that, con-

sidering the large amount of output messages, the calendar queue becomes the

bottleneck of the system (due to an upper bound on the number of buckets, as

described in [17]), and the rollbacks which are encountered during the simulation

determine an amount of operations on the calendar queue to delete messages

which were already stored. However, we note that for values of f from 1% to 7%

(which, as said, would represent a case of orientation of the application layer

to performance due to reduced audit on model execution), we get that upon

run termination the output stream has been already materialized at the 75% or,

at least, the 35%, which would enable pipelined treatment of the output data

while the run is still in progress. The careful reader might notice that with

a given generation WCT instant tG, more materialization WCT instants tM

are associated. This is related to the fact that these plots present system-wide

materialization delays, where different kernel instances at the same WCT value

might generate output messages from LPs running at different LVT values. This

skew is therefore reflected in the commitment (wall-clock) time at which a set

of messages can be safely materialized on the associated output stream.

To assess the effects of the autonomic self-tuning mechanism for daemon ac-

tivation, described in Section 5.1.3, we present in Figure 5.17 a scenario where

the parameter f (which describes the frequency of statistics generation on stan-

dard output) is not constant over the simulation run, rather varies in the range

[1%, 30%] in an interleaved fashion. In particular, f is set to 1% at the be-

ginning of the simulation, and is then incremented until it reaches the value of

30%, and then again decreased. The plots show that the autonomic self-tuning

system is able to cope well with the dynamics variations. In fact there is not

5.2. Experimental Evaluation 169

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80

W
a
ll-

c
lo

c
k
-t

im
e
 (

s
e
c
o
n
d
s
)

-
o
u
tp

u
t

Wall-clock-time (seconds) - generation

Output delay - 1%

instantaneous print (theoretical)
1 print every 70 handoff events

Figure 5.13: Generation/Materialization Delay for f = 1%

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90

W
a
ll-

c
lo

c
k
-t

im
e
 (

s
e
c
o
n
d
s
)

-
o
u
tp

u
t

Wall-clock-time (seconds) - generation

Output delay - 7%

instantaneous print (theoretical)
1 print every 10 handoff events

Figure 5.14: Generation/Materialization Delay for f = 7%

170 5. Interacting with the Outside World

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60 70 80 90 100

W
a
ll-

c
lo

c
k
-t

im
e
 (

s
e
c
o
n
d
s
)

-
o
u
tp

u
t

Wall-clock-time (seconds) - generation

Output delay - 12%

instantaneous print (theoretical)
1 print every 6 handoff events

Figure 5.15: Generation/Materialization Delay for f = 12%

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90

W
a
ll-

c
lo

c
k
-t

im
e
 (

s
e
c
o
n
d
s
)

-
o
u
tp

u
t

Wall-clock-time (seconds) - generation

Output delay - 35%

instantaneous print (theoretical)
1 print every 2 handoff events

Figure 5.16: Generation/Materialization Delay for f = 35%

5.2. Experimental Evaluation 171

 0

 200000

 400000

 600000

 800000

 1000000

 120000

 1400000

 1600000

 0 10 20 30 40 50 60 70

C
u
m

u
la

te
d
 C

o
m

m
it
te

d
 E

v
e
n
ts

Wall-clock-time (seconds)

With Daemon
Wihtout printf

Figure 5.17: Frequency Variation

any significant skew in the simulation throughput, despite the output daemon

continuously requests for more or less computing power, depending on the actual

load phase on the output architecture.

172 5. Interacting with the Outside World

Algorithm 5.4 Accessing the Logical Device in Read Mode
sleep_time ← initial_sleep_time;
awake_time ← initial_awake_time;
exec_time ← 0;
t̄o, t̄c, t̄r ← 0;
co, cc, cr ← 0;

procedure Read_Output_Messages
while true do

if executing_time ≥ awake_time then
Sleep(sleep_time)
Recompute Equation (5.1)
Recompute sleep_time and awake_time

end if
timer ← Current_Machine_Time
if ¬empty then

msg ← next message in device;
x← msg.type;
Execute the operation associated with msg
cx ← cx + 1
timer ← Current_Machine_Time - timer
t̄x = α· timer + (1− α) · t̄x

else
while device.subst_id == 0 do

no-op;
end while
attach to new subst_id device;

end if
exec_time ← exec_time + Current_Machine_Time - timer

end while
end procedure

Chapter 6

Managing Global Variables

Nous sommes condamnés à tout savoir. Nous sommes condamnés au partage.

(We are condemned to know everything. We are condemned to share.)

— Abbé Pierre, Les nouveaux pauvres, 1984

As mentioned in Chapter 1, in classical PDES LPs’ states are assumed to be

disjoint. Hence, according to this definition, each LP is only allowed to modify its

private state variables upon processing new events, and the interactions (namely

inter-dependencies) across LPs are only allowed to be instantiated via cross-LP

scheduling of simulation events. This is reflected in Equation (2.5), which tells

us that there is not the possibility to have any portion of the global simulation

state S which does not belong to any Si.

In practice, this means that when implementing a simulation model, the

programmer is not allowed to rely on global variables. Yet, having different LPs

sharing (at least a portion of) the state of the simulation model may result in a

more flexible programming paradigm, whose relevance has been fully recognized

as a crucial issue in the development of parallel simulation applications [49, 107].

In this Chapter we start addressing the issue of transparently and efficiently

173

174 6. Managing Global Variables

supporting shared-state in optimistic simulation systems run on top of shared-

memory/multi-core machines, a process which will be finished in Chapter 7. We

will enable the simulation model writer to access, while executing any simulation

event, both the private state of the LP and a global portion of the state, whose

instance is represented by the value of global variables admitted within the

application-level code. This will allow us to rewrite Equation (2.5) as:

Si ∩ Sj = ∅,∀i 6= j (6.1)

meaning that, after the further step that will be discussed into this Chapter,

the programmer will be allowed to rely on the heap for allocating/deallocating

memory chunks belonging to the private state of each LP, as already supported

via the approach discussed in Chapter 4, while also being able to rely on global

variables for the shared portion of the state.

In order to provide efficient support for the management of shared-state

variables, in terms of both forward and backward computation, our proposal

relies on an application-transparent multi-version scheme based on non-blocking

access/update operations. This allows improving the level of parallelism when

the shared-state is accessed by multiple LPs being concurrently run by different

worker threads.

6.1 Shared-State Management Architecture

Being our approach targeted at multi-thread simulation kernels deployed on top

of multi-core machines, in our Shared-State Management Subsystem (SSMS) we

have explicitly decided to rely on a large preallocated memory segment (which is

directly accessible by all worker threads) for keeping the current state of global

6.1. Shared-State Management Architecture 175

variables. This allows a fast access to the data structures, although requiring

some sort of synchronization between instances in order to ensure correctness.

To relieve the synchronization burden, we have again decided to implement

data structures’ accesses as non-blocking algorithms [60], which are expected

to ensure better performance than locking ones when accesses are statistically

spread across the various portions of the data. To ease the application-level

programmer, we have addressed transparency via software instrumentation, so

that no additional API or code construct should be used to notify SSMS of

accesses to global variables.

To enhance even more execution’s performance, SSMS provides a runtime

mechanism for detecting actual access patterns. In fact, a set of global variables

can be logically intended as a single entity (towards the accesses LPs perform on

them). In case such an access behaviour is detected, SSMS clusters the global

variables and starts handling them via a single version list, therefore reducing

the overhead associated with data structures’ management.

6.1.1 Read/Write Detection

In order to provide complete transparency to the application-level programmer,

accesses in read/write mode to global variables must be explicitly intercepted.

To this end, we rely on instrumentation techniques aimed at modifying the ac-

tual instructions executed by software executables, without altering their actual

semantics. By relying on Hijacker, at compile time the application-level in-

struction code (i.e., the assembly byte-stream) is modified in order to replace

operations loading data to and from memory with actual function calls which

are the entry points of our SSMS.

These entry points are associated with the following provided API functions:

176 6. Managing Global Variables

write_global_variable(void *orig_addr, time_type lvt, ...), and long

long read_global_variable(void *orig_addr, time_type my_lvt). They

allow accessing the versions within the version lists for a given variable at a

certain LVT.

We have identified two main groups of instructions/code blocks which have

to be handled within the application-level assembly code. First, in x86/x86_64

simple load and store operations are identified by mov instructions. When-

ever Hijacker identifies a mov instruction, it is analysed in order to determine

whether it is targeting memory as a source or destination operand, and a call

to write_global_variable or read_global_variable is replaced accordingly.

When the mov instruction involves a load operation from memory, an additional

postamble to the function call is placed, in order to have the actual value re-

turned by read_global_variable placed into the correct CPU register where

the application-level software is expecting the value to be found. Of course, the

register used by the read_global_variable() function is pushed/popped on

stack, not to alter the actual view on the processor state by the application.

Second, the x86/x86_64 instruction set provides more complex instructions

which allow an executable to efficiently modify memory areas in-place. As a

relevant example, we propose instructions like ADD m32, r32 or INC m32. In

this case, IT replaces the instructions with a block of instructions, entailing a

couple of calls to the SSMS’s read and write APIs, and re-implementing the

same logic with several CPU instructions. This implementation, although easy

to carry out by relying on specific rules passed to Hijacker, of course adds some

overhead. Nevertheless it allows to integrate our SSMS in a fully transparent

way towards the simulation model writer.

High-level programming languages allow to access memory objects in a non-

6.1. Shared-State Management Architecture 177

direct way, namely through the use of pointers. Since Hijacker works at compile

time, it is not possible to statically determine whether a pointer will target a

global variable or not. To cope with this issue, we use Hijacker to instrument any

mov instruction which can handle pointers through a call to a globvar_monitor

function which fastly determines if a pointer targets a global variable1. In par-

ticular, at compile time, via the usage of a custom ld-based linker script we

insert symbols called _bss_start, _bss_end, _data_start, _data_end, within

the application-level ELF executable, which mark off the area containing global

variables. Upon a call to the globvar_monitor routine, a fast check on these

boundaries is performed. If a pointer falls within this area, the operation is

redirected to SSMS, on the other hand the original mov instruction is executed.

As a last note, x86/x86_64 instruction set provides string instructions which

allow to perform operations on memory buffers instead of single memory loca-

tions. In particular, movs and stos instructions allow the program to copy or

modify large buffers at once. In order to cope with the presence of these complex

instructions, SSMS provides two additional APIs, namely copy_buffer() and

set_buffer() which simulate the execution of these operations on version lists

if they are found to target global variables (e.g., global arrays). Otherwise, they

just execute the original movs or stos operations. Therefore, at compile time,

IT replaces every string operation involving memory update with a function call

to these APIs, accordingly. Similarly to the approach adopted in Section 4.2,

cmov instructions are handled by replacing them with an assembly code snippet

which mimics their semantic, and in turn relies on mov instructions (adopted to

perform the memory update in case the condition is met) which are subject to

the same instrumenting procedure.

1The way the address of the final memory write is computed is analogous to the one adopted
in Section 4.2.

178 6. Managing Global Variables

The last operation we perform at compile time is the inspection of the

application-level ELF object file in order to extract information concerning

global variables. In particular, by exploring the application object we extract

from the symbol table .symtab all the STT_OBJECT / STT_COMMON symbols and

store their name, address and size in a text file which will be later used at

startup time for setting up the version lists. In this way, by exploiting the

〈name, address, size〉 tuple, we are able to transparently identify any access to

global variables which will be likely used by the application-level code during

the execution of the simulation model, allowing the programmer to rely on the

complete set of constructs provided by ANSI-C. We note that, due to the multi-

threaded nature of our reference simulation kernel, a global variable’s address is

a common information shared among the worker threads.

Since we address assembly mov instructions, we note that their opcode imme-

diately provides information about the size of the memory operation. Therefore,

we can easily rely on the long long read_global_variable() function, as its

return type actually represents the largest type which can be accessed by an

assembly instruction. Therefore, our injected code will simply copy the return

value from this function into the proper used register (in case of an original mov

operation from memory) using only the necessary bits for the associated mov.

6.1.2 Accounting for Third-Party Libraries

The possibility to rely on third-party libraries depends on whether they will be

invoked on global variables or not. As in the case of ISS as presented in Chapter

4, we have explicitly addressed the case of read/write operations performed by

third-party software, just focusing on stdlib. Specifically, we have modified the

set of function wrappers presented in Section 4.6 which produce in-memory ac-

6.1. Shared-State Management Architecture 179

cesses via pointer passing. The wrappers simply check whether global variables

are involved in the operation before applying the policy devised for ISS. In case

a passed pointer targets a global variable (which can be again done easily by

comparing its value with the address of _bss_start, _bss_end, _data_start,

and _data_end), operations are redirected to SSMS APIs for accessing version

lists.

6.1.3 Memory Map and Version Lists

As hinted before, SSMS explicitly targets shared-memory/multi-core machines.

In order to significantly enhance performance, we have decided to avoid re-

questing to the underlying memory manager (namely malloc) memory segments

on-demand, whenever SSMS needs to install some data structure. On the other

hand, at simulation startup the master worker thread2 installs a large mem-

ory segment which is partitioned according to the definition of the following

structure:

typedef struct _globval_mem {

int num_vars;

globvar_info variables[MAX_GLOBVARS];

volatile int first_node_free;

globvar_node *versions;

} globvar_mem;

In particular, the shared memory segment is divided into several fixed-sized

portions. One portion, namely variables, is an array which is used to manage

global variables. The choice of having only one memory segment, rather than a
2By master worker thread we mean one, among the ones available, which carries out this task

alone. This can be the worker thread with logical thread id 0.

180 6. Managing Global Variables

per-thread one, is because global variables can be accessed by all worker threads.

In case of a read operation by some worker thread, finding the latest version

would entail scanning all the per-thread data structures, which would entail a

non-negligible overhead.

Upon initialization of SSMS, the configuration text file described in Section

6.1.1 is loaded and parsed. The field num_vars is used to keep track of how many

variables are actually handled, and for each of them an entry in the variables

array is populated. To allow a fast retrieval of the global variables, we use a

fast hash function to determine which entry in the variables array will store

the information associated with a specific variable. In particular, the position

in the array is determined with a fast bitwise operation — namely, address

& (∼(-MAX_GLOBVARS)) — since MAX_GLOBVARS is set to be a power of two.

Since at startup the total number of global variables is known, MAX_GLOBVARS

is increased (always keeping it a power of 2) until the collision is less than 20%.

This choice uses more memory than needed, but generates a significant speedup

when accessing variables.

Anyway, in case collisions are found even after the increment, separate chain-

ing is used as a means for finding a free place. Although this might seem sub-

optimized, we note that global variables’ virtual addresses are clustered in a

contiguous portion of the address space, therefore the least significant bits are

more likely to define a different key for each of them in the hash table. Each

entry in the variables array is structured as:

6.1. Shared-State Management Architecture 181

typedef struct _globvar_info {

void *orig_addr;

unsigned short int size;

long long head;

long long tail;

} globvar_info;

where orig_address stores the global variable’s original address, which is used

as hash table’s key; size describes which is the size (in bytes) of the global

variable.

Since we are preallocating memory, version lists must be implemented using

nodes scattered around the preallocated segment. In particular, versions is an

array of fixed-sized nodes which can be used for any list, and head and tail are

indices within this array, which is composed of entries structured as follows:

typedef struct _globvar_node {

volatile int alloc;

time_type lvt;

unsigned char value[MAX_BUFF];

spinlock_t read_list_spinlock;

long long next;

time_type read_list[];

} globvar_node;

where lvt is the ST associated with the version (i.e., the timestamp Te associated

with the event e during the execution of which the version was generated), value

is the global variable’s value, and next is used to identify which is the following

182 6. Managing Global Variables

metadata
{

...

variables nodes

{...

read list

{...

Figure 6.1: Preallocated Shared Memory Map

Algorithm 6.5 Shared Memory Allocation
1: procedure Allocate
2: m← generate_mark()
3: slot← first_node_free
4: while true do
5: alloc← vers[slot].alloc;
6: if alloc ∨ ¬ CAS(vers[slot].alloc, alloc, m) then
7: slot← next slot in circular policy
8: else
9: break
10: end if
11: end while
12: atomically update first_node_free
13: return slot;
14: end procedure

node in the list. A node can therefore be seen as a snapshot of the state of

a single global variable at a certain ST. In Figure 6.1 we provide a complete

picture of the preallocated memory map.

Node versions’ entries can belong to any list, and given that lists are accessed

without the use of locks, a special allocation function must be used, ensuring

that no two worker threads running concurrently are given the same entry for

handling two different versions.

The Allocate pseudocode is given in Algorithm 6.5. In order to allow

concurrent accesses, it again relies on CAS. The globvar_shmem data structure

6.1. Shared-State Management Architecture 183

holds in first_node_free the value of the first element of the versions array

to start trying to allocate from. Its manipulation is based on the classical

algorithm used by the Linux kernel for managing the bitmap of file descriptors

associated with a process. Specifically, it is always atomically increased upon

allocation, and gets atomically decreased in case an entry is released having

index less than the first chunk currently available within that block. Starting

from that slot, a kernel instance tries to allocate a node by storing via a CAS

operation a non-zero value into the alloc field of globvar_node, which tells

whether a node is currently in use. In case the CAS fails, the next node in the

array is selected and the procedure is repeated, until it eventually succeeds3.

The companion function Release is much simpler, as it only entails resetting

the alloc and updating first_node_free (using a first-fit approach) via an

atomic set operation, implemented again relying on CAS.

In order to cope with the ABA problem [24], we have explicitly decided to

consider a node allocated if the alloc field is non-zero. In particular, we store

into it a unique value every time a node is allocated, so that two allocations can

be identified as different. The macro generate_mark produces an integer value

which is based on the Cantor pairing function:

(n1 + n2)(n1 + n2 + 1) + n2

2
(6.2)

where we set n1 to the worked thread logical id in the range [0, Ncores − 1], and

n2 to the value of a monotonic per-thread counter which is incremented upon

each call to generate_mark. This function is very fast, as it is mostly based on

3To check if the space is up, a counter of available free nodes is kept as well in shared memory,
which is managed via a CAS-based atomic decrement operation.

184 6. Managing Global Variables

H Tx Tz T

Ty

CAS

H Tx Ty T

Figure 6.2: Non-Blocking Linked List Operations

integer operations, and allows to generate system-wide unique marks4.

Once a node is allocated, it gets organized into a non-blocking linked list,

which is implemented according to a modified version of the one proposed in

[58]. Concurrent insertions are handled via the use of a single CAS operation,

which is used to introduce the newly allocated node into the list by acting on

the next field of the predecessor node. As for deletion, two CAS are used, one

to mark the next field of the deleted node as logically deleted, and another to

physically delete the node. We have slightly modified the algorithm in order to

take into account our specific needs. In particular, the Find-Node procedure

from [58] has been augmented in order to return the alloc field, to explicitly

cope with the ABA problem, and the Insert procedure does not fail if a node

with the same key (i.e., ST associated with the timestamp Te of the generating

event e) already exists. Specifically, the new node is simply linked after the

originally existing one. In addition, we note that LPs are more likely to access

versions associated with higher STs, since well partitioned/balanced optimistic

simulations usually proceed relatively evenly. Therefore, we sort the versions in

the lists in descending order, to avoid a complete scan of the list every time we

want to find a node in it.

4generate_mark can of course return two equal values when the counter overflows, but this
situation can happen after a significant WCT, so we consider it to be statistically non-significant
for the ABA problem.

6.1. Shared-State Management Architecture 185

To avoid the ABA problem in linked lists, “pointers” (i.e., indices) to nodes

are composed (every time they are updated) by a unique mark generated via the

aforementioned macro generate_mark and the real index, allowing to capture

the situation where two nodes are still adjacent but one was deallocated and

then reallocated during the execution of the non-blocking algorithm by different

kernel instances. The operations performed on the versions lists are depicted in

Figure 6.2.

6.1.4 Accessing Version Lists

The API offered by SSMS provide two main functions to access global variables,

namely read_global_variable and write_global_variable, which we will

refer to as Read and Write from now on.

Read operation’s pseudocode is provided in Algorithm 6.6. For efficiency

reasons, before letting an LP execute a simulation event, SSMS sets up an

AccessSet, i.e., a mapping between version nodes and variables. Whenever a

variable is accessed for the first time, Find-Node determines which is the most

suitable version for the current LVT, and the tuple 〈slot, version〉 is placed into

AccessSet in order to speedup the retrieval of the version, avoiding the scan of

the list upon subsequent accesses.

As for the Write operation, the pseudocode of which is presented in Algo-

rithm 6.7, its behaviour is twofold, depending on whether it is invoked for the

first time since the beginning of the current event’s execution. In particular,

upon the first access on a variable, the AccessSet for that particular event is

populated. In any case, a call to Insert-Version is performed which, as stated

in Section 6.1.3, creates a new version. The second part of the Write opera-

tion entails checking the ReadList for ensuring consistency, as it will be clearly

186 6. Managing Global Variables

Algorithm 6.6 Global Variable Read
1: procedure Read(addr, lvt)
2: slot← hash table’s entry associated with addr
3: hasRead← false
4: if slot ∈ AccessSet then
5: version← AccessSet[slot]
6: else
7: while ¬hasRead do
8: 〈version, alloc〉 ← Find-Node(slot, lvt)
9: AccessSet[slot]← version
10: spin_lock(read_list_lock)
11: if alloc has been changed then
12: spin_unlock(read_list_lock)
13: continue
14: end if
15: add 〈lp, lvt〉 into ReadList
16: spin_unlock(read_list_lock)
17: hasRead← true
18: end while
19: end if
20: return vers[version].value;
21: end procedure

depicted in Section 6.1.5.

6.1.5 Synchronization and Rollback Operations

In order to strengthen the optimism of our implementation, we allow interleaved

reads and writes on a version list, and we explicitly avoid a version k installed

at ST Tk to invalidate every version j such that Tk < Tj . In fact, we note that

consistency is violated only if, at ST Tx an LP reads the version associated with

ST Ty such that Ty ≤ Tx, and at a certain point during the execution a new

version node associated with ST Tz such that Ty ≤ Tz < Tx is installed.

This means that every process which reads a certain version node must leave

6.1. Shared-State Management Architecture 187

Algorithm 6.7 Global Variable Write
1: procedure Write(addr, lvt, val)
2: slot← hash table’s entry associated with addr
3: if slot ∈ AccessSet then
4: version← AccessSet[slot]
5: vers[version].value← val
6: else
7: version← Insert-Version(slot, lvt, val)
8: AccessSet[slot]← version
9: end if
10: for all 〈lp, lvt′〉 ∈ ReadList s.t. lvt′ ≥ lvt do
11: send antimessage to lp
12: end for
13: end procedure

LVT = 10v LVT = 6

Read: LVT = 9

Read: LVT = 7

LVT = 8

Write
v
i
o
l
a
t
i
o
n

Figure 6.3: Occurrence of the Rollback Operation

a mark of that operation, i.e., visible reads [20] are enforced. In fact, as shown

in Figure 6.3, we are interested in undoing only the events which have read a

version older than the new one which has just been inserted.

To this end, we augment the classical notion of rollback as presented by

the Time Warp synchronization protocol [76], by sending a special anti-message

to all the LPs which have read a so-defined causally inconsistent version after

any write operation. This is reflected into Algorithms 6.6 and 6.7. In fact, in

the Read operation, before returning the variable’s value, the couple 〈lp, lvt〉

is inserted into the ReadList for that particular version. This operation is

included within a specially designed critical section to ensure consistency. In

188 6. Managing Global Variables

fact, a spinlock for that particular ReadList is taken, ensuring that no other

process will start the rollback operation while the ReadList is being updated.

Otherwise, this scenario would produce a non-trackable read operation.

In addition, after the spinlock has been taken, a check on the variation of

the alloc field for that particular version is performed, so to avoid the ABA

problem due to a critical race between the deallocation/allocation procedure and

the ReadList update. At the same time, at the end of the Write operation,

the ReadList of the left node is checked in order to find all the LPs which have

read the previous node’s value, while they were requesting a version at a ST

such that they should have read the one in the version which was just installed.

Although the list is linked in only one direction, given the implementation of

Find-Node, locating the previous node is immediate, as it is in the current left

node.

We note that another step must be undertaken in order to ensure correct-

ness. In particular, whenever a special antimessage is received because of an

inconsistent read, any version node installed due to that particular event must

be removed. To this end, we augmented the concept of event queue and modified

the Write function so that whenever a node is installed during the execution of

an event, the event queue keeps track of this operation via pointers to the node

created during the event’s execution. In case a rollback operation undoes that

event, the node is removed from the version list, and the ReadList is scanned

for sending antimessages to every LP which has read that particular node.

6.1.6 Memory Recovery and Management

We extend the notion of fossil collection by defining the version list pruning

operation. In particular, upon GVT computation, the version lists associated

6.2. Correctness of the Approach 189

with global variables are scanned in order to find which is the first node i

stamped with ti ≤ GV T and that node is selected as the barrier node. Any

node marked with a timestamp tk < ti is marked as free and removed from the

list. For implementations where there is no actual event processing during GVT

computation (like the one which we rely on), the version list pruning is thread

safe, and can therefore be executed efficiently, with no need to synchronize

the access. In particular, the various lists can be evenly divided across the

various worker threads, and each one performs the memory recover executing

in isolation. This choice provides a more efficient execution and still ensures

correctness.

In case the memory buffer preallocated for keeping the version nodes gets

filled, we rely on realloc to double its size. In particular, whenever a worker

thread finds the buffer full, it relies on a CAS operation to atomically set the

first_node_free field to the value -1, which tells all the other worker threads

that someone is already resizing the structure. After the realloc is executed,

the current worker thread relies on a second CAS to set first_node_free to the

first position available in the new portion of allocated memory.

6.2 Correctness of the Approach

The SSMS algorithm allows dispatched LPs to concurrently access global shared

variables in an optimistic way and postpones synchronization among concurrent

read/write operations executed on the shared-state only whenever a conflict

materializes. Therefore the implemented concurrency control scheme maintains

a high degree of parallelism by ensuring that:

1) the read/write operations executed by a committed event e on the shared-

state appear as they happened at same indivisible point in time associated

190 6. Managing Global Variables

with ST Te in which e has been processed;

2) all the committed events execute the same operations and produce the

same outcome as they were processed sequentially without violating logical

virtual time advancement.

For this reason, if we model an event e’s execution as an atomic transaction

τe [14] to be considered committed whenever e is committed according to the

Time Warp algorithm (i.e., at a WCT instant t it can be established a GVT

value GV T (t) such that each event e′ executed at a ST Te′ < GV T (t) cannot be

revoked anymore and Te < GV T (t)), we can adopt the serializability consistency

criteria [14, 1] over the histories of the committed events as the target correctness

criteria of the proposed solution.

Even if in practice SSMS behaves as an STM system, we have not designed

it having in mind the typical correctness criteria guaranteed by STMs, namely

opacity [57]. In fact, guaranteeing that every read operation always returns a

value from a consistent state of the shared memory would not prevent an LP to

see an inconsistent state of the simulation due to the risk associated with the

Time Warp algorithm: a user model code may be executed using data arguments

that are inconsistent with the logical state of the code [116].

Before showing the proof we formalize the concepts of history on committed

events and operation. A history HGV T (t) over a set E of committed events e at

the GVT value GV T (t) consists of:

1) a partial order of operations that reflect the write/read operations per-

formed within e on the simulation shared-state together with the begin

(i.e., the invocation of e) and the complete (i.e., the commit of e);

2) the version order � that specifies a total order on the object’s versions

created by committed events. A write operation on an object x issued by

6.2. Correctness of the Approach 191

an event e is denoted by we(xe) while a read operation on a version xe′ of

object x is denoted by re(xe′).

We can build a Direct Serialization Graph DSG(HGV T (t),�) over a history

HGV T (t) as stated in [1] in order to define serializability in terms of topological

properties on that graph. In particular a graph DSG(HGV T (t),�) contains a

node Ne for each committed event e in HGV T (t) and a directed edge Ne −→ Ne′

for each pair of committed events e, e′ in HGV T (t) such that one of the following

dependencies occurs: (i) e′ directly read-depends on e if there exists an object x

such that e′ executes a read r(xe); (ii) e′ directly write-depends on e if there exists

an object x such that e executes a write w(xe), e′ executes a write w(xe′) and

xe′ immediately follows xe in the total order defined by � on x; (iii) e′ directly

anti-depends on e if there exists an object x and a committed event e′′ such that

e executes a read r(xe′′), e′ executes a write w(xe′) and xe′ immediately follows

xe′′ in the total order defined by � on x. Then a history HGV T (t) is serializable

if the associated DSG(HGV T (t),�) does not contain oriented cycles as defined

in [14].

Therefore the correctness proof of SSMS is formalized in the following The-

orem:

Theorem 6.1. At any WCT instant t, for the associated value GV T (t) and for

each history HGV T (t) of committed events admitted by the SSMS algorithm then

the DSG(HGV T (t),�) graph does not contain any oriented cycle.

Proof. We prove that the DSG(HGV T (t),�) does not contain any oriented cycle

by showing that for each edge Ne −→ Ne′ , Te < Te′ always holds.

If an edge Ne −→ Ne′ is in DSG(HGV T (t),�) we have to distinguish three

cases:

192 6. Managing Global Variables

1) e′ directly read-depends on e. In this case SSMS has performed a read

operation on an object x by returning the version xe having the greatest

logical virtual time Te less than Te′ . Therefore Te < Te′ .

2) e′ directly write-depends on e. e′ overwrites a value (by adding a new

version xe′) of an object x already written by e. This is admitted only if

Te < Te′ .

3) e′ directly anti-depends on e. e′ adds a new version of an object x after

the version read by e. If Te ≥ Te′ holds then SSMS forces a rollback for e.

Since both e and e′ are committed then Te < Te′ .

�

By Theorem 6.1 follows that every committed history generated by SSMS

does not violate serializability.

6.3 Experimental Evaluation

6.3.1 Test-Bed Application and Configuration

As a test-bed, we have used Personal Communications Service (PCS), as de-

scribed in Section 2.5.3.

Calls inter-arrival time is exponentially distributed, and average duration

is set to 2 minutes. The expected rate for call inter-arrival has been set to

achieve channel utilization factor on the order of 15%, while the residence time

of an active device within a cell has a mean value of 5 minutes and follows the

exponential distribution.

To evaluate the efficiency of our proposal, we have extended the simulation

model having a set of global variables handling global statistics. In particular,

6.3. Experimental Evaluation 193

upon each event’s execution, the total number of calls, the total number of

handoffs, and the global cumulated power is updated in the shared state. In

addition, we have re-implemented the model in order to have a centralized LP

keeping in its disjoint simulation state the global attributes, as in the classical

definition of PDES states as of Equation (6.1). Every LP willing to update a

shared attribute issues a message request to the centralized LP, which in turn

sends back the current value. Any update on the current value is then sent as

another message to the centralized LP. In this scenario, every message exchanged

with the centralized LP is marked with the same timestamp as the event’s which

generated the read/write flow. Therefore, this baseline version of the benchmark

is a simple zero-lookahead request-reply approach, which we do not expect to

scale well with respect to the number of simulation kernel instances being run.

For the above scenario, we have run experiments with 64 wireless cells, mod-

elled as hexagons covering a square region, each one managing 1000 wireless

channels. We note that the choice of setting the total number of LPs to 64 is

related to the fact that, when the number of LPs is decreased, they exhibit a

higher degree of parallelism. This in turn affects the variations of LVT associated

with each LP. In fact, the lower the number of LP, the higher the probability

of a skew in the value of their clocks. Therefore, this experimental setup allows

us to evaluate our proposal with a non-negligible rollback probability, so that

our experimental results will better capture the effect of the version-lists roll-

back operation on the overall performance. We have measured the cumulated

event rate (expressed as the amount of cumulated committed events per Wall-

Clock-Time unit), which is a classical indicator of the speed of the optimistic

simulation run.

194 6. Managing Global Variables

 0

 1000000

 2000000

 3000000

 4000000

 5000000

 6000000

 7000000

 0 10 20 30 40 50 60 70 80 90

C
um

ul
at

ed
 C

om
m

itt
ed

 E
ve

nt
s

Wall-Clock Time (seconds)

Throughput

Message Passing
Shared Memory

Figure 6.4: Throughput Running on 32 Kernel Instances

6.3.2 Results

In Figure 6.4 we present the throughput associated with our proposed test-bed

model run on top of 32 simulation kernel instances, each one running on a pri-

vate CPU-core of our test machine. By the results, we can see that the execution

of the simulation model relying on our SSMS provides a speedup in the order

of 70%. In addition, we note that there is a tangible difference between the

two curves’ trends. In fact, the throughput associated with the SSMS execution

has a constant growth, which suggests a constant event commitment rate. On

the other hand, the centralized-LP implementation’s slope shows fluctuations,

which are related to the large amount of events associated with variables’ read-

s/updates which must be processed. Therefore, the number of committed events

per GVT interval is not constant, due to the fact that the amount of workload

6.3. Experimental Evaluation 195

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Number of Worker Threads

Total Time Execution

Message Passing
Shared Memory

No Shared State

Figure 6.5: Scaling with respect to the Number of Parallel Instances

processed by differentiated LPs is totally different and that the LVT of the LP

keeping the shared state diverges from the other LPs’ one (this can entail a

higher rollback probability), a scenario which is not present at all when relying

on the multi-version lists in the shared memory version case.

At the same time, Figure 6.5 shows the total execution time of the simula-

tion towards the number of parallel worker threads on which the model is run.

In addition to the set of experiments described before, we present also the curve

associated with the classical implementation of the benchmark (used as well in

previous experimental assessments), where the shared attributes are kept in the

disjoint LPs’ simulation states and are reduced at the end of the simulation. By

the results, we can see that both the SSMS and the centralized-LP implemen-

tation suffer from some form of thrashing. In fact, the centralized-LP version

196 6. Managing Global Variables

provides a speed-down in the order of 100% when the model is parallelized on

top of 4 parallel kernel instances, while SSMS shows the same behaviour (al-

though of a reduced magnitude) starting from 8 parallel kernel instances. The

version with no shared state shows a trend which is the one expected by a

parallel simulator.

We note that in this configuration, the SSMS’s speedup towards the central-

ized LP is very large. Of course, the overhead in the centralized-LP case could

be leveraged by having different LPs handle different variables, but this solution

would not scale well towards the size of the shared state in the simulation model,

and additionally it has a reduced degree of transparency.

Finally, we note that the simulation model used to assess the validity of our

proposal is a worst case for our architecture, since at every event’s execution

some updates on the global variables are performed, producing a large con-

tention on the linked lists. A simulation model which relies on shared-state for

synchronization rather than for global statistics would benefit much more from

the proposed architecture.

Chapter 7

Cross-Accessing Logical

Processes’ States

As two floating planks meet and part on the sea,

O friend! so I met and then drifted from thee.

— William R. Alger, Poetry of the Orient (1865)

In Chapter 6 we have shown how is it possible to provide runtime supports

which allow to modify Equation (2.5) and in order to drop a part of the con-

straints on simulation states. This has allowed us to reduce it to Equation (6.1).

In this Chapter, we present additional runtime supports, which allow us to drop

the remaining constraints, so that there is no longer any limitation on what

the simulation model writer can do on simulation states’ variables. This will

be done focusing on the x86_64 instruction set, and providing an innovative

memory manager for the Linux kernel.

This allows us to finally re-adapt the traditional PDES paradigm, taking

into account that the advent (and the large diffusion) of shared-memory parallel

machines, such as multi-core and SMP machines, offers the technical possibility

197

198 7. Cross-Accessing Logical Processes’ States

to directly share state information across different LPs. In this way, we support

correct concurrent execution of LPs while jointly allowing the possibility to di-

rectly share data and masking synchronization (and hence actual parallelization)

to the application programmer.

The final target along the path of supporting shared data across different

LPs actually translates into enabling a sequential-style programming approach

(augmented with the concept of “object”, which allows for improving expres-

siveness while coding complex simulation models), characterized by full access

capabilities to any valid memory location (logically belonging to the state of any

involved object) upon executing whichever event, in either read or write mode.

A motivating example for the relevance of the proposed solution comes from

simulation frameworks for Transactional Data-Grid systems, such as NoSQL

data stores (see, e.g, [34]), where it is common to simulate distributed commit

protocols by having the simulated coordinator to schedule the arrival of a pre-

pare request event to the involved sites, which needs to carry information about

the write set and, in some cases, also the read set of the committing transac-

tion. These sets may entail hundreds of data-item keys, and are populated at

the coordinator while simulating the execution of the transaction. These sets

are therefore instantiated by the transaction-coordinator LP within its local

state, and would need to be packed and transmitted via events upon starting

the simulation phase of the distributed commit protocol in case of traditional

PDES implementations. This poses communication overhead problems and re-

quires simulation-model code for marshalling read/write sets as simulation event

payloads.

However, sharing based exclusively on global variables limits the actual pos-

sibility to share data in size, given that the storage for global variables is stati-

199

cally defined at compile time. Also, it still constraints the programmer, who is

not allowed to directly access arbitrary slices of (dynamically-allocated) memory

destined to keep portions of the simulation model (e.g., by having them logically

representing the state of a generic LP).

In this Chapter we exactly tackle the above problem, namely how to support

direct access by concurrent LPs to memory locations that are dynamically allo-

cated by any LP, and logically included within its local state via, e.g., pointer

based referencing. The same pointers can be used as payloads of events so that

the recipient LP can use them to directly access the local state of a different

LP, in either read or write mode. This breaks disjointness in memory access

at the programming level, hence enabling the support for sequential-style DES

programming (where any valid memory location keeping a portion of the state of

whichever LP, is accessible while processing any simulation event), and creates

a new kind of dependency that we term cross-state dependency, which stands as

complementary with respect to the classical event dependency proper of PDES.

On the other hand, guaranteeing correct (e.g., causally consistent) execution of

simulation events in the presence of cross-state dependency across concurrent

LPs requires proper application-transparent synchronization mechanisms to be

put in place, which we provide in this Chapter.

The technique has similarities with the proposal in [162], where the message

exchange was supported via shared-memory segments passed via pointers. Here,

we complement such a strategy, as we allow pointers to appear as the payload

of traditional events.

Overall, in this Chapter we will:

1) present the design and implementation of an innovative memory manage-

ment architecture, oriented to Linux systems, which allows to detect the

200 7. Cross-Accessing Logical Processes’ States

materialization of cross-state dependencies across LPs that are run con-

currently, in an application transparent manner. The architecture requires

a minimal patch to the Linux kernel, given that it is almost exclusively

based on an external loadable module.

2) present a synchronization scheme, entailing speculative processing, which

takes into account both event and cross-state dependencies and allows

the parallel run to mimic a classical sequential one where the simulation

events are processed in non-decreasing timestamp order, while jointly be-

ing allowed to access any valid memory location belonging to the state of

the simulation model (namely any memory location logically belonging to

the state of some LP). On the other hand, our scheme, which we name

Event and Cross-State Synchronization (ECS), allows running simulation

events destined to different LPs concurrently (again transparently to the

programmer).

7.1 Event and Cross-State Synchronization

7.1.1 Cross-State Dependency Tracking

In this section we present the memory management architecture we have de-

signed and developed in order to support cross-state dependency, and to actu-

ally track the materialization of such type of dependency across LPs that are

run concurrently. Let us stress again that our architecture supports cross-state

dependency in a fully transparent manner with respect to the application level

software. We have specifically designed a memory management architecture

allowing not to loose the benefits from multi-threading.

We explicitly target the scenario where multiple threads can take care of

7.1. Event and Cross-State Synchronization 201

DirectoryPML4 Directory Ptr Table O�set

0111220212930383947

CR3

PML4E

PDPTE

40

40

Linear Address

Page-Directory-

Pointer Table

PDE with PS=0 PTE Physical Addr.

Page Directory Page Table 4-KB Page

9 9

40

40 40

9 9 12

Figure 7.1: The Paging Scheme in x86_64 processors

dispatching whichever LP for execution (although we will still rely on temporary-

binding schemes between LPs and worker threads in order to cope with, e.g.,

locality and other performance-related aspects).

In our architecture, virtual memory is destined for usage to any LP according

to stocks. We have inserted a new layer for managing memory right under Di-

DyMeLoR, which was described in Chapter 4. More in detail, when the LP

requests new memory buffers (which we support via the traditional malloc

service, redirected to a proper memory allocator, as described in Chapter 4),

the memory management architecture reserves an interval of page-aligned virtual

memory addresses, namely the stock, which is achieved via the standard mmap

POSIX API. We note that any page in the stock is an empty-zero page, thus

being not really allocated in memory till the first read/write access to it is

performed. This is the standard management performed by POSIX (e.g., Linux)

systems.

To understand how we use the stock for supporting cross-state dependency

tracking, let us consider the actual paging scheme offered by x86_64 architec-

202 7. Cross-Accessing Logical Processes’ States

tures1. As shown in Figure 7.1, any 64-bit logical address has only 48 valid bits,

which are used as access keys for a 4-level paging scheme, ultimately supporting

pages of 4KB in size. The top level page table is called PML4 (or also PGD

- Page General Directory) and keeps 512 entries. All the other page tables,

operating at lower levels, have 512 entries each as well. In our design, the stock

of virtual memory pages destined for allocation of memory buffers for a given

LP corresponds to the set of contiguous virtual pages whose virtual-to-physical

memory translation is associated with a single entry of the second-level page

table, which is called PDP – Page Directory Pointer—its entries are therefore

referred to as PDPTE. Note that a single stock corresponds to 5122 pages, for

a total of 1GB of virtual memory. Hence reserving a single stock for a LP al-

lows managing an LP-state requesting up to 1GB of (dynamic) memory. On

the other hand, reserving multiple stocks for a same LP will lead to manage LP

states reaching multiple GB in size.

We have created a special device file, whose driver is loaded into the Linux

kernel via an external module, which can be handled via proper ioctl com-

mands, associated with specific logic coded within the driver. The SET_VM_RANGE

command allows the special device to register the stocks to be reserved, and their

association to the LPs (which are again distinguished via classical unique nu-

merical identifiers). When this command is issued, the state of the device file

changes so that the driver sets up a kernel-level map (accessible in constant

time) where for each reserved stock, which is logically related to one entry of a

PDP page-table, the identifier of the LP destined to use that stock is recorded.

In Figure 7.2 we show an example where a given PDP table has its 0-th entry—

hence the corresponding stock of virtual memory pages—reserved for LPx, and

1Technically, this same methodological solution can be adapted to x86 architectures as well,
with some modifications to the memory manager.

7.1. Event and Cross-State Synchronization 203

PML4

PDP

constant time access map

updated via the SET_VM_RANGE

ioctl command

LPx

LPy

0-th PDPTE

1-st PDPTE

Figure 7.2: Example Association between Stocks and LPs.

its 1-st entry reserved for LPy.

By this kind of organization, if LPx accesses any virtual address included

in the stock reserved for LPy, we know that such a memory access (which can

be either in read or write mode in our execution model) is occurring outside

the boundaries of its local state, and is actually involving the state of another

LP. Therefore, we are experiencing a cross-state dependency. We recall again

that this may occur, e.g, if LPy scheduled a simulation event destined to LPx,

carrying as payload the pointer to some memory buffer belonging to the state of

LPy, just to indicate to LPx where to take (and possibly update) the information

requested for processing the event.

The core problem to cope with in order to exploit the stocks as the means

to capture whether the generic LPx (currently dispatched for execution along

any worker tread WTi within the PDES platform) is materializing a cross-state

dependency is related to how to determine that event processing gives rise to a

memory reference falling outside the boundaries of the stocks currently reserved

204 7. Cross-Accessing Logical Processes’ States

CR3 Register
NULL

0-th PDPTE

PDP

PML4

Sibling PML4

Sibling PDP

LPx

Access to LPx

opened upon issuing

the command
SCHEDULE_ON_PGD

Figure 7.3: LPx’s Memory Stock is opened for Access

for LPx. We note that classical memory protection mechanisms supported by

the operating system (and related segmentation-fault handling schemes) are not

suited for our purposes. Particularly, given that we are targeting multi-threaded

PDES platforms, we cannot simply a-priori protect the accesses to stocks that

are reserved for LPs other than LPx upon dispatching LPx along any worker

thread WTi. This is because these LPs might be requested to run concurrently

with respect to LPx along other worker threads, which all share the same page

table and experience the same protection rule as WTi. Overall, closing to WTi

the access to the stocks not reserved for LPx upon dispatching it (e.g., via the

mprotect POSIX API) would lead to a change in the state of the page table

where any other thread would not be allowed to access those stocks. This would

clearly hamper concurrency, also leading to unneeded memory faults (by threads

running logical processes other than LPx) in contexts where LPx requires no

access to “remote” stocks while processing the event.

In order to cope with the above depicted core issue, we have devised a

7.1. Event and Cross-State Synchronization 205

memory management architecture where any worker thread WTi is associated

with a sibling PML4 page table, whose entries point to sibling PDP page tables.

The sibling page tables (both PML4 and PDP) destined for usage by a worker

thread can be instantiated by relying on the GET_PGD command included in the

special device file driver, which returns a descriptor for subsequent operations.

By default, the entries of the sibling PDP page tables, which are associated with

the stocks that have been destined for usage by the LPs, are all set to NULL.

This means that they do not allow to reach the lower-level page tables, hence

not allowing access to any already allocated stock (therefore, any attempt to

access the stocks will lead to a memory fault). On the other hand, when WTi

dispatches LPx for event execution, the entries of the PDP sibling tables that

correspond to the virtual memory stocks destined for usage by LPx are “opened”

to correctly allow the retrieval of the lower-level page tables that contain the

actual mapping of virtual-to-physical memory (or indications about whether the

pages are not present, e.g., they are swapped-out pages). This is done by copying

the corresponding entries of the original PDP tables onto the destination entries

within the sibling PDP page tables (see Figure 7.3 for an example scenario where

the stock associated with LPx is again related to the 0-th entry of a given PDP

page table).

In our architecture, this operation can be executed by relying on the ad-

ditional SCHEDULE_ON_PGD command that we have included within the special

device file driver, which can be issued via the ioctl interface. In other words,

by using this command, the worker thread is allowed to switch into what we

refer to as simulation-object mode, where the unique stock accessible is the one

associated with the dispatched LP (say LPx in the example discussion), while

the other stocks are not accessible (given that their corresponding entries into

206 7. Cross-Accessing Logical Processes’ States

the sibling PDP page tables are still set to NULL). As sketched in Figure 7.3,

in our implementation this operation also leads to a change of the CR3 register

(namely, the page table pointer register in x86_64 processors), thus allowing to

switch to the sibling PML4 for virtual-to-physical address resolution purposes.

Having different sibling PML4 tables, associated with the different concur-

rent worker threads, leads to the possibility to concurrently dispatch and execute

different simulation objets (this is done by having each worker thread opening

the access to the stocks associated with the LP it is currently dispatching) while

still having the possibility to determine whether any of the dispatched LPs is

confining its memory references within its own stocks. The assumption under-

lying this type of organization is that, when there is the need for opening access

to a given stock, the corresponding memory management information is already

present in to the corresponding PDP entry of the original page tables. This is

not guaranteed by simply validating virtual memory addresses via mmap, which

as hinted leaves memory into the empty-zero state. To overcome this problem,

our architecture entails a stock allocation policy that beyond calling mmap, also

explicitly writes a null byte into one single virtual page of the stock (the ini-

tial one). In this way, the Linux kernel traps the access to empty-zero memory

and allocates the whole chain of page tables for managing the pages within the

stock (although a single one of these pages is really allocated), which guarantees

the existence of the PDP entry associated with the slot, to be filled into the

corresponding sibling PDP entry upon dispatching the LP owning the stock.

Two additional points need to be discussed. First, having all the stocks closed

for access by the worker thread, except the one(s) related to the dispatched

LP, leads (as noted before) to memory faults in case of a memory access to

stocks other than open one(s), namely in case of materialization of a cross-state

7.1. Event and Cross-State Synchronization 207

dependency across concurrent LPs. However, these faults cannot be tracked

(and handled) via classical segmentation-fault handling given that the “remote”

stocks have already been validated via mmap, and the Linux kernel would simply

lead the fault to reallocate the whole chain of page table entries for mapping the

accessed virtual page in memory. This would lead the whole system to a state

where for the same virtual page we would have multiple chains of page table

entries representing its state (e.g., the frame used for mapping the page, which

might be different along the multiple chains of page table entries) which is a

discrepancy not directly manageable by the Linux kernel (except if using invasive

patches). To avoid this scenario, upon installing the driver for the special device

file, via loading the external module, we change the IDT table (directly accessible

via the IDT register) in order to redirect the page-fault handler to an ECS-

specific handler (rather than the original do_page_fault kernel function). In

case the fault is not related to accesses to remote stocks within the sibling paging

scheme, then the original handler is invoked. Otherwise, the ECS handler gives

control back to user mode in order to let the PDES platform actuate ECS

synchronization policies, exactly aimed at coping with cross-state dependencies.

We also note that the expected overhead for this kind of memory-access tracking

scheme is likely reduced with respect to classical tracking via segmentation fault.

This is because in our scheme, the ECS fault handler is activated via a

simple passage into kernel mode, and then a passage back to user mode. It is

not required to invoke the Linux scheduler, which is ultimately responsible for

triggering the activation of signal handlers to be dispatched when the applica-

tion eventually returns into user mode (after being hit by some signal, e.g., the

segmentation fault one). As an additional note, upon a memory fault occur-

ring on sibling PDP entries (due to cross-state dependency materialization) the

208 7. Cross-Accessing Logical Processes’ States

platform mode

(CR3 points to the

original PML4)

simulation-object

mode (CR3 points to

the sibling PML4)

faulting accesso to

a remote stock

SCHEDULE_ON_PGD

UNSCHEDULE_ON_PGD

Figure 7.4: State Diagram for Switch Operations between Page Tables

faulting thread is put back into what we call platform mode, which implies that

it is switched back onto the original PML4. This is done to allow the worker

thread to access any memory location required reconciling the execution of the

concurrent LPs according to ECS synchronization. This aspect will be anal-

ysed in detail in Section 7.1.2. On the other hand, when the event processing

activity naturally ends (due to the completion of operations executed by an

event handler), the worker thread can switch back to platform mode on demand

(hence gaining access to any memory location or data structure supporting the

parallel execution) by using the UNSCHEDULE_ON_PGD command that we have

implemented within the driver, which can be triggered by again exploiting the

ioctl POSIX API. In Figure 7.4 we show the state diagram where the events

causing the switch between simulation-object and platform modes are depicted.

Second, our architecture needs anyway to co-exist with the kernel scheduler,

which poses issues on the side of managing the sibling PML4. Particularly, all

the threads within a same Linux process share the same memory management

information (the so-called memory context), including the pointer to the original

page table. This pointer is used by the kernel scheduler upon re-dispatching

the thread after it has been context-switched off the CPU. Particularly, this

pointer is reloaded into the page-table pointer register CR3 upon the occurrence

of a context switch that gives control to the thread. However, if the thread

7.1. Event and Cross-State Synchronization 209

was executing in simulation-object mode, CR3 would need to be filled with the

address of the sibling PML4 (rather than the original page table). To achieve

this, a minimal patch to Linux has been adopted, which has been located right

in the end of the kernel schedule function2. The patch simply checks whether

the value of a special function-pointer we inserted into the kernel is not null,

in which case the function pointer is invoked, which gives control to a proper

CR3 manager implemented within our external module. This manager checks

whether the thread is running in simulation-object mode (which can be done

by checking per-thread metadata that were setup upon the SCHEDULE_ON_PGD

command invocation) and, in the positive case, it loads the sibling PML4 pointer

into the CR3 register (thus maintaining the simulation-object mode when running

the thread). Note that the aforementioned special pointer is exported as a

kernel symbol, and can be set to a value different from NULL upon inserting

the external module. If this pointer is not set the Linux kernel behaves as usual,

by simply restoring the CR3 register according to the standard rules when the

thread is rescheduled after a context switch.

As already mentioned, integration of Di-DyMeLoR with the currently pre-

sented architecture has been straightforward given that, rather than relying on

actual malloc implementations for pre-reserving the segment destined to allo-

cate the chunks for a given LP, in the integrated architecture we let Di-DyMeLoR

rely on the stock allocator. Hence, the virtual memory segment managed by

DyMeLoR boils down to the stock of virtual memory pages supported in the

presented architecture.

As an additional note, our approach requires reloading the CR3 register any

time we switch between platform and simulation-object mode. The penalty

2To allow a pure-module approach, this task could be done by having the kernel module patch
the schedule kernel function upon initialization.

210 7. Cross-Accessing Logical Processes’ States

incurred consists in flushing the TLB right upon loading a new value into CR3,

which is done automatically by the firmware logic of x86_64 processors (this

is anyhow required in order to make the access-rule of the target page table—

original vs sibling—visible after the switch, which cannot be achieved without

refilling the TLB). However, the data cache does not require to be invalidated,

hence we expect that the cost for TLB renewal would look affordable as soon

as a certain level of locality is exhibited while running either in platform or

in simulation-object mode. As for this aspect, relying on Di-DyMeLoR would

favour locality in simulation-object mode, given that Di-DyMeLoR implements

policies aimed at maximizing virtual-memory contiguousness of the memory

chunks delivered for usage by the LP.

Finally, we note that the on-demand switch to simulation-object mode or

(back) to platform mode requires invoking the ioctl system-call. While the

cost for system-calls has been traditionally considered an issue in high perfor-

mance computing, especially when dealing with fine grain tasks, such costs are

nowadays definitely reduced thanks to the sysenter and sysexit machine in-

structions, which are explicitly designed for low-latency system calls, by relying

on operating systems with a flat memory model and no segmentation. These

instructions have been optimized by reducing the number of checks and memory

references so that a call or return has been shown to take less than one-fourth

the number of internal clock cycles when compared to the traditional approach

based on the int instruction, which was explicitly based on segment-gate re-

trieval and segmented-to-linear memory addressing translation.

Experimental data related to costs associated with TLB flushes, system-call

involvement and the aforementioned management of the memory access faults

via the ECS handler will be anyhow provided in Section 7.2.

7.1. Event and Cross-State Synchronization 211

7.1.2 The Event and Cross-State Synchronization Scheme

In this section we provide the core mechanisms underlying ECS synchronization.

The main difference between classical event-based synchronization and ECS is

that ECS-synchronization tasks let LPs process their events in non-decreasing

timestamp. At the same time, any cross-state dependency is materialized at ST

T to let the involved process (namely the one accessing remote stocks reserved

for other LPs) observe the state snapshot that would have been observed at

simulation time t in a sequential-run.

We base ECS synchronization on the following two innovations:

1) the introduction of temporary LP blocking phases, which may even lead

to temporary block of the execution of an already dispatched LP (namely

of an already dispatched simulation event at that LP);

2) the introduction of so called rendez-vous events, which are kinds of system-

level simulation events not causing updates on the destination LP’s state,

but only driving block and unblock actions for processing activities of

the LPs. These will be exploited to temporarily disable a LP to perform

updates on its state along the ST axis, given that its state snapshot is

currently involved in a cross-state dependency.

We note that point 1 leads to an event processing model where control (along

any worker thread) can return to the platform layer before an already started

event-processing phase actually ends. This takes place according to an interrupt-

driven scheme, different in nature from event-preemption schemes that have been

put in place in optimistic PDES systems, to squash the execution of events that

are detected to be causally inconsistent while still being processed, for either

performance or infinite-loop avoidance reasons [143, 116]. In fact, they have

212 7. Cross-Accessing Logical Processes’ States

been typically based on polling (see, e.g., [143]) to be explicitly actuated by the

event processing code, which is used to periodically query the platform layer to

check whether no straggler event/antievent was delivered.

On the other hand, point 2 leads to bridge PDES execution models with

Transactional Memory models, particularly by having read/write operations

across different stocks serialized according to the logical time for their occur-

rence, thus making this an obstruction-free algorithm [60].

In our solution, each LPx is associated with a cross-state dependency set

that we refer to as CSDx, which records the identifiers of all the LPs towards

which LPx has materialized a cross-state dependency while processing an event.

CSDx is initialized as empty upon dispatching LPx for the execution of any

new event, and gets possibly updated while processing the event.

ECS synchronization exploits the ad-hoc memory-fault management archi-

tecture presented in the previous section in order to detect that LPx is accessing

a remote memory stock (e.g., the stock associated with LPy) in either read or

write mode, while processing its next event (e.g., ex). The identity of the LP

towards which the cross-state dependency is being materialized (LPy in our

example discussion) is also known, given that the ECS memory-fault handler,

which pushes the thread’s execution back in platform mode, notifies such an

identifier into the worker thread’s user-mode stack.

The memory fault occurrence gives rise to the following algorithmic steps:

1) Execution of ex is temporarily blocked, hence LPx transits into a block

state;

2) A rendez-vous unique identifier is generated and assigned to the event

ex, which we refer to as rvid(ex). The identifier can be easily generated

according to differentiated schemes, such as by using a tuple 〈x, count〉,

7.1. Event and Cross-State Synchronization 213

where x is the identifier of the LP in charge of executing ex and count is

a global unique counter value3.

3) A special rendez-vous event ervy is scheduled for LPy, marked with both

timestamp and rendez-vous if equal to the ones of event ex (formally Tervy =

Tex and rvid(ervy) = rvid(ex)). We note that rendez-vous events are not

generated by the simulation model, rather they are platform-generated

events. Hence they do not have any associated processing rule at the

application level, and must be therefore handled by the simulation kernel,

without triggering the model’s event-handler callback.

Rendez-vous events are incorporated into the event queue of the destination

LP as if they were traditional events. Given that we are targeting optimistic

synchronization, this means that a rendez-vous event may be a straggler event

and might trigger a rollback operation. They must be therefore processed at the

correct point of the destination LP’s simulation trajectory, but the processing

actions are platform-level ones proper of ECS, i.e. event handlers are not (and

should not!) be defined for the events associated with rendez-vous management.

When LPy is dispatched for processing a rendez-vous event ervy , ECS per-

forms the following algorithmic steps:

1) LPy is put into a block state;

2) A special rendez-vous acknowledgement event ervax is scheduled for LPx,

marked with no-timestamp but with the same rendez-vous identifier of ervy

(formally, rvid(ervax) = rvid(ervy).

On the other hand, when the rendez-vous acknowledgement event ervax is

delivered to the recipient LPx, ECS performs the following steps:
3This can be again done using the Cantor pairing function.

214 7. Cross-Accessing Logical Processes’ States

1) it inserts the identifier of the sender LP, namely y into CSDx

2) it puts LPx back in the ready state (so that it could be eventually re-

dispatched along some worker thread, thus resuming the execution of the

originally interrupted event ex).

At this point we know that LPy is blocked (thus not being currently allowed

to process its events), hence the snapshot of its state is available to LPx for

read/write operations, such as the operation that originally gave rise to the ECS

memory fault and to the cross-state dependency being handled via the rendez-

vous. However, upon re-dispatching LPx (which leads to resuming the pro-

cessing of ex), the involved worker thread cannot transit into simulation-object

mode by only opening the stock(s) associated with LPx into the sibling page

tables. Rather, we also need to open access to the stock(s) associated with LPy.

In our architectural support, this can be still achieved via the SCHEDULE_ON_PGD

command, given that it can acquire a set of stock identifiers to be opened in the

sibling page tables when the worker thread transits into simulation-object mode.

Particularly, upon re-dispatching LPx, the SCHEDULE_ON_PGD command will be

issued passing as input the set x∪CSDx, which for our example discussion, will

contain the identifiers of both LPx and LPy.

The above algorithmic steps can be iterated in case cross state dependencies

are materialized towards multiple LPs while processing the event ex, which will

lead to the scenario where LPx can be rescheduled multiple times (while being

in the processing phase of ex) with incrementally enlarged sets of open stocks.

On the other hand, once a remote memory stock (associated with a distinct

LP) becomes open for access by LPx during the processing phase of event ex,

any access to this stock by LPx while processing this event will not cause any

additional ECS memory fault.

7.1. Event and Cross-State Synchronization 215

We only need to discuss how the finalization of the processing phase of ex is

handled. Essentially, such finalization needs to generate notifications that the

stocks associated with LPs towards which cross-state dependencies have been

materialized are no longer locked for access by LPx. Hence, the owner LPs

can resume their normal processing activities (thus they can resume from the

block-state). This is achieved via the following steps executed right after the

processing of event ex at LPx:

1) an unblock event eubk is sent towards any LPk whose identifier is logged

within CSDx upon the end of the processing phase of ex. These events are

again not marked with timestamps, but with the rendez-vous identifier of

the event ex originating the cross-state dependency. Then CSDx is reset

as empty.

2) upon the delivery of eubk , the recipient LP is simply put back as ready for

being dispatched (hence exiting the block-state).

However, additional mechanisms are required in order for ECS to provide

correctness and to also ensure progress of the parallel run.

Correctness

Given that ECS targets speculative processing, where LP blocking is not caused

by native event dependencies, rather by the need for executing memory read-

/write operations in multiple stocks as in-memory transactions, some care must

be taken when handling rollback phases. Particularly, when we process an event

ex that gives rise to a rendez-vous event ervy , we need to define rules for han-

dling the rollback phase of either LPx or LPy at a ST T ′ < Tex (or equivalently

T ′ < Tervy). The peculiarity of this scenario is related to that ex and ervy are both

216 7. Cross-Accessing Logical Processes’ States

causally related to each other. Particularly, if ex is rolled back, then we need to

rollback ervy given that LPx may have performed updates on the memory stocks

destined to keep the state of LPy while processing ex4. On the other hand, the

processing outcome of ex is affected by values possibly read by LPx from the

stocks destined to LPy at time Tex . In case these values change due to a rollback

of LPy at a ST preceding Tervy , the updated values should have been observed

while processing ex by LPx.

In order to handle such mutual dependency, we devise the following scheme.

When the event ex is rolled back, we simply send an anti-event for the rendez-

vous event ervy that was scheduled while processing ex. Given that ervy was

actually incorporated into the event list of the destination LPy, the arrival of

the anti-event gives rise to a classical annihilation that possibly rolls back LPy

to the latest processed event with timestamp less than Tervy . This solves the

problem of rolling back LPy due to the rollback of a rendez-vous generating

event ex on LPx.

On the other hand, in case the rollback is originated on LPy, and pushes

this LP to a simulation time less than Tervy (which leads to undo the execution

of ervy), the following actions are taken by ECS. A special rendez-vous-restart

event ervrx , marked with the original rendez-vous identifier (namely rvid(ex))

is sent out towards LPx. This special event annihilates the processing of the

original instance (while not removing it from the input queue), which will lead

to ultimately undoing ervy via an anti-event). Given that when processed after

4In our memory management support for cross-state dependency tracking, we do not distin-
guish whether the dependency is originated by read or write operations (or both). In case the
dependency was exclusively due to read operations, then LPy might not be forced to rollback
while rolling back event ex (although a temporary reconstruction of the snapshot to be accessed
in read mode would be requested in case the target LPy run ahead of LPx in simulation time).
Distinguishing between read-generated and write-generated cross state dependencies will be the
target of future work. Anyway, by artificially rolling back LPy even in cases where no updates on
its memory stocks were performed by LPx while processing ex is a conservative, safe approach.

7.1. Event and Cross-State Synchronization 217

the rollback, the event ex will give rise to a rendez-vous marked with a different

identifier (with respect to the rolled-back rendez-vous instance), no mismatch

will occur in any annihilation phase for rendez-vous events associated with dif-

ferent incarnations of their generating event (which also avoids cycles in the

annihilation process).

Also, all the other types of events used in ECS, such as acknowledgement

and unblock events, are not actually incorporated into the event lists of the

LPs, thus being inherently ephemeral, and not requiring particular care in the

rollback scheme. These events can be simply discarded at the recipient side

if the rendez-vous associated with their corresponding identifier (e.g., rvid(ex)

in case of the acknowledgement event sent to LPx upon the rendez-vous) is no

more in place.

Progress

A bit more complex to deal with is the guarantee of progress in ECS. Specifically,

care must be taken to avoid deadlocks and live-locks, and the domino effect in the

rollback scheme. Let us first consider the deadlock/live-lock issue. A deadlock

may arise in case of rendez-vous events involve a set of LPs in a cycle, where the

rendez-vous associated with the minimum timestamp along the cycle leads the

LP generating this rendez-vous to wait for the rollback of a different LP that is

in turn in the block-state due to a different rendez-vous it issued, which needs to

be completed. An example situation of this type is shown in Figure 7.5, where

LPx issues at ST T1 a rendez-vous towards LPz, which is in its turn waiting

for LPy to reach ST T3 for a rendez-vous between LPz and LPy. On the other

hand, LPy is waiting for LPx to reach ST T2 for a rendez-vous with it. To avoid

this deadlock scenarios, we can simply adopt the rule that, in case a rollback

218 7. Cross-Accessing Logical Processes’ States

needs to be executed by LPx which is currently blocked due to a rendez-vous

it generated while processing and event ex, this LP is simply resumed from the

block-state by also squashing the finalization of the rendez-vous (this will lead

to manage the rollback of the rendez-vous as explained above, e.g., by issuing

the anti-event for the already sent out rendez-vous event).

We note that this implies that the current stack seen by the LP also needs

to be refilled with correct information (since, upon resuming, its context will

no more be the processing context for the rendez-vous generating event). We

note that this is a problem similar to the one of restoring the correct stack for

the LP upon resuming the processing of a rendez-vous generating event that

lead it into the block-state (so that the worker thread currently executing this

LP passes control to a different LP, which needs to operate on a proper stack

image). Details on how we handled this issue in our implementation, where the

cross-state dependency tracking architecture and ECS have been integrated into

ROOT-Sim, will be discussed in Section 7.2.

We also note that annihilating the rendez-vous event via the corresponding

anti-event is safe even in case the destination LP is currently blocked waiting

for the finalization of the rendez-vous. In fact, it can be simply resumed from

the block-state (again with proper stack image manipulation) and can be rolled

back. This might require to alter its state image, which can be again safely done

given that it is no longer going to be accessed by a different LP in a rendez-vous

phase.

We note however that unblocking the LP generating a rendez-vous so as to

prevent deadlock in case a rollback is required may, in its turn, lead to live-

lock. Specifically, live-lock may in principle arise in case of simultaneous events

materializing circular cross-state dependencies across multiple LPs. Each LPx

7.1. Event and Cross-State Synchronization 219

T1LPx

LPy

LPz

deadlock-generator

rendez-vous

T2

T3

issued rendez-vous with

source objects blocked

waiting for acks

Figure 7.5: Deadlock Originated by a Rendez-Vous Generating Event

along the cycle, executing an event ex at simulation time Tex , is hit by another

object due to a cross-state memory faulting access at the same simulation time,

which may lead to request the rollback of the events generating the rendez-vous

circularly. This is known to possibly lead the rollback cycle to reappear indefi-

nitely [92]. To overcome this problem, we need a priority management scheme

for simultaneous events, that needs to be reflected also on the management of

rendez-vous events. Particularly, if we have two events ex and ey such that

Tex = Tey , and we have a priority scheme telling that ex → ey (namely, ey

is identified as causally dependent on ex), then we need to enforce that any

rendez-vous event ervy generated by ex is also causally related to ey according

to ervy → ey. This way, the rendez-vous that are caused by events having the

same timestamp are anyway sequentialized according to the priority scheme.

We note however, that the guarantee of progress in optimistic PDES systems

in the presence of simultaneous events is a more general problem, with respect

to what we might experience in ECS, and has been extensively studied in lit-

erature [78]. Hence different literature solutions for tie-breaking simultaneous

events (see, e.g., [106]) can be exploited for integration with ECS according to

220 7. Cross-Accessing Logical Processes’ States

TwTx

exlog
Tr

Tr'

straggler

Ty

ey
log

LPx

LPy

1) Rollback (requires coasting forward up to Tx)

2) Snapshot reconstruction for rendez-vous

 requires coasting forward up to Tx

3) Snapshot reconstruction

 for rendez-vous requires coasting

 forward from an older log

Figure 7.6: Domino-Effect due to a Rollback

the scheme suggested above.

The final issue to cope with is domino effect in the rollback scheme. Partic-

ularly, by the ample literature on log/restore in optimistic PDES systems (see

Section 3), we know that SSS, which avoids logging the LP state after the pro-

cessing of each event, allows for optimizing the performance tradeoff between

logging cost and restore cost. However, state restore at ST T requires the LP to

be rolled back to the latest state log with time less than or equal to T , and then

to fictitiously reprocess intermediate event up to T in a silent mode, namely with

no interactions with other LPs—the coasting-forward phase. In ECS this is no

longer possible since a coasting forward event might be a rendez-vous generating

event. Hence, in order for this to be re-processed, the LP originally hit by the

rendez-vous also needs to rollback at the time of the rendez-vous, so to provide

its state snapshot for correct access by the LP performing coasting-forward. It

is easy to show that this may lead the originally rolling-back LP to rollback

further back along simulation time, according to the domino-effect.

An example is shown in Figure 7.6, where in order to execute the coasting

7.2. Experimental Evaluation 221

forward involving event ex at LPx, we need to reconstruct the snapshot of LPy

at time Tex , But this leads to the need for processing ey in a coasting forward,

which in turn leads LPx to restore to a time less than Tey . To avoid the execution

of coasting-forward phases leading to rollback interactions with other LPs, our

approach is based on complementing the selected SSS algorithm by forcing the

log of the LP’s state right after the processing of a rendez-vous generating event.

This will lead to the scenario where no rendez-vous generating event will ever

be included in the sequence of events between two subsequent snapshots of the

same LP. Hence, no rendez-vous will ever be re-processed in any coasting forward

phase. Additionally, rendez-vous-generated events must also be excluded by any

coasting-forward phase, since for these events the rendez-vous source LP may

have performed updates into the state of the involved LP. To avoid a rendez-

vous-generated event to be included in any coasting forward, we can again force

a state log of the involved LP right after the event is processed.

7.2 Experimental Evaluation

7.2.1 Implementation within the ROOT-Sim Platform

A few relevant modifications to the ROOT-Sim simulation platform have been

made to integrate the presented ECS Scheme. Most relevantly, we have created

stack-separation across the different LPs, by locating the stack of each LP in

the initial part of a stock of memory destined for LP usage5. Also, execution

resume in the different stacks, by also providing the correct processor and stack

image, has been supported via sigjump and longjump POSIX API functions.

They have also been used as the support for, e.g. squashing the stack image

5This can be done at simulation startup phase by requesting a per-LP memory buffer (which
will per used as LP stack) to the stock allocator to which Di-DyMeLoR requests memory buffers.

222 7. Cross-Accessing Logical Processes’ States

in case a rollback occurs while the LP is in the block state (which eventually

leads the LP to resume execution with a different context). As for the (tempo-

rary) binding of LPs to threads, we still relied on the already supported load

sharing policies presented in [169, 170, 171]. Also, the LPs currently bound to

a given worker thread are still dispatched according to the Lowest-Timestamp-

First policy. However, LPs that are in the block state are not considered in the

dispatching process (thus being again eligible for dispatching only after exiting

the block state).

7.2.2 Results

This section is divided in two parts. Initially we provide data for an evaluation

of the overhead (and hence of the feasibility) by the core memory management

support underlying ECS. To this end we use PCS, natively entailing disjointness

of memory accesses by the different LPs. After, we present data related to

the assessment of the whole ECS architecture, by also comparing the run-time

behaviour of models coded in such a way to be run on top of ECS (hence

coded in sequential-style with no disjointness of memory accesses across different

LPs) with respect to the counterpart exclusively based on traditional PDES

programming (only relying on event-dependencies via message passing). In this

part of the study we rely on NoSQL data grid model.

Overhead Assessment

We evaluated the overhead introduced by the presented memory management

architecture by relying on a PCS model with 1024 wireless hexagonal cells cov-

ering a square region, each one managing up to 1000 wireless channels. Two

specific aspects are relevant for this study:

7.2. Experimental Evaluation 223

 0

 10

 20

 30

 40

 50

0.25 0.5 0.75

S
p
e
e
d
u
p

Channel Utilization Factor

No Ad-Hoc Memory Management Ad-Hoc Memory Management

Figure 7.7: Relative Speedup: Memory Management vs Sequential Run

1) each LP models an individual cell, and the interactions between LPs exclu-

sively take place via handoff events of mobile devices across different cells

(hence memory accesses by the different LPs are intrinsically disjoint);

2) the average granularity (CPU requirement) of the events is directly pro-

portional to the wireless channel utilization factor, since the more channels

are busy, the more complex is the calculation of interference and SIR while

simulating power regulation.

We initially run this model with three different settings for the channel uti-

lization factor as defined by Equation (2.6), namely 25%, 50% and 75% (that

gave rise to average granularity of the simulation events ranging from the or-

der of 30 to 100 microseconds). Also, we considered three different execution

modes: a classical sequential execution (relying on a calendar queue scheduler),

a parallel execution where no ad-hoc memory management facility is activated,

and a parallel execution where we rely on the innovative memory management

architecture. Note that the latter execution mode entails switching between

224 7. Cross-Accessing Logical Processes’ States

LP-mode and platform-mode (with refill of the CR3 register and implicit squash

of the TLB) when changing the actual mode. Hence, such a mode allows us to

assess the overhead for mode-switch operated by the support for ECS. In Figure

7.7 we show the variation of the speedup (vs the sequential run) we observed

for simulating at least 1 million (committed) events in the different parallel

execution modes (each sample is the average over 10 runs based on different

random-generation seeds). By the data we see how the maximal loss in perfor-

mance by the ad-hoc memory management architecture entailing switch between

platform and LP modes is on the order of 9% and is observed for finer grain

of the simulation events (namely, 25% utilization factor). Such a performance

penalty almost disappears when moving to the coarser grain configuration. Also,

as expected, the speedup by the parallel runs over the sequential one tend to

increase vs the average event granularity.

Successively we modified the PCS model in order to generate fictitious

rendez-vous periodically. When one fictitious rendez-vous occurs, the executing

LP simply performs a dummy read operation into the state of an adjacent cell.

However, we do not really enable ECS synchronization (in fact, in this exper-

iment it does not matter whether the dummy read access is not processed in

timestamp order on the hit LP), rather we only trap the access and open the

stock associated with the LP hit by the read operation. In this way we are able

to assess the overhead by ECS support when also including the management

of memory faults and the activation of the ECS handler. For this experiment,

we considered the configuration with wireless-channel utilization factor set to

50%, and we varied the frequency of occurrence of the fictitious rendez-vous

between 1% and 10% of the total number of events processed. In Figure 7.8 we

show the relative speedup achieved by the configuration with ad-hoc memory

7.2. Experimental Evaluation 225

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10

S
p
e
e
d
u
p

Percentage of Fictitious Rendez-Vous

Figure 7.8: Relative Speedup: Memory Management vs Classical Parallel Run

management and fault handling upon the occurrence of fictitious rendez-vous

vs the configuration with no ad-hoc memory management. By the data, we

see how the ad-hoc architecture induces a speed-down that increases vs the fre-

quency of fictitious rendez-vous. Note however, that the speed-down is not only

caused by the overhead for handling the memory faults. Rather it is also due to

mode switch between platform and object modes, which is mandatory in order

to create the per-thread memory view needed to trap the access to the state of

other LPs. On the other hand, the speed-down is quite limited for relatively

infrequent fictitious rendez-vous, and becomes non-negligible only when moving

towards scenarios with relatively frequent rendez-vous occurrences (say 10%).

On the other hand, the whole ad-hoc memory management architecture has

been thought and realized to provide a unique innovative support for handling

cross-state dependencies in presence of concurrent LPs transparently to the ap-

plication code (which, as hinted, enables sequential-style programming on top

of PDES platforms). Hence the loss in performance in contexts where the model

226 7. Cross-Accessing Logical Processes’ States

to be executed exhibits intrinsically disjoint accesses across different LP-states

(such as for the configurations in Figure 7.7) is the unavoidable price to be paid

for the achievement of a run-time environment offering the above-mentioned

level of transparency.

Effectiveness Assessment

For the NoSQL model we consider two different implementations, one not relying

on ECS, which explicitly transmits the write set as the payload of the prepare

request event6, and another one based on ECS, where such write sets are directly

accessed via pointers by the involved simulated nodes (hence the prepare request

event only needs to carry the pointer, indicating to the target LP where to find

in memory the information related to the simulated 2PC phase). This model

also entails a special LP which is a global statistics collector. For the case of

non-reliance on ECS, the updates of the state of this LP takes place by explicitly

scheduling update-statistics events towards it. On the other hand, for the case

of ECS synchronization, we have that each simulated node can directly access

the state of the statistics collector LPs in order to perform updates.

We simulated a NoSQL data-grid system with 64 nodes (with degree of repli-

cation 2 of each 〈key, value〉 pair in the data store), with closed-system configu-

ration in terms of number of clients (and hence number of transactions) running

within the system. Particularly, we set the number of active concurrent clients

continuously issuing transactions to the value 64. This configuration resembles

scenarios where the 64 clients operate as front end servers (co-located with the

data-platform nodes) with respect to end-client applications. Also, we set the

amount of keys touched in write mode by transactions to 10 and 100, which

6For this configuration we have the programmer explicitly coding the marshalling operations
of the write set, which impacts both programming and event scheduling costs.

7.2. Experimental Evaluation 227

 0

 20

 40

 60

 80

 100

 120

 140

 160

10 100

O
v
e
ra

ll
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Average Transaction Write Set Size

ECS
Traditional Parallel

Serial

Figure 7.9: Execution times for the NoSQL data store models

gives rise to different dynamics/costs in terms of marshalling operations, mes-

sage buffering, and transmission for the case of non-ECS based synchronization,

thus allowing us to study configurations with different performance tradeoffs.

In Figure 7.9 we report the execution time for simulating a predetermined

simulation time interval for the operation of the NoSQL data-grid system. By

the data we see how both ECS and the traditional message-passing-based paral-

lel approach provide performance improvements over the sequential run. More

important, the performance delivered by ECS is even slightly better than the

one by the traditional parallel approach with disjoint accesses to local state of

the LPs. Overall, transparency of speculative parallelization with cross-state

dependencies is achieved by also delivering performance comparable to the tra-

ditional parallel approach, which however does not mask message passing to the

programmer, at least in relation to marshalling data in event payloads. Also,

the traditional approach does not support direct memory writes into, e.g., the

statistic collector LP, thus requiring more complex coding schemes, aimed at

228 7. Cross-Accessing Logical Processes’ States

realizing the updated via simulation events. On the contrary, with ECS we sup-

port such a direct memory update operation, hence offering to the programmer

the possibility to code his model more simply, exactly according to sequential

programming style.

Chapter 8

Effects on Timeliness

and Accuracy

Speed is n subsittute fo accurancy

— Anonymous

After having discussed technical and performance issues related to our so-

lutions, in this Chapter we start reasoning about the effects of the proposed

architecture to enhance the degree of transparency that the user experiences.

In particular, by relying on the TCAR agent-based simulation model, we will

see how a simulation architecture supporting full transparency has the additional

benefit of providing the simulation model writer with more accuracy with respect

to traditional PDES systems. We start this discussion by analysing the effects

of optimism on simulation results, and the we provide the same results obtained

by relying on the Output Management subsystem described in Chapter 5, to

show how they better match the output from the sequential execution of the

model.

We rely on an agent-based model for this study because they have an intrinsi-

229

230 8. Effects on Timeliness and Accuracy

cally expressive power, and they constitutes a proven solution to study complex

real-world scenarios. In these models, agents exhibit individual or collective

interactions, which have been shown to reliably express interactions between

different objects/entities in real world phenomena such as disaster rescue [163],

computational sociology [102], logistics [81], biomedical applications [101], and

economic analysis [120].

They are therefore widely used not only to study steady state or equilibrium

properties of a system, rather to determine the exact simulated-time when a

given predicate becomes true (which must be done very efficiently as well in

case of, e.g., time-critical decision making [83]). High precision in the determi-

nation of such a time instant would require frequent inspection of the state of the

simulation model (ideally at each state transition, namely after the execution of

each simulation event). This may result feasible in traditional sequential sim-

ulation, where the unique running thread may quickly retrieve the information

for predicate evaluation from the data structures (representing the simulation

model state) within its address space. On the other hand, when employing

parallel/distributed simulation techniques, such a fine grain inspection along

the simulation-time axis may result unviable due to the overhead for process

coordination, which may hamper the achievable speedup. Also, for high perfor-

mance optimistic parallel simulation, where the computation performed might

be subject to rollback due to violations event-causality caused by speculative

processing, the inspection on the simulation model trajectory may be explicitly

delayed to the time instant when a given portion of the computation becomes

committed (namely no rollback can even occur in a given simulated-time inter-

val while further executing the simulation model). As a consequence, a shift

may appear between the simulated time when the parallel run detects that the

8.1. Effects of Optimism on Simulation Results 231

predicate holds, and the corresponding simulated time when the sequential run

tracks the holding of the same predicate.

8.1 Effects of Optimism on Simulation Results

We have implemented the TCAR model1 described in Section 2.5.3 in order

to be run on top of ROOT-Sim. Interesting for this discussion is ROOT-Sim’s

peculiar service that, once a new GVT value is available, transparently rebuilds

a Committed and Consistent Global Snapshot (CCGS), formed by a collection

of individual LPs’ states [31]. This occurs via update operations applied to local

committed checkpoints of individual LPs so to eliminate mutual dependencies

among the final-achieved state values. Once the CCGS is built, each LP gains

control via an additional callback within the API, referred to as OnGVT, by also

having access to the copy of its state image belonging to the CCGS. Such a

service can support, e.g., termination detection schemes based on global stable

predicates evaluated on a committed and consistent global snapshot. This is a

relevant alternative to typical optimistic PDES engines where the run is assumed

to be completed only when overstepping a given GVT value.

However, the evaluation of the global predicate on the CCGS has a frequency

which is bounded by the frequency of GVT calculation, thus a temporal shift can

occur before the simulation application layered on top of the ROOT-Sim platform

can track the holding of a global predicate while simulation time advances. This

is the core point we address in our study, which is targeted at evaluating the

effects of variations of the frequency of GVT calculation (which may impact

the speedup of the parallel run, given that it contributes to the overhead for

1The source code of our implementation is available at http://www.dis.uniroma1.it/∼
hpdcs/ROOT-Sim/tcar.tbz.

232 8. Effects on Timeliness and Accuracy

distributed coordination) on the estimation of the final time for area-coverage

within the TCAR model.

8.1.1 Results

The simulation model has been run until reaching a 100% coverage of the whole

region, with a visit factor of 20 (i.e., every cell must be visited at least 20

times before the simulation can complete). This has been done in order to

avoid interference in the performance data due to the initial I/O (to access

configuration files) and setup operations executed in the early phase of the

simulation run. We have set ingress cells for robot unleash to 4, mimicking a

situation where the rescue terrain is accessed by a limited number of rescue teams

(which can be significant in real disasters). Each rescue team is able to unleash

a variable number of ant robots, in the range [4, 32], thus having a number of

agents in the simulation in between 8 and 1024. In our implementation, the

model is able to simulate a square region (12 Km2) divided into 4900 hexagonal

cells (rather than square cells, as in the original model). According to the

original specification of the model [85], each ant robot moves from one cell to

another in a time interval of variable length (provided that the destination is

reachable, i.e. no obstacle is in between the current and the destination cell). In

our configuration of the model, we have made two important choices: i) there are

no obstacles in the terrain; ii) time interval is drawn according to an exponential

distribution with mean value 100 seconds (corresponding to the typical speed of

an ant robot of 50 cm per second), which models the set of variables that can

potentially impact the robot move. As for choice i), this allows us to study a

lower bound of complete region-coverage time. In fact, inserting any obstacle

will prevent agents to freely move around, not allowing certain actions, and

8.1. Effects of Optimism on Simulation Results 233

 0

 100

 200

 300

 400

 500

8 16 32 64 128 256 512 1024

T
o
ta

l
E

x
e
c
u
ti
o
n
 T

im
e

Model Size (Number of Ant Robots)

Execution Time

Serial
GVT=1
GVT=2
GVT=3
GVT=4
GVT=5

Figure 8.1: Global Execution Times

 3.8e+07

 4e+07

 4.2e+07

 4.4e+07

 4.6e+07

 4.8e+07

 5e+07

 5.2e+07

 5.4e+07

8 16 32 64 128 256 512 1024

T
o
ta

l
(C

o
m

m
it
te

d
)

E
x
e
c
u
te

d
 E

v
e
n
ts

Model Size (Number of Ant Robots)

Executed Events

Serial
GVT=1
GVT=2
GVT=3
GVT=4
GVT=5

Figure 8.2: Committed Events

234 8. Effects on Timeliness and Accuracy

increasing the exploration time. Choice ii), instead, allows us to study how

much time is required by a group of agents to explore a small area with a very

high detail, due to the intrinsic speed limitations (one meter per second [161]).

We have compared the optimistic parallel results with sequential ones, i.e.

where events are executed sequentially relying on a competitive scheduler based

on Calendar Queues [17]. The GVT computation period in ROOT-Sim has

been varied in between 1 and 5 seconds (in wall-clock-time) to check how the

confidence interval in the simulation results changes. Each plot is averaged over

20 different runs, both in the parallel and in the sequential case. The initial

random seed has been varied across the different runs, in order to account for

variations in the execution dynamics, but the set of seeds in the sequential and

parallel executions is the same, to really compare similar execution patterns.

In Figure 8.1 we present the global execution times for both the sequen-

tial and the parallel execution (on top of ROOT-Sim) of the TCAR simulation

model. By the results, we see that the parallel execution provides a speedup in

between 15 and 22. Different settings for the GVT computation interval pro-

vide a different completion time. In particular, the higher the GVT, the higher

the simulation wall-clock-time. This is not related to a loss of precision in the

simulation, it is rather due to the way the simulation termination condition

is evaluated. As mentioned, the GVT reduction protocol is a periodic com-

putation. If the termination condition is verified immediately after the GVT

reduction, then a non-negligible amount of wall-clock time will pass before it

will be checked again (leading simulation time to advance). On the other hand,

for significantly increased values of the GVT period, the opposite behaviour

is noted, since the delayed GVT computation allows to catch the termination

condition right after it holds. This situation can be seen as well in Figure 8.2,

8.2. Effects of Optimism on Simulation Results 235

Configuration Sequential GVT=1 GVT=2 GVT=3 GVT=4 GVT=5

16 Robots Mean 211.86 216.31 218.27 218.69 234.99 221.81
Std. Dev. 1.56 15.11 13.28 11.07 12.46 15.64

128 Robots Mean 26.56 27.37 28.41 28.29 32.61 29.24
Std. Dev. 0.16 1.08 1.37 3.25 1.83 1.01

Table 8.1: Mean Completion Simulation Time (in Simulated Hours)

where the total number of (committed) events executed by the simulation are

reported. As it can be clearly seen, the parallel runs commit a higher number

of events than the sequential. Also, the peak values for the parallel runs are not

always noted for larger GVT period, just for the reasons explained above.

In order to assess the results’ reliability, in Table 8.1 we present the LVT

values at which two intermediate configurations of the simulation were stopped.

These are the ones with 16 and 128 robots. The reported information is useful to

model writers, as it is part of the outcome of the simulation itself. In particular,

this tells how much time (in simulated hours) the ant robots would need to cover

the entire region. From the data (presented in form of mean time and standard

deviation), it can be clearly seen that the sequential simulations offer the most

stable result2. Interestingly, the parallel executions show a completion simulated

time which is always higher that the sequential. This is related, again, to the

way the termination condition is checked upon GVT reduction. This result is

very important, showing that the outcome of a parallel (optimistic) simulation

does not give the most precise result, rather it places a (correct) upper bound

on the real values of simulation. Of course, it is up to the simulation model

writer to decide how much this divergence from the real simulation results can

affect her simulation, and how much benefit she can gain from the increased

performance.

2We recall that all the results are averaged over 20 different runs, with different initial random
seeds.

236 8. Effects on Timeliness and Accuracy

Configuration Sequential Output Management

16 Robots Mean 211.86 212.01
Std. Dev. 1.56 1.67

128 Robots Mean 26.56 26.49
Std. Dev. 0.16 0.19

Table 8.2: Mean Completion Simulation Time with Output Manager (in Simu-
lated Hours)

8.2 Simulation Completion Detection via Output

Management

We have run the same set of experiments relying on the Output Management

subsystem presented in Chapter 5. Specifically, by the nature of the subsystem,

we still rely on the OnGVT callback to check for simulation termination. Yet,

concurrently, we have augmented the event handlers’ logic to generate an output

message (associated with the current LVT value) whenever a LP (i.e., a cell in

our simulation model) detects that the its correct coverage has been reached.

In particular, each LP stores in its simulation state a flag that tells whether

he has already reported completion time for the simulation on the console out-

put. Upon the execution of each REGION_IN event, the simulation model checks

whether the coverage condition is met. In the positive case, it checks (by relying

on this additional flag) whether the condition was already met in the past or

not. In the negative case, it reports on the standard output, by relying on a

printf call, the ST at which it was met for the first time.

We have collected these values (again, averaged over 20 different runs), and

we report in Table 8.2 the maximum one among the cells (which actually tells

that the simulation was completed at all the LPs), along with the ones extracted

from the sequential run.

We note that the results obtained by relying on the Output Management

8.2. Simulation Completion Detection via Output Management 237

subsystem are much closer to the sequential ones, and show a confidence interval

which allows us to tell that the actual difference is only due to the different

initialization random seeds according to which the simulation has been run.

This means that, although the simulation execution still benefits from the

execution speedup shown in Figure 8.1, the reliability of the results is comparable

to the one shown by the sequential run.

Chapter 9

Effects on Programmability

Frustra fit per plura, quod fieri potest per pauciora.

Pluralitas non est ponenda sine necessitate.

(It is pointless to do with more what can be done with fewer.

Plurality must never be posited without necessity.)

— William of Ockham, Summa Totius Logicæ, ca. 1323

In this Chapter we make use of the PCS benchmark to show what are the

implications of the solutions that we have presented in this dissertation on pro-

grammability. Specifically, we make a comparison between the PCS implemen-

tation to be run on top of ROOT-Sim and the one to be run on top of ROSS1.

ROSS (the Rensselaer’s Optimistic Simulation System) is a simulation frame-

work relying on both conservative and optimistic synchronization, the latter be-

ing supported by reverse computation. It has been extensively used in literature

[111, 54], and recently a multi-threaded version targeted at multicore systems

has been proposed [74]. Additionally, it has been proven to scale very well on

1We will analyse only some code snippets of the whole simulation models. As of this writing,
the full source code for the ROOT-Sim’s version is available at http://svn.dis.uniroma1.it/
svn/hpdcs/root_sim/trunk/examples/pcs [22], while the one for ROSS is available at https:
//github.com/carothersc/ROSS/tree/master/ross/models/pcs

239

http://svn.dis.uniroma1.it/svn/hpdcs/root_sim/trunk/examples/pcs
http://svn.dis.uniroma1.it/svn/hpdcs/root_sim/trunk/examples/pcs
https://github.com/carothersc/ROSS/tree/master/ross/models/pcs
https://github.com/carothersc/ROSS/tree/master/ross/models/pcs

240 9. Effects on Programmability

massive multi-core systems, like the IBM BlueGene [7, 9].

As in any simulation model, at simulation startup PCS must initialize its

internal state. In ROSS this process is carried out in two steps, the first of

which is performed into the main entry function, which is coded within the sim-

ulation model. The second initialization step, on the contrary, is performed by

the Cell_StartUp function, which is a particular event handler called for simu-

lation startup. The first step entails model-wide initialization operations, while

the second one performs per-LP ones. We present below some data structures

and the most important operations related to PCS initialization in ROSS (i.e.,

we have removed some portions of the code which are just redundant for our

discussion):

Listing 9.1: ROSS Initialization

1 struct State { // This is the per−LP simulation state

2 double Const_State_1;

3 int Const_State_2;

4 int Normal_Channels;

5 int Reserve_Channels;

6 int Portables_In;

7 int Portables_Out;

8 int Call_Attempts;

9 int Channel_Blocks;

10 int Busy_Lines;

11 int Handoff_Blocks;

12 int CellLocationX;

13 int CellLocationY;

14 };

15

16 int main(int argc, char ∗∗argv) {

17 tw_init(&argc, &argv);

18

19 nlp_per_pe = (NUM_CELLS_X ∗ NUM_CELLS_Y) / (tw_nnodes() ∗ g_tw_npe);

20 additional_memory_buffers = 2 ∗ g_tw_mblock ∗ g_tw_gvt_interval;

241

21 g_tw_events_per_pe = (nlp_per_pe ∗ (unsigned int)BIG_N) + additional_memory_buffers;

22 num_cells_per_kp = (NUM_CELLS_X ∗ NUM_CELLS_Y) / (NUM_VP_X ∗ NUM_VP_Y);

23 vp_per_proc = (NUM_VP_X ∗ NUM_VP_Y) / ((tw_nnodes() ∗ g_tw_npe)) ;

24 g_vp_per_proc = vp_per_proc;

25 g_tw_nlp = nlp_per_pe;

26 g_tw_nkp = vp_per_proc;

27 g_tw_mapping = CUSTOM;

28 g_tw_custom_initial_mapping = &pcs_grid_mapping;

29 g_tw_custom_lp_global_to_local_map = &CellMapping_to_lp;

30

31 if(tw_ismaster()) {

32 printf("Print␣here␣application␣configuration\n");

33 fflush(stdout);

34 }

35 tw_define_lps(nlp_per_pe, sizeof(struct Msg_Data), 0);

36

37 tw_run();

38 if(tw_ismaster()) {

39 CellStatistics_Compute(&TWAppStats);

40 CellStatistics_Print(&TWAppStats);

41 }

42 tw_end();

43 return 0;

44 }

45

46 tw_lptype mylps[] = { // NULL−Terminated vector of (per−LP−type) event−handler pointers

47 {

48 (init_f) Cell_StartUp,

49 (event_f) Cell_EventHandler,

50 (revent_f) RC_Cell_EventHandler,

51 (final_f) CellStatistics_CollectStats,

52 (map_f) CellMapping_lp_to_pe,

53 sizeof(struct State)

54 },

55 {0},

56 };

57

58 void Cell_StartUp(struct State ∗SV, tw_lp ∗ lp) {

242 9. Effects on Programmability

59 SV−>Normal_Channels = MAX_NORMAL_CHANNELS;

60 SV−>Reserve_Channels = MAX_RESERVE_CHANNELS;

61 SV−>Portables_In = 0;

62 SV−>Portables_Out = 0;

63 SV−>Call_Attempts = 0;

64 SV−>Channel_Blocks = 0;

65 SV−>Handoff_Blocks = 0;

66 SV−>Busy_Lines = 0;

67 SV−>Handoff_Blocks = 0;

68 SV−>CellLocationX = lp−>id % NUM_CELLS_X;

69 SV−>CellLocationY = lp−>id / NUM_CELLS_X;

70

71 if (SV−>CellLocationX >= NUM_CELLS_X || SV−>CellLocationY >= NUM_CELLS_Y) {

72 tw_error(TW_LOC, "Cell_StartUp:␣Bad␣CellLocations␣%d␣%d␣\n", SV−>

CellLocationX, SV−>CellLocationY);

73 }

74 SV−>Portables_In = GenInitPortables(lp);

75

76 for (i = 0; i < SV−>Portables_In; i++) {

77 TMsg.CompletionCallTS = HUGE_VAL;

78 TMsg.MoveCallTS = tw_rand_exponential(lp−>rng, MOVE_CALL_MEAN);

79 TMsg.NextCallTS = tw_rand_exponential(lp−>rng, NEXT_CALL_MEAN);

80 switch (Cell_MinTS(&TMsg)) {

81 case COMPLETECALL:

82 tw_error(TW_LOC, "APP_ERROR(StartUp):␣CompletionCallTS(%lf)␣

Is␣Min␣\n", TMsg.CompletionCallTS);

83 break;

84

85 case NEXTCALL:

86 ts = max(0.0, TMsg.NextCallTS − tw_now(lp));

87 CurEvent = tw_event_new(lp−>gid, ts, lp);

88 TWMsg = (struct Msg_Data ∗) tw_event_data(CurEvent);

89 TWMsg−>CompletionCallTS = TMsg.CompletionCallTS;

90 TWMsg−>MoveCallTS = TMsg.MoveCallTS;

91 TWMsg−>NextCallTS = TMsg.NextCallTS;

92 TWMsg−>MethodName = NEXTCALL_METHOD;

93 tw_event_send(CurEvent);

94 break;

243

95

96 case MOVECALL:

97 // [case removed for brevity]

98 }

99 }

100 }

We want to highlight some aspects of the above code snippet. First, we can

see that the simulation state of the LP is predefined (listing 9.1, lines 1–14). The

application model developer must pre-define a contiguous memory buffer which

will serve as simulation state for the LP. On the other hand in the ROOT-Sim

version initialization code (which is shown below), LP’s state is defined as a

struct as well, but with a set of pointers which make the simulation state grow

or shrink, depending on the actual runtime dynamics of the application (listing

9.2, lines 21–22). In fact, during the execution of the initialization procedure

(which in ROOT-Sim is just an event, not a main function, listing 9.2, lines

27–28) a couple of malloc calls are issued to shape the initial simulation state

(listing 9.2, lines 29, 48). The first one will become automatically the per-LP

main state pointer, as described in Chapter 4.

A significant difference arises from the way initialization is called. ROOT-Sim

asks the model writer to define the logic for the INIT event, which will be then

transparently scheduled to all the LPs in the simulation upon start-up. ROSS

asks the model writer to explicitly call the tw_init function, which initializes

the internal simulation kernel. This is a difference which tells how ROOT-Sim is

explicitly oriented at the simulation-model writer, which is requested to know

almost nothing about the underlying simulation kernel to implement its code,

while in ROSS it is the model writer who has to explicitly start-up the kernel.

Then we see (listing 9.1, lines 19–29) that it is the model’s duty to setup in-

ternal simulation variables which represent, e.g., the mapping between LPs and

244 9. Effects on Programmability

processing units, the global-to-local mapping, the number of memory buffers

to store messages. ROOT-Sim, targeting transparent development of simulation

models, does not require the model developer to specify anything about LP

mapping or memory management. Instead, LPs to CPU (i.e., worker thread)

binding is done transparently, and can be recomputed periodically in order to

support load sharing (see [169, 170, 171]). Rather, via the me parameter to

the ProcessEvent callback function, it tells the LP being scheduled its global

identifier, while the n_prc_tot global variable is set automatically to the to-

tal number of LPs in the simulation, in case the model developer needs this

information.

Both ROOT-Sim’s and ROSS’ versions of the PCS model have the need to

check whether a specific instance of the kernel is running, to avoid printing

multiple copies of the same buffer. ROSS relies on the tw_ismaster() function,

which tells whether the current instance is the master kernel or not (listing 9.1,

line 31). ROOT-Sim does not expose the notion of master kernel (or master

thread) to the simulation model writer, which can therefore rely on the more

generic me id to decide whether to print some configuration or not (listing 9.2,

line 42).

An additional call in ROSS is required, namely tw_define_lps (listing 9.1,

line 35). This function accepts the total number of LPs, the size of messages

which will be exchanged across LPs, and a pointer to the seed for this LP (if

required). If the seed is not present (like in the above example), then it is set to

a default value. In the ROOT-Sim counterpart, there is no need to pre-specify

the size of (future) message exchange, as it is able to deal with variable size

messages, the size of which is specified upon each schedule operation.

This is explicitly done at listing 9.2, line 54, where each LP sends to itself a

245

START_CALL event which actually starts the simulation’s execution. Since this

event has no payload information, the last parameters (payload pointer and size)

are NULL and 0, respectively.

ROOT-Sim configuration is now done, and events are already flowing due

to the first START_CALL event being injected within the INIT handler. As for

ROSS, the structure defined at listing 9.1, lines 46–56 tells (for each LP type)

what are the function pointer that must be called for specific actions. Specifi-

cally, after the main function explicitly calls tw_run to tell that the simulation

must start (listing 9.1, line 37), the init_f function is called for each LP. The

function Cell_StartUp (registered as initialization callback), then, completes

the initialization of the simulation model.

This function is essentially a specific (initialization) event handler, which

accepts a pointer to the LP’s state, as the ROOT-Sim’s event handler does.

After having setup the initial conditions for the cell (as the INIT handler did in

the ROOT-Sim version), Cell_StartUp injects GenInitPortables(lp) events

in the system. As in ROOT-Sim, the timestamps (compare listing 9.1, line 78 to

listing 9.2, line 53) are derived according to an exponential distribution using

internal (rollbackable) random number generators, respectively the Expent and

tw_rand_exponential functions.

In ROSS, an error condition is handled by a call to tw_error (listing 9.1,

line 82), while in ROOT-Sim the same functionality can be implemented by

relying on a couple of printf/exit calls, as supported by the I/O Management

subsystem (listing 9.2, lines 58–59).

To conclude initialization’s description, in ROSS a different action is taken

upon cell initialization (on a per-portable basis) depending on the value of the

Cell_MinTS, which just tells whether a call will be handed off to a neighbour

246 9. Effects on Programmability

cell or not. This is to start the simulation in an already steady-state, differently

from what we do in ROOT-Sim.

The code for ROOT-Sim’s PCS initialization is provided below:

Listing 9.2: ROOT-Sim Initialization

1 typedef struct _sir_data_per_cell{

2 double fading;

3 double power;

4 } sir_data_per_cell;

5

6 typedef struct _channel{

7 int channel_id;

8 sir_data_per_cell ∗sir_data;

9 struct _channel ∗next;

10 struct _channel ∗prev;

11 } channel;

12

13 typedef struct _lp_state_type{

14 unsigned int channel_counter;

15 unsigned int arriving_calls;

16 unsigned int complete_calls;

17 unsigned int blocked_on_setup;

18 unsigned int blocked_on_handoff;

19 unsigned int leaving_handoffs;

20 unsigned int arriving_handoffs;

21 unsigned int ∗channel_state;

22 channel ∗channels;

23 } lp_state_type;

24

25 void ProcessEvent(unsigned int me, simtime_t now, int event_type, event_content_type ∗

event_content, unsigned int size, void ∗ptr) {

26 [...]

27 switch(event_type) {

28 case INIT:

29 state = (lp_state_type ∗)malloc(sizeof(lp_state_type));

30 if (state == NULL){

31 printf("Out␣of␣memory!\n");

247

32 exit(EXIT_FAILURE);

33 }

34 bzero(state, sizeof(lp_state_type));

35 ta = TA;

36 ta_duration = TA_DURATION;

37 ta_change = TA_CHANGE;

38 channels_per_cell = CHANNELS_PER_CELL;

39 complete_calls = COMPLETE_CALLS;

40

41 // Show current configuration, only once

42 if(me == 0) {

43 printf("Print␣configuration␣here\n");

44 fflush(stdout);

45 }

46

47 state−>channel_counter = channels_per_cell;

48 state−>channel_state = malloc(sizeof(unsigned int) ∗ 2 ∗ (

CHANNELS_PER_CELL / BITS + 1));

49 for (w = 0; w < state−>channel_counter / (sizeof(int) ∗ 8) + 1; w++) {

50 state−>channel_state[w] = 0;

51 }

52

53 timestamp = (simtime_t)(Expent(ta));

54 ScheduleNewEvent(me, timestamp, START_CALL, NULL, 0);

55 break;

56

57 default:

58 fprintf(stderr, "PCS:␣Unknown␣event␣type!␣(me␣=␣%d␣−␣event␣type␣=␣%d)\n",

me, event_type);

59 exit(EXIT_FAILURE);

60 }

61 }

Both ROOT-Sim and ROSS rely on event handlers for managing the logic

associated with events. As mentioned, in ROOT-Sim they are implemented as

cases of the only application callback, namely ProcessEvent. In ROSS, mul-

248 9. Effects on Programmability

tiple callback functions are defined, among which the event_f one implements

the forward execution of events, and revent_f one implements the reverse ex-

ecution (we recall that ROSS supports rollback by reverse computation). In

this comparison, we will only discuss the code for starting a new call in a cell.

Below, the ROSS code for supporting forward and backwards execution of a call

start-up is provided:

Listing 9.3: ROSS Call Startup

1 void Cell_NextCall(struct State ∗SV, tw_bf ∗ CV, struct Msg_Data ∗M, tw_lp ∗ lp) {

2 int done, dest_index = 0;

3 int currentcell = 0, newcell = 0;

4 tw_stime ts;

5 struct Msg_Data TMsg;

6 struct Msg_Data ∗TWMsg;

7 tw_event ∗CurEvent;

8 double result;

9

10 TMsg.MethodName = M−>MethodName;

11 TMsg.ChannelType = M−>ChannelType;

12 TMsg.CompletionCallTS = M−>CompletionCallTS;

13 TMsg.NextCallTS = M−>NextCallTS;

14 TMsg.MoveCallTS = M−>MoveCallTS;

15

16 SV−>Call_Attempts++;

17

18 if ((CV−>c1 = NORM_CH_BUSY)) {

19 SV−>Channel_Blocks++;

20 result = tw_rand_exponential(lp−>rng, NEXT_CALL_MEAN);

21 TMsg.NextCallTS += result;

22

23 switch (Cell_MinTS(&TMsg)) {

24 case COMPLETECALL:

25 tw_error(TW_LOC, "APP_ERROR(NextCall):␣CompletionCallTS(%lf)␣

Is␣Min␣\n", TMsg.CompletionCallTS);

26 break;

249

27

28 case NEXTCALL:

29 // [case removed for brevity]

30

31 case MOVECALL:

32 newcell = lp−>gid;

33 while (TMsg.MoveCallTS < TMsg.NextCallTS) {

34 M−>RC.wl1++;

35 currentcell = newcell;

36 dest_index = tw_rand_integer(lp−>rng, 0, 3);

37 newcell = Cell_ComputeMove(currentcell, dest_index); //

Neighbours[currentcell][dest_index];

38 result = tw_rand_exponential(lp−>rng, MOVE_CALL_MEAN)

;

39 TMsg.MoveCallTS += result;

40 }

41

42 ts = max(0.0, TMsg.NextCallTS − tw_now(lp));

43 CurEvent = tw_event_new((currentcell), ts, lp);

44 TWMsg = (struct Msg_Data ∗)tw_event_data(CurEvent);

45 TWMsg−>MethodName = TMsg.MethodName;

46 TWMsg−>ChannelType = TMsg.ChannelType;

47 TWMsg−>CompletionCallTS = TMsg.CompletionCallTS;

48 TWMsg−>NextCallTS = TMsg.NextCallTS;

49 TWMsg−>MoveCallTS = TMsg.MoveCallTS;

50 TWMsg−>MethodName = NEXTCALL_METHOD;

51 tw_event_send(CurEvent);

52 break;

53 }

54 } else {

55 // [branch removed for brevity]

56 }

57 }

58

59 void RC_Cell_NextCall(struct State ∗SV, tw_bf ∗ CV, struct Msg_Data ∗M, tw_lp ∗ lp) {

60 int i;

61 SV−>Call_Attempts−−;

62 if (CV−>c1) {

250 9. Effects on Programmability

63 SV−>Channel_Blocks−−;

64 tw_rand_reverse_unif(lp−>rng);

65 for (i = 0; i < M−>RC.wl1; i++) {

66 tw_rand_reverse_unif(lp−>rng);

67 tw_rand_reverse_unif(lp−>rng);

68 }

69 } else {

70 // [branch removed for brevity]

71 }

72 }

For the sake of brevity, we will discuss only the essential differences from the

ROOT-Sim’s version of the model, which will be shown later in this Chapter.

It is interesting to note that in the if statement (listing 9.3, line 18)) there

is an assignment as well. In this example, CV->cl is a field of a tw_bf, a

bit field, which (as discussed earlier in Section 2.3.1) allows to support reverse

computation (as it is indeed done on listing 9.3, line 62) by telling which branch

was taken. ROOT-Sim on the other hand does not rely on reverse computation,

and therefore there is no need to manipulate platform-related data structures

during the execution of any event.

On listing 9.3, lines 33–40, there is a while loop. Within this loop, the

counter M->RC.wl1 is increased upon each iteration. It is interesting to note

that M is the message data, so the event handler is directly modifying data

stored into the event queue of the simulation kernel. This counter is increased

to allow reverse computation of the loop (listing 9.3, line 65), by allowing an

exact number of reverse iterations to be executed.

It is interesting to note that, as explained in Section 2.3.1, random-library

calls must be rolled back as well. Since ROOT-Sim is based on state save &

restore, this is transparently done upon a state restore (by restoring a pre-

vious random seed). In case of reverse computation, this must be done ex-

251

plicitly in the reverse event, by calling reverse version of the random generator

(tw_rand_reverse_unif(lp->rng), listing 9.3, line 64, 66–67), exposing as well

(in this example) the internal random seed to the simulation model developer.

In the ROOT-Sim case, upon call start-up the function allocation is called

(listing 9.4, line 7), which takes care of performing the initial power allocation

and SIR regulation. It is interesting to note that (at line 45) new memory buffers

are allocated on an uncommitted portion of the simulation trajectory (and then

linked to the main simulation state, at line 52), relying on the facilities offered

by Di-DyMeLoR.

Event generation in ROSS is supported by a couple of calls, i.e. tw_event_new

to generate a new event buffer, and tw_event_send to actually schedule it (list-

ing 9.3, lines 43, 51). In ROOT-Sim an event can be just any structure, thus the

API function ScheduleNewEvent (listing 9.4, line 15) simply accepts a pointer

to any memory buffer and the size of the new event being inserted in the system.

Listing 9.4: ROOT-Sim Call Startup

1 case START_CALL:

2 state−>arriving_calls++;

3 if (state−>channel_counter == 0) {

4 state−>blocked_on_setup++;

5 } else {

6 state−>channel_counter−−;

7 new_event_content.channel = allocation(state);

8 new_event_content.from = me;

9 new_event_content.sent_at = now;

10

11 new_event_content.call_term_time = now+(simtime_t)(Expent(state−>ta_duration));

12 handoff_time = now + (simtime_t)(Expent(state−>ta_change));

13

14 if(new_event_content.call_term_time <= handoff_time) {

15 ScheduleNewEvent(me, new_event_content.call_term_time, END_CALL, &

new_event_content, sizeof(new_event_content));

252 9. Effects on Programmability

16 } else {

17 new_event_content.cell = FindReceiver(TOPOLOGY_HEXAGON);

18 ScheduleNewEvent(me, handoff_time, HANDOFF_LEAVE, &

new_event_content, sizeof(new_event_content));

19 }

20 }

21

22 timestamp = now + (simtime_t)(Expent(state−>ta));

23 ScheduleNewEvent(me, timestamp, START_CALL, NULL, 0);

24

25 break;

26

27 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

28

29 int allocation(lp_state_type ∗pointer) {

30 int i;

31 int index = −1;

32 double summ;

33 channel ∗c, ∗ch;

34

35 for(i = 0; i < pointer−>channels_per_cell; i++){

36 if(!CHECK_CHANNEL(pointer,i)){

37 index = i;

38 break;

39 }

40 }

41

42 if(index != −1) {

43 SET_CHANNEL(pointer, index);

44

45 c = (channel∗)malloc(sizeof(channel));

46 if(c == NULL){

47 printf("malloc␣error:␣unable␣to␣allocate␣channel!\n");

48 exit(EXIT_FAILURE);

49 }

50

51 c−>next = NULL;

52 c−>prev = pointer−>channels;

253

53 c−>marked = false;

54 c−>channel_id = index;

55 c−>sir_data = (sir_data_per_cell∗)malloc(sizeof(sir_data_per_cell));

56 if(c−>sir_data == NULL){

57 fprintf(stderr, "malloc␣error:␣unable␣to␣allocate␣SIR␣data!\n");

58 exit(EXIT_FAILURE);

59 }

60

61 if(pointer−>channels != NULL)

62 pointer−>channels−>next = c;

63 pointer−>channels = c;

64

65 // [recompute SIR and fading here]

66 } else {

67 fprintf(stderr, "Unable␣to␣allocate␣channel\n");

68 exit(EXIT_FAILURE);

69 }

70 return index;

71 }

By the above examples, it is clear that the programming model supported by

ROOT-Sim is definitely more targeted at the simulation model programmer. In

fact, all the above ROOT-Sim examples are completely written in ANSI-C, and

do not manipulate any internal platform data structure. Additionally, in the

event handlers there is no notion of parallelism, thus allowing a fully sequential

programming style. These were both clear goals of this dissertation.

Additionally, ROSS requires the user to manually write reverse events (al-

though effort is being put in their automatic generation [65, 66, 173]). This

inevitably harasses transparency, as the model writer must be aware of the

synchronization scheme which is supporting her model’s execution, and must

manually change the values of some internal parameters.

The proposed code for ROOT-Sim, on the other hand, can be executed with

254 9. Effects on Programmability

any DES simulation kernel which respect the main-loop specification from Al-

gorithm 2.1, thus showing backwards compatibility with any traditional DES

model, which can be therefore deployed on a concurrent environment without

substantial modification.

Chapter 10

Conclusions and Future Work

Now this is not the end. It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.

— Winston Churchill, The End of the Beginning, 1942

In this dissertation we have tackled the issue of transparency in PDES simu-

lation kernels supported by optimistic synchronization. In our voyage, we have

always tried to finely determine what is the best tradeoff between the degree of

transparency that the simulation model writer can see, and the overall perfor-

mance of the simulation.

At the end of this work, the user can rely on several innovative methodologies

and runtime supports which allow her to rely on the standard ANSI-C program-

ming language to implement any simulation model based on the event-driven

programming paradigm, which is proper of the traditional DES paradigm.

In particular, by the results in Chapter 4, the user is able to transpar-

ently rely on malloc calls—invoked in an uncommitted portion of the simulation

trajectory—to make the per-LP simulation states grow or shrink on demand,

depending on the current execution dynamics. In turn, by the innovative ser-

255

256 10. Conclusions and Future Work

vices provided, which are based on transparent (compile-time) static software

instrumentation, the simulation kernel is able to determine (with no interven-

tion by the user) what are the portions of the simulation state(s) which have

been updated since the last log operation. In this way, the simulation kernel is

able to take incremental snapshots, which have been proven by the experimental

results to provide a significant performance benefit in scenarios where the simu-

lation states are large, but scarcely updated. Additionally, the instrumentation

mechanisms required for supporting transparent incremental state saving have

been shown to be of negligible cost in scenarios where the simulations states are

very large.

The second breakthrough towards transparency in simulation model develop-

ment has been made in Chapter 5, where an innovative runtime support based on

the notion of an output daemon (i.e., a process separated from the main simula-

tion kernel, which communicates with it via shared memory) has been presented.

The advantages provided by the output daemon are numerous. First, it allows

the model writer to issue output commands within event handlers, i.e. during

a portion of the simulation’s execution which is not committed. Nevertheless,

the output is materialized only when the associated event gets committed, thus

avoiding disruptive (i.e., non-rollbackable) effects on the outside world. Second,

it provides a (geographical-scale) ordering on the produced output, which is

non-trivial (as it would otherwise require an additional stage of post process-

ing) and allows the technique to be used even with conservative synchronization

approaches. Finally, it is based on autonomic runtime monitoring which tries

to balance the delay experienced by the user in output commitment with re-

spect to the overall simulation throughput, avoiding (not-wanted) performance

degradation.

257

In Chapters 6 and 7 we have dealt with shared state access in simulation

models, i.e., we have shown how it is possible to drop constraints expressed by

Equation (2.5), which were the foundation upon which traditional PDES was

built. In particular, Chapter 6 has shown us a runtime support, based on binary

instrumentation, which allows the user to access in a concurrent way global vari-

ables, by relying on an innovative set of non-blocking algorithms. By the results,

we have shown that using multi-version lists reduces the incidence of rollback

operations when read/write operations are not really causally dependent. Along

with a performance study, a correctness proof has been provided as well.

On the other hand, in Chapter 7, we have proposed a twofold innovation. In

the beginning, we have presented an innovative memory-management system,

targeted at Linux operating systems, which allows, by relying on a loadable

kernel module, to have multiple threads (the simulation-kernel worker threads,

in our case) share the same portions of the memory page directory with different

access privileges. This has allowed us, in the second part of the Chapter, to build

an innovative synchronization scheme, which is able to transparently materialize

cross-LP state dependencies. Via the exploitation of the rollback operation, this

synchronization scheme allows to align two LPs simulation trajectories whenever

one tries to access (in either read or write mode) the private simulation state of

the other. Both a correctness and a progress proof have been shown, together

with a performance evaluation.

Each of the proposed solutions has been implemented within the ROOT-Sim

open source optimistic synchronization platform, and a performance evaluation

has been presented. In Chapters 8 and 9 we have shown which are the impacts

on model development of our solutions, highlighting how a negligible overhead

provides the end user with an improved programming experience, allowing her to

258 10. Conclusions and Future Work

write purely sequential-style code (according to the event-driven programming

paradigm proper of traditional DES) which is in turn run concurrently in an

optimized fashion on top of the ROOT-Sim simulator.

The unavoidable question is: where do we go now? The results presented in

this thesis pave the way to further research directions, which can be followed in

the near future by interested researchers to improve even more the experience

of programmers, in order to help distributing the power of parallel computing

architectures to the masses.

Many of the proposed solutions work on a parallel environment, but cannot

be instantly moved to distributed environments. For example, dealing with

global variables’ access on a distributed architecture inevitably requires some

sort of coordination among the nodes, which cannot abstract from a distributed

consensus algorithm, based on message passing. Developing such a strategy

would allow the immediate deployment of a sequential program on top of a

network-interconnected architecture.

Dealing with input is another key issue. Interactive simulation can provide

significant benefits to the end user, as it would allow her to see how a system

would behave upon different (sudden) solicitations. In the context of optimistic

synchronization, where the fossil collection operation actually “destroys” the

notion of the remote past, this can be a challenging problem. Techniques which

keep some simulation snapshots even before the last GVT value could be a viable

solution to facing this issue.

Most programmers rely on many third party libraries. In our solutions,

only stdlib has been addressed. Given the incredible (ever-changing) vastness of

libraries out there, some automatic approach should be adopted to cope with

them. Possible solutions could entail relying on dynamic techniques like the

259

ones which are the ground of the ltrace tool, which is nevertheless limited in the

number of arguments which can be handled when the original headers are not

available. An analysis of the assembly call graph could be useful to determine,

by the registers/stack regions used before calling a library function which (and

what) are the parameters passed, although this solution might be prone to errors

in case of only few calls are issued to a library function. Source code could

be analysed as well, although this solution is less portable (in fact, although

targeting C code, the ones that we have proposed, since they rely on static

binary analysis, could be re-adapted to Fortran, C++, or other programming

languages, which have already been used to implement a plethora of simulation

models).

In the context of cross-state accesses, an interesting enhancement could entail

making a distinction between read-generated and write-generated cross-state

dependencies. In fact, in case of a read-state dependency, the target LP could be

prevented from rollbacking. Rather, its state could be artificially reconstructed

at that specific simulation time, thus avoiding to waste a (possibly correct)

portion of the performed work.

An additional aspect which is interesting to study is what happens when

the simulation model writer is actually aware of the parallel architecture that

is lying under his software. For example, what does it means for a programmer

to call, e.g., a pthread_create() function in his code? Technically, it would

create an additional worker thread, which the platform is not aware of, and

would therefore likely cause the whole simulation to crash abruptly. So, calls

to pthread-family functions should be handled explicitly. Yet, creating a new

thread, does it mean that the user is willing to create a new LP or that she

is trying to parallelize some activities within one (or multiple) events? Is she

260 Conclusions and Future Work

creating a parallel execution trajectory with respect the current LP? A semantic

investigation should be required, to effectively define what this awareness would

entail from a simulation perspective.

The most interesting (and complex) extension to this work entails re-adapting

the proposed solutions to any kind of code, not only simulation one. This could

be done by dropping the “constraint” that the user has to implement events.

In fact, respecting the event-driven programming paradigm is the only require-

ment to the developer to have the proposed solutions fully working. If there

were the possibility to automatically detect what is an “event” in any program,

than this would extend the proposed solution to any software, thus achieving

full automatic code parallelization. Although in principle this is a very complex

extension, preliminary ideas tells us that it could be either done by (costly)

static analysis of the binary program, or speculatively at runtime by trying to

define “on demand” transactions on the code. Or, of course, a mixture of the

two approaches.

In any case, this thesis has opened the way to many new improvements at

the bleeding edge of compile-time/runtime supports to application development

which, in the future, will eventually allow any inexperienced programmer to fully

benefit from the incredible computing power which the industry has provided

us with, in the recent years.

Appendix A

Hijacker

Inde consultat ex duobus itineribus breve et solitum

sequatur an inpeditius et intemptatum

(He then deliberated whether he should pursue the short and

ordinary route, or that which was more difficult and unexplored)

— Cornelius Tacitus, The Annals

Hijacker [123] is a binary instrumentation technique which we have devel-

oped as a support tool for our research, and which has been extensively used

throughout this thesis.

Binary Instrumentation is a technique which modifies a binary program by

inserting additional instructions or by changing existing ones at compile time

(static instrumentation) or at runtime (dynamic instrumentation), in order to

observe or modify the execution’s flow, without altering the overall program’s

semantic. This technique has been successfully exploited in several fields, such

as behaviour monitoring [36], performance analysis [150], attack detection [114],

or to alter code for supporting transactional memories [118]. Instrumentation

tools like Pin [130], Dyninst [38], Valgrind [167], and DynamoRIO [37] have

been extensively used in order to analyse various applications and observe their

261

262 A. Hijacker

behaviour.

In static instrumentation, the executable is analysed at a certain stage during

its compiling process (i.e., before or after the final linking stage), while in dy-

namic instrumentation some logic is inserted into the application so that, when

the process is launched, the control is taken by a runtime module which alters the

code during the actual program’s execution. While the latter could be regarded

as a more powerful technique, due to the fact that at runtime more information

is available to the runtime disassembling module (e.g., any conditional branch

can be successfully evaluated), the former technique allows for the creation of

more efficient executables, due to the fact that only the strictly-necessary in-

strumentation code is inserted in the application binary. Considering that we

explicitly address High Performance Computing scenarios, Hijacker necessarily

falls in the former category, although, as it will be discussed later, few additional

runtime tasks are performed.

Static binary instrumentation has nevertheless some disadvantages. In fact,

the instrumentation process cannot target third-party libraries, especially shared

libraries. In fact, if a static instrumentation tool were to target such libraries,

the resulting instrumented library would affect every executable in the system

which is relying on it. Considering that instrumentation could significantly affect

the behaviour of the code (depending on the user needs), this approach would be

non-viable. On the other hand, Hijacker offers a set of tools to redirect specific

(third-party libraries) functions calls to user-defined stubs, or to efficiently wrap

specific ones, thus giving the user the freedom to wisely use third-party code

under controlled execution flow.

The process of instrumenting an executable poses two challenges: on the

one hand, since instrumentation works on machine-level code, this process is

263

intrinsically instruction-set-dependent. On the other hand, in order for the

user to correctly modify the application’s flow (without altering its semantic),

she has to manually provide the tool with the additional code to be injected,

which can be a non-trivial task, since it may depend on the actual compiler,

architecture and calling conventions specified by the current ABI. In order to

hide this complexity away, we have specifically designed Hijacker in order to

provide three main features:

• the instrumentation process is rule-driven, i.e. the operations performed

by Hijacker are specified via an xml file, which instructs the tool on the

specific tasks to be performed in the process;

• the most common tasks can be performed transparently, since Hijacker

comes bundled with a set of instrumentation features (e.g., target memory

address reconstruction) which can be inserted into the original binary;

• the process of instrumenting the code is instruction-set and executable

independent, i.e. Hijacker performs its tasks on an internal binary repre-

sentation, decoupling the specific details of the underlying architectures

and therefore allowing the tool to instrument the same original high-level

code compiled for different architectures.

There are several works in literature and several tools which address the

problem of instrumentation. The earliest implementations of binary instrumen-

tation toolkits are ATOM [158] and EEL [40]. They both instrument code at

compile time, avoiding as much as possible runtime overhead. ATOM is tar-

geted at alpha machines only, while EEL tries to hide the complexities of the

underlying instruction sets providing abstract C++ interfaces for altering the

code. On the contrary, our tool drives the instrumentation process by relying

264 A. Hijacker

on rules provided in a xml file.

BIRD [113] is a binary rewriting platform for Windows/x86 only. This tool

basically relies on the insertion of a 5-byte branch instruction in order to give

control to instrumentation code, or relies on interrupts when 5 bytes are not

available. This technique is similar to the one presented by PEBIL [90], although

the latter tool is targeted at Linux boxes and uses function relocation allowing

the tool to rely on the 5-byte branch at any instrumentation point. The main

difference from our proposal is that we completely rebuild the final executable,

and thus there are no limits in the amount of code which can be inserted in-place

(i.e., without relying on calls to other portions of the executable)

Dyninst [38] is a tool for static and dynamic instrumentation. It can either

create a modified version of the binary at compile time, or can operate at run-

time. The most notable feature of this tool is the ability to perform liveness

analysis on registers’ values and on flag register’s bits.

Some tools like Pin [130] rely on just-in-time instrumentation. In particular,

Pin can be seen as a middleware which places itself under the original applica-

tion, and at applications interrupt points it instruments the upcoming parts of

the original code. Just-in-time instrumentation is used as well by other tools

like DynamoRIO [37] and Valgrind [167]. The latter tool offers a very large set

of functionalities, ranging from memory-management errors detection to cache

utilization analysis. Nevertheless, while incredibly useful, techniques used by

this tools produce a heavyweight overhead, making it not suitable for deployed

HPC applications.

A.1. Design and Implementation 265

A.1 Design and Implementation

In the compiling process, Hijacker lays just before the final linking stage. In

fact, we have explicitly decided to work on a relocatable representation of the

executable because we can rely on the additional linking metadata in order to

perform our application analysis and build our internal binary representation.

Hijacker’s architecture is divided in a front-end module—which provides sev-

eral compatibility layers with different executable formats and assembly lan-

guages, and is able to parse xml rule files—and a back-end module—which

performs the actual instrumentation operations on an intermediate (machine-

independent) representation of the executable. Hijacker is open source1, and

is available as one of the tools released by the HPDCS research group2. The

overall architecture is depicted in Figure A.1.

A.1.1 Rule Specification

As mentioned before, Hijacker is a rule-based instrumentation tool. To support

the instrumentation process and to leverage the user from many technical details,

we allow her to instruct Hijacker via a simple xml file, an example of which is

provided in Figure A.2. As it can be seen, the user can instruct Hijacker to

perform several actions on the executable on a per-function basis or on a global-

basis.

In particular, the configuration file gives the freedom to insert manually-

written portions of code (by relying on the <Inject> tag). The code should

be written in the target machine’s assembly language, or in a higher language

for which a compiler is available on the machine, and is automatically compiled

1http://www.dis.uniroma1.it/∼pellegrini/?p=hijacker
2http://www.dis.uniroma1.it/∼hpdcs

http://www.dis.uniroma1.it/~pellegrini/?p=hijacker
http://www.dis.uniroma1.it/~hpdcs

266 A. Hijacker

Hijacker

Front-End

Executable Formats

Interpreters

Instruction Sets

Disassemblers

F
i
l
e

L
o
a
d
e
r

Executable Formats

Generators

Instruction Sets

Assemblers

F
i
l
e

W
r
i
t
e
r

Back-End

Input

Relocatable

Executable

Output

Relocatable

Executable

XML

Con g

File

XML Parser

Internal Executable

Representation

Instrumentation Rule Manager

Instrumentation Engine

Figure A.1: General Hijacker’s Architecture

1 <HijackerRules>
2 <Inject file="memorycopy.c"/>
3 <Function name="foo">
4 <Instruction instruction="I_MEMWR|I_MEMRD" injectBefore="memcount.S">
5 <AddCall where="before" function="monitor" arguments="target" convention="stack"/>
6 </Instruction>
7 </Function>
8 <Instruction instruction="I_JUMP|I_CONDITIONAL" injectAfter="jumpcount.S">
9 <AddCall where="before" function="monitor" arguments="register" convention="stdcall"/>
10 </Instruction>
11 <Instruction instruction="movs" replace="">
12 <AddCall where="after" function="memcopy" arguments="target" convention="registers"/>
13 </Instruction>
14 </HijackerRules>

Figure A.2: Example configuration file

A.1. Design and Implementation 267

by Hijacker. Instructions to be altered are specified using the <Instruction>

tag, which supports several attributes: instruction, specifies either a single

(target-architecture) assembly instruction, or a (machine-independent) family

of instructions, as it will be clearly discussed in Section A.1.2; injectBefore,

injectAfter, and replace specify either an assembly code file or a specific

instruction to be placed (respectively) before, after or in place of the related in-

struction. The <AddCall> tag allows the user to insert specific calls to original or

injected functions in the code. Several attributes are allowed: where determines

whether the call is placed before or after the target instruction; function speci-

fies which function must be called; arguments specifies which arguments should

be passed to the callee (as it will be explained in Section A.1.4); convention

determines if the arguments are passed either by stack or by registers (respect-

ing the target architecture’s calling convention). The user can specify which

operations should be performed on a specific function by enclosing the relevant

tags in the <Function> tag, where the function name is specified in the name

attribute. We note that if <AddCall> is used within a <Function> tag, the

meaning of the where attribute specifies whether the function call is performed

after the function specified in <Function> is called (i.e., the call is injected in

the function’s code) or before any call to it in the executable.

When Hijacker is launched, the front-end’s XML parser module loads the

configuration file and instructs the back-end’s instrumentation rules manager

about the operations which will be performed during the instrumentation pro-

cess.

268 A. Hijacker

A.1.2 Application Analysis and Internal Binary Representa-

tion

In order to perform the instrumentation tasks, the original (relocatable) exe-

cutable must be processed first. The front-end’s file loader module performs a

sequence of tests on the executable in order to determine which executable for-

mat is used to represent the program, and triggers the corresponding executable

format interpreter (among the ones registered at Hijacker’s compile time) in or-

der to start loading the program. The first step undertaken by the executable

interpreter is to check which assembly language is used to represent instruc-

tions in the executable, and this information is reported back to the file loader

manager, which searches among the available disassembler engines for one able

to interpret the code. If a suitable disassembler is found, this information is

reported to the executable interpreter.

This modular approach allows any combination of assembly languages and

executable formats for the representation of a program, and allows for high

extendibility of the tool, decoupling the process of adding supports for new/ad-

ditional formats and languages from the instrumentation process itself. At the

time of this writing, Hijacker is bundled with an ELF format interpreter, an x86

disassembler and an x86_64 disassembler, while a PE interpreter and an ARM

disassembler are under development.

The executable interpreter then starts analysing the program and builds an

intermediate representation of it which we refer to as program map. This pro-

gram map is structured in sections, whose type can be code, data, or raw. The

latter section describes any type of section which is not involved in the instru-

mentation process, and is therefore straight recreated in the altered program.

The data section keeps track of global data used by the program, in terms of

A.1. Design and Implementation 269

name of the variables (if any), their size in byte (if available), and their initial

value.

The code section actually contains an intermediate representation of the in-

structions. In particular, the executable interpreter gives control to the suitable

disassembler in order to start a linear scan of the assembly code. Each assembly

instruction gets stored into a data structure that keeps the original bytes of

the instruction, along with several attributes describing the instruction itself.

Each data structure keeps a set of pointers to target adjacent instructions in

the function, data (if any), and/or other instructions (if any, in case of branches

or function calls). Depending on the actual assembly language used by the pro-

gram (and on the compiler which generated the code), this process can present

more or less difficulties. As an example, some compilers emit data within the

code in order to support efficient execution of, e.g., indirect branches deriving

from the compilation of switch cases. The disassembler module is able to com-

municate with the executable interpreter if, during the instrumentation process,

some data segments are discovered within the instructions3. In this case, the

executable interpreter adds to the data section the additional data structures,

enforcing the logical separation between data and code used to build the pro-

gram map. Of course, this action slightly changes the “shape” of the altered

program which will be produced as output of the instrumentation process, but

does not change its operational flow.

During the linear scan of the assembly code, Hijacker’s disassemblers cross-

check the information retrieved from symbol and relocation tables from the

original relocatable program. In this way, the disassembler is able to decode

3The methodologies used by disassembler modules for discovering such portions of data are
different, depending on the architecture and its ABI, and discussing them is out of the scope
of this appendix. Nevertheless, to give the reader an idea, they mostly rely on decompilation
error-retry algorithms, coupled with address/register-value evaluation.

270 A. Hijacker

Executable

Functions

Instructions

Data
cal

l

mov

jmp

Figure A.3: Hijackers Internal Representation of Executables

instructions and organize their internal representation in functions, preserving

the connection among instructions and the data, in order to produce an in-

termediate representation of code as depicted in Figure A.3. We note that

the connections between instruction-instruction (due to branches in the code),

instruction-function (due to function calls), and instruction-data (due to data

movement) are realized in the intermediate representation as memory pointers,

rather than offsets as most assembly languages do. Considering that functions

are represented as linked lists of instructions (the elements’ order in such lists

is their appearance in the code, which does not necessarily correspond to the

program’s execution flow), inserting or removing any instruction at any point of

code does not alter the linking between objects in the intermediate representa-

tion.

Whenever an instruction is interpreted by the disassembler, it gets marked

using special flag values which describe the actual family of the instruction. The

available flags and their meanings are:

I_MEMRD: The instruction reads from memory

I_MEMWR: The instruction writes to memory

A.1. Design and Implementation 271

I_CTRL: The instruction performs checks on data

I_JUMP: The instruction alters the execution flow

I_CALL: The instruction calls a different function

I_RET: The instruction returns from a callee

I_CONDITIONAL: The instruction is executed only if a condition is met

I_STRING: The instruction operates on large amount of data

I_ALU: The instruction does some logical/arithmetic operation

I_FPU: The instruction does some floating-point operation

I_STACK: The instruction works on stack

I_INDIRECT: The instruction behaviour might depend on some runtime value

or any or’ed combination of them. For example, an instruction marked as

I_MEMWR|I_MEMRD reads from and writes to memory, while an instruction marked

as I_JUMP|I_CONDITIONAL is an indirect branch. These combinations of flags

can be used in the instruction attribute described in Section A.1.1 to spec-

ify instrumentation rules for groups (families) of instructions which perform a

certain action.

A.1.3 Code and Data Instrumentation

Once the program map is completely built, the execution control is given to

Hijacker’s back-end, in particular to the instrumentation rules manager. This

module starts applying the rules parsed from the xml configuration file, by

triggering (for each rule) the corresponding operation in the instrumentation

engine.

The instrumentation engine operates on the internal intermediate represen-

tation of the executable. Whenever some rule requires a modification in a par-

ticular function, the corresponding entry is found in the functions array and

272 A. Hijacker

the instructions’ data structures are linearly scanned in order to identify the

ones which must be instrumented. If the rule involves adding some instructions

before or after the target one, some new nodes are simply inserted in the list

of instructions. For the generation of machine-level code, the instrumentation

engine asks the instruction-set assembler to produce the machine-level represen-

tation of the instruction. If the insertion of code entails the compilation of some

assembly file, the default compiler installed on the host machine (cc) is invoked

automatically. When Hijacker is launched, a custom compiler can be specified,

which will override this setting.

As hinted before, whenever some rule is applied, the connections between

instructions, functions and data are preserved since they are realized as mem-

ory pointers between structures. This is true even in the most complex cases:

if instructions are referred from the data section (e.g., in the aforementioned

branch table case) then the approach described in Section A.1.2 had notified

executable interpreter about the presence of data segments within the code. If

the disassembler module was able, at runtime, to discover the presence of ref-

erences to instructions, then they are replaced with memory pointers targeting

the destination instructions. This approach has been shown to cover most of

the code generated by standard compilers. Nevertheless, there are some cases

which involve the generation of instruction addresses completely at runtime. If

such a case is found, then Hijacker is not currently able to correctly instrument

the executable, although we are working on making the technique discussed in

[168] more efficient and suitable for HPC.

A.1. Design and Implementation 273

A.1.4 Bundled Instrumentation Features

During the instrumentation process, disassemblers populate the data structures

used for representing instructions in the intermediate representation with all

the information which can be gathered from their binary representation during

the process. This information can be stored in the executable and therefore

used at runtime by, e.g., user-injected functions. This is exactly the goal of

the arguments attribute described in Section A.1.1, and the one of the bundled

instrumentation features: provide the end user with some cached disassembly

information in order to allow some sort of dynamic monitoring without having

to rely on any kind of dynamic instrumentation.

At the time of this writing, Hijacker provides the end user with two bundled

instrumentation features, namely target address reconstruction and indirect reg-

ister detection. The former is a feature which allows, whenever an I_MEMRD or

I_MEMWR instruction is being instrumented, to insert some additional code which

evaluates by software the destination address of such instruction, and the size

of the access. This information can be passed as argument of any (user-injected

or not) function in the binary.

The branch register instrumentation feature is similar in spirit to target

address reconstruction. This feature allows any function in the code to be called

passing two arguments: an integer code representing the register which is used

to execute an indirect memory access (either for reading/writing or for altering

the control flow with an indirect branch), and its actual runtime value. This

can be particularly useful to trace at runtime the actual execution patterns of

an application, when this information cannot be detected at compile time.

274 A. Hijacker

A.1.5 Binary Multi-versioning

Hijacker can make multiple (differently-instrumented) versions of the same exe-

cutable coexist in the same image, in case more <Executable> tags in the xml

configuration file are found. This facility has been successfully exploited in [168]

to create differently-instrumented versions of the same original application-level

program which coexist and the execution flow is passed from one version to the

other.

In order to support such a scenario, Hijacker allows to specify a new entry

point for the program. This facility can be used to insert, e.g., some logic in

the instrumented application which dynamically selects one of the two versions

of the application binary depending on the current execution dynamics. This

approach can be regarded as a means for efficiently creating executables which,

according to the autonomic paradigm [64], are able to efficiently react to changes

in the execution dynamics by, e.g., selecting a different operating mode. The

different operating modes could be realized as differently-instrumented versions

of the same executable, sparing the programmer the implementation of slightly

different versions of the same program, a process which is inherently long and

error-prone.

From a technological point of view, whenever two or more versions of the

executable must be created, the rule manager asks the instrumentation engine

to create multiple copies of the program map as the first action. Each copy

will have its internal symbols renamed adding a progressive number, so that if

the user wants to inject code which calls either instrumented version, she will

be able to do so consistently. The data section is not duplicated, so to allow a

consistent sharing of data among the versions. Each program map version will

be then instrumented applying the related rules.

A.1. Design and Implementation 275

A.1.6 Binary Recreation

The last step in the instrumentation process is the recreation of a (relocatable)

executable which can be later passed to the linker to complete the compiling

process. When the rules manager has finished applying modifications to the

program map(s), the control is returned to Hijacker’s front-end.

The proper executable formats generator is thus triggered in order to recreate

a new executable on disk. This process entails repeatedly accessing the program

map(s) in order to build all the data structures which are required by the format

itself. As it can be clearly seen, this process is highly format-dependent, and

the description of the operations involved would be in the scope of specifically-

targeted papers. Nevertheless, to give the reader an idea, they are similar in

what actual compilers do whenever they are generating a program from a set of

source files.

A.1.7 Third-party libraries

The possibility to rely on third-party libraries depends on the actual behaviour of

used functions. In fact, as an example, if the user is instrumenting the executable

to track memory updates and then relies, e.g., on standard memset library func-

tion, then memory updates performed by memset would not be tracked.

As mentioned before, there are several solutions to this problem, each one

having different drawbacks. In order to provide efficient solutions to this issue,

we have explicitly avoided to rely on costly runtime analysis approaches, while

on the contrary we have given the user the possibility to wrap third-party library

calls, by relying on a specific <Library> tag. In this way, the user can specify

which are the external library calls which she wants to wrap, and therefore

any call in the executable to them will be actually redirected to user-specified

276 A. Hijacker

functions, in a way similar to what standard linkers allow to do during the

compilation process.

A.2 Experimental Evaluation

In order to evaluate the instrumentation overhead induced by the proposed ar-

chitecture, we have conducted experiments on a family of configurations of PCS

ROOT-Sim. Each cell sustains the same workload of incoming calls, whose inter-

arrival time is exponentially distributed, and whose average duration is set to 2

minutes. The call interarrival frequency to each cell has been varied in the inter-

val between 1 and 6.25 calls per simulation time unit, thus providing increasing

values of the channel utilization factor, as of Equation (2.6), in between 12%

and 75%, and hence increasing values of the expected length of the PCS list of

in-use records (we recall the complete description in Section 2.5.3. The residence

time of an active device within a cell has a mean value of 5 minutes and follows

the exponential distribution. This has the effect of performing an increasing

number of memory updates whenever the climatic model starts scanning the

allocated channels for recomputing the optimal power allocation values. For the

above scenario, we have run experiments with 1024 wireless cells, modelled as

hexagons covering a square region, each one managing 1000 wireless channels.

In Figure A.4 we present the results for the various PCS configurations (i.e.,

interarrival frequencies) in two cases: the first represents the execution of PCS

instrumented using Hijacker, where every memory-write access (i.e., I_MEMWR

instructions) have been instrumented by placing before each of them a call to a

hand-written module which relies on the target address reconstruction bundled

instrumentation feature for creating a memory access map (similarly to what

has been done in Chapter 4); the second represents an execution of the original

A.2. Experimental Evaluation 277

 0

 20

 40

 60

 80

 100

1 2 3 4 5 7

E
v
e
n
t

E
x
e
c
u
ti

o
n
 C

o
s
t

(µ
s
)

Non-Instrumented Instrumented

Figure A.4: Overheads Associated with Different Workloads

benchmark, with no instrumentation. The instrumented scenario is non trivial,

since it additionally requires the execution of a runtime module to compute

the actual memory addresses. Figure A.4 shows average execution time of PCS

events in both cases. As it can be clearly seen, the overhead added by the

modifications of the code by Hijacker are negligible, while by relying on the

instrumented code the user is able to reduce actual management costs by using

incremental logging facilities like the ones described in Chapter 4.

Appendix B

ROOT-Sim

“A slow sort of country!” said the Queen.

“Now, here, you see, it takes all the running you can do, to keep in the same place.

If you want to get somewhere else, you must run at least twice as fast as that!”

— Lewis Carroll, Through the Looking-Glass, 1871

ROOT-Sim [67] is a PDES simulation kernel relying on the optimistic syn-

chronization paradigm. It comes as a static library which can be linked to

executables implementing simulation models using the ANSI-C programming

standard [84], as if they were completely sequential.

In particular, the user can organize the code in as many functions/files as

needed, can perform any I/O operation during the simulation (keeping in mind

that I/O operations can degrade performance) as described in Chapter 5, can

use dynamically-allocated memory to build the simulation state as described in

Chapter 4, and so on and so forth. The only exception is that the volatile

qualifier becomes meaningless (i.e., there is no possibility for a variable to be

modified outside the simulation platform). In addition, the model lives in user

space only, so no *NIX system calls should be used. No regular entry point is

required for the application-level code (i.e., no main() function must be imple-

279

280 B. ROOT-Sim

mented), as entry points for the application code are specified by ad-hoc APIs,

which will be discussed in the next section.

The actual simulation is based on events: each LP processes events, and its

advancement in the LVT is connected to their execution. LPs communicate via

messages, via global variables (see Chapter 6), or via direct pointer passing (see

Chapter 7). ROOT-Sim, as the Time Warp protocol stands, enforces a logical

identity between events and messages. This means that a message envelopes an

event to be scheduled to some destination LP. Each event (and thus message

backing it) is identified by a numerical code, which is defined by the application-

level logic. Each type of message is fixed-size, but more than one type of message

can be used. In particular, the application-level code must provide a definition

of a struct for each event type, where the content of a message (an event) must

be specified. Furthermore, events must be of known types, i.e., each event must

be associated with a unique ID number which must be specified whenever a

message is sent.

Each LP has its own execution context and its own stack. They are both

implemented as user-level threads, with a practical implementation similar to

the one proposed in [42]. Each stack lives in the LP’s stock (as described in

Chapter 7), so we enforce a complete separation between the simulation-kernel-

level and the LP-level data structures. Context switches are executed relying

on POSIX setjmp/longjmp API functions.

Each logical process has its data structures enclosed in a LP_struct data

structure (resembling what the Linux kernel does for processes), thus enforcing

modularity end easiness to extension. All the execution context information is

maintained into this structure.

Concurrent execution is based on the notion of worker thread. At simulation

281

start-up a certain number of worker thread is spawned, so that they can take

control of some (or all) the computing resources available in the underlying

architecture. Therefore, a single machine in the distributed simulation context

can host one or more simulation kernel instances. LPs are evenly distributed

across simulation kernel instances at simulation start-up, adopting either a block

policy or a round policy. Nevertheless, LPs are bound to worker threads on a

periodic basis. Specifically, according to the proposals in [169, 170, 171], the

worker threads periodically redistribute the (locally hosted) LPs in order to

maximize the overall performance by adopting a load sharing policy.

At simulation start-up, ROOT-Sim delivers to each LP a special INIT event

(identified by the reserved code 0) which allows the simulation model to set up

its initial configuration. In particular, the model can define its simulation state

relying on a sequence of malloc() calls, and the initial values can be retrieved

by command-line arguments which are delivered as INIT-event’s payload, resem-

bling the standard ANSI-C char **argv vector. During the execution of the

INIT event, other events can be scheduled at any LP in the system, therefore

allowing the actual simulation to start. According to the ROOT-Sim program-

ming model, the first malloc() call issued by each LP during the execution of

the INIT event is considered as the initial part of the LP’s simulation state, and

will be later passed via a specific pointer to allow the execution of additional

events. This can be overridden by a specific API provided by the platform, as it

will be discussed later. Nevertheless, this approach allows LPs’ states to arbi-

trarily grow/shrink during the simulation’s execution, just relying on additional

malloc()/free() calls. This unique feature means that the user can produce

standard code to design the simulation model, with the only requirement that

every additional malloc’d memory region must be referred via a pointer in the

282 B. ROOT-Sim

DyMeLoR

CCGS ManagerGVT Manager

Input/Output Queues Manager

Remote Messaging Manager

Scheduler
Intermediate Buffers

Call/Callback Interfaces

ProcessEvent

ScheduleNewEvent

OnGVT

Application Level Software

function calls

to libraries

MPI, Standard Libraries,

Third Party Library Wrappers

hook
malloc/free

Output Manager

Stock Allocator

and Third Party Libraries

Operating System Kernel

Figure B.1: ROOT-Sim Architecture

first malloc’d structure for the simulation platform to be able to correctly roll-

back previous simulation states.

ROOT-Sim is open source1, and is available as one of the tools released by

the HPDCS research group2.

The general architecture of the current version of ROOT-Sim is shown in

Figure B.1.

B.1 Supported APIs

The core API to allow communication between application-level code and simu-

lation kernel is very simple. It consists of one call function, ScheduleNewEvent(),
1http://www.dis.uniroma1.it/∼pellegrini/?p=hijacker
2http://www.dis.uniroma1.it/∼hpdcs

http://www.dis.uniroma1.it/~pellegrini/?p=hijacker
http://www.dis.uniroma1.it/~hpdcs

B.1. Supported APIs 283

and two callback functions, ProcessEvent() and OnGVT(). The callbacks must

be necessarily implemented in the simulation model to be compliant with the

library. Then, the rest of the code can be implemented in any way, albeit respect-

ing the ANSI-C standard. These functions have the following signature/purpose.

void ProcessEvent(int me, time_type now, int event_type, void *

event_content, void *state) is the callback that supports the actual pro-

cessing of simulation events, and it is used by the kernel to give control to

the application layer. me is the ID of the LP being scheduled, now is the cur-

rent value for the local clock, event_type is the numerical code for the event

to be processed, event_content is the information regarding the event itself,

and state is the current LP’s state. Inside of ProcessEvent() the execution

is fully speculative, i.e. the events that are executed might be eventually un-

done. The programmer, nevertheless, is completely unaware of this issue, and

can simply implement state transitions within this callback. ROOT-Sim will

transparently undo (in case of a detected inconsistency) or commit speculative

events (whenever a new GVT value is computed and the commitment horizon

is moved forward). The only issue concerning ProcessEvent() is the execution

of non-rollbackable actions. In fact, if the programmer, e.g., prints some text

on the screen during the execution of an event that will be eventually rolled

back, the output generated will not be reverted. This is a non-trivial problem

associated with speculative execution, even more if transparency is enforced and

the programmer is given the freedom to implement its model by relying on stan-

dard ANSI-C. ROOT-Sim offers a facility which tries to address this issue (at

the cost of some delay in the materialization of the actual output), which will

be presented in Section B.2.

284 B. ROOT-Sim

void ScheduleNewEvent(int receiver, time_type timestamp, int

event_type, void *event_content, int event_size) is a function that al-

lows injecting a new simulation event within the system, to be destined to

whichever simulation object. receiver denotes the ID of the destination LP,

timestamp is the LVT associated with the event to be processed, event_type,

event_content, and event_size allow the correct identification and delivery

of the actual event. For efficiency reasons, the invocation of this function does

not immediately involve the actual deliver of the associated event to the desti-

nation LP. Instead, events are buffered and asynchronously delivered when the

execution of the current one is completed. This allows to pack together more

events if the destination LP is the same, and prevents delays in the current

event’s execution. We note that this asynchronous deliver does not affect the

correctness of the execution, as ROOT-Sim will order events in the input queue

before scheduling the next event to the destination LP. In case the delay created

by this internal buffering generates an out-of-order execution at some LP, then

the rollback procedure will restore consistency.

bool OnGVT(void *snapshot, int gid) is a callback that gives control to

the application layer by also providing a committed snapshot of the simulation

object. The execution of OnGVT() is therefore not speculative, i.e. any action

taken within this function will never be undone. This means that, e.g., any

I/O operation within this function is perfectly safe, and therefore it can be

used to gather statistics on the ongoing simulation, if the user is aware of the

synchronization strategy and does not want to rely on the facilities described

in Chapter 5. We note that, since the timestamp associated with snapshot

refers to the committed portion of the computation, it is forbidden to call

ScheduleNewEvent() within OnGVT(), because this might induce a rollback op-

B.1. Supported APIs 285

eration of already committed events. In case the user calls ScheduleNewEvent()

in this callback, a runtime error will be generated. OnGVT() additionally imple-

ments a distributed termination control: since snapshot is a portion Si of the

Committed and Consistent Global State (CCGS) S, according to [104] a global

predicate can be locally evaluated on Si. If the model determines that the

simulation is completed for that particular LP, OnGVT() can return the true

value. ROOT-Sim will collect all return values, and in case all the LPs agree,

the simulation will stop.

In addition to the core API, ROOT-Sim has a set of additional facilities.

First, void SetState(void *new_state) allows the LP to manually specify

which is its simulation state. It is not mandatory in a simulation-model’s imple-

mentation, as explained in Section B.3, but gives the programmer more freedom.

ROOT-Sim comes bundled with a fully-featured numerical library, which

gives the modeller the possibility to generate random numbers drawn from sev-

eral distributions. So far, the Random(), Expent() (exponential), Normal(),

Gamma(), Poisson(), and Zipf() distributions are implemented. This library

is crucial in the development of simulation models (and should be used in place

of other libraries) because it adheres to the Piece Wise Deterministic paradigm

(see [41]), i.e. the same sequence of numbers will be deterministically produced

if a rollback operation is performed. The numerical library maintains one seed

per each LP, pseudo-randomly drawn by an initial master seed which can be

either randomly computed at simulation start-up, or manually specified by the

user. This gives full control on the model’s execution, giving the possibility to

re-study the same configuration (determined by the initial master seed) which

will give the same final outcome, independently of the actual events’ execution

pattern.

286 B. ROOT-Sim

In addition, ROOT-Sim offers the library function int FindReceiver(int

topology) to draw an LP’s neighbour according to some geometric topology

uniformly at random. Valid values for topology are RING, BIDRING, LINEAR,

HEXAGON, SQUARE, STAR, MESH, which describe respectively a ring, a bidirec-

tional ring, a linear vector, a square region divided in several hexagonal cells,

a square region divided in several square cells, a star topology, and a mesh.

This library function can be used to simplify the implementation of communi-

cation among LPs, and the returned id can be directly used as a parameter of

ScheduleNewEvent().

B.2 Internal Features

The simulation platform offers several facilities to support model’s simulation in

the most effective way, and to control the simulation’s execution. Configuration

can be specified either at command line, or by relying on an interactive shell

which supports execution scripts as well. The main simulation loop (concur-

rently executed by each worker thread) is shown in Algorithm 2.8.

The GVT computation is carried out according to the shared-memory based

proposal [50]. Its interval can be tuned at simulation start-up. If the user

selects a higher value, the overhead associated with this operation gets reduced,

but since the fossil collection operation (see Chapter 1) is thus executed less

often, the overall simulation likely requires more memory to maintain, e.g.,

older checkpoints. By tweaking this parameter, the user can manually balance

the tradeoff between performance and memory consumption.

As mentioned before, at simulation start-up ROOT-Sim initializes the inter-

nal numerical library starting from a master seed. The user can ask ROOT-Sim

to randomly draw this master seed or can specify it manually. In case the seed

B.2. Internal Features 287

Algorithm 2.8 Implementation of ROOT-Sim’s Simulation Loop
procedure Simulation-Loop

while End == false do
Receive remote messages
Process Bottom Halves
if GVT interval has passed then

start GVT computation
end if
enext ← events associated with timestamp Tmin among the bound LPs
if thenenext is a straggler

rollback LP in charge of processing enext to Tenext

else
switch context to LP in charge of processing enext

end if
if CCGS tells simulation is complete then

End← true
end if
process outgoing messages
if GVT computation complete then

execute Fossil Collection
end if

end while
end procedure

is randomly chosen, the user can configure ROOT-Sim to store it as the master

seed for future runs. In this way, a set of experiments can be conducted on the

same events’ pattern, therefore comparing the very same model’s configuration.

Concerning initialization, ROOT-Sim allows to run the simulation model on

a distributed environment, by ultimately relying on MPI for message delivery.

Using a description of the machines which can be used to run the simulation

(i.e. address for reaching them, and number of CPU-cores), ROOT-Sim trans-

parently sets up the distributed simulation environment. For efficiency reasons,

two different mappings between LPs and simulation kernels are available: block

distribution evenly divides the available LPs across the kernel instances, while

288 B. ROOT-Sim

circular assigns one LP per kernel, in a circular fashion. Depending on the

inter-LP interaction, the one that limits at most the number of inter-kernel in-

teractions due to event exchange can be selected, so to reduce the impact on

performance.

As for state saving, ROOT-Sim offers a large set of facilities which address

both transparency and execution efficiency at the same time. In particular, as

mentioned, the simulation state can be scattered across different segments of

allocated memory, and log/restore operations can be carried out either in non-

incremental [166] or incremental way (see Chapter 4). Additionally, ROOT-Sim

can be configured to switch between these two differentiated modes autonomi-

cally and to optimize the checkpointing interval, either by relying on an analytic

model [168], or by relying on a genetic algorithm [126].

ROOT-Sim offers the user the possibility to select either the traditional LTF

scheduler for event processing selection, or an optimized O(1) variant [147],

which selects the next event to be scheduled in a (probabilistic) constant time.

Third-party libraries are almost fully supported. The user is allowed to rely

on any third-party library if it is stateless. Support for stateful third-party

libraries, as stated in Chapter 10, is subject of future work.

A branch of the ROOT-Sim kernel supports migration of LPs among different

kernel instances depending on the current workload [128].

B.3 A Code Example

We present here some code snippets implementing a ROOT-Sim application

which models a set of N nodes connected as a mesh, sending packets randomly

to each other. The first important thing is to define the possible events handled

by the model, the content of an event message, and the structure of the state:

B.3. A Code Example 289

1 #include <ROOT−Sim.h>

2 #define PACKET 1 // Event definition

3 #define DELAY 120

4 #define PACKETS 1000000 // Termination condition

5

6 typedef struct _event_content_t {

7 time_type sent_at;

8 } event_content_t;

9 typedef struct _lp_state_t{

10 int packet_count;

11 } lp_state_t;

In this model we allow just one application-defined event, PACKET, which identi-

fies the transit of a packet in the mesh. Then, we must specify the actual events’

logic. ProcessEvent() is the only entry point for speculative event processing,

so we rely on a switch construct to demultiplex them:

18 void ProcessEvent(unsigned int me, time_type now, unsigned int event, event_t ∗content,\\

19 unsigned int size, lp_state_t ∗ptr) {

20 event_t new_event;

21 time_type timestamp;

22

23 switch(event) {

24

25 case INIT: // must be ALWAYS implemented

26 state = (lp_state_t ∗)malloc(sizeof(lp_state_t));

27 state−>packet_count = 0;

28 timestamp = (time_type)(20 ∗ Random());

29 ScheduleNewEvent(me, timestamp, PACKET, NULL, 0);

30 break;

31

32 case PACKET: {

33 pointer−>packet_count++;

34 new_event_content.sent_at = now;

35 int recv = FindReceiver(MESH);

36 timestamp = now + Expent(DELAY);

290 B. ROOT-Sim

37 ScheduleNewEvent(recv, timestamp, PACKET, &new_event, sizeof(new_event));

38 }

39 }

40 }

The code logic is fairly simple: upon INIT event, the LP’s state is malloc’d and

initialized, and an initial packet is sent to the LP itself. Whenever a PACKET

event is received, a local counter is increased, and a packet is sent back to a

random LP in the simulation environment. Timestamps are computed according

to an exponential distribution, exploiting the internal Expent() function.

OnGVT() is the second callback to be implemented, which performs a local

check on the LP’s state. If the number of packets passed through the LP is

smaller than PACKETS, then the simulation cannot be halted yet:

50 bool OnGVT(lp_state_t ∗snapshot, int gid) {

51 if (snapshot−>packet_count < PACKETS)

52 return false;

53 return true;

54 }

B.4 Runtime Data

Beyond the statistics that the user can programmatically obtain from the ex-

ecution of the OnGVT() callback, ROOT-Sim has three levels of statistics gen-

eration which can be configured at start-up. The first (default) level produces

a file containing average values for the most common performance metrics on

a system-wide scale. An example file is presented in Figure B.2. With it, the

user can gather information about general execution and overall performance,

i.e. the efficiency of the simulation, or the number of events executed.

If the user is interested in the same statistics but at a per-kernel granularity

Bibliography 291

TOTAL KERNELS................ : 32
TOTAL PROCESSES.............. : 1024
TOTAL EVENTS EXECUTED........ : 169923760
TOTAL COMMITTED EVENTS....... : 96932768
TOTAL ROLLBACKS EXECUTED..... : 2357476
TOTAL ANTIMESSAGES........... : 72208424
AVERAGE ROLLBACK FREQUENCY... : 1.4 %
AVERAGE ROLLBACK LENGTH...... : 30.62 events
EFFICIENCY................... : 58.11 %
AVERAGE EVENT COST........... : 11.48 us
AVERAGE CHECKPOINT COST...... : 28.327 us
AVERAGE RECOVERY COST........ : 20.110 us
Simulation started at........ : Thu Mar 21 23:23:07 2013
Simulation finished at....... : Thu Mar 21 23:27:49 2013
Computation time............. : 282 seconds
Last GVT value............... : 50828.568372
Average Committed Event-Rate. : 343733.22 events/second

Figure B.2: General Statistics Output File

(i.e. not a system-wide average), the second level of statistics generates a text file

like the previous one for each kernel instance. This is useful, e.g., to check if the

workload of the model is evenly distributed across simulation kernel instances.

At the same time, this level produces punctual data during the simulation’s

execution in the form 〈GVT phase number, GVT value, committed events in

this phase, cumulated committed events〉 (one tuple per line). This adds some

overhead, which is nevertheless minimal because this operation is performed

periodically only during the GVT calculation. This is a very useful information

to track performance variations during the execution of the simulation model.

The last (more intrusive) level of statistics generation prints on a per-kernel

separate file additional information for each GVT phase, in the form 〈total

events, committed events, rollbacks, average event cost, average checkpoint

cost〉.

Bibliography

[1] A. Adya and B. Liskov. Lazy consistency using loosely synchronized clocks. In
PODC, pages 73–82, 1997. (cited on pages 190, 191.)

[2] G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint
computer conference, AFIPS, pages 483–485. ACM, 1967. (cited on page 8.)

[3] R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bounding worst-case in-
struction cache performance. In Proceedings of the 1994 Real-Time Systems Sym-
posium, pages 172–181. IEEE Computer Society, Dec 1994. (cited on page 9.)

[4] R. Ayani. A parallel simulation scheme based on the distance between objects.
In Proceedings of the SCS Multiconference on Distributed Simulation, volume 21,
pages 113–118, 1989. (cited on page 41.)

[5] H. Aydt, S. J. Turner, W. Cai, and M. Y. H. Low. Research issues in symbiotic
simulation. In Proceedings of the 2009 Winter Simulation Conference, WSC, pages
1213–1222. Society for Computer Simulation, Dec. 2009. (cited on page 11.)

[6] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent dynamic
optimization system. SIGPLAN Not., 35(5):1–12, May 2000. (cited on page 102.)

[7] P. D. Barnes, Jr, C. D. Carothers, D. R. Jefferson, and J. M. LaPre. Warp speed:
Executing time warp on 1,966,080 cores. In Proceedings of the 2013 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation, SIGSIM-PADS, pages
327–336. ACM, 2013. (cited on page 240.)

[8] D. W. Bauer, G. Yaun, C. D. Carothers, M. Yuksel, and S. Kalyanaraman. Seven-
o’clock: A new distributed gvt algorithm using network atomic operations. In
Proceedings of the 19th Workshop on Parallel and Distributed Simulation, pages
39–48. IEEE Comp. Soc., 2005. (cited on pages 48, 50.)

[9] D. W. Bauer, Jr, C. D. Carothers, and A. Holder. Scalable time warp on blue gene
supercomputers. In Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on
Principles of Advanced and Distributed Simulation, PADS, pages 35–44. IEEE
Computer Society, 2009. (cited on page 240.)

293

294 BIBLIOGRAPHY

[10] H. Bauer and C. Sporrer. Reducing rollback overhead in Time-Warp based dis-
tributed simulation with optimized incremental state saving. In Simulation Sym-
posium, 1993. Proceedings., 26th Annual. IEEE Computer Society, Mar 1993.
(cited on pages 86, 87, 88, 90.)

[11] G. Bell, J. Gray, and A. Szalay. Petascale computational systems. Computer,
39(1):110–112, Jan. 2006. (cited on page 7.)

[12] S. Bellenot. Global virtual time algorithms. In Proceedings of the SCS Multicon-
ference on Distributed Simulation, pages 122–127, Jan. 1990. (cited on page 48.)

[13] S. Bellenot. State skipping performance with the Time Warp operating system. In
Proceedings of the 6th Workshop on Parallel and Distributed Simulation, PADS,
pages 53–64. Society for Computer Simulation International, 1992. (cited on pages
79, 90.)

[14] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and re-
covery in database systems. Addison-Wesley Longman Publishing Co., Inc., 1986.
(cited on pages 190, 191.)

[15] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. User-level inter-
process communication for shared memory multiprocessors. ACM Transactions
on Computer Systems, 9(2):175–198, May 1991. (cited on page 9.)

[16] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970. (cited on page 149.)

[17] R. Brown. Calendar queues: a fast O(1) priority queue implementation for the
simulation event set problem. Communications of the ACM, 31:1220–1227, Oc-
tober 1988. (cited on pages 30, 142, 148, 149, 168, 234.)

[18] D. Bruce. The treatment of state in optimistic systems. In Proceedings of the
9th Workshop on Parallel and Distributed Simulation, pages 40–49. IEEE Comp.
Soc., June 1995. (cited on page 95.)

[19] R. E. Bryant. Simulation of packet communication architecture computer sys-
tems. Technical Report MIT/LCS/TR-188, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA, 1977. (cited on pages 39, 40.)

[20] J. Burns and N. A. Lynch. Mutual exclusion using invisible reads and writes. In
Proceedings of the 18th Annual Allerton Conference on Communication, Control,
and Computing, pages 833–842, 1980. (cited on page 187.)

[21] W. Cai and S. J. Turner. An algorithm for distributed discrte-event simulation—
the “carrier null message” approach. In Proceedings of the SCS Multiconference on
Distributed Simulation, pages 3–8. Society for Computer Simulation International,
Jan. 1990. (cited on page 41.)

[22] C. D. Carothers, D. W. Bauer, and S. Pearce. ROSS: a high performance modular
Time Warp system. In Proceedings of the 14th Workshop on Parallel and Dis-
tributed Simulation, pages 53–60. IEEE Comp. Soc., May 2000. (cited on pages
56, 239.)

BIBLIOGRAPHY 295

[23] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto. Efficient optimistic par-
allel simulations using reverse computation. ACM Transactions on Modeling and
Computer Simulation, 9(3):224–253, july 1999. (cited on page 50.)

[24] R. P. Case and A. Padegs. Architecture of the IBM system/370. Communications
of the ACM, 21:73–96, Jan. 1978. (cited on pages 99, 183.)

[25] K. M. Chandy and J. Misra. Distributed simulation: A case study in design and
verification of distributed programs. IEEE Transactions on Software Engineering,
SE–S5(5):440–452, Sept. 1979. (cited on pages 33, 39, 40, 55.)

[26] K. M. Chandy and J. Misra. Asynchronous distributed simulation via a sequence
of parallel computations. Communications of the ACM, 24(4):198–206, Apr. 1981.
(cited on page 39.)

[27] K. M. Chandy and R. Sherman. The conditional event approach to distributed
simulation. In Proceedings of the SCS Multiconference on Distributed Simulation.
Society for Computer Simulation International, Mar. 1989. (cited on page 41.)

[28] K. M. Chandy and R. Sherman. Space-time and simulation. Technical Report
No. 238, University of Southern California, Information Sciences Institute, 1989.
(cited on page 96.)

[29] F. Chang and G. A. Gibson. Automatic I/O hint generation through speculative
execution. In Proceedings of the Third Symposium on Operating Systems Design
and Implementation, OSDI, pages 1–14. USENIX Association, 1999. (cited on
page 43.)

[30] L.-l. Chen, Y.-s. Lu, Y.-P. Yao, S.-l. Peng, and L.-d. Wu. A well-balanced time
warp system on multi-core environments. In Proceedings of the 2011 IEEE Work-
shop on Principles of Advanced and Distributed Simulation, PADS, pages 1–9.
IEEE Comp. Soc., 2011. (cited on pages 36, 97.)

[31] D. Cucuzzo, S. D’Alessio, F. Quaglia, and P. Romano. A lightweight heuristic-
based mechanism for collecting committed consistent global states in optimistic
simulation. Distributed Simulation and Real Time Applications, IEEE/ACM In-
ternational Symposium on, 0:227–234, 2007. (cited on page 231.)

[32] S. R. Das, R. M. Fujimoto, K. Panesar, D. Allison, and M. Hybinette. GTW: a
Time Warp system for shared memory multiprocessors. In WSC ’94: Proceed-
ings of the 26th conference on Winter simulation, pages 1332–1339. Society for
Computer Simulation International, 1994. (cited on pages 56, 94.)

[33] R. H. Dennard, F. H. Gaensslen, Y. Hwa-Nien, V. L. Rideout, E. Bassous, and
A. R. LeBlanc. Design of ion-implanted MOSFET’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, Oct. 1974. (cited
on page 6.)

[34] P. Di Sanzo, F. Antonacci, B. Ciciani, R. Palmieri, A. Pellegrini, S. Peluso,
F. Quaglia, D. Rughetti, and R. Vitali. A framework for high performance sim-
ulation of transactional data grid platforms. In Proceedings of the 6th ICST

296 BIBLIOGRAPHY

Conference of Simulation Tools and Techniques, SIMUTools. ICST, Mar. 2013.
(cited on pages 73, 75, 198.)

[35] T. Dickman, S. Gupta, and P. A. Wilsey. Event pool structures for pdes on
many-core beowulf clusters. In Proceedings of the 2013 ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation, SIGSIM-PADS, pages 103–114.
ACM, 2013. (cited on page 30.)

[36] W. Drewry and T. Ormandy. Flayer: exposing application internals. In Pro-
ceedings of the first USENIX workshop on Offensive Technologies, WOOT, pages
1:1–1:9. USENIX Association, 2007. (cited on page 261.)

[37] DynamoRIO. http://www.dynamorio.org/. (cited on pages 261, 264.)

[38] DynInst. http://www.dyninst.org/. (cited on pages 261, 264.)

[39] W. B. Easton. Process synchronization without long-term interlock. SIGOPS
Operating Systems Review, 6(1/2):95–100, June 1972. (cited on pages 94, 98.)

[40] EEL. http://pages.cs.wisc.edu/∼larus/eel.html. (cited on page 263.)

[41] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of
rollback-recovery protocols in message-passing systems. ACM Computing Sur-
veys, 34(3):375–408, sept 2002. (cited on pages 81, 91, 92, 137, 285.)

[42] R. S. Engelschall. Portable multithreading: The signal stack trick for user-space
thread creation. In Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ATEC, pages 20–20. USENIX Association, 2000. (cited on
page 280.)

[43] A. Fabbri and L. Donatiello. Sqtw: a mechanism for state-dependent parallel
simulation. description and experimental study. In Parallel and Distributed Sim-
ulation, 1997., Proceedings., 11th Workshop on, pages 82–89. IEEE Computer
Society, Jun 1997. (cited on page 96.)

[44] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, Apr.
1985. (cited on pages 95, 99.)

[45] J. Fleischmann and P. A. Wilsey. Comparative analysis of periodic state saving
techniques in time warp simulators. In Proceedings of the 9th Workshop on Parallel
and Distributed Simulation, pages 50–58. IEEE Comp. Soc., June 1995. (cited on
pages 83, 90.)

[46] F. S. Foundation. GDB: The GNU Project Debugger. http://www.gnu.org/
software/gdb/. (cited on page 102.)

[47] C. Fu, D. Wen, X. Wang, and X. Yang. Hardware transactional memory: A
high performance parallel programming model. Journal of Systems Architecture,
56(8):384–391, Aug. 2010. (cited on page 11.)

http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/

BIBLIOGRAPHY 297

[48] R. M. Fujimoto. Parallel discrete event simulation. Communications of the ACM,
33(10):30–53, Oct. 1990. (cited on pages 33, 39.)

[49] R. M. Fujimoto. Feature article–parallel discrete event simulation: Will the field
survive? ORSA Journal on Computing, 5(3):213–230, 1993. (cited on page 173.)

[50] R. M. Fujimoto and M. Hybinette. Computing global virtual time in shared-
memory multiprocessors. ACM Transactions on Modeling and Computer Simu-
lation, 7(4):425–446, Oct. 1997. (cited on pages 48, 286.)

[51] R. M. Fujimoto and D. M. Nicol. State of the art in parallel simulation. In
Proceedings of the 24th conference on Winter simulation, WSC, pages 246–254.
ACM Press, 1992. (cited on page 40.)

[52] K. Ghosh and R. M. Fujimoto. Parallel discrete event simulation using space-
time memory. In Proceedings of the 1991 International Conference on Parallel
Processing, pages 201–208. CRC Press Inc., 1991. (cited on pages 96, 97.)

[53] J. B. Gilmer, Jr. An assessment of “Time Warp” parallel discrete event simulation
algorithm performance. In Proceedings of the SCS Multiconference on Distributed
Simulation, pages 45–49. Society for Computer Simulation International, 1988.
(cited on page 35.)

[54] E. Gonsiorowski, C. Carothers, and C. Tropper. Modeling large scale circuits
using massively parallel discrete-event simulation. In Proceedings of the 2012
IEEE 20th International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, MASCOTS, pages 127–133. IEEE
Computer Society, 2012. (cited on page 239.)

[55] B. Grošelj and C. Tropper. Pseudosimulation: An algorithm for distributed sim-
ulation with limited memory. International Journal of Parallel Programming,
15(5):413–456, 1986. (cited on page 41.)

[56] B. Grošelj and C. Tropper. The time of the next event algorithm. In Proceed-
ings of the SCS Multiconference on Distributed Simulation. Society for Computer
Simulation International, July 1988. (cited on page 41.)

[57] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming, PPoPP, pages 175–184. ACM, 2008. (cited on page 190.)

[58] T. Harris. A pragmatic implementation of non-blocking linked-lists. In J. Welch,
editor, Distributed Computing, volume 2180, pages 300–314. Springer Berlin /
Heidelberg, 2001. (cited on pages 99, 184.)

[59] J. O. Henriksen, R. M. O’Keefe, C. D. Pegden, R. G. Sargent, and B. W. Unger.
Implementations of time (panel). In Proceedings of the 18th Conference on Winter
Simulation, WSC, pages 409–416. ACM, 1986. (cited on page 30.)

298 BIBLIOGRAPHY

[60] M. Herlihy and N. Shavit. On the nature of progress. In A. F. Anta, G. Lipari, and
M. Roy, editors, Proceedings of the 15th International Conference on Principles
of Distributed Systems, volume 7109 of OPODIS. Springer Verlag, 2011. (cited
on pages 175, 212.)

[61] M. P. Herlihy. Impossibility and universality results for wait-free synchroniza-
tion. In Proceedings of the Seventh Annual ACM Symposium on Principles of
Distributed Computing, pages 276–290. ACM, 1988. (cited on page 10.)

[62] M. P. Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13:124–149, January 1991. (cited on pages 10, 60, 94,
98.)

[63] M. P. Herlihy and J. E. B. Moss. Transactional memory: architectural support for
lock-free data structures. ACM SIGARCH Computer Architecture News, 21:289–
300, May 1993. (cited on page 10.)

[64] P. Horn. Autonomic computing: IBM’s perspective on the state of information
technology. White Paper, 15:1–39, 2001. (cited on page 274.)

[65] C. Hou, D. Quinlan, D. Jefferson, R. Fujimoto, and R. Vuduc. Synthesizing
loops for program inversion. In R. Glück and T. Yokoyama, editors, Reversible
Computation, volume 7581 of Lecture Notes in Computer Science, pages 72–84.
Springer Berlin Heidelberg, 2013. (cited on page 253.)

[66] C. Hou, G. Vulov, D. Quinlan, D. Jefferson, R. Fujimoto, and R. Vuduc. A new
method for program inversion. In M. O’Boyle, editor, Compiler Construction,
volume 7210 of Lecture Notes in Computer Science, pages 81–100. Springer Berlin
Heidelberg, 2012. (cited on page 253.)

[67] HPDCS Research Group. ROOT-Sim: The ROme OpTimistic Simulator - v 1.0.
http://www.dis.uniroma1.it/~hpdcs/ROOT-Sim/, Oct. 2012. (cited on pages
56, 61, 63, 138, 279.)

[68] M. H. Hwang. Tutorial: Verification of real-time system based on schedule-
preserved DEVS. In Proceedings of the 2005 DEVS Symposium. Society for Com-
puter Simulation International, Apr. 2005. (cited on page 25.)

[69] M. H. Hwang. Qualitative verification of finite and real-time DEVS networks.
In Proceedings of the 2012 Symposium on Theory of Modeling and Simulation -
DEVS Integrative M&S Symposium, pages 43:1–43:8. Society for Computer Sim-
ulation International, 2012. (cited on page 25.)

[70] M. H. Hwang, S. K. Cho, B. P. Zeigler, and F. Lin. Processing time bounds of
schedule-preserving DEVS. Technical Report H1, AICM, July 2007. (cited on
page 25.)

[71] M. H. Hwang and B. P. Zeigler. Reachability graph of finite and deterministic
devs networks. Automation Science and Engineering, IEEE Transactions on,
6(3):468–478, July 2009. (cited on page 25.)

http://www.dis.uniroma1.it/~hpdcs/ROOT-Sim/

BIBLIOGRAPHY 299

[72] Intel Corporation. IA-32 Intel(R) Architecture Software Developer’s Manual, Vol-
ume 2A: Instruction Set Reference, A-M. (cited on pages 66, 114.)

[73] Intel Corporation. IA-32 Intel(R) Architecture Software Developer’s Manual, Vol-
ume 2B: Instruction Set Reference, N-Z. (cited on pages 66, 114.)

[74] D. Jagtap, N. Abu-Ghazaleh, and D. Ponomarev. Optimization of parallel discrete
event simulator for multi-core systems. In Proceedings of the 2012 International
Parallel and Distributed Processing Symposium, IPDPS, pages 520–531. IEEE
Computer Society, 2012. (cited on pages 36, 239.)

[75] D. Jefferson, B. Beckman, F. Wieland, L. Blume, and M. Diloreto. Time warp
operating system. SIGOPS Operating Systems Review, 21(5):77–93, Nov. 1987.
(cited on pages 94, 138, 160.)

[76] D. R. Jefferson. Virtual Time. ACM Transactions on Programming Languages
and System, 7(3):404–425, July 1985. (cited on pages 39, 43, 47, 49, 64, 71, 78,
90, 139, 187.)

[77] D. R. Jefferson. Virtual Time II: storage management in conservative and opti-
mistic systems. In Proceedings of the 9th annual ACM symposium on Principles
of distributed computing, pages 75–89. ACM, 1990. (cited on pages 49, 90.)

[78] V. Jha and R. Bagrodia. Simultaneous events and lookahead in simulation pro-
tocols. ACM Trans. Model. Comput. Simul., 10(3):241–267, July 2000. (cited on
page 219.)

[79] D. B. Johnson. Efficient transparent optimistic rollback recovery for distributed
application programs. In Proceedings of the 12th Symposium on Reliable Dis-
tributed Systems, pages 86–95. IEEE Computer Society, Oct. 1993. (cited on
page 92.)

[80] D. W. Jones. An empirical comparison of priority-queue and event-set imple-
mentations. Communications of the ACM, 29(4):300–311, Apr. 1986. (cited on
page 30.)

[81] L. Junli. Agent-based logistics simulation system design and implementation. In
Proceedings of the 2nd IEEE International Conference on Computer Science and
Information Technology, ICCSIT, pages 602–606. IEEE Computer Society, 2009.
(cited on page 230.)

[82] S. Kandukuri and S. Boyd. Optimal power control in interference-limited fading
wireless channels with outage-probability specifications. IEEE Transactions on
Wireless Communications, 1(1):46–55, 2002. (cited on page 68.)

[83] T. Karmakharm and P. Richmond. Large scale pedestrian multi-simulation for
a decision support tool. In Proceedings of the 2012 Conference on Theory and
Practice of Computer Graphics, TPCG, pages 41–44. European Association for
Computer Graphics, 2012. (cited on page 230.)

300 BIBLIOGRAPHY

[84] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice
Hall Professional Technical Reference, 2nd edition, 1988. (cited on page 279.)

[85] S. Koenig and Y. Liu. Terrain coverage with ant robots: a simulation study.
In Proceedings of the fifth international conference on Autonomous agents,
AGENTS, pages 600–607. ACM, 2001. (cited on pages 69, 232.)

[86] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems, 6(2):213–226, June 1981. (cited on
page 43.)

[87] Y. Labiche and G. Wainer. Towards the verification and validation of DEVS
models. In Proceedings of 1st Open International Conference on Modeling &
Simulation, pages 295–305, 2005. (cited on page 24.)

[88] L. Lamport. Concurrent reading and writing. Communications of the ACM,
20(11):806–811, Nov. 1977. (cited on pages 94, 98.)

[89] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978. (cited on page 92.)

[90] M. Laurenzano, M. Tikir, L. Carrington, and A. Snavely. Pebil: Efficient static
binary instrumentation for linux. In IEEE International Symposium on Perfor-
mance Analysis of Systems Software, ISPASS, pages 175–183, Mar. 2010. (cited
on page 264.)

[91] D. Lea. A memory allocator. http://g.oswego.edu/dl/html/malloc.html,
1996. (cited on page 109.)

[92] J. I. Leivent and R. J. Watro. Mathematical foundations of time warp systems.
ACM Transactions on Programming Languages and Systems, 15(5):771–794, Nov.
1993. (cited on pages 47, 219.)

[93] X. Li, W. Mao, D. Zeng, and F.-Y. Wang. Agent-based social simulation and
modeling in social computing. In C. C. Yang, H. Chen, M. Chau, K. Chang,
S.-D. Lang, P. S. Chen, R. Hsieh, D. Zeng, F.-Y. Wang, K. Carley, W. Mao, and
J. Zhan, editors, Intelligence and Security Informatics, volume 5075 of Lecture
Notes in Computer Science, pages 401–412. Springer Berlin Heidelberg, 2008.
(cited on page 31.)

[94] Y.-B. Lin and E. D. Lazowska. Determining the global virtual time in a distributed
simulation. In B. W. Wah, editor, Proceedings of the 19th International Confer-
ence on Parallel Processing, ICPP, pages 201–209. Pennsylvania State University
Press, 1990. (cited on page 48.)

[95] Y.-B. Lin and E. D. Lazowska. Reducing the saving overhead for Time Warp
parallel simulation. University of Washington Department of Computer Science
and Engineering, Feb. 1990. (cited on page 79.)

http://g.oswego.edu/dl/html/malloc.html

BIBLIOGRAPHY 301

[96] Y.-B. Lin and E. D. Lazowska. Processor scheduling for Time Warp parallel sim-
ulation. In Proceedings of the 23rd SCS Multiconference on Advances in Parallel
and Distributed Simulation, pages 11–14. IEEE Comp. Soc., Jan. 1991. (cited on
pages 57, 58.)

[97] M. Livny. A study of parallelism in distributed simulation. In Proceedings of the
SCS Multiconference on Distributed Simulation, pages 94–98. Society for Com-
puter Simulation International, 1985. (cited on page 11.)

[98] B. D. Lubachevsky. Efficient distributed event-driven simulations of multiple-
loop networks. Communications of the ACM, 32(1):111–123, Jan. 1989. (cited on
page 41.)

[99] E. W. Lynch and G. F. Riley. Hardware supported time synchronization in multi-
core architectures. In Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop
on Principles of Advanced and Distributed Simulation, PADS, pages 88–94. IEEE
Computer Society, 2009. (cited on page 48.)

[100] E. W. Lynch and G. F. Riley. A sensitivity analysis of a new hardware-supported
global synchronization unit. In Proceedings of the 2009 IEEE International Sym-
posium on Modeling, Analysis Simulation of Computer and Telecommunication
Systems, pages 1–4. IEEE Computer Society, Sept. 2009. (cited on page 48.)

[101] C. M. Macal and M. J. North. Tutorial on agent-based modeling and simulation
part 2: How to model with agents. In Proceedings of the 2006 Winter Simulation
Conference, WSC, pages 73–83. Society for Computer Simulation, 2006. (cited
on page 230.)

[102] M. W. Macy and R. Willer. From factors to actors: Computational sociology and
agent-based modeling. Annual Review of Sociology, 28(1):143–166, 2002. (cited
on page 230.)

[103] D. E. Martin, T. J. McBrayer, and P. A. Wilsey. WARPED: A Time Warp simu-
lation kernel for analysis and application development. In HICSS ’96: Proceedings
of the 29th Hawaii International Conference on System Sciences (HICSS’96) Vol-
ume 1: Software Technology and Architecture, page 383. IEEE Comp. Soc., 1996.
(cited on page 138.)

[104] F. Mattern. Efficient algorithms for distributed snapshots and global virtual time
approximation. Journal of Parallel Distributed Computing, 18(4):423–434, 1993.
(cited on pages 48, 285.)

[105] M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell. System V Application Binary
Interface AMD64 Architecture Processor Supplement, Dec. 2007. (cited on pages
66, 111.)

[106] H. Mehl. A deterministic tie-breaking scheme for sequential and distributed simu-
lation. In Proceedings of the 6th Workshop on Parallel and Distributed Simulation,
PADS. ACM Press, 1992. (cited on page 219.)

302 BIBLIOGRAPHY

[107] H. Mehl and S. Hammes. How to integrate shared variables in distributed simu-
lation. ACM SIGSIM Simulation Digest, 25(2):14–41, Sept. 1995. (cited on pages
96, 173.)

[108] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free ob-
jects. IEEE Transactions on Parallel and Distributed Systems, 15(6):491–504,
June 2004. (cited on page 99.)

[109] G. E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8):114–117, Apr. 1965. (cited on page 5.)

[110] MPI Forum. Message passing interface. http://www.mpi-forum.org/, 1994.
(cited on page 36.)

[111] M. Mubarak, C. D. Carothers, R. Ross, and P. Carns. Modeling a million-node
dragonfly network using massively parallel discrete-event simulation. In Pro-
ceedings of the 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, SCC, pages 366–376. IEEE Computer Society, 2012. (cited
on page 239.)

[112] R. Murphy, T. Sterling, and C. Dekate. Advanced architectures and execution
models to support green computing. Computing in Science Engineering, 12(6):38–
47, Nov. 2010. (cited on page 7.)

[113] S. Nanda, W. Li, L.-C. Lam, and T.-C. Chiueh. BIRD: Binary interpretation
using runtime disassembly. In International Symposium on Code Generation and
Optimization, CGO, Mar. 2006. (cited on page 264.)

[114] J. Newsome, D. Brumley, and D. Song. Vulnerability-specific execution filter-
ing for exploit prevention on commodity software. In Proceedings of the 13th
Symposium on Network and Distributed System Security, NDSS, 2005. (cited on
page 261.)

[115] D. M. Nicol. Parallel discrete-event simulation of fcfs stochastic queueing net-
works. SIGPLAN Not., 23(9):124–137, Jan. 1988. (cited on page 42.)

[116] D. M. Nicol and X. Liu. The dark side of risk (what your mother never told you
about time warp). In Proceedings of the 11th Workshop on Parallel and Distributed
Simulation, PADS, pages 188–195. IEEE Computer Society, 1997. (cited on pages
190, 211.)

[117] D. M. Nicol and P. F. Reynolds, Jr. Problem oriented protocol design. SIGSIM
Simul. Dig., 16(2):27–30, Apr. 1985. (cited on page 41.)

[118] M. Olszewski, J. Cutler, and J. G. Steffan. JudoSTM: A dynamic binary-rewriting
approach to software transactional memory. In Proceedings of the 16th Interna-
tional Conference on Parallel Architecture and Compilation Techniques, PACT,
pages 365–375. IEEE Computer Society, 2007. (cited on page 261.)

http://www.mpi-forum.org/

BIBLIOGRAPHY 303

[119] E. H. Page and R. Smith. Introduction to military training simulation: A guide
for discrete event simulationists. In Proceedings of the 30th Conference on Winter
Simulation, WSC, pages 53–60. IEEE Computer Society Press, 1998. (cited on
page 31.)

[120] S. E. Page. Agent-based models. In S. N. Durlauf and L. E. Blume, editors,
The New Palgrave Dictionary of Economics. Palgrave Macmillan, 2008. (cited on
page 230.)

[121] A. C. Palaniswamy and P. A. Wilsey. An analytical comparison of periodic check-
pointing and incremental state saving. In Proceedings of the 7th Workshop on
Parallel and distributed simulation, pages 127–134. ACM, 1993. (cited on pages
81, 90.)

[122] J. K. Peacock, J. Wong, and E. G. Manning. Distributed simulation using a
network of processors. Computer Networks, 3, 1979. (cited on page 41.)

[123] A. Pellegrini. Hijacker: Efficient static software instrumentation with applica-
tions in high performance computing (poster paper). In Proceedings of the 2013
International Conference on High Performance Computing & Simulation, HPCS,
pages 650–655. IEEE Computer Society, July 2013. Candidate for (but not winner
of) the Outstanding Poster Paper Award. (cited on pages 62, 65, 111, 261.)

[124] A. Pellegrini and F. Quaglia. The ROme OpTimistic Simulator: A tutorial (in-
vited tutorial). In Proceedings of the 1st Workshop on Parallel and Distributed
Agent-Based Simulations, PADABS. LNCS, Springer-Verlag, Aug. 2013. (cited
on page 63.)

[125] A. Pellegrini, R. Vitali, and F. Quaglia. Di-DyMeLoR: Logging only dirty chunks
for efficient management of dynamic memory based optimistic simulation objects.
In Proceedings of the 23rd Workshop on Principles of Advanced and Distributed
Simulation. IEEE Comp. Soc., 2009. (cited on pages 89, 90.)

[126] A. Pellegrini, R. Vitali, and F. Quaglia. An evolutionary algorithm to opti-
mize log/restore operations within optimistic simulation platforms. In Proceedings
of the 4th International ICST Conference on Simulation Tools and Techniques.
ICST, 2011. (cited on page 288.)

[127] A. Pellegrini, R. Vitali, and F. Quaglia. The ROme OpTimistic Simulator: Core
internals and programming model. In Proceedings of the 4th International ICST
Conference on Simulation Tools and Techniques, SIMUTools. ICST, 2011. (cited
on page 63.)

[128] S. Peluso, D. Didona, and F. Quaglia. Application transparent migration of simu-
lation objects with generic memory layout. In Proceedings of the 25th Workshop on
Principles of Advanced and Distributed Simulation, pages 169–177. IEEE Comp.
Soc., june 2011. (cited on pages 37, 288.)

[129] K. S. Perumalla. µsik – a micro-kernel for parallel/distributed simulation systems.
In Proceedings of the 19th Workshop on Principles of Advanced and Distributed
Simulation, PADS, pages 59–68. IEEE Computer Society, 2005. (cited on page 56.)

304 BIBLIOGRAPHY

[130] Pin. http://www.pintool.org/. (cited on pages 261, 264.)

[131] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Communica-
tions of the ACM, 33(6):668–676, June 1990. (cited on page 30.)

[132] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu. Lift: A low-overhead
practical information flow tracking system for detecting security attacks. In Pro-
ceedings of the 39th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO, pages 135–148. IEEE Computer Society, 2006. (cited on
page 102.)

[133] F. Quaglia. Event history based sparse state saving in time warp. SIGSIM
Simulation Digest, 28(1):72–79, 1998. (cited on pages 84, 90.)

[134] F. Quaglia. A cost model for selecting checkpoint positions in Time Warp parallel
simulation. IEEE Transactions on Parallel and Distributed Systems, 12(4):346–
362, Feb. 2001. (cited on pages 84, 90.)

[135] F. Quaglia. On the construction of committed consistent global states in opti-
mistic simulation. International Journal of Simulation and Process Modelling,
5(2):172–181, 2009. (cited on page 93.)

[136] H. Rajaei, R. Ayani, and L.-E. Thorelli. The local time warp approach to par-
allel simulation. SIGSIM Simulation Digest, 23(1):119–126, July 1993. (cited on
page 53.)

[137] P. F. Reynolds, Jr. A shared resource algorithm for distributed simulation. ACM
SIGARCH Computer Architecture News, 10(3):259–266, Apr. 1982. (cited on
page 41.)

[138] P. F. Reynolds, Jr. A spectrum of options for parallel simulation. In Proceed-
ings of 1988 Winter Simulation Conference, pages 325–332. Society for Computer
Simulation, Dec. 1988. (cited on page 39.)

[139] S. Robinson. Simulation: The Practice of Model Development and Use. John
Wiley & Sons, 2004. (cited on page 17.)

[140] R. Rönngren and R. Ayani. Adaptive checkpointing in Time Warp. In Proceed-
ings of the 8th Workshop on Parallel and Distributed Simulation, pages 110–117.
Society for Computer Simulation, July 1994. (cited on pages 82, 90, 129.)

[141] R. Rönngren, M. Liljenstam, R. Ayani, and J. Montagnat. Transparent incremen-
tal state saving in Time Warp parallel discrete event simulation. In Proceedings
of the 10th Workshop on Parallel and Distributed Simulation, pages 70–77. IEEE
Comp. Soc., May 1996. (cited on pages 87, 90.)

[142] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,
M. Saisana, and S. Tarantola. Global Sensitivity Analysis: The Primer. Wiley,
2008. (cited on page 11.)

BIBLIOGRAPHY 305

[143] A. Santoro and F. Quaglia. Software supports for event preemptive rollback in
optimistic parallel simulation on myrinet clusters. Journal of Interconnection
Networks, 6(4):435–457, 2005. (cited on pages 211, 212.)

[144] A. Santoro and F. Quaglia. Transparent state management for optimistic synchro-
nization in the High Level Architecture. In Proceedings of the 19th Workshop on
Principles of Advanced and Distributed Simulation, pages 171–180. IEEE Comp.
Soc., June 2005. (cited on pages 85, 86.)

[145] A. Santoro and F. Quaglia. A version of MASM portable across different UNIX
systems and different hardware architectures. In Proceedings of the 9th Interna-
tional Symposium on Distributed Simulation and Real Time Applications. IEEE
Comp. Soc., Oct. 2005. (cited on pages 85, 86, 90.)

[146] A. Santoro and F. Quaglia. Transparent optimistic synchronization in the high-
level architecture via time-management conversion. ACM Transactions on Mod-
eling and Computer Simulation, 22(4):21:1–21:26, Nov. 2012. (cited on page 94.)

[147] T. Santoro and F. Quaglia. A low-overhead constant-time LTF scheduler for opti-
mistic simulation systems. In Proceedings of the IEEE Symposium on Computers
and Communications, pages 948–953, 2010. (cited on pages 58, 288.)

[148] R. G. Sargent. Verification and validation of simulation models. In Proceedings
of the 2010 Winter Simulation Conference, pages 166–183. Society for Computer
Simulation International, Dec. 2010. (cited on page 24.)

[149] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of
the 14th Annual ACM Symposium on Principles of Distributed Computing. ACM
Press, Aug. 1995. (cited on pages 11, 96.)

[150] S. S. Shende and A. D. Malony. The tau parallel performance system. Inter-
national Journal on High Performance Computing Applications, 20(2):287–311,
May 2006. (cited on page 261.)

[151] R. Simmonds, R. Bradford, and B. Unger. Applying parallel discrete event simula-
tion to network emulation. In Proceedings of the Fourteenth Workshop on Parallel
and Distributed Simulation, PADS, pages 15–22. IEEE Computer Society, 2000.
(cited on page 35.)

[152] S. Skold and R. Rönngren. Event sensitive state saving in Time Warp parallel
discrete event simulation. In Proceedings of the 1996 Winter Simulation Confer-
ence, pages 653–660. Society for Computer Simulation, december 1996. (cited on
pages 82, 90.)

[153] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. Journal of the
ACM, 32(3):652–686, July 1985. (cited on page 30.)

[154] J. E. Smith. A study of branch prediction strategies. In Proceedings of the 8th
Annual Symposium on Computer Architecture, ISCA ’81, pages 135–148. IEEE
Computer Society Press, 1981. (cited on page 43.)

306 BIBLIOGRAPHY

[155] H. Soliman and A. Elmaghraby. An analytical model for hybrid checkpointing
in Time Warp distributed simulation. IEEE Transactions on Parallel and Dis-
tributed Systems, 9(10):947–951, october 1998. (cited on page 39.)

[156] SPEEDES. http://www.speedes.com, 2005. (cited on pages 86, 138.)

[157] S. Srinivasan and P. F. Reynolds, Jr. Elastic time. ACM Transactions on Modeling
and Computer Simulation, 8(2):103–139, Apr. 1998. (cited on pages 39, 54.)

[158] A. Srivastava and A. Eustace. Atom: A system for building customized program
analysis tools. In Proceedings of the 1994 ACM SIGPLAN Conference on Pro-
gramming Languages and Design Implementation, pages 196–205. ACM, 1994.
(cited on page 263.)

[159] J. S. Steinman, C. A. Lee, L. F. Wilson, and D. M. Nicol. Global Virtual Time
and distributed synchronization. SIGSIM Simulation Digest, 25:139–148, July
1995. (cited on page 48.)

[160] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal, 30(3):202–210, 2005. (cited on pages 6, 7.)

[161] J. Svennebring and S. Koenig. Building terrain-covering ant robots: A feasibility
study. Autonomous Robots, 16(3):313–332, May 2004. (cited on pages 70, 71,
234.)

[162] B. P. Swenson and G. F. Riley. A new approach to zero-copy message passing
with reversible memory allocation in multi-core architectures. In PADS, pages
44–52, 2012. (cited on page 199.)

[163] T. Takahashi, S. Tadokoro, M. Ohta, and N. Ito. Agent based approach in disaster
rescue simulation - from test-bed of multiagent system to practical application.
In RoboCup 2001: Robot Soccer World Cup V, pages 102–111. Springer-Verlag,
2002. (cited on page 230.)

[164] The SCO Group, Inc. System V Application Binary Interface, fourth edition,
Mar. 1997. (cited on page 118.)

[165] The SCO Group, Inc. System V Application Binary Interface, Intel386 Architec-
ture Processor Supplement, fourth edition, Mar. 1997. (cited on pages 66, 111.)

[166] R. Toccaceli and F. Quaglia. DyMeLoR: Dynamic Memory Logger and Restorer
library for optimistic simulation objects with generic memory layout. In Proceed-
ings of the 22nd Workshop on Principles of Advanced and Distributed Simulation,
pages 163–172. IEEE Comp. Soc., 2008. (cited on pages 85, 86, 102, 129, 288.)

[167] Valgrind. http://valgrind.org/. (cited on pages 261, 264.)

[168] R. Vitali, A. Pellegrini, and F. Quaglia. Autonomic log/restore for advanced
optimistic simulation systems. In Proceedings of the Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems, pages
319–327. IEEE Comp. Soc., 2010. (cited on pages 89, 90, 121, 272, 274, 288.)

http://www.speedes.com

BIBLIOGRAPHY 307

[169] R. Vitali, A. Pellegrini, and F. Quaglia. Assessing load sharing within optimistic
simulation platforms (invited paper). In Proceedings of the 2012 Winter Simu-
lation Conference, WSC. Society for Computer Simulation, Dec. 2012. (cited on
pages 37, 222, 244, 281.)

[170] R. Vitali, A. Pellegrini, and F. Quaglia. A load sharing architecture for optimistic
simulations on multi-core machines. In Proceedings of the 19th International Con-
ference on High Performance Computing, HiPC. IEEE Comp. Soc., Dec. 2012.
(cited on pages 37, 222, 244, 281.)

[171] R. Vitali, A. Pellegrini, and F. Quaglia. Load sharing for optimistic parallel sim-
ulations on multi core machines. SIGMETRICS Performance Evaluation Review,
40(3):2–11, Aug. 2012. (cited on pages 37, 222, 244, 281.)

[172] R. Vitali, A. Pellegrini, and F. Quaglia. Towards symmetric multi-threaded opti-
mistic simulation kernels. In Proceedings of the 26th International Workshop on
Principles of Advanced and Distributed Simulation, PADS, pages 211–220. IEEE
Comp. Soc., Aug. 2012. (cited on pages 36, 105, 159.)

[173] G. Vulov, C. Hou, R. Vuduc, R. M. Fujimoto, D. Quinlan, and D. Jefferson. The
backstroke framework for source level reverse computation applied to parallel dis-
crete event simulation. In Proceedings of the 2011 Winter Simulation Conference,
WSC, pages 2960–2974. IEEE Computer Society, Dec. 2011. (cited on page 253.)

[174] R. Wahbe, S. Lucco, and S. L. Graham. Practical data breakpoints: Design
and implementation. In Proceedings of the 1993 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI, pages 1–12, 1993.
(cited on pages 103, 112.)

[175] G. Wainer. CD++: A toolkit to develop DEVS models. Software—Practice &
Experience, 32(13):1261–1306, Nov. 2002. (cited on page 25.)

[176] G. A. Wainer. Discrete-Event Modeling and Simulation: A Practitioner’s Ap-
proach. Computational Analysis, Synthesis, and Design of Dynamic Systems.
Taylor & Francis, 2008. (cited on page 28.)

[177] J. Wang and C. Tropper. Selecting GVT interval for Time-Warp-based distributed
simulation using reinforcement learning technique. In Proceedings of the 2009
Spring Simulation Multiconference, SpringSim, pages 49:1–49:7. Society for Com-
puter Simulation International, 2009. (cited on pages 48, 54.)

[178] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable transactions and their
applications. In Proceedings of the Twentieth Annual Symposium on Parallelism
in Algorithms and Architectures, SPAA, pages 285–296. ACM, 2008. (cited on
page 92.)

[179] D. West and K. Panesar. Automatic incremental state saving. In Proceedings
of the 10th Workshop on Parallel and Distributed Simulation, pages 78–85. IEEE
Comp. Soc., May 1996. (cited on pages 52, 88, 90, 102.)

308 BIBLIOGRAPHY

[180] N. H. Weste and K. Eshraghian. Principles of CMOS VLSI design: a systems per-
spective. VLSI systems series. Addison-Wesley Pub. Co., 1993. (cited on page 6.)

[181] B. Wester, P. M. Chen, and J. Flinn. Operating system support for application-
specific speculation. In Proceedings of the 6th Conference on Computer Systems,
EuroSys, pages 229–242. ACM, 2011. (cited on page 93.)

[182] F. Wieland, L. Hawley, A. Feinberg, M. D. Loreto, L. Blume, J. Ruffles, P. Reiher,
B. Beckman, P. Hontalas, S. Bellenot, and D. Jefferson. The performance of a
distributed combat simulation with the time warp operating system. Concurrency:
Practice and Experience, 1(1):35–50, 1989. (cited on page 35.)

[183] B. P. Zeigler. On the Feedback Complexity of Automata. PhD thesis, University
of Michigan, Computer and Communication Sciences Department, 1968. (cited
on page 18.)

[184] B. P. Zeigler. Theory of Modelling and Simulation. A Wiley-Interscience Publi-
cation. John Wiley, 1976. (cited on page 18.)

[185] B. P. Zeigler. Multifaceted modelling and Discrete Event Simulation. Academic
Press Professional, Inc., 1984. (cited on pages 19, 21.)

[186] B. P. Zeigler. Hierarchical, modular discrete-event modelling in an object-oriented
environment. Simulation, 49(5):219–230, Nov. 1987. (cited on page 19.)

[187] B. P. Zeigler. DEVS representation of dynamical systems: event-based intelligent
control. Proceedings of the IEEE, 77(1):72–80, Jan. 1989. (cited on page 26.)

[188] Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and W.-F. Wong. How to
do a million watchpoints: Efficient debugging using dynamic instrumentation.
In Proceedings of the Joint European Conferences on Theory and Practice of
Software 17th International Conference on Compiler Construction, CC/ETAPS,
pages 147–162. Springer-Verlag, 2008. (cited on page 102.)

	Abstract
	1 Introduction
	2 Research Context and Achieved Results
	2.1 Formal Definition of DES Models
	2.2 Systemic Approach to DES
	2.2.1 Basic Components of DES
	2.2.2 Simulation Kernel's Basic Logic

	2.3 Parallel Discrete Event Simulation (PDES)
	2.3.1 The Synchronization Problem
	2.3.2 Additional Components of PDES

	2.4 Results Achieved within this Thesis
	2.5 Hardware Setup and Base Software
	2.5.1 The ROOT-Sim Platform
	2.5.2 Hijacker and Ad-Hoc Assembly Modules
	2.5.3 Benchmark Applications

	3 Literature Survey
	3.1 State Saving
	3.1.1 Copy State Saving (CSS)
	3.1.2 Sparse State Saving (SSS)
	3.1.3 Incremental State Saving (ISS)

	3.2 Consistent Output Generation
	3.3 Data Sharing across Concurrent Logical Processes
	3.3.1 Advancements by the thesis

	3.4 Non-Blocking Algorithms

	4 Efficient and Transparent Incremental State Saving
	4.1 Overview of Di-DyMeLoR's Architecture
	4.1.1 Management of the Memory Map

	4.2 Simulation Model Instrumentation Technique
	4.3 State Log Operations
	4.4 State Restore Operations
	4.5 Memory Recovery
	4.6 Third Party Library Wrapper
	4.7 Experimental Evaluation
	4.7.1 Benchmark Applications and Configuration
	4.7.2 Results

	5 Interacting with the Outside World
	5.1 Output Management
	5.1.1 Involved Issues
	5.1.2 The Output Management Architecture
	5.1.3 Optimizations

	5.2 Experimental Evaluation

	6 Managing Global Variables
	6.1 Shared-State Management Architecture
	6.1.1 Read/Write Detection
	6.1.2 Accounting for Third-Party Libraries
	6.1.3 Memory Map and Version Lists
	6.1.4 Accessing Version Lists
	6.1.5 Synchronization and Rollback Operations
	6.1.6 Memory Recovery and Management

	6.2 Correctness of the Approach
	6.3 Experimental Evaluation
	6.3.1 Test-Bed Application and Configuration
	6.3.2 Results

	7 Cross-Accessing Logical Processes' States
	7.1 Event and Cross-State Synchronization
	7.1.1 Cross-State Dependency Tracking
	7.1.2 The Event and Cross-State Synchronization Scheme

	7.2 Experimental Evaluation
	7.2.1 Implementation within the ROOT-Sim Platform
	7.2.2 Results

	8 Effects on Timeliness and Accuracy
	8.1 Effects of Optimism on Simulation Results
	8.1.1 Results

	8.2 Simulation Completion Detection via Output Management

	9 Effects on Programmability
	10 Conclusions and Future Work
	A Hijacker
	A.1 Design and Implementation
	A.1.1 Rule Specification
	A.1.2 Application Analysis and Internal Binary Representation
	A.1.3 Code and Data Instrumentation
	A.1.4 Bundled Instrumentation Features
	A.1.5 Binary Multi-versioning
	A.1.6 Binary Recreation
	A.1.7 Third-party libraries

	A.2 Experimental Evaluation

	B ROOT-Sim
	B.1 Supported APIs
	B.2 Internal Features
	B.3 A Code Example
	B.4 Runtime Data

	Bibliography

