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Research Context (1)

• Moore’s law no longer involves an enhancement in computing
performances [15]

• The answer:
◦ Parallel Architectures

• GPUs
• Multi/many-core architectures

◦ Parallel Programming Paradigm

• This solution is still a niche one

How to bring the power of parallelism
to the masses?
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Research Context (2)

• Addressing every aspect of parallel/concurrent programming is
non-trivial

• So far, I have concentrated on special cases:

◦ Event-Driven Programming Paradigm

• The advancement of the execution is determined by the flow of
timestamped events which produce changes in the stateb

• Discrete Event Simulation Environments

◦ Software Transactional Memories:

• Allow a correct sequential object to be mapped into a correct concurrent
object

• Based on the notion of transactions
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Goals (1)

• Performance
◦ Explore new synchronization patterns and protocols
◦ Specifically rely on non-blocking algorithms

• Transparency
◦ Allow the programmer to easily produce a program which is then run

as efficiently as possible
◦ Need to rely on the most restricted set of new APIs
◦ Rely on classical/standard programming models

• Tools
◦ Practical tools to help the unexperienced

• Methodologies
◦ General approaches to efficiently support parallel execution
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Related Work (1)

• Non-blocking Algorithms
◦ Several data structures have been proposed [16, 17, 18, 19]
◦ A particular focus is on queues and deques

◦ Concrete applications

• Mutual exclusion problem [20, 21, 22]
• Write barriers in garbage collectors [23]
• Composite locks [24]

• They have been proven to be an effective and viable approach
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Related Work (2)

• Virtual Time Synchronization [33]
◦ A set of rules specifying correctness for concurrent execution of

Event-Based simulation models
◦ Some implementations rely on global data structures, or

special-purpose threads (e.g., [34])
◦ Either conservative synchronization, or optimistic syncronization [35]

protocols/runtime environments have been proposed

◦ Efficient memory management in the optimistic case has been
supported in several ways

• Full State Saving [36, 37, 38, 39]
• Incremental State Saving [40, 41, 42]
• Mixture of the two [43, 44]
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Where are we now?!

• I have moved on two main tracks:
◦ Event-Driven Programming (Optimistic Simulation flavour):

• Supports for transparents management of private and shared simulation
state

• Performance enhancements transparently introduced, relying on the
autonomic computing paradigm [45, 46, 47]

◦ Transactional Memories

• Performance optimization by reducing the wasted work, still
transparently!

• Common ground
◦ Static instrumentation methodologies/tool to reshuffle the code
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Intrumenting Tool (1)

• Static rule-based instrumentation tool

• Lightweight modification of the actual executable

• Wide applicability

Executable

Functions

Instructions

Data
cal

l

mov

jmp
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Instrumenting Tool (2)

• Possible application scenarios:
◦ Profiling
◦ Performance Enhancements
◦ Synchronization Transparency
◦ Post-Mortem Debugging [48]
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Private Data Management

• Based on static instrumentation + dynamic reconstruction of
memory update targets

• Efficient
◦ Recycling of cached disassembly information injected in the executable
◦ Memory-update detection’s cost is O(1)

• Standard malloc services are wrapped, for transparency

• Fast reconstruction of the state using bit-wise masking of
unimportant memory areas

• Wise usage of memory resources

• Several layers involved: compilation, linking and runtime execution

• Evaluated on a complex wireless network simulation model
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Private Data Management (2)
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Autonomic Approach based on Dual Coding

• First proposal in literature on this topic in this context
• Two versions of the same executable, differently instrumented

coexist
• Switch amongst the modes involves reassigning function pointers
• Based on an analytical integral model, which accounts for stability

regardless of perturbations and fluctuations

.TEXT_I

.DATA_I

.BSS_I

.RODATA_I

.DATA_F

.BSS_F

.TEXT_F

.RODATA_F

.DATA

.BSS

.TEXT

.RODATA

.TEXT_I

.RODATA_I

.DATA_F

.BSS_F

.TEXT_F

.RODATA_F

.DATA_I

.BSS_I

instrumented version
(for incremental logging)

non-instrumented version
(for non-incremental – full – logging)

application
binary

final binary
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Autonomic Approach based on Dual Coding (2)
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Shared Data Management

∀i , j i 6= j : Si ∩ Sj = ∅ S =
numLP⋃
i=1

Si
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Shared Data Management

∀i , j i 6= j : Si ∩ Sj = ∅ S =
numLP⋃
i=1

Si

• Disjoint States: Message Passing to represent interactions

• Relaxing this constraint can result in a more flexible paradigm

Goal:

• Enable the application programmer to access both the object’s
private state and the global portion
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Shared Data Management

• Implement variables as multi-versioned lists

• Use non blocking algorithms for synchronization

• Remap shared data to shared memory

• Efficient new rollback scheme: waste as minimum as possible

LVT = 10v LVT = 6

Read: LVT = 9

Read: LVT = 7

LVT = 8

Write
v
i
o
l
a
t
i
o
n
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Shared Data Management (2)
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Partial Rollback in STMs

• Allow an aborting transaction to save as much work as possible
• Rely on snapshot extension
• Changed relation between transactions and their snapshots
◦ What a transaction sees might dynamically change

• Real implementation within TinySTM
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Future Work

• Interaction Transparency
◦ What if a parallel program wants to interact with external worlds,

which are not necessarily parallel?
◦ Input/Output problem when relying on speculative approaches

• Deployment Transparency
◦ Study how to transparently select the best amount of concurrent

resources to avoid thrashing
◦ Relevant as well in the Cloud Computing field: possible waste of

money as well

• Programming Model Transparency
◦ What if the programmer knows about parallelization?
◦ How to mix induced parallelism with explicit parallelism?
◦ This is where all my proposals integrate
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