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Technological Trend

• Implications of Moore’s Law
have changed since 2003

• 130W is considered an upper
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Multicore Software Scaling
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The Needs

• Multicore / Clusters are a consolidated reality
• Both Scientific & Commodity Users
• Parallel Programming has been a privilege of few experts so far
• Large amount of (sequential) legacy code around

As parallel processors become ubiquitous, the key question is:

How do we convert the applications we care about
into parallel programs?
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Thesis’ Goals: Automatic Code Parallelization

“Relieve programmers from the tedious and error-prone
manual parallelization process”

• Targeting Event Driven Programming

• Transparency
◦ programmers fully exploit the semantic power of languages
◦ operations they should know nothing about are automatic
◦ Avoid set of new APIs, rely on classical/standard programming models

• Efficiency
◦ make the parallel programs run fast
◦ specifically rely on non-blocking algorithms and speculation

• Best trade-off between the two
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Research Context

• Addressing every aspect of parallel/concurrent programming is non-trivial

• I have concentrated on an instance of Event Driven Programming:

◦ No limitations to apply the results to other instances
◦ Discrete Event Simulation Environments
• an effective test-bed for general event-driven programming
• natural evolution of the work carried out by my research group
• widely applicable

http://www.dis.uniroma1.it/∼hpdcs/ROOT-Sim
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Event Driven Programming

• The flow of the program is determined by events
◦ sensors outputs
◦ user actions
◦ messages from other programs or threads

• It is based on a main loop divided into two phases:
◦ event selection/detection
◦ event handling

• Based on event handlers
◦ they are essentially asynchronous callbacks
◦ events can be queued if the involved handler is busy at the moment
◦ events’ execution is inherently parallel
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Discrete Event Simulation (DES)

• A discrete event occurs at an instant in time and marks a change
of state in the system

• DES represents the operation of a system as a chronological
sequence of events

• Program state is represented using Logical Processes (LPs)
◦ A collection of data structures scattered in memory
◦ Each simulation object mapped to one LP
◦ Events produce changes in the LPs
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Discrete Event Simulation (DES)

• Highly versatile technique

• Allows to analyze complex systems
◦ VHDL
◦ traffic simulation
◦ agent-based simulation
◦ . . .

• Systems can be simulated before their construction or operativity
(what-if analysis)
◦ online reconfiguration of runtime parameters (e.g. on Cloud

platforms) [SIMUTOOLS13]

• Interaction of simulated worlds with physical worlds (symbiotic
simulation)
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PDES Logical Architecture on Multicores
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The Synchronization Problem
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Optimistic (Speculative) Synchronization: Rollback
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Rollback Supports: State Saving
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What if the model...

void *simulation_state[lps];

ev_handl(int id, double time, int ev_type, void *ev_content) {

switch(event_type) {

case INIT:

simulation_states[id] = malloc(sizeof(some_structure));

break;

case EVENT_x:

simulation_states[id]->counter++;

break;

<...>

}

}
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ACT I

Dynamic Memory and
Incremental State Saving
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What we want...

• Transparency
◦ Interception of memory-related operations (no platform APIs)
◦ No application-level procedure for (incremental) log/restore tasks

• Optimism-Aware Runtime Supports
◦ Recoverability of generic memory operations: allocation, deallocation,

and updating

• Incrementality
◦ Cope with memory “abuse” of speculative rollback-based

synchronization schemes
◦ Enhance memory locality
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Di-DyMeLoR [PADS09], candidate for Best Paper

Di-DyMeLoR: Dirty Dynamic Memory Logger and Restorer

• Lightweight software instrumentation
◦ Optimized memory-write access tracing and logging
◦ Arbitrary-granularity memory-write tracing
◦ Concentration of most of the instrumentation tasks at a pre-running

stage:

• No costly runtime dynamic disassembling

• Standard API wrappers
◦ Code can call standard malloc services
◦ Memory map transparently managed by the simulation platform
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Memory Map

malloc_area
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• Memory (for each LP) is pre-allocated

• Requests are served on a chunk basis

• Explicit avoidance of per-chunk metadata
◦ Block status bitmap: tracks used chunks
◦ Dirty bitmap: tracks updated chunks since last log
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Hijacker [HPCS13], candidate for the Best Paper

• Hijacker is a rule-based static binary instrumentation tool

• It has been specifically tailored to HPC applications

• It tries to hide away all the complexities related to binary
manipulation

• It is highly modular: can be extended to different instructions sets
and binary formats

• Instrumentation rules are specified using xml
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Internal binary representation

Executable

Functions

Instructions

Data
cal

l

mov

jmp
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Static Binary Instrumentation in Di-DyMeLoR

mov $3, x
original memory

update

jmp *%eaxindirect branch

mov $3, x

jmp .Jump

call track

jmp 0xXXXX
.Jump:

push struct

new writeable section regular jump modi ed

by branch_corrector

call corrector

Instrumentation Process

Original Executable Final executable

push struct

regular jump
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Discussion of the Approach

• Fast O(1) management of memory access tracking on a CISC ISA
(x86)
◦ thanks to cached disassembly information

• Enhanced locality
◦ chunks to be logged are contiguous

• Fast log/restore operations
◦ tiny and compact data structures to analyze

• Supporting a free is non trivial due to the lack of headers
◦ fast software cache for mapping addresses to malloc areas
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Log/Restore Operations

• Log Operation
◦ Only used malloc areas are logged
◦ Status and dirty bitmap are copied to the log buffer
◦ Only chunks dirtied since the last log are copied

• Restore Operation
◦ The chain of logs is traversed
◦ Status/Dirty bitmaps are used to know which chunks are present
◦ The operation stops when all the (allocated) chunks are restored
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Isn’t the cost high?

• Do we have to really pay the memory-tracking supports cost?

• No, if we don’t have any benefit from it!

• Hijacker offers code multiversion facilities

• We have developed an analytic model to determine if we have
benefits from incrementality [TPDS2014]
◦ switching among pure full and incremental modes involves only

changing a function pointer
◦ decision is stable to fluctuations thanks to an integral model
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What does the literature propose?

• Large-granularity approaches
◦ Memory (page-based) protection solutions [SQ06]
◦ The cost is higher
◦ Logs easily become huge

• Small-granularity approaches
◦ Instrumentation-based approach [WP96]
◦ Each memory operation is stored
◦ Complex reconstruction of a previous state
◦ Larger memory footprint

• API-based approaches
◦ Specific APIs are used to indicate where the state is located
◦ Specific APIs are used to mark modified areas
◦ The modeler has to implement callbacks to generate/restore logs
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Test-Bed Scenario and Settings

• NoSQL benchmark [SIMUTOOLS13]
◦ 64 cacheservers
◦ 50000 data objects per cache server
◦ read intensive vs write intensive phases (5% to 95% accesses in write

mode)

• Run on an HP Proliant server:
◦ 64-bits NUMA machines
◦ four 2GHz AMD Opteron 6128 processors and 32GB of RAM
◦ each processor has 8 CPU-cores (for a total of 32 CPU-cores)
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NoSQL: Execution Time
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What if the model...

ev_handl(int id, double time, int ev_type, void *ev_content) {

switch(event_type) {

case EVENT:

printf("I’m executing event %d\n", ev_type);

break;

<...>

}

}
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Non-Rollbackable Operations

Outside World

Simulation Framework

LP1

LP2

e1

output via printf()

m2 T2

e2: T2 < T1

rollback operation
not possible

T1

• It’s not a reproducibility problem (as in fault tolerance)

• It’s a correctness one (rollbacks, silent execution)
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ACT II

Interacting with the Outside World
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What do we want...

• What does the literature propose?
1. Ad-hoc output-generation APIs provided by simulation frameworks
2. Temporary suspension of processing activities until output generation

is safe (delay until commit)
3. Storing output messages in events, and materializing during fossil

collection (this affects the critical path)

• What we explicitly want:
1. Transparency
2. Move most operations away from the critical path

LPx WCT

LPy WCT

Executing

event at T1

Processing I/O

T3 T4 T5 T6

T2

Rollback

Wasted Work

3. Order output messages on a system-wide basis
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Output Messages Management [PADS13]

• We rely on link-time wrappers
◦ printf family functions are redirected to an internal subsystem

• We base our solution on an output daemon
◦ a user-space process separated from the actual simulation framework
◦ It is not given a dedicated processing unit

• Communication with the kernel is achieved via a logical device
◦ A non-blocking shared memory buffer, accessed circularly
◦ If it gets filled, a new (double-sized) buffer gets chained
◦ Once empty, the older buffer gets destroyed
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Non-blocking logical device

• A logical-device is a per-thread channel

• The device is written by a thread, and is read by the output
daemon: we can implement a non-blocking access algorithm

r

w

updated by

thread

updated by

daemon
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Output Message Ordering, Commit, and Rollback

• A timestamped output message read from a device is stored into a
Calendar Queue
◦ fast O(1) access for output message insertion and materialization
◦ provides system-wide ordering

• Upon computation of the GVT, the output subsystem is notified
about the newly computed value (via a special COMMIT message)

• The Calendar Queue is then queried to retrieve messages falling
before that value

• Upon rollback, messages can be extracted from any position of the
queue
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Output Daemon Wakeup

• All this might require much computing time
◦ We want a timely materialization!
◦ Yet we want an efficient simulation!

• Processing time of each type of message: to, tc, tr
• Mean events’ number written to device in a GVT phase: c̄o, c̄c, c̄r
• Expected execution time to empty the logical device:

E(T ) =
∑

x∈(o,c,r)

t̄x · c̄x

• If larger than a compile-time threshold (smaller than GVT
interval), it is forced to that value

• Final value is divided into several time slices and a sleep time is
computed, so as to create an activation/deactivation pattern
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Test-Bed Scenario and Settings

• Personal Communication System (PCS) benchmark

◦ 1024 wireless cells, each one having 1000 channels

◦ random-walk mobility model

◦ high-fidelity simulation

• fading phenomena explicitly modeled
• explicitly accounts for climatic conditions

◦ simulation statistics printed periodically, with frequency f ∈ [1%, 35%]
of total events

◦ that’s one output message produced [200, 7000] times per second
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Experimental Results
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What if the model...

int processed_events = 0;

ev_handl(int id, double time, int ev_type, void *ev_content) {

switch(event_type) {

case EVENT_x:

processed_events++;

break;

<...>

}

}
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ACT III

Managing Global Variables
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Global Variables Management Subsystem (GVMS)
[MASCOTS12]

• The programmer can access both the LP’s private state and the
global portion

• Rely on instrumentation via Hijacker

• Implement shared state as multi-versioned variables

• Propose an extended rollback scheme

• Rely on non-blocking algorithms for data synchronization

• GVMS exposes only two (internal) APIs:
◦ write glob var(void *orig addr, time type lvt, ...)
◦ void *read glob var(void *orig addr, time type my lvt)
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Read/Write Detection

• To efficiently support runtime execution, an exact number of
multi-versioned global variables must be installed

• At linking time the .symtab section is explored, to find global
variables in the executable

• A table of 〈name, address, size〉 tuples is built

• At simulation startup, the correct number of multi-versioned
variables is installed
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Shared Memory-Map Organization

metadata
{

...

variables nodes

{...

read list

{...

• Preallocated: no malloc invocations during execution

• Contiguous: enhances locality

• Accessed concurrently: CAS-based allocation of nodes
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Version Lists

• Multi-versioned variables are implemented as version lists

• Each node represents one variable’s value at a certain LVT

• Insert/Delete operations are implemented as non-blocking
operations by relying on the CAS primitive

H Tx Tz T

Ty

CAS

H Tx Ty T
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Synchronization and Rollback

• To strengthen the optimism, we allow interleaved reads and writes
on a version list

• We explicitly avoid a freshly installed version to invalidate any
version related to a greater LVT

LVT = 10v LVT = 6

Read: LVT = 9

Read: LVT = 7

LVT = 8

Write
v
i
o
l
a
t
i
o
n
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Synchronization and Rollback

• Processes which read a version node must leave a mark, i.e., visible
reads are enforced.

• Classical rollback’s notion is augmented:
◦ In case of inconsistent read, a special anti-message is sent to the

related LP

• A ReadList is maintained, to keep track of versions reads

• After each Write operation, the ReadList of the previous node is
checked to see if an anti-message must be scheduled to some LPs

• When an antimessage is received because of an inconsistent read,
version nodes related to that particular event must be removed
◦ This is done by connecting every node in the message queue with

version nodes installed during an event execution
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Experimental Results

PCS with global variables handling global statistics
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What if the model...

ev_handl(int id, double time, int ev_type, void *ev_content) {

switch(event_type) {

case INIT:

my_state = malloc(sizeof(state_t));

my_state->buffer = malloc(1024);

break;

case EVENT_x:

char *cont = my_state->buffer;

ScheduleEvent(to, time, EVENT_y, cont, sizeof(char *));

break;

case EVENT_y:

strcpy(ev_content, "Some String!");

break;

<...>

}

}
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ACT IV

Cross-Accessing
Logical Processes’ States
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Step 1: Materializing Cross-State Dependencies [PADS14]

• To transparently detect accesses to other LPs’ states we rely on an
x86 64 kernel-level memory management architecture

DirectoryPML4 Directory Ptr Table O set
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Memory Allocation Policy

• LPs use virtual memory according to stocks

• Memory requests are intercepted via malloc wrappers (DyMeLoR)

• Upon the first request, an interval of page-aligned virtual memory
addresses is reserved via mmap POSIX API (a stock)

• This is a set of empty-zero pages: a null byte is written to make
the kernel actually allocate the chain of page tables

• One stock gives 1GB of available memory to each LP
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Memory Access Management

• A LKM creates a device file accessible via ioctl
• SET VM RANGE command associates stocks with LPs
• A kernel-level map (accessible in constant time) is created:
◦ Each stock is logically related to one entry of a PDP page-table
◦ The id of the LP which the stock belongs to is registered

• When LP j accesses LP i’s state, we could know that by the
memory address

PML4

PDP
simulation object x

simulation object y

constant time access map

updated via the SET_VM_RANGE

ioctl command

O-th PDPTE

1-st PDPTE
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Memory Access Management

0-th PDPTE

PDP

PML4

LPx

CR3 Register
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Memory Access Management
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Memory Access Management

NULL
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Sibling PDP

LPx

WTi

CR3 Register

ioctl(fd, SCHEDULE_ON_PGD, x)
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Memory Access Management
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Cross-State Dependency Materialization

• If other LPs’ stocks are accessed, we have a memory fault

• This is the materialization of a Cross-State Dependency

• Yet, this page fault cannot be traditionally handled:
◦ Memory has already be validated via mmap at simulation startup
◦ The Linux kernel would simply reallocate new pages
◦ For the same virtual page we would have multiple page table entries!
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Step 2: Event and Cross-State Synchronization (ECS)

• At startup we change the IDT table to redirect the page-fault
handler pointer to a specific ECS handler

• Upon a real segfault, the original handler is called

• Otherwise, the ECS handler pushes control back to user mode to
let the PDES platform handle synchronization:
◦ Execution goes back into platform mode
◦ CR3 is switched back to the original PML4 table
◦ The simulation kernel can access any memory buffer required for

supporting synchronization
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Step 2: Event and Cross-State Synchronization (ECS)

• At the end of the event the simulation platform invokes the
UNSCHEDULE ON PGD command

• This explicitly brings back the execution to platform mode

p
platform mode

(CR3 points to the 

original PML4)

simulation-object

mode (CR3 points to 

the sibling PML4)

SCHEDULE_ON_PGD

UNSCHEDULE_ON_PGD

faulting access to 

a remote stock

• Upon a CR3 switch, the penalty incurred is a flush of the TLB
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ECS System

Property

When a Cross-State Dependency is materialized at simulation time T ,
the involved LP observes the state snapshot that would have been
observed in a sequential-run.

• To support this we introduce:
◦ temporary LP blocking: the execution of an event can be suspended
◦ rendez-vous events: system-level simulation events not causing state

updates

• Events are “transactified”: read/write operations are serialized
without pre-declarations

• Bypass of the RPC (copy-restore) model
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ECS System

LPx WCT

LPy WCT

CSDx  = {}

Cross-State
Dependency Set
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ECS System
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ECS System
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ECS System
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Rollback

• Rollback of LPx is managed via traditional annihilation scheme

• Rollback of LPy must be explicitly notified
◦ A restart event ervrx is sent to LPx

• All other events are not incorporated in the queue
◦ They do not require special care for rollback operations
◦ They are simply discarded if no rendez-vous ID is found
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Progress: Deadlock

object x

object y

object z

t1

t2

t3

issued rendez-vous with 

source objects blocked

waiting for acks

deadlock generator

rendez-vous
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Progress: Domino Effect

object x

object y

ex

straggler

log

1) rollback (requires coasting-forward up to ts(ex) 

log

2) Snapshot reconstruction for rendez-vous

requires coasting-forward up to ts(ex) 

3) Snapshot reconstruction

for rendez-vous requires 

coasting-forward from an 

older log 

ey
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Experimental Evaluation: Overhead Assessment

• Personal Communication System Benchmark
• 1024 wireless cells, 1000 wireless channels each
• 25%, 50%, and 75% channel utilization factor
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Experimental Evaluation: Effectiveness Assessment

• NoSQL data-grid simulation

• 2-Phase-Commit (2PC) protocol to ensure transactions atomicity

• Two different implementations:
◦ Not using ECS: the write set is sent via an event
◦ ECS-based: a pointer to the write set is sent

• 64 nodes (degree of replication 2 of each 〈key, value〉 pair)

• Closed-system configuration: 64 active concurrent clients
continuously issuing transactions

• Amount of keys touched in write mode by transactions varied
between 10 and 100
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Experimental Evaluation: Effectiveness Assessment
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Overview

1. Dynamic Memory and Incremental State Saving
◦ Instrumentation-based interception of memory updates
◦ Efficient log/restore operations relying on compact metadata
◦ Possibility to switch to full mode depending on the operation cost

(based on an innovative performance optimization/stability
methodology)

2. Interacting with the Outside World
◦ Materialization moved off from the critical path
◦ System-wide ordering of output
◦ Activation/Deactivation scheme to enhance simulation efficiency
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Overview (2)

3. Managing Global Variables
◦ Based on multiversion lists
◦ Non-blocking algorithm to access the list
◦ Reduced rollback impact in case of read operations

4. Cross-Accessing Logical Processes’ States
◦ Kernel-level low-cost detection of cross-state accesses
◦ Introduction of execution suspension of LPs
◦ Introduction of a new synchronization protocol (ECS)

• All approaches are fully transparent vs the common event handler
programming paradigm

65 of 66 - Techniques for Transparent Parallelization of Discrete Event Simulation Models



Thanks for your attention
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pellegrini@dis.uniroma1.it

http://www.dis.uniroma1.it/∼pellegrini

http://www.dis.uniroma1.it/∼ROOT-Sim

66 of 66 - Techniques for Transparent Parallelization of Discrete Event Simulation Models



DES Skeleton

1: procedure Init
2: End← false
3: initialize State, Clock
4: schedule INIT
5: end procedure
6:

7: procedure Simulation-Loop
8: while End == false do
9: Clock ← next event’s time

10: process next event
11: Update Statistics
12: end while
13: end procedure
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Di-DyMeLoR Architecture

Application Level Software

Simulation Platform

Memory Map Manager

and Allocator

Third Party

Library Wrapper

Update

Tracker

Log/Restore Subsystem

malloc()

free()
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Calls to 3rd

party functions

memory

accesses

take_full_log()

state_restore()

set_current_lp()

take_incremental_log()
Memory Recovery 

Subsystem
prune_log()

dymelor_init()

SetState()
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Restore Operations
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Restore Operations
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Restore Operations
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Comparison of Instrumenting Tools

Stat Dyn Features
ATOM X Alpha machines only

EEL X C++ interfaces to alter code

BIRD X Windows Only, Rewrites first 5 bytes of func-
tions

PEBIL X Linux Only, Relocates the code

Dyninst X X Mostly used for performance profiling and de-
bugging

Pin X Just-in-time instrumentation

DynamoRIO X Powerful, multiplatform, must implement a
runtime client

Valgrind X Powerful, but invasive. Emulates the execu-
tion of programs

Hijacker X xml-based instrumentation, offers built-in
features
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Rule-based instrumentation

• Code is described in terms of functions, specific
(machine-dependent) instructions or instruction families

• Instrumentation entails adding code snippets in specific points, and
injecting completely new functionalities

• Replacing particular instructions with a function call is as simple as:

<Inject file="mcopy.c"/>

<Instruction instruction="movs" replace="nop">

<AddCall where="after" function="mcopy"

arguments="target" convention="registers"/>

</Instruction>
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Instruction Families

I MEMRD: The instruction reads from memory

I MEMWR: The instruction writes to memory

I CTRL: The instruction performs checks on data

I JUMP: The instruction alters the execution flow

I CALL: The instruction calls a different function

I RET: The instruction returns from a callee

I CONDITIONAL: The instruction is executed only if a condition is met

I STRING: The instruction operates on large amount of data

I ALU: The instruction does some logical/arithmetic operation

I FPU: The instruction does some floating-point operation

I STACK: The instruction works on stack

I INDIRECT: The instruction behavior might depend on some
runtime value
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Hijacker’s Architecture
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Full Log Model

OHF =
SF
χF

δLB + Pr(SF δRB +
χF − 1

2
δe)

δe average event execution cost.

SF average size of a full log.

δLB average cost for logging one byte of the state image
(including metadata)

δRB average cost for restoring one byte from the log

Pr rollback probability (frequency of rollback occurrences
over event executions)

χF selected log interval when operating in non-incremental
mode.
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Full Log Model

• The non-incremental overhead is minimized for :

χF =

⌈√
2

Pr

δLBSF
δe

⌉

• The optimal checkpointing interval is denoted as χopt
F

9 of 24 - Techniques for Transparent Parallelization of Discrete Event Simulation Models



Incremental Log Model

OHI=
SP
χI
δLB +

(SF−SP )

χIχI,F
δLB+Pr

[
SF δRB+

χI−1

2
(δe+δm)

]
+δm

SP average size of an incremental log

XI selected log-interval when operating in incremental
mode.

XI,F interleave step between full and incremental logs

δm is the per-event cost for running the memory-update
tracking module
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Incremental Log Model

• The non-incremental overhead is minimized for :

χI =

⌈√
2

Pr

δLBSP
δe + δm

⌉

• The optimal checkpointing interval is denoted as χopt
I
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Integral Model

• The the best suited operating mode is selected usign a cost
function CF (χopt

F , χopt
I ) defined as:

CF (χopt
F , χopt

I ) = OHF (χopt
F )−OH(χopt

I )

• The final choice is taken on the result of the integration of this
cost function over a multi-dimensional domain defined by the
values of the parameters {δe, δm, δLB, δRB, Pr, SF , SP }.
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PCS: Throughput (variable τA)
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PCS: Throughput (fading recalculation)
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PCS: Memory Consumption
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PCS: Event Latency
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Simulation Throughput
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Non-Blocking Stack Throughput
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Non-Blocking Linked List Throughput
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Concurrent Allocator

1: procedure Allocate
2: m← generate mark()
3: slot← first node free

4: while true do
5: alloc← vers[slot].alloc;
6: if alloc ∨ ¬ CAS(vers[slot].alloc, alloc, m) then
7: slot← next slot in circular policy
8: else
9: break

10: end if
11: end while
12: atomically update first node free

13: return slot

14: end procedure

20 of 24 - Techniques for Transparent Parallelization of Discrete Event Simulation Models



Read Operation

1: procedure Read(addr, lvt)
2: slot← hash table’s entry associated with addr
3: if slot ∈ AccessSet then
4: version← AccessSet[slot]
5: else
6: version← Find-Node(slot, lvt)
7: AccessSet[slot]← version
8: end if
9: return vers[version].value;

10: end procedure
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Write Operation

1: procedure Write(addr, lvt, val)
2: slot← hash table’s entry associated with addr
3: if slot ∈ AccessSet then
4: version← AccessSet[slot]
5: vers[version].value← val
6: else
7: version← Insert-Version(slot, lvt, val)
8: AccessSet[slot]← version
9: end if

10: end procedure
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Output Message Rollback

• Upon a rollback, a ROLLBACK message is written to the logical
device, piggybacking:
◦ a [from, to] interval
◦ the involved LP
◦ an era, a monotonic counter updated by the simulation kernel upon

the execution of a rollback operation on a per-LP basis

• Calendar Queue’s buckets are augmented with a Bloom filter,
storing eras of messages contained

• from and to are mapped to buckets

• A linear search is performed in between the two buckets, checking
only the ones which are expected to contain an element by the
Bloom filter
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Where do we go now?

• Full support for statefull libraries

• Support for any third-party library

• What if the modeler knows something about parallelism?
◦ What does it mean to call, e.g., pthread create() in a handler?

• Specific optimizations for other programming languages

• Testing, testing, testing!
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